xref: /dragonfly/crypto/libressl/crypto/sha/sha256.c (revision 72c33676)
1 /* $OpenBSD: sha256.c,v 1.10 2019/01/21 23:20:31 jsg Exp $ */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 
8 #include <openssl/opensslconf.h>
9 
10 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
11 
12 #include <machine/endian.h>
13 
14 #include <stdlib.h>
15 #include <string.h>
16 
17 #include <openssl/crypto.h>
18 #include <openssl/sha.h>
19 #include <openssl/opensslv.h>
20 
21 int SHA224_Init(SHA256_CTX *c)
22 	{
23 	memset (c,0,sizeof(*c));
24 	c->h[0]=0xc1059ed8UL;	c->h[1]=0x367cd507UL;
25 	c->h[2]=0x3070dd17UL;	c->h[3]=0xf70e5939UL;
26 	c->h[4]=0xffc00b31UL;	c->h[5]=0x68581511UL;
27 	c->h[6]=0x64f98fa7UL;	c->h[7]=0xbefa4fa4UL;
28 	c->md_len=SHA224_DIGEST_LENGTH;
29 	return 1;
30 	}
31 
32 int SHA256_Init(SHA256_CTX *c)
33 	{
34 	memset (c,0,sizeof(*c));
35 	c->h[0]=0x6a09e667UL;	c->h[1]=0xbb67ae85UL;
36 	c->h[2]=0x3c6ef372UL;	c->h[3]=0xa54ff53aUL;
37 	c->h[4]=0x510e527fUL;	c->h[5]=0x9b05688cUL;
38 	c->h[6]=0x1f83d9abUL;	c->h[7]=0x5be0cd19UL;
39 	c->md_len=SHA256_DIGEST_LENGTH;
40 	return 1;
41 	}
42 
43 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
44 	{
45 	SHA256_CTX c;
46 	static unsigned char m[SHA224_DIGEST_LENGTH];
47 
48 	if (md == NULL) md=m;
49 	SHA224_Init(&c);
50 	SHA256_Update(&c,d,n);
51 	SHA256_Final(md,&c);
52 	explicit_bzero(&c,sizeof(c));
53 	return(md);
54 	}
55 
56 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
57 	{
58 	SHA256_CTX c;
59 	static unsigned char m[SHA256_DIGEST_LENGTH];
60 
61 	if (md == NULL) md=m;
62 	SHA256_Init(&c);
63 	SHA256_Update(&c,d,n);
64 	SHA256_Final(md,&c);
65 	explicit_bzero(&c,sizeof(c));
66 	return(md);
67 	}
68 
69 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
70 {   return SHA256_Update (c,data,len);   }
71 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
72 {   return SHA256_Final (md,c);   }
73 
74 #define	DATA_ORDER_IS_BIG_ENDIAN
75 
76 #define	HASH_LONG		SHA_LONG
77 #define	HASH_CTX		SHA256_CTX
78 #define	HASH_CBLOCK		SHA_CBLOCK
79 /*
80  * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
81  * default: case below covers for it. It's not clear however if it's
82  * permitted to truncate to amount of bytes not divisible by 4. I bet not,
83  * but if it is, then default: case shall be extended. For reference.
84  * Idea behind separate cases for pre-defined lengths is to let the
85  * compiler decide if it's appropriate to unroll small loops.
86  */
87 #define	HASH_MAKE_STRING(c,s)	do {	\
88 	unsigned long ll;		\
89 	unsigned int  nn;		\
90 	switch ((c)->md_len)		\
91 	{   case SHA224_DIGEST_LENGTH:	\
92 		for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++)	\
93 		{   ll=(c)->h[nn]; HOST_l2c(ll,(s));   }	\
94 		break;			\
95 	    case SHA256_DIGEST_LENGTH:	\
96 		for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++)	\
97 		{   ll=(c)->h[nn]; HOST_l2c(ll,(s));   }	\
98 		break;			\
99 	    default:			\
100 		if ((c)->md_len > SHA256_DIGEST_LENGTH)	\
101 		    return 0;				\
102 		for (nn=0;nn<(c)->md_len/4;nn++)		\
103 		{   ll=(c)->h[nn]; HOST_l2c(ll,(s));   }	\
104 		break;			\
105 	}				\
106 	} while (0)
107 
108 #define	HASH_UPDATE		SHA256_Update
109 #define	HASH_TRANSFORM		SHA256_Transform
110 #define	HASH_FINAL		SHA256_Final
111 #define	HASH_BLOCK_DATA_ORDER	sha256_block_data_order
112 #ifndef SHA256_ASM
113 static
114 #endif
115 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
116 
117 #include "md32_common.h"
118 
119 #ifndef SHA256_ASM
120 static const SHA_LONG K256[64] = {
121 	0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
122 	0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
123 	0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
124 	0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
125 	0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
126 	0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
127 	0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
128 	0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
129 	0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
130 	0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
131 	0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
132 	0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
133 	0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
134 	0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
135 	0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
136 	0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
137 
138 /*
139  * FIPS specification refers to right rotations, while our ROTATE macro
140  * is left one. This is why you might notice that rotation coefficients
141  * differ from those observed in FIPS document by 32-N...
142  */
143 #define Sigma0(x)	(ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
144 #define Sigma1(x)	(ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
145 #define sigma0(x)	(ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
146 #define sigma1(x)	(ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
147 
148 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
149 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
150 
151 #ifdef OPENSSL_SMALL_FOOTPRINT
152 
153 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
154 	{
155 	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
156 	SHA_LONG	X[16],l;
157 	int i;
158 	const unsigned char *data=in;
159 
160 			while (num--) {
161 
162 	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
163 	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
164 
165 	for (i=0;i<16;i++)
166 		{
167 		HOST_c2l(data,l); T1 = X[i] = l;
168 		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
169 		T2 = Sigma0(a) + Maj(a,b,c);
170 		h = g;	g = f;	f = e;	e = d + T1;
171 		d = c;	c = b;	b = a;	a = T1 + T2;
172 		}
173 
174 	for (;i<64;i++)
175 		{
176 		s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);
177 		s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);
178 
179 		T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
180 		T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
181 		T2 = Sigma0(a) + Maj(a,b,c);
182 		h = g;	g = f;	f = e;	e = d + T1;
183 		d = c;	c = b;	b = a;	a = T1 + T2;
184 		}
185 
186 	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
187 	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
188 
189 			}
190 }
191 
192 #else
193 
194 #define	ROUND_00_15(i,a,b,c,d,e,f,g,h)		do {	\
195 	T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];	\
196 	h = Sigma0(a) + Maj(a,b,c);			\
197 	d += T1;	h += T1;		} while (0)
198 
199 #define	ROUND_16_63(i,a,b,c,d,e,f,g,h,X)	do {	\
200 	s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);	\
201 	s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);	\
202 	T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];	\
203 	ROUND_00_15(i,a,b,c,d,e,f,g,h);		} while (0)
204 
205 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
206 	{
207 	unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
208 	SHA_LONG	X[16];
209 	int i;
210 	const unsigned char *data=in;
211 
212 			while (num--) {
213 
214 	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
215 	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
216 
217 	if (BYTE_ORDER != LITTLE_ENDIAN &&
218 	    sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
219 		{
220 		const SHA_LONG *W=(const SHA_LONG *)data;
221 
222 		T1 = X[0] = W[0];	ROUND_00_15(0,a,b,c,d,e,f,g,h);
223 		T1 = X[1] = W[1];	ROUND_00_15(1,h,a,b,c,d,e,f,g);
224 		T1 = X[2] = W[2];	ROUND_00_15(2,g,h,a,b,c,d,e,f);
225 		T1 = X[3] = W[3];	ROUND_00_15(3,f,g,h,a,b,c,d,e);
226 		T1 = X[4] = W[4];	ROUND_00_15(4,e,f,g,h,a,b,c,d);
227 		T1 = X[5] = W[5];	ROUND_00_15(5,d,e,f,g,h,a,b,c);
228 		T1 = X[6] = W[6];	ROUND_00_15(6,c,d,e,f,g,h,a,b);
229 		T1 = X[7] = W[7];	ROUND_00_15(7,b,c,d,e,f,g,h,a);
230 		T1 = X[8] = W[8];	ROUND_00_15(8,a,b,c,d,e,f,g,h);
231 		T1 = X[9] = W[9];	ROUND_00_15(9,h,a,b,c,d,e,f,g);
232 		T1 = X[10] = W[10];	ROUND_00_15(10,g,h,a,b,c,d,e,f);
233 		T1 = X[11] = W[11];	ROUND_00_15(11,f,g,h,a,b,c,d,e);
234 		T1 = X[12] = W[12];	ROUND_00_15(12,e,f,g,h,a,b,c,d);
235 		T1 = X[13] = W[13];	ROUND_00_15(13,d,e,f,g,h,a,b,c);
236 		T1 = X[14] = W[14];	ROUND_00_15(14,c,d,e,f,g,h,a,b);
237 		T1 = X[15] = W[15];	ROUND_00_15(15,b,c,d,e,f,g,h,a);
238 
239 		data += SHA256_CBLOCK;
240 		}
241 	else
242 		{
243 		SHA_LONG l;
244 
245 		HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
246 		HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
247 		HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
248 		HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
249 		HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
250 		HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
251 		HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
252 		HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
253 		HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
254 		HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
255 		HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
256 		HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
257 		HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
258 		HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
259 		HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
260 		HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
261 		}
262 
263 	for (i=16;i<64;i+=8)
264 		{
265 		ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
266 		ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
267 		ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
268 		ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
269 		ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
270 		ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
271 		ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
272 		ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
273 		}
274 
275 	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
276 	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
277 
278 			}
279 	}
280 
281 #endif
282 #endif /* SHA256_ASM */
283 
284 #endif /* OPENSSL_NO_SHA256 */
285