xref: /dragonfly/crypto/libressl/crypto/evp/e_aes.c (revision c9c5aa9e)
1 /* $OpenBSD: e_aes.c,v 1.42 2020/06/05 18:44:42 tb Exp $ */
2 /* ====================================================================
3  * Copyright (c) 2001-2011 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  */
51 
52 #include <limits.h>
53 #include <stdlib.h>
54 #include <string.h>
55 
56 #include <openssl/opensslconf.h>
57 
58 #ifndef OPENSSL_NO_AES
59 #include <openssl/aes.h>
60 #include <openssl/err.h>
61 #include <openssl/evp.h>
62 
63 #include "evp_locl.h"
64 #include "modes_lcl.h"
65 
66 typedef struct {
67 	AES_KEY ks;
68 	block128_f block;
69 	union {
70 		cbc128_f cbc;
71 		ctr128_f ctr;
72 	} stream;
73 } EVP_AES_KEY;
74 
75 typedef struct {
76 	AES_KEY ks;		/* AES key schedule to use */
77 	int key_set;		/* Set if key initialised */
78 	int iv_set;		/* Set if an iv is set */
79 	GCM128_CONTEXT gcm;
80 	unsigned char *iv;	/* Temporary IV store */
81 	int ivlen;		/* IV length */
82 	int taglen;
83 	int iv_gen;		/* It is OK to generate IVs */
84 	int tls_aad_len;	/* TLS AAD length */
85 	ctr128_f ctr;
86 } EVP_AES_GCM_CTX;
87 
88 typedef struct {
89 	AES_KEY ks1, ks2;	/* AES key schedules to use */
90 	XTS128_CONTEXT xts;
91 	void (*stream)(const unsigned char *in, unsigned char *out,
92 	    size_t length, const AES_KEY *key1, const AES_KEY *key2,
93 	    const unsigned char iv[16]);
94 } EVP_AES_XTS_CTX;
95 
96 typedef struct {
97 	AES_KEY ks;		/* AES key schedule to use */
98 	int key_set;		/* Set if key initialised */
99 	int iv_set;		/* Set if an iv is set */
100 	int tag_set;		/* Set if tag is valid */
101 	int len_set;		/* Set if message length set */
102 	int L, M;		/* L and M parameters from RFC3610 */
103 	CCM128_CONTEXT ccm;
104 	ccm128_f str;
105 } EVP_AES_CCM_CTX;
106 
107 #define MAXBITCHUNK	((size_t)1<<(sizeof(size_t)*8-4))
108 
109 #ifdef VPAES_ASM
110 int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
111     AES_KEY *key);
112 int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
113     AES_KEY *key);
114 
115 void vpaes_encrypt(const unsigned char *in, unsigned char *out,
116     const AES_KEY *key);
117 void vpaes_decrypt(const unsigned char *in, unsigned char *out,
118     const AES_KEY *key);
119 
120 void vpaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
121     size_t length, const AES_KEY *key, unsigned char *ivec, int enc);
122 #endif
123 #ifdef BSAES_ASM
124 void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
125     size_t length, const AES_KEY *key, unsigned char ivec[16], int enc);
126 void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
127     size_t len, const AES_KEY *key, const unsigned char ivec[16]);
128 void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
129     size_t len, const AES_KEY *key1, const AES_KEY *key2,
130     const unsigned char iv[16]);
131 void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
132     size_t len, const AES_KEY *key1, const AES_KEY *key2,
133     const unsigned char iv[16]);
134 #endif
135 #ifdef AES_CTR_ASM
136 void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
137     size_t blocks, const AES_KEY *key,
138     const unsigned char ivec[AES_BLOCK_SIZE]);
139 #endif
140 #ifdef AES_XTS_ASM
141 void AES_xts_encrypt(const char *inp, char *out, size_t len,
142     const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]);
143 void AES_xts_decrypt(const char *inp, char *out, size_t len,
144     const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]);
145 #endif
146 
147 #if	defined(AES_ASM) &&				(  \
148 	((defined(__i386)	|| defined(__i386__)	|| \
149 	  defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
150 	defined(__x86_64)	|| defined(__x86_64__)	|| \
151 	defined(_M_AMD64)	|| defined(_M_X64)	|| \
152 	defined(__INTEL__)				)
153 
154 #include "x86_arch.h"
155 
156 #ifdef VPAES_ASM
157 #define VPAES_CAPABLE	(OPENSSL_cpu_caps() & CPUCAP_MASK_SSSE3)
158 #endif
159 #ifdef BSAES_ASM
160 #define BSAES_CAPABLE	VPAES_CAPABLE
161 #endif
162 /*
163  * AES-NI section
164  */
165 #define	AESNI_CAPABLE	(OPENSSL_cpu_caps() & CPUCAP_MASK_AESNI)
166 
167 int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
168     AES_KEY *key);
169 int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
170     AES_KEY *key);
171 
172 void aesni_encrypt(const unsigned char *in, unsigned char *out,
173     const AES_KEY *key);
174 void aesni_decrypt(const unsigned char *in, unsigned char *out,
175     const AES_KEY *key);
176 
177 void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out,
178     size_t length, const AES_KEY *key, int enc);
179 void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out,
180     size_t length, const AES_KEY *key, unsigned char *ivec, int enc);
181 
182 void aesni_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
183     size_t blocks, const void *key, const unsigned char *ivec);
184 
185 void aesni_xts_encrypt(const unsigned char *in, unsigned char *out,
186     size_t length, const AES_KEY *key1, const AES_KEY *key2,
187     const unsigned char iv[16]);
188 
189 void aesni_xts_decrypt(const unsigned char *in, unsigned char *out,
190     size_t length, const AES_KEY *key1, const AES_KEY *key2,
191     const unsigned char iv[16]);
192 
193 void aesni_ccm64_encrypt_blocks (const unsigned char *in, unsigned char *out,
194     size_t blocks, const void *key, const unsigned char ivec[16],
195     unsigned char cmac[16]);
196 
197 void aesni_ccm64_decrypt_blocks (const unsigned char *in, unsigned char *out,
198     size_t blocks, const void *key, const unsigned char ivec[16],
199     unsigned char cmac[16]);
200 
201 static int
202 aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
203     const unsigned char *iv, int enc)
204 {
205 	int ret, mode;
206 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
207 
208 	mode = ctx->cipher->flags & EVP_CIPH_MODE;
209 	if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) &&
210 	    !enc) {
211 		ret = aesni_set_decrypt_key(key, ctx->key_len * 8,
212 		    ctx->cipher_data);
213 		dat->block = (block128_f)aesni_decrypt;
214 		dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
215 		    (cbc128_f)aesni_cbc_encrypt : NULL;
216 	} else {
217 		ret = aesni_set_encrypt_key(key, ctx->key_len * 8,
218 		    ctx->cipher_data);
219 		dat->block = (block128_f)aesni_encrypt;
220 		if (mode == EVP_CIPH_CBC_MODE)
221 			dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt;
222 		else if (mode == EVP_CIPH_CTR_MODE)
223 			dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
224 		else
225 			dat->stream.cbc = NULL;
226 	}
227 
228 	if (ret < 0) {
229 		EVPerror(EVP_R_AES_KEY_SETUP_FAILED);
230 		return 0;
231 	}
232 
233 	return 1;
234 }
235 
236 static int
237 aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
238     const unsigned char *in, size_t len)
239 {
240 	aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv,
241 	    ctx->encrypt);
242 
243 	return 1;
244 }
245 
246 static int
247 aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
248     const unsigned char *in, size_t len)
249 {
250 	size_t	bl = ctx->cipher->block_size;
251 
252 	if (len < bl)
253 		return 1;
254 
255 	aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
256 
257 	return 1;
258 }
259 
260 #define aesni_ofb_cipher aes_ofb_cipher
261 static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
262     const unsigned char *in, size_t len);
263 
264 #define aesni_cfb_cipher aes_cfb_cipher
265 static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
266     const unsigned char *in, size_t len);
267 
268 #define aesni_cfb8_cipher aes_cfb8_cipher
269 static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
270     const unsigned char *in, size_t len);
271 
272 #define aesni_cfb1_cipher aes_cfb1_cipher
273 static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
274     const unsigned char *in, size_t len);
275 
276 #define aesni_ctr_cipher aes_ctr_cipher
277 static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
278     const unsigned char *in, size_t len);
279 
280 static int
281 aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
282     const unsigned char *iv, int enc)
283 {
284 	EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
285 
286 	if (!iv && !key)
287 		return 1;
288 	if (key) {
289 		aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks);
290 		CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
291 		    (block128_f)aesni_encrypt);
292 		gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
293 		/* If we have an iv can set it directly, otherwise use
294 		 * saved IV.
295 		 */
296 		if (iv == NULL && gctx->iv_set)
297 			iv = gctx->iv;
298 		if (iv) {
299 			CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
300 			gctx->iv_set = 1;
301 		}
302 		gctx->key_set = 1;
303 	} else {
304 		/* If key set use IV, otherwise copy */
305 		if (gctx->key_set)
306 			CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
307 		else
308 			memcpy(gctx->iv, iv, gctx->ivlen);
309 		gctx->iv_set = 1;
310 		gctx->iv_gen = 0;
311 	}
312 	return 1;
313 }
314 
315 #define aesni_gcm_cipher aes_gcm_cipher
316 static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
317     const unsigned char *in, size_t len);
318 
319 static int
320 aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
321     const unsigned char *iv, int enc)
322 {
323 	EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
324 
325 	if (!iv && !key)
326 		return 1;
327 
328 	if (key) {
329 		/* key_len is two AES keys */
330 		if (enc) {
331 			aesni_set_encrypt_key(key, ctx->key_len * 4,
332 			    &xctx->ks1);
333 			xctx->xts.block1 = (block128_f)aesni_encrypt;
334 			xctx->stream = aesni_xts_encrypt;
335 		} else {
336 			aesni_set_decrypt_key(key, ctx->key_len * 4,
337 			    &xctx->ks1);
338 			xctx->xts.block1 = (block128_f)aesni_decrypt;
339 			xctx->stream = aesni_xts_decrypt;
340 		}
341 
342 		aesni_set_encrypt_key(key + ctx->key_len / 2,
343 		    ctx->key_len * 4, &xctx->ks2);
344 		xctx->xts.block2 = (block128_f)aesni_encrypt;
345 
346 		xctx->xts.key1 = &xctx->ks1;
347 	}
348 
349 	if (iv) {
350 		xctx->xts.key2 = &xctx->ks2;
351 		memcpy(ctx->iv, iv, 16);
352 	}
353 
354 	return 1;
355 }
356 
357 #define aesni_xts_cipher aes_xts_cipher
358 static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
359     const unsigned char *in, size_t len);
360 
361 static int
362 aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
363     const unsigned char *iv, int enc)
364 {
365 	EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
366 
367 	if (!iv && !key)
368 		return 1;
369 	if (key) {
370 		aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
371 		CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
372 		    &cctx->ks, (block128_f)aesni_encrypt);
373 		cctx->str = enc ? (ccm128_f)aesni_ccm64_encrypt_blocks :
374 		    (ccm128_f)aesni_ccm64_decrypt_blocks;
375 		cctx->key_set = 1;
376 	}
377 	if (iv) {
378 		memcpy(ctx->iv, iv, 15 - cctx->L);
379 		cctx->iv_set = 1;
380 	}
381 	return 1;
382 }
383 
384 #define aesni_ccm_cipher aes_ccm_cipher
385 static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
386     const unsigned char *in, size_t len);
387 
388 #define BLOCK_CIPHER_generic(n,keylen,blocksize,ivlen,nmode,mode,MODE,fl) \
389 static const EVP_CIPHER aesni_##keylen##_##mode = {			\
390 	.nid = n##_##keylen##_##nmode,					\
391 	.block_size = blocksize,					\
392 	.key_len = keylen / 8,						\
393 	.iv_len = ivlen, 						\
394 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
395 	.init = aesni_init_key,						\
396 	.do_cipher = aesni_##mode##_cipher,				\
397 	.ctx_size = sizeof(EVP_AES_KEY)					\
398 };									\
399 static const EVP_CIPHER aes_##keylen##_##mode = {			\
400 	.nid = n##_##keylen##_##nmode,					\
401 	.block_size = blocksize,					\
402 	.key_len = keylen / 8,						\
403 	.iv_len = ivlen, 						\
404 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
405 	.init = aes_init_key,						\
406 	.do_cipher = aes_##mode##_cipher,				\
407 	.ctx_size = sizeof(EVP_AES_KEY)					\
408 };									\
409 const EVP_CIPHER *							\
410 EVP_aes_##keylen##_##mode(void)						\
411 {									\
412 	return AESNI_CAPABLE ?						\
413 	    &aesni_##keylen##_##mode : &aes_##keylen##_##mode;		\
414 }
415 
416 #define BLOCK_CIPHER_custom(n,keylen,blocksize,ivlen,mode,MODE,fl)	\
417 static const EVP_CIPHER aesni_##keylen##_##mode = {			\
418 	.nid = n##_##keylen##_##mode,					\
419 	.block_size = blocksize,					\
420 	.key_len =							\
421 	    (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) *	\
422 	    keylen / 8,							\
423 	.iv_len = ivlen,						\
424 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
425 	.init = aesni_##mode##_init_key,				\
426 	.do_cipher = aesni_##mode##_cipher,				\
427 	.cleanup = aes_##mode##_cleanup,				\
428 	.ctx_size = sizeof(EVP_AES_##MODE##_CTX),			\
429 	.ctrl = aes_##mode##_ctrl					\
430 };									\
431 static const EVP_CIPHER aes_##keylen##_##mode = {			\
432 	.nid = n##_##keylen##_##mode,					\
433 	.block_size = blocksize,					\
434 	.key_len =							\
435 	    (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) *	\
436 	    keylen / 8,							\
437 	.iv_len = ivlen,						\
438 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
439 	.init = aes_##mode##_init_key,					\
440 	.do_cipher = aes_##mode##_cipher,				\
441 	.cleanup = aes_##mode##_cleanup,				\
442 	.ctx_size = sizeof(EVP_AES_##MODE##_CTX),			\
443 	.ctrl = aes_##mode##_ctrl					\
444 };									\
445 const EVP_CIPHER *							\
446 EVP_aes_##keylen##_##mode(void)						\
447 {									\
448 	return AESNI_CAPABLE ?						\
449 	    &aesni_##keylen##_##mode : &aes_##keylen##_##mode;		\
450 }
451 
452 #else
453 
454 #define BLOCK_CIPHER_generic(n,keylen,blocksize,ivlen,nmode,mode,MODE,fl) \
455 static const EVP_CIPHER aes_##keylen##_##mode = {			\
456 	.nid = n##_##keylen##_##nmode,					\
457 	.block_size = blocksize,					\
458 	.key_len = keylen / 8,						\
459 	.iv_len = ivlen,						\
460 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
461 	.init = aes_init_key,						\
462 	.do_cipher = aes_##mode##_cipher,				\
463 	.ctx_size = sizeof(EVP_AES_KEY)					\
464 };									\
465 const EVP_CIPHER *							\
466 EVP_aes_##keylen##_##mode(void)						\
467 {									\
468 	return &aes_##keylen##_##mode;					\
469 }
470 
471 #define BLOCK_CIPHER_custom(n,keylen,blocksize,ivlen,mode,MODE,fl)	\
472 static const EVP_CIPHER aes_##keylen##_##mode = {			\
473 	.nid = n##_##keylen##_##mode,					\
474 	.block_size = blocksize,					\
475 	.key_len =							\
476 	    (EVP_CIPH_##MODE##_MODE == EVP_CIPH_XTS_MODE ? 2 : 1) *	\
477 	    keylen / 8,							\
478 	.iv_len = ivlen,						\
479 	.flags = fl | EVP_CIPH_##MODE##_MODE,				\
480 	.init = aes_##mode##_init_key,					\
481 	.do_cipher = aes_##mode##_cipher,				\
482 	.cleanup = aes_##mode##_cleanup,				\
483 	.ctx_size = sizeof(EVP_AES_##MODE##_CTX),			\
484 	.ctrl = aes_##mode##_ctrl					\
485 };									\
486 const EVP_CIPHER *							\
487 EVP_aes_##keylen##_##mode(void)						\
488 {									\
489 	return &aes_##keylen##_##mode;					\
490 }
491 
492 #endif
493 
494 #define BLOCK_CIPHER_generic_pack(nid,keylen,flags)		\
495 	BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)	\
496 	BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)	\
497 	BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)	\
498 	BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1)	\
499 	BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags)	\
500 	BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags)	\
501 	BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
502 
503 static int
504 aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
505     const unsigned char *iv, int enc)
506 {
507 	int ret, mode;
508 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
509 
510 	mode = ctx->cipher->flags & EVP_CIPH_MODE;
511 	if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) &&
512 	    !enc)
513 #ifdef BSAES_CAPABLE
514 		if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
515 			ret = AES_set_decrypt_key(key, ctx->key_len * 8,
516 			    &dat->ks);
517 			dat->block = (block128_f)AES_decrypt;
518 			dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt;
519 		} else
520 #endif
521 #ifdef VPAES_CAPABLE
522 		if (VPAES_CAPABLE) {
523 			ret = vpaes_set_decrypt_key(key, ctx->key_len * 8,
524 			    &dat->ks);
525 			dat->block = (block128_f)vpaes_decrypt;
526 			dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
527 			    (cbc128_f)vpaes_cbc_encrypt : NULL;
528 		} else
529 #endif
530 		{
531 			ret = AES_set_decrypt_key(key, ctx->key_len * 8,
532 			    &dat->ks);
533 			dat->block = (block128_f)AES_decrypt;
534 			dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
535 			    (cbc128_f)AES_cbc_encrypt : NULL;
536 		} else
537 #ifdef BSAES_CAPABLE
538 		if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
539 			ret = AES_set_encrypt_key(key, ctx->key_len * 8,
540 			    &dat->ks);
541 			dat->block = (block128_f)AES_encrypt;
542 			dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
543 		} else
544 #endif
545 #ifdef VPAES_CAPABLE
546 		if (VPAES_CAPABLE) {
547 			ret = vpaes_set_encrypt_key(key, ctx->key_len * 8,
548 			    &dat->ks);
549 			dat->block = (block128_f)vpaes_encrypt;
550 			dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
551 			    (cbc128_f)vpaes_cbc_encrypt : NULL;
552 		} else
553 #endif
554 		{
555 			ret = AES_set_encrypt_key(key, ctx->key_len * 8,
556 			    &dat->ks);
557 			dat->block = (block128_f)AES_encrypt;
558 			dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
559 			    (cbc128_f)AES_cbc_encrypt : NULL;
560 #ifdef AES_CTR_ASM
561 			if (mode == EVP_CIPH_CTR_MODE)
562 				dat->stream.ctr = (ctr128_f)AES_ctr32_encrypt;
563 #endif
564 		}
565 
566 	if (ret < 0) {
567 		EVPerror(EVP_R_AES_KEY_SETUP_FAILED);
568 		return 0;
569 	}
570 
571 	return 1;
572 }
573 
574 static int
575 aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
576     const unsigned char *in, size_t len)
577 {
578 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
579 
580 	if (dat->stream.cbc)
581 		(*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv,
582 		    ctx->encrypt);
583 	else if (ctx->encrypt)
584 		CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv,
585 		    dat->block);
586 	else
587 		CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv,
588 		    dat->block);
589 
590 	return 1;
591 }
592 
593 static int
594 aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
595     const unsigned char *in, size_t len)
596 {
597 	size_t	bl = ctx->cipher->block_size;
598 	size_t	i;
599 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
600 
601 	if (len < bl)
602 		return 1;
603 
604 	for (i = 0, len -= bl; i <= len; i += bl)
605 		(*dat->block)(in + i, out + i, &dat->ks);
606 
607 	return 1;
608 }
609 
610 static int
611 aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
612     const unsigned char *in, size_t len)
613 {
614 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
615 
616 	CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
617 	    dat->block);
618 	return 1;
619 }
620 
621 static int
622 aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
623     const unsigned char *in, size_t len)
624 {
625 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
626 
627 	CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
628 	    ctx->encrypt, dat->block);
629 	return 1;
630 }
631 
632 static int
633 aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
634     const unsigned char *in, size_t len)
635 {
636 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
637 
638 	CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, ctx->iv, &ctx->num,
639 	    ctx->encrypt, dat->block);
640 	return 1;
641 }
642 
643 static int
644 aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
645     const unsigned char *in, size_t len)
646 {
647 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
648 
649 	if (ctx->flags&EVP_CIPH_FLAG_LENGTH_BITS) {
650 		CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, ctx->iv,
651 		    &ctx->num, ctx->encrypt, dat->block);
652 		return 1;
653 	}
654 
655 	while (len >= MAXBITCHUNK) {
656 		CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK*8, &dat->ks,
657 		    ctx->iv, &ctx->num, ctx->encrypt, dat->block);
658 		len -= MAXBITCHUNK;
659 	}
660 	if (len)
661 		CRYPTO_cfb128_1_encrypt(in, out, len*8, &dat->ks,
662 		    ctx->iv, &ctx->num, ctx->encrypt, dat->block);
663 
664 	return 1;
665 }
666 
667 static int aes_ctr_cipher (EVP_CIPHER_CTX *ctx, unsigned char *out,
668     const unsigned char *in, size_t len)
669 {
670 	unsigned int num = ctx->num;
671 	EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
672 
673 	if (dat->stream.ctr)
674 		CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
675 		    ctx->iv, ctx->buf, &num, dat->stream.ctr);
676 	else
677 		CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
678 		    ctx->iv, ctx->buf, &num, dat->block);
679 	ctx->num = (size_t)num;
680 	return 1;
681 }
682 
683 BLOCK_CIPHER_generic_pack(NID_aes, 128, EVP_CIPH_FLAG_FIPS)
684 BLOCK_CIPHER_generic_pack(NID_aes, 192, EVP_CIPH_FLAG_FIPS)
685 BLOCK_CIPHER_generic_pack(NID_aes, 256, EVP_CIPH_FLAG_FIPS)
686 
687 static int
688 aes_gcm_cleanup(EVP_CIPHER_CTX *c)
689 {
690 	EVP_AES_GCM_CTX *gctx = c->cipher_data;
691 
692 	if (gctx->iv != c->iv)
693 		free(gctx->iv);
694 	explicit_bzero(gctx, sizeof(*gctx));
695 	return 1;
696 }
697 
698 /* increment counter (64-bit int) by 1 */
699 static void
700 ctr64_inc(unsigned char *counter)
701 {
702 	int n = 8;
703 	unsigned char  c;
704 
705 	do {
706 		--n;
707 		c = counter[n];
708 		++c;
709 		counter[n] = c;
710 		if (c)
711 			return;
712 	} while (n);
713 }
714 
715 static int
716 aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
717 {
718 	EVP_AES_GCM_CTX *gctx = c->cipher_data;
719 
720 	switch (type) {
721 	case EVP_CTRL_INIT:
722 		gctx->key_set = 0;
723 		gctx->iv_set = 0;
724 		if (c->cipher->iv_len == 0) {
725 			EVPerror(EVP_R_INVALID_IV_LENGTH);
726 			return 0;
727 		}
728 		gctx->ivlen = c->cipher->iv_len;
729 		gctx->iv = c->iv;
730 		gctx->taglen = -1;
731 		gctx->iv_gen = 0;
732 		gctx->tls_aad_len = -1;
733 		return 1;
734 
735 	case EVP_CTRL_GCM_SET_IVLEN:
736 		if (arg <= 0)
737 			return 0;
738 		/* Allocate memory for IV if needed */
739 		if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
740 			if (gctx->iv != c->iv)
741 				free(gctx->iv);
742 			gctx->iv = malloc(arg);
743 			if (!gctx->iv)
744 				return 0;
745 		}
746 		gctx->ivlen = arg;
747 		return 1;
748 
749 	case EVP_CTRL_GCM_SET_TAG:
750 		if (arg <= 0 || arg > 16 || c->encrypt)
751 			return 0;
752 		memcpy(c->buf, ptr, arg);
753 		gctx->taglen = arg;
754 		return 1;
755 
756 	case EVP_CTRL_GCM_GET_TAG:
757 		if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0)
758 			return 0;
759 		memcpy(ptr, c->buf, arg);
760 		return 1;
761 
762 	case EVP_CTRL_GCM_SET_IV_FIXED:
763 		/* Special case: -1 length restores whole IV */
764 		if (arg == -1) {
765 			memcpy(gctx->iv, ptr, gctx->ivlen);
766 			gctx->iv_gen = 1;
767 			return 1;
768 		}
769 		/* Fixed field must be at least 4 bytes and invocation field
770 		 * at least 8.
771 		 */
772 		if ((arg < 4) || (gctx->ivlen - arg) < 8)
773 			return 0;
774 		if (arg)
775 			memcpy(gctx->iv, ptr, arg);
776 		if (c->encrypt)
777 			arc4random_buf(gctx->iv + arg, gctx->ivlen - arg);
778 		gctx->iv_gen = 1;
779 		return 1;
780 
781 	case EVP_CTRL_GCM_IV_GEN:
782 		if (gctx->iv_gen == 0 || gctx->key_set == 0)
783 			return 0;
784 		CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
785 		if (arg <= 0 || arg > gctx->ivlen)
786 			arg = gctx->ivlen;
787 		memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
788 		/* Invocation field will be at least 8 bytes in size and
789 		 * so no need to check wrap around or increment more than
790 		 * last 8 bytes.
791 		 */
792 		ctr64_inc(gctx->iv + gctx->ivlen - 8);
793 		gctx->iv_set = 1;
794 		return 1;
795 
796 	case EVP_CTRL_GCM_SET_IV_INV:
797 		if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
798 			return 0;
799 		memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
800 		CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
801 		gctx->iv_set = 1;
802 		return 1;
803 
804 	case EVP_CTRL_AEAD_TLS1_AAD:
805 		/* Save the AAD for later use */
806 		if (arg != 13)
807 			return 0;
808 		memcpy(c->buf, ptr, arg);
809 		gctx->tls_aad_len = arg;
810 		{
811 			unsigned int len = c->buf[arg - 2] << 8 |
812 			    c->buf[arg - 1];
813 
814 			/* Correct length for explicit IV */
815 			if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
816 				return 0;
817 			len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
818 
819 			/* If decrypting correct for tag too */
820 			if (!c->encrypt) {
821 				if (len < EVP_GCM_TLS_TAG_LEN)
822 					return 0;
823 				len -= EVP_GCM_TLS_TAG_LEN;
824 			}
825 			c->buf[arg - 2] = len >> 8;
826 			c->buf[arg - 1] = len & 0xff;
827 		}
828 		/* Extra padding: tag appended to record */
829 		return EVP_GCM_TLS_TAG_LEN;
830 
831 	case EVP_CTRL_COPY:
832 	    {
833 		EVP_CIPHER_CTX *out = ptr;
834 		EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
835 
836 		if (gctx->gcm.key) {
837 			if (gctx->gcm.key != &gctx->ks)
838 				return 0;
839 			gctx_out->gcm.key = &gctx_out->ks;
840 		}
841 
842 		if (gctx->iv == c->iv) {
843 			gctx_out->iv = out->iv;
844 		} else {
845 			if ((gctx_out->iv = calloc(1, gctx->ivlen)) == NULL)
846 				return 0;
847 			memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
848 		}
849 		return 1;
850 	    }
851 
852 	default:
853 		return -1;
854 
855 	}
856 }
857 
858 static ctr128_f
859 aes_gcm_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx,
860     const unsigned char *key, size_t key_len)
861 {
862 #ifdef BSAES_CAPABLE
863 	if (BSAES_CAPABLE) {
864 		AES_set_encrypt_key(key, key_len * 8, aes_key);
865 		CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
866 		return (ctr128_f)bsaes_ctr32_encrypt_blocks;
867 	} else
868 #endif
869 #ifdef VPAES_CAPABLE
870 	if (VPAES_CAPABLE) {
871 		vpaes_set_encrypt_key(key, key_len * 8, aes_key);
872 		CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt);
873 		return NULL;
874 	} else
875 #endif
876 		(void)0; /* terminate potentially open 'else' */
877 
878 	AES_set_encrypt_key(key, key_len * 8, aes_key);
879 	CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
880 #ifdef AES_CTR_ASM
881 	return (ctr128_f)AES_ctr32_encrypt;
882 #else
883 	return NULL;
884 #endif
885 }
886 
887 static int
888 aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
889     const unsigned char *iv, int enc)
890 {
891 	EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
892 
893 	if (!iv && !key)
894 		return 1;
895 	if (key) {
896 		gctx->ctr = aes_gcm_set_key(&gctx->ks, &gctx->gcm,
897 		    key, ctx->key_len);
898 
899 		/* If we have an iv can set it directly, otherwise use
900 		 * saved IV.
901 		 */
902 		if (iv == NULL && gctx->iv_set)
903 			iv = gctx->iv;
904 		if (iv) {
905 			CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
906 			gctx->iv_set = 1;
907 		}
908 		gctx->key_set = 1;
909 	} else {
910 		/* If key set use IV, otherwise copy */
911 		if (gctx->key_set)
912 			CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
913 		else
914 			memcpy(gctx->iv, iv, gctx->ivlen);
915 		gctx->iv_set = 1;
916 		gctx->iv_gen = 0;
917 	}
918 	return 1;
919 }
920 
921 /* Handle TLS GCM packet format. This consists of the last portion of the IV
922  * followed by the payload and finally the tag. On encrypt generate IV,
923  * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
924  * and verify tag.
925  */
926 
927 static int
928 aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
929     const unsigned char *in, size_t len)
930 {
931 	EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
932 	int rv = -1;
933 
934 	/* Encrypt/decrypt must be performed in place */
935 	if (out != in ||
936 	    len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
937 		return -1;
938 
939 	/* Set IV from start of buffer or generate IV and write to start
940 	 * of buffer.
941 	 */
942 	if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ?
943 	    EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV,
944 	    EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
945 		goto err;
946 
947 	/* Use saved AAD */
948 	if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
949 		goto err;
950 
951 	/* Fix buffer and length to point to payload */
952 	in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
953 	out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
954 	len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
955 	if (ctx->encrypt) {
956 		/* Encrypt payload */
957 		if (gctx->ctr) {
958 			if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in, out,
959 			    len, gctx->ctr))
960 				goto err;
961 		} else {
962 			if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, len))
963 				goto err;
964 		}
965 		out += len;
966 
967 		/* Finally write tag */
968 		CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
969 		rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
970 	} else {
971 		/* Decrypt */
972 		if (gctx->ctr) {
973 			if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in, out,
974 			    len, gctx->ctr))
975 				goto err;
976 		} else {
977 			if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, len))
978 				goto err;
979 		}
980 		/* Retrieve tag */
981 		CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
982 
983 		/* If tag mismatch wipe buffer */
984 		if (memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
985 			explicit_bzero(out, len);
986 			goto err;
987 		}
988 		rv = len;
989 	}
990 
991 err:
992 	gctx->iv_set = 0;
993 	gctx->tls_aad_len = -1;
994 	return rv;
995 }
996 
997 static int
998 aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
999     const unsigned char *in, size_t len)
1000 {
1001 	EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
1002 
1003 	/* If not set up, return error */
1004 	if (!gctx->key_set)
1005 		return -1;
1006 
1007 	if (gctx->tls_aad_len >= 0)
1008 		return aes_gcm_tls_cipher(ctx, out, in, len);
1009 
1010 	if (!gctx->iv_set)
1011 		return -1;
1012 
1013 	if (in) {
1014 		if (out == NULL) {
1015 			if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
1016 				return -1;
1017 		} else if (ctx->encrypt) {
1018 			if (gctx->ctr) {
1019 				if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
1020 				    in, out, len, gctx->ctr))
1021 					return -1;
1022 			} else {
1023 				if (CRYPTO_gcm128_encrypt(&gctx->gcm,
1024 				    in, out, len))
1025 					return -1;
1026 			}
1027 		} else {
1028 			if (gctx->ctr) {
1029 				if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
1030 				    in, out, len, gctx->ctr))
1031 					return -1;
1032 			} else {
1033 				if (CRYPTO_gcm128_decrypt(&gctx->gcm,
1034 				    in, out, len))
1035 					return -1;
1036 			}
1037 		}
1038 		return len;
1039 	} else {
1040 		if (!ctx->encrypt) {
1041 			if (gctx->taglen < 0)
1042 				return -1;
1043 			if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf,
1044 			    gctx->taglen) != 0)
1045 				return -1;
1046 			gctx->iv_set = 0;
1047 			return 0;
1048 		}
1049 		CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
1050 		gctx->taglen = 16;
1051 
1052 		/* Don't reuse the IV */
1053 		gctx->iv_set = 0;
1054 		return 0;
1055 	}
1056 
1057 }
1058 
1059 #define CUSTOM_FLAGS \
1060     ( EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | \
1061       EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT | \
1062       EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY )
1063 
1064 BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
1065     EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1066 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
1067     EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1068 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
1069     EVP_CIPH_FLAG_FIPS|EVP_CIPH_FLAG_AEAD_CIPHER|CUSTOM_FLAGS)
1070 
1071 static int
1072 aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1073 {
1074 	EVP_AES_XTS_CTX *xctx = c->cipher_data;
1075 
1076 	switch (type) {
1077 	case EVP_CTRL_INIT:
1078 		/*
1079 		 * key1 and key2 are used as an indicator both key and IV
1080 		 * are set
1081 		 */
1082 		xctx->xts.key1 = NULL;
1083 		xctx->xts.key2 = NULL;
1084 		return 1;
1085 
1086 	case EVP_CTRL_COPY:
1087 	    {
1088 		EVP_CIPHER_CTX *out = ptr;
1089 		EVP_AES_XTS_CTX *xctx_out = out->cipher_data;
1090 
1091 		if (xctx->xts.key1) {
1092 			if (xctx->xts.key1 != &xctx->ks1)
1093 				return 0;
1094 			xctx_out->xts.key1 = &xctx_out->ks1;
1095 		}
1096 		if (xctx->xts.key2) {
1097 			if (xctx->xts.key2 != &xctx->ks2)
1098 				return 0;
1099 			xctx_out->xts.key2 = &xctx_out->ks2;
1100 		}
1101 		return 1;
1102 	    }
1103 	}
1104 	return -1;
1105 }
1106 
1107 static int
1108 aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1109     const unsigned char *iv, int enc)
1110 {
1111 	EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
1112 
1113 	if (!iv && !key)
1114 		return 1;
1115 
1116 	if (key) do {
1117 #ifdef AES_XTS_ASM
1118 		xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
1119 #else
1120 		xctx->stream = NULL;
1121 #endif
1122 		/* key_len is two AES keys */
1123 #ifdef BSAES_CAPABLE
1124 		if (BSAES_CAPABLE)
1125 			xctx->stream = enc ? bsaes_xts_encrypt :
1126 			    bsaes_xts_decrypt;
1127 		else
1128 #endif
1129 #ifdef VPAES_CAPABLE
1130 		if (VPAES_CAPABLE) {
1131 			if (enc) {
1132 				vpaes_set_encrypt_key(key, ctx->key_len * 4,
1133 				    &xctx->ks1);
1134 				xctx->xts.block1 = (block128_f)vpaes_encrypt;
1135 			} else {
1136 				vpaes_set_decrypt_key(key, ctx->key_len * 4,
1137 				    &xctx->ks1);
1138 				xctx->xts.block1 = (block128_f)vpaes_decrypt;
1139 			}
1140 
1141 			vpaes_set_encrypt_key(key + ctx->key_len / 2,
1142 			    ctx->key_len * 4, &xctx->ks2);
1143 			xctx->xts.block2 = (block128_f)vpaes_encrypt;
1144 
1145 			xctx->xts.key1 = &xctx->ks1;
1146 			break;
1147 		} else
1148 #endif
1149 			(void)0;	/* terminate potentially open 'else' */
1150 
1151 		if (enc) {
1152 			AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1);
1153 			xctx->xts.block1 = (block128_f)AES_encrypt;
1154 		} else {
1155 			AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1);
1156 			xctx->xts.block1 = (block128_f)AES_decrypt;
1157 		}
1158 
1159 		AES_set_encrypt_key(key + ctx->key_len / 2,
1160 		    ctx->key_len * 4, &xctx->ks2);
1161 		xctx->xts.block2 = (block128_f)AES_encrypt;
1162 
1163 		xctx->xts.key1 = &xctx->ks1;
1164 	} while (0);
1165 
1166 	if (iv) {
1167 		xctx->xts.key2 = &xctx->ks2;
1168 		memcpy(ctx->iv, iv, 16);
1169 	}
1170 
1171 	return 1;
1172 }
1173 
1174 static int
1175 aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1176     const unsigned char *in, size_t len)
1177 {
1178 	EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
1179 
1180 	if (!xctx->xts.key1 || !xctx->xts.key2)
1181 		return 0;
1182 	if (!out || !in || len < AES_BLOCK_SIZE)
1183 		return 0;
1184 
1185 	if (xctx->stream)
1186 		(*xctx->stream)(in, out, len, xctx->xts.key1, xctx->xts.key2,
1187 		    ctx->iv);
1188 	else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,
1189 	    ctx->encrypt))
1190 		return 0;
1191 	return 1;
1192 }
1193 
1194 #define aes_xts_cleanup NULL
1195 
1196 #define XTS_FLAGS \
1197     ( EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV | \
1198       EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY )
1199 
1200 BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS)
1201 BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, EVP_CIPH_FLAG_FIPS|XTS_FLAGS)
1202 
1203 static int
1204 aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1205 {
1206 	EVP_AES_CCM_CTX *cctx = c->cipher_data;
1207 
1208 	switch (type) {
1209 	case EVP_CTRL_INIT:
1210 		cctx->key_set = 0;
1211 		cctx->iv_set = 0;
1212 		cctx->L = 8;
1213 		cctx->M = 12;
1214 		cctx->tag_set = 0;
1215 		cctx->len_set = 0;
1216 		return 1;
1217 
1218 	case EVP_CTRL_CCM_SET_IVLEN:
1219 		arg = 15 - arg;
1220 
1221 	case EVP_CTRL_CCM_SET_L:
1222 		if (arg < 2 || arg > 8)
1223 			return 0;
1224 		cctx->L = arg;
1225 		return 1;
1226 
1227 	case EVP_CTRL_CCM_SET_TAG:
1228 		if ((arg & 1) || arg < 4 || arg > 16)
1229 			return 0;
1230 		if ((c->encrypt && ptr) || (!c->encrypt && !ptr))
1231 			return 0;
1232 		if (ptr) {
1233 			cctx->tag_set = 1;
1234 			memcpy(c->buf, ptr, arg);
1235 		}
1236 		cctx->M = arg;
1237 		return 1;
1238 
1239 	case EVP_CTRL_CCM_GET_TAG:
1240 		if (!c->encrypt || !cctx->tag_set)
1241 			return 0;
1242 		if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
1243 			return 0;
1244 		cctx->tag_set = 0;
1245 		cctx->iv_set = 0;
1246 		cctx->len_set = 0;
1247 		return 1;
1248 
1249 	case EVP_CTRL_COPY:
1250 	    {
1251 		EVP_CIPHER_CTX *out = ptr;
1252 		EVP_AES_CCM_CTX *cctx_out = out->cipher_data;
1253 
1254 		if (cctx->ccm.key) {
1255 			if (cctx->ccm.key != &cctx->ks)
1256 				return 0;
1257 			cctx_out->ccm.key = &cctx_out->ks;
1258 		}
1259 		return 1;
1260 	    }
1261 
1262 	default:
1263 		return -1;
1264 	}
1265 }
1266 
1267 static int
1268 aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1269     const unsigned char *iv, int enc)
1270 {
1271 	EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
1272 
1273 	if (!iv && !key)
1274 		return 1;
1275 	if (key) do {
1276 #ifdef VPAES_CAPABLE
1277 		if (VPAES_CAPABLE) {
1278 			vpaes_set_encrypt_key(key, ctx->key_len*8, &cctx->ks);
1279 			CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1280 			    &cctx->ks, (block128_f)vpaes_encrypt);
1281 			cctx->str = NULL;
1282 			cctx->key_set = 1;
1283 			break;
1284 		}
1285 #endif
1286 		AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks);
1287 		CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
1288 		    &cctx->ks, (block128_f)AES_encrypt);
1289 		cctx->str = NULL;
1290 		cctx->key_set = 1;
1291 	} while (0);
1292 	if (iv) {
1293 		memcpy(ctx->iv, iv, 15 - cctx->L);
1294 		cctx->iv_set = 1;
1295 	}
1296 	return 1;
1297 }
1298 
1299 static int
1300 aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1301     const unsigned char *in, size_t len)
1302 {
1303 	EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
1304 	CCM128_CONTEXT *ccm = &cctx->ccm;
1305 
1306 	/* If not set up, return error */
1307 	if (!cctx->iv_set && !cctx->key_set)
1308 		return -1;
1309 	if (!ctx->encrypt && !cctx->tag_set)
1310 		return -1;
1311 
1312 	if (!out) {
1313 		if (!in) {
1314 			if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,
1315 			    len))
1316 				return -1;
1317 			cctx->len_set = 1;
1318 			return len;
1319 		}
1320 		/* If have AAD need message length */
1321 		if (!cctx->len_set && len)
1322 			return -1;
1323 		CRYPTO_ccm128_aad(ccm, in, len);
1324 		return len;
1325 	}
1326 	/* EVP_*Final() doesn't return any data */
1327 	if (!in)
1328 		return 0;
1329 	/* If not set length yet do it */
1330 	if (!cctx->len_set) {
1331 		if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
1332 			return -1;
1333 		cctx->len_set = 1;
1334 	}
1335 	if (ctx->encrypt) {
1336 		if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
1337 		    cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len))
1338 			return -1;
1339 		cctx->tag_set = 1;
1340 		return len;
1341 	} else {
1342 		int rv = -1;
1343 		if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
1344 		    cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
1345 			unsigned char tag[16];
1346 			if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
1347 				if (!memcmp(tag, ctx->buf, cctx->M))
1348 					rv = len;
1349 			}
1350 		}
1351 		if (rv == -1)
1352 			explicit_bzero(out, len);
1353 		cctx->iv_set = 0;
1354 		cctx->tag_set = 0;
1355 		cctx->len_set = 0;
1356 		return rv;
1357 	}
1358 
1359 }
1360 
1361 #define aes_ccm_cleanup NULL
1362 
1363 BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
1364     EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1365 BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
1366     EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1367 BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
1368     EVP_CIPH_FLAG_FIPS|CUSTOM_FLAGS)
1369 
1370 #define EVP_AEAD_AES_GCM_TAG_LEN 16
1371 
1372 struct aead_aes_gcm_ctx {
1373 	union {
1374 		double align;
1375 		AES_KEY ks;
1376 	} ks;
1377 	GCM128_CONTEXT gcm;
1378 	ctr128_f ctr;
1379 	unsigned char tag_len;
1380 };
1381 
1382 static int
1383 aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const unsigned char *key, size_t key_len,
1384     size_t tag_len)
1385 {
1386 	struct aead_aes_gcm_ctx *gcm_ctx;
1387 	const size_t key_bits = key_len * 8;
1388 
1389 	/* EVP_AEAD_CTX_init should catch this. */
1390 	if (key_bits != 128 && key_bits != 256) {
1391 		EVPerror(EVP_R_BAD_KEY_LENGTH);
1392 		return 0;
1393 	}
1394 
1395 	if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH)
1396 		tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
1397 
1398 	if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
1399 		EVPerror(EVP_R_TAG_TOO_LARGE);
1400 		return 0;
1401 	}
1402 
1403 	if ((gcm_ctx = calloc(1, sizeof(struct aead_aes_gcm_ctx))) == NULL)
1404 		return 0;
1405 
1406 #ifdef AESNI_CAPABLE
1407 	if (AESNI_CAPABLE) {
1408 		aesni_set_encrypt_key(key, key_bits, &gcm_ctx->ks.ks);
1409 		CRYPTO_gcm128_init(&gcm_ctx->gcm, &gcm_ctx->ks.ks,
1410 		    (block128_f)aesni_encrypt);
1411 		gcm_ctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
1412 	} else
1413 #endif
1414 	{
1415 		gcm_ctx->ctr = aes_gcm_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm,
1416 		    key, key_len);
1417 	}
1418 	gcm_ctx->tag_len = tag_len;
1419 	ctx->aead_state = gcm_ctx;
1420 
1421 	return 1;
1422 }
1423 
1424 static void
1425 aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx)
1426 {
1427 	struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
1428 
1429 	freezero(gcm_ctx, sizeof(*gcm_ctx));
1430 }
1431 
1432 static int
1433 aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len,
1434     size_t max_out_len, const unsigned char *nonce, size_t nonce_len,
1435     const unsigned char *in, size_t in_len, const unsigned char *ad,
1436     size_t ad_len)
1437 {
1438 	const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
1439 	GCM128_CONTEXT gcm;
1440 	size_t bulk = 0;
1441 
1442 	if (max_out_len < in_len + gcm_ctx->tag_len) {
1443 		EVPerror(EVP_R_BUFFER_TOO_SMALL);
1444 		return 0;
1445 	}
1446 
1447 	memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
1448 
1449 	if (nonce_len == 0) {
1450 		EVPerror(EVP_R_INVALID_IV_LENGTH);
1451 		return 0;
1452 	}
1453 	CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
1454 
1455 	if (ad_len > 0 && CRYPTO_gcm128_aad(&gcm, ad, ad_len))
1456 		return 0;
1457 
1458 	if (gcm_ctx->ctr) {
1459 		if (CRYPTO_gcm128_encrypt_ctr32(&gcm, in + bulk, out + bulk,
1460 		    in_len - bulk, gcm_ctx->ctr))
1461 			return 0;
1462 	} else {
1463 		if (CRYPTO_gcm128_encrypt(&gcm, in + bulk, out + bulk,
1464 		    in_len - bulk))
1465 			return 0;
1466 	}
1467 
1468 	CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len);
1469 	*out_len = in_len + gcm_ctx->tag_len;
1470 
1471 	return 1;
1472 }
1473 
1474 static int
1475 aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, unsigned char *out, size_t *out_len,
1476     size_t max_out_len, const unsigned char *nonce, size_t nonce_len,
1477     const unsigned char *in, size_t in_len, const unsigned char *ad,
1478     size_t ad_len)
1479 {
1480 	const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
1481 	unsigned char tag[EVP_AEAD_AES_GCM_TAG_LEN];
1482 	GCM128_CONTEXT gcm;
1483 	size_t plaintext_len;
1484 	size_t bulk = 0;
1485 
1486 	if (in_len < gcm_ctx->tag_len) {
1487 		EVPerror(EVP_R_BAD_DECRYPT);
1488 		return 0;
1489 	}
1490 
1491 	plaintext_len = in_len - gcm_ctx->tag_len;
1492 
1493 	if (max_out_len < plaintext_len) {
1494 		EVPerror(EVP_R_BUFFER_TOO_SMALL);
1495 		return 0;
1496 	}
1497 
1498 	memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
1499 
1500 	if (nonce_len == 0) {
1501 		EVPerror(EVP_R_INVALID_IV_LENGTH);
1502 		return 0;
1503 	}
1504 	CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
1505 
1506 	if (CRYPTO_gcm128_aad(&gcm, ad, ad_len))
1507 		return 0;
1508 
1509 	if (gcm_ctx->ctr) {
1510 		if (CRYPTO_gcm128_decrypt_ctr32(&gcm, in + bulk, out + bulk,
1511 		    in_len - bulk - gcm_ctx->tag_len, gcm_ctx->ctr))
1512 			return 0;
1513 	} else {
1514 		if (CRYPTO_gcm128_decrypt(&gcm, in + bulk, out + bulk,
1515 		    in_len - bulk - gcm_ctx->tag_len))
1516 			return 0;
1517 	}
1518 
1519 	CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len);
1520 	if (timingsafe_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) {
1521 		EVPerror(EVP_R_BAD_DECRYPT);
1522 		return 0;
1523 	}
1524 
1525 	*out_len = plaintext_len;
1526 
1527 	return 1;
1528 }
1529 
1530 static const EVP_AEAD aead_aes_128_gcm = {
1531 	.key_len = 16,
1532 	.nonce_len = 12,
1533 	.overhead = EVP_AEAD_AES_GCM_TAG_LEN,
1534 	.max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN,
1535 
1536 	.init = aead_aes_gcm_init,
1537 	.cleanup = aead_aes_gcm_cleanup,
1538 	.seal = aead_aes_gcm_seal,
1539 	.open = aead_aes_gcm_open,
1540 };
1541 
1542 static const EVP_AEAD aead_aes_256_gcm = {
1543 	.key_len = 32,
1544 	.nonce_len = 12,
1545 	.overhead = EVP_AEAD_AES_GCM_TAG_LEN,
1546 	.max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN,
1547 
1548 	.init = aead_aes_gcm_init,
1549 	.cleanup = aead_aes_gcm_cleanup,
1550 	.seal = aead_aes_gcm_seal,
1551 	.open = aead_aes_gcm_open,
1552 };
1553 
1554 const EVP_AEAD *
1555 EVP_aead_aes_128_gcm(void)
1556 {
1557 	return &aead_aes_128_gcm;
1558 }
1559 
1560 const EVP_AEAD *
1561 EVP_aead_aes_256_gcm(void)
1562 {
1563 	return &aead_aes_256_gcm;
1564 }
1565 
1566 typedef struct {
1567 	union {
1568 		double align;
1569 		AES_KEY ks;
1570 	} ks;
1571 	unsigned char *iv;
1572 } EVP_AES_WRAP_CTX;
1573 
1574 static int
1575 aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
1576     const unsigned char *iv, int enc)
1577 {
1578 	EVP_AES_WRAP_CTX *wctx = (EVP_AES_WRAP_CTX *)ctx->cipher_data;
1579 
1580 	if (iv == NULL && key == NULL)
1581 		return 1;
1582 
1583 	if (key != NULL) {
1584 		if (ctx->encrypt)
1585 			AES_set_encrypt_key(key, 8 * ctx->key_len,
1586 			    &wctx->ks.ks);
1587 		else
1588 			AES_set_decrypt_key(key, 8 * ctx->key_len,
1589 			    &wctx->ks.ks);
1590 
1591 		if (iv == NULL)
1592 			wctx->iv = NULL;
1593 	}
1594 
1595 	if (iv != NULL) {
1596 		memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx));
1597 		wctx->iv = ctx->iv;
1598 	}
1599 
1600 	return 1;
1601 }
1602 
1603 static int
1604 aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
1605     const unsigned char *in, size_t inlen)
1606 {
1607 	EVP_AES_WRAP_CTX *wctx = ctx->cipher_data;
1608 	int ret;
1609 
1610 	if (in == NULL)
1611 		return 0;
1612 
1613 	if (inlen % 8 != 0)
1614 		return -1;
1615 	if (ctx->encrypt && inlen < 8)
1616 		return -1;
1617 	if (!ctx->encrypt && inlen < 16)
1618 		return -1;
1619 	if (inlen > INT_MAX)
1620 		return -1;
1621 
1622 	if (out == NULL) {
1623 		if (ctx->encrypt)
1624 			return inlen + 8;
1625 		else
1626 			return inlen - 8;
1627 	}
1628 
1629 	if (ctx->encrypt)
1630 		ret = AES_wrap_key(&wctx->ks.ks, wctx->iv, out, in,
1631 		    (unsigned int)inlen);
1632 	else
1633 		ret = AES_unwrap_key(&wctx->ks.ks, wctx->iv, out, in,
1634 		    (unsigned int)inlen);
1635 
1636 	return ret != 0 ? ret : -1;
1637 }
1638 
1639 static int
1640 aes_wrap_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
1641 {
1642 	EVP_AES_WRAP_CTX *wctx = c->cipher_data;
1643 
1644 	switch (type) {
1645 	case EVP_CTRL_COPY:
1646 	    {
1647 		EVP_CIPHER_CTX *out = ptr;
1648 		EVP_AES_WRAP_CTX *wctx_out = out->cipher_data;
1649 
1650 		if (wctx->iv != NULL) {
1651 			if (c->iv != wctx->iv)
1652 				return 0;
1653 
1654 			wctx_out->iv = out->iv;
1655 		}
1656 
1657 		return 1;
1658 	    }
1659 	}
1660 
1661 	return -1;
1662 }
1663 
1664 #define WRAP_FLAGS \
1665     ( EVP_CIPH_WRAP_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER | \
1666       EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1 | \
1667       EVP_CIPH_CUSTOM_COPY )
1668 
1669 static const EVP_CIPHER aes_128_wrap = {
1670 	.nid = NID_id_aes128_wrap,
1671 	.block_size = 8,
1672 	.key_len = 16,
1673 	.iv_len = 8,
1674 	.flags = WRAP_FLAGS,
1675 	.init = aes_wrap_init_key,
1676 	.do_cipher = aes_wrap_cipher,
1677 	.cleanup = NULL,
1678 	.ctx_size = sizeof(EVP_AES_WRAP_CTX),
1679 	.set_asn1_parameters = NULL,
1680 	.get_asn1_parameters = NULL,
1681 	.ctrl = aes_wrap_ctrl,
1682 	.app_data = NULL,
1683 };
1684 
1685 const EVP_CIPHER *
1686 EVP_aes_128_wrap(void)
1687 {
1688 	return &aes_128_wrap;
1689 }
1690 
1691 static const EVP_CIPHER aes_192_wrap = {
1692 	.nid = NID_id_aes192_wrap,
1693 	.block_size = 8,
1694 	.key_len = 24,
1695 	.iv_len = 8,
1696 	.flags = WRAP_FLAGS,
1697 	.init = aes_wrap_init_key,
1698 	.do_cipher = aes_wrap_cipher,
1699 	.cleanup = NULL,
1700 	.ctx_size = sizeof(EVP_AES_WRAP_CTX),
1701 	.set_asn1_parameters = NULL,
1702 	.get_asn1_parameters = NULL,
1703 	.ctrl = aes_wrap_ctrl,
1704 	.app_data = NULL,
1705 };
1706 
1707 const EVP_CIPHER *
1708 EVP_aes_192_wrap(void)
1709 {
1710 	return &aes_192_wrap;
1711 }
1712 
1713 static const EVP_CIPHER aes_256_wrap = {
1714 	.nid = NID_id_aes256_wrap,
1715 	.block_size = 8,
1716 	.key_len = 32,
1717 	.iv_len = 8,
1718 	.flags = WRAP_FLAGS,
1719 	.init = aes_wrap_init_key,
1720 	.do_cipher = aes_wrap_cipher,
1721 	.cleanup = NULL,
1722 	.ctx_size = sizeof(EVP_AES_WRAP_CTX),
1723 	.set_asn1_parameters = NULL,
1724 	.get_asn1_parameters = NULL,
1725 	.ctrl = aes_wrap_ctrl,
1726 	.app_data = NULL,
1727 };
1728 
1729 const EVP_CIPHER *
1730 EVP_aes_256_wrap(void)
1731 {
1732 	return &aes_256_wrap;
1733 }
1734 
1735 #endif
1736