xref: /dragonfly/crypto/libressl/crypto/sha/sha512.c (revision 72c33676)
1 /* $OpenBSD: sha512.c,v 1.15 2016/11/04 13:56:05 miod Exp $ */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 
8 #include <machine/endian.h>
9 
10 #include <stdlib.h>
11 #include <string.h>
12 
13 #include <openssl/opensslconf.h>
14 
15 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
16 /*
17  * IMPLEMENTATION NOTES.
18  *
19  * As you might have noticed 32-bit hash algorithms:
20  *
21  * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
22  * - optimized versions implement two transform functions: one operating
23  *   on [aligned] data in host byte order and one - on data in input
24  *   stream byte order;
25  * - share common byte-order neutral collector and padding function
26  *   implementations, ../md32_common.h;
27  *
28  * Neither of the above applies to this SHA-512 implementations. Reasons
29  * [in reverse order] are:
30  *
31  * - it's the only 64-bit hash algorithm for the moment of this writing,
32  *   there is no need for common collector/padding implementation [yet];
33  * - by supporting only one transform function [which operates on
34  *   *aligned* data in input stream byte order, big-endian in this case]
35  *   we minimize burden of maintenance in two ways: a) collector/padding
36  *   function is simpler; b) only one transform function to stare at;
37  * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
38  *   apply a number of optimizations to mitigate potential performance
39  *   penalties caused by previous design decision;
40  *
41  * Caveat lector.
42  *
43  * Implementation relies on the fact that "long long" is 64-bit on
44  * both 32- and 64-bit platforms. If some compiler vendor comes up
45  * with 128-bit long long, adjustment to sha.h would be required.
46  * As this implementation relies on 64-bit integer type, it's totally
47  * inappropriate for platforms which don't support it, most notably
48  * 16-bit platforms.
49  *					<appro@fy.chalmers.se>
50  */
51 
52 #include <openssl/crypto.h>
53 #include <openssl/opensslv.h>
54 #include <openssl/sha.h>
55 
56 #if !defined(__STRICT_ALIGNMENT) || defined(SHA512_ASM)
57 #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
58 #endif
59 
60 int SHA384_Init(SHA512_CTX *c)
61 	{
62 	c->h[0]=U64(0xcbbb9d5dc1059ed8);
63 	c->h[1]=U64(0x629a292a367cd507);
64 	c->h[2]=U64(0x9159015a3070dd17);
65 	c->h[3]=U64(0x152fecd8f70e5939);
66 	c->h[4]=U64(0x67332667ffc00b31);
67 	c->h[5]=U64(0x8eb44a8768581511);
68 	c->h[6]=U64(0xdb0c2e0d64f98fa7);
69 	c->h[7]=U64(0x47b5481dbefa4fa4);
70 
71         c->Nl=0;        c->Nh=0;
72         c->num=0;       c->md_len=SHA384_DIGEST_LENGTH;
73         return 1;
74 	}
75 
76 int SHA512_Init(SHA512_CTX *c)
77 	{
78 	c->h[0]=U64(0x6a09e667f3bcc908);
79 	c->h[1]=U64(0xbb67ae8584caa73b);
80 	c->h[2]=U64(0x3c6ef372fe94f82b);
81 	c->h[3]=U64(0xa54ff53a5f1d36f1);
82 	c->h[4]=U64(0x510e527fade682d1);
83 	c->h[5]=U64(0x9b05688c2b3e6c1f);
84 	c->h[6]=U64(0x1f83d9abfb41bd6b);
85 	c->h[7]=U64(0x5be0cd19137e2179);
86 
87         c->Nl=0;        c->Nh=0;
88         c->num=0;       c->md_len=SHA512_DIGEST_LENGTH;
89         return 1;
90 	}
91 
92 #ifndef SHA512_ASM
93 static
94 #endif
95 void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num);
96 
97 int SHA512_Final (unsigned char *md, SHA512_CTX *c)
98 	{
99 	unsigned char *p=(unsigned char *)c->u.p;
100 	size_t n=c->num;
101 
102 	p[n]=0x80;	/* There always is a room for one */
103 	n++;
104 	if (n > (sizeof(c->u)-16))
105 		memset (p+n,0,sizeof(c->u)-n), n=0,
106 		sha512_block_data_order (c,p,1);
107 
108 	memset (p+n,0,sizeof(c->u)-16-n);
109 #if BYTE_ORDER == BIG_ENDIAN
110 	c->u.d[SHA_LBLOCK-2] = c->Nh;
111 	c->u.d[SHA_LBLOCK-1] = c->Nl;
112 #else
113 	p[sizeof(c->u)-1]  = (unsigned char)(c->Nl);
114 	p[sizeof(c->u)-2]  = (unsigned char)(c->Nl>>8);
115 	p[sizeof(c->u)-3]  = (unsigned char)(c->Nl>>16);
116 	p[sizeof(c->u)-4]  = (unsigned char)(c->Nl>>24);
117 	p[sizeof(c->u)-5]  = (unsigned char)(c->Nl>>32);
118 	p[sizeof(c->u)-6]  = (unsigned char)(c->Nl>>40);
119 	p[sizeof(c->u)-7]  = (unsigned char)(c->Nl>>48);
120 	p[sizeof(c->u)-8]  = (unsigned char)(c->Nl>>56);
121 	p[sizeof(c->u)-9]  = (unsigned char)(c->Nh);
122 	p[sizeof(c->u)-10] = (unsigned char)(c->Nh>>8);
123 	p[sizeof(c->u)-11] = (unsigned char)(c->Nh>>16);
124 	p[sizeof(c->u)-12] = (unsigned char)(c->Nh>>24);
125 	p[sizeof(c->u)-13] = (unsigned char)(c->Nh>>32);
126 	p[sizeof(c->u)-14] = (unsigned char)(c->Nh>>40);
127 	p[sizeof(c->u)-15] = (unsigned char)(c->Nh>>48);
128 	p[sizeof(c->u)-16] = (unsigned char)(c->Nh>>56);
129 #endif
130 
131 	sha512_block_data_order (c,p,1);
132 
133 	if (md==0) return 0;
134 
135 	switch (c->md_len)
136 		{
137 		/* Let compiler decide if it's appropriate to unroll... */
138 		case SHA384_DIGEST_LENGTH:
139 			for (n=0;n<SHA384_DIGEST_LENGTH/8;n++)
140 				{
141 				SHA_LONG64 t = c->h[n];
142 
143 				*(md++)	= (unsigned char)(t>>56);
144 				*(md++)	= (unsigned char)(t>>48);
145 				*(md++)	= (unsigned char)(t>>40);
146 				*(md++)	= (unsigned char)(t>>32);
147 				*(md++)	= (unsigned char)(t>>24);
148 				*(md++)	= (unsigned char)(t>>16);
149 				*(md++)	= (unsigned char)(t>>8);
150 				*(md++)	= (unsigned char)(t);
151 				}
152 			break;
153 		case SHA512_DIGEST_LENGTH:
154 			for (n=0;n<SHA512_DIGEST_LENGTH/8;n++)
155 				{
156 				SHA_LONG64 t = c->h[n];
157 
158 				*(md++)	= (unsigned char)(t>>56);
159 				*(md++)	= (unsigned char)(t>>48);
160 				*(md++)	= (unsigned char)(t>>40);
161 				*(md++)	= (unsigned char)(t>>32);
162 				*(md++)	= (unsigned char)(t>>24);
163 				*(md++)	= (unsigned char)(t>>16);
164 				*(md++)	= (unsigned char)(t>>8);
165 				*(md++)	= (unsigned char)(t);
166 				}
167 			break;
168 		/* ... as well as make sure md_len is not abused. */
169 		default:	return 0;
170 		}
171 
172 	return 1;
173 	}
174 
175 int SHA384_Final (unsigned char *md,SHA512_CTX *c)
176 {   return SHA512_Final (md,c);   }
177 
178 int SHA512_Update (SHA512_CTX *c, const void *_data, size_t len)
179 	{
180 	SHA_LONG64	l;
181 	unsigned char  *p=c->u.p;
182 	const unsigned char *data=(const unsigned char *)_data;
183 
184 	if (len==0) return  1;
185 
186 	l = (c->Nl+(((SHA_LONG64)len)<<3))&U64(0xffffffffffffffff);
187 	if (l < c->Nl)		c->Nh++;
188 	if (sizeof(len)>=8)	c->Nh+=(((SHA_LONG64)len)>>61);
189 	c->Nl=l;
190 
191 	if (c->num != 0)
192 		{
193 		size_t n = sizeof(c->u) - c->num;
194 
195 		if (len < n)
196 			{
197 			memcpy (p+c->num,data,len), c->num += (unsigned int)len;
198 			return 1;
199 			}
200 		else	{
201 			memcpy (p+c->num,data,n), c->num = 0;
202 			len-=n, data+=n;
203 			sha512_block_data_order (c,p,1);
204 			}
205 		}
206 
207 	if (len >= sizeof(c->u))
208 		{
209 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
210 		if ((size_t)data%sizeof(c->u.d[0]) != 0)
211 			while (len >= sizeof(c->u))
212 				memcpy (p,data,sizeof(c->u)),
213 				sha512_block_data_order (c,p,1),
214 				len  -= sizeof(c->u),
215 				data += sizeof(c->u);
216 		else
217 #endif
218 			sha512_block_data_order (c,data,len/sizeof(c->u)),
219 			data += len,
220 			len  %= sizeof(c->u),
221 			data -= len;
222 		}
223 
224 	if (len != 0)	memcpy (p,data,len), c->num = (int)len;
225 
226 	return 1;
227 	}
228 
229 int SHA384_Update (SHA512_CTX *c, const void *data, size_t len)
230 {   return SHA512_Update (c,data,len);   }
231 
232 void SHA512_Transform (SHA512_CTX *c, const unsigned char *data)
233 	{
234 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
235 	if ((size_t)data%sizeof(c->u.d[0]) != 0)
236 		memcpy(c->u.p,data,sizeof(c->u.p)),
237 		data = c->u.p;
238 #endif
239 	sha512_block_data_order (c,data,1);
240 	}
241 
242 unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
243 	{
244 	SHA512_CTX c;
245 	static unsigned char m[SHA384_DIGEST_LENGTH];
246 
247 	if (md == NULL) md=m;
248 	SHA384_Init(&c);
249 	SHA512_Update(&c,d,n);
250 	SHA512_Final(md,&c);
251 	explicit_bzero(&c,sizeof(c));
252 	return(md);
253 	}
254 
255 unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
256 	{
257 	SHA512_CTX c;
258 	static unsigned char m[SHA512_DIGEST_LENGTH];
259 
260 	if (md == NULL) md=m;
261 	SHA512_Init(&c);
262 	SHA512_Update(&c,d,n);
263 	SHA512_Final(md,&c);
264 	explicit_bzero(&c,sizeof(c));
265 	return(md);
266 	}
267 
268 #ifndef SHA512_ASM
269 static const SHA_LONG64 K512[80] = {
270         U64(0x428a2f98d728ae22),U64(0x7137449123ef65cd),
271         U64(0xb5c0fbcfec4d3b2f),U64(0xe9b5dba58189dbbc),
272         U64(0x3956c25bf348b538),U64(0x59f111f1b605d019),
273         U64(0x923f82a4af194f9b),U64(0xab1c5ed5da6d8118),
274         U64(0xd807aa98a3030242),U64(0x12835b0145706fbe),
275         U64(0x243185be4ee4b28c),U64(0x550c7dc3d5ffb4e2),
276         U64(0x72be5d74f27b896f),U64(0x80deb1fe3b1696b1),
277         U64(0x9bdc06a725c71235),U64(0xc19bf174cf692694),
278         U64(0xe49b69c19ef14ad2),U64(0xefbe4786384f25e3),
279         U64(0x0fc19dc68b8cd5b5),U64(0x240ca1cc77ac9c65),
280         U64(0x2de92c6f592b0275),U64(0x4a7484aa6ea6e483),
281         U64(0x5cb0a9dcbd41fbd4),U64(0x76f988da831153b5),
282         U64(0x983e5152ee66dfab),U64(0xa831c66d2db43210),
283         U64(0xb00327c898fb213f),U64(0xbf597fc7beef0ee4),
284         U64(0xc6e00bf33da88fc2),U64(0xd5a79147930aa725),
285         U64(0x06ca6351e003826f),U64(0x142929670a0e6e70),
286         U64(0x27b70a8546d22ffc),U64(0x2e1b21385c26c926),
287         U64(0x4d2c6dfc5ac42aed),U64(0x53380d139d95b3df),
288         U64(0x650a73548baf63de),U64(0x766a0abb3c77b2a8),
289         U64(0x81c2c92e47edaee6),U64(0x92722c851482353b),
290         U64(0xa2bfe8a14cf10364),U64(0xa81a664bbc423001),
291         U64(0xc24b8b70d0f89791),U64(0xc76c51a30654be30),
292         U64(0xd192e819d6ef5218),U64(0xd69906245565a910),
293         U64(0xf40e35855771202a),U64(0x106aa07032bbd1b8),
294         U64(0x19a4c116b8d2d0c8),U64(0x1e376c085141ab53),
295         U64(0x2748774cdf8eeb99),U64(0x34b0bcb5e19b48a8),
296         U64(0x391c0cb3c5c95a63),U64(0x4ed8aa4ae3418acb),
297         U64(0x5b9cca4f7763e373),U64(0x682e6ff3d6b2b8a3),
298         U64(0x748f82ee5defb2fc),U64(0x78a5636f43172f60),
299         U64(0x84c87814a1f0ab72),U64(0x8cc702081a6439ec),
300         U64(0x90befffa23631e28),U64(0xa4506cebde82bde9),
301         U64(0xbef9a3f7b2c67915),U64(0xc67178f2e372532b),
302         U64(0xca273eceea26619c),U64(0xd186b8c721c0c207),
303         U64(0xeada7dd6cde0eb1e),U64(0xf57d4f7fee6ed178),
304         U64(0x06f067aa72176fba),U64(0x0a637dc5a2c898a6),
305         U64(0x113f9804bef90dae),U64(0x1b710b35131c471b),
306         U64(0x28db77f523047d84),U64(0x32caab7b40c72493),
307         U64(0x3c9ebe0a15c9bebc),U64(0x431d67c49c100d4c),
308         U64(0x4cc5d4becb3e42b6),U64(0x597f299cfc657e2a),
309         U64(0x5fcb6fab3ad6faec),U64(0x6c44198c4a475817) };
310 
311 #if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
312 # if defined(__x86_64) || defined(__x86_64__)
313 #  define ROTR(a,n)	({ SHA_LONG64 ret;		\
314 				asm ("rorq %1,%0"	\
315 				: "=r"(ret)		\
316 				: "J"(n),"0"(a)		\
317 				: "cc"); ret;		})
318 #   define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x)));	\
319 				asm ("bswapq	%0"		\
320 				: "=r"(ret)			\
321 				: "0"(ret)); ret;		})
322 # elif (defined(__i386) || defined(__i386__))
323 #   define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
324 			 unsigned int hi=p[0],lo=p[1];		\
325 				asm ("bswapl %0; bswapl %1;"	\
326 				: "=r"(lo),"=r"(hi)		\
327 				: "0"(lo),"1"(hi));		\
328 				((SHA_LONG64)hi)<<32|lo;	})
329 # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
330 #  define ROTR(a,n)	({ SHA_LONG64 ret;		\
331 				asm ("rotrdi %0,%1,%2"	\
332 				: "=r"(ret)		\
333 				: "r"(a),"K"(n)); ret;	})
334 # endif
335 #endif
336 
337 #ifndef PULL64
338 #define B(x,j)    (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
339 #define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
340 #endif
341 
342 #ifndef ROTR
343 #define ROTR(x,s)	(((x)>>s) | (x)<<(64-s))
344 #endif
345 
346 #define Sigma0(x)	(ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
347 #define Sigma1(x)	(ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
348 #define sigma0(x)	(ROTR((x),1)  ^ ROTR((x),8)  ^ ((x)>>7))
349 #define sigma1(x)	(ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
350 
351 #define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
352 #define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
353 
354 
355 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
356 /*
357  * This code should give better results on 32-bit CPU with less than
358  * ~24 registers, both size and performance wise...
359  */
360 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
361 	{
362 	const SHA_LONG64 *W=in;
363 	SHA_LONG64	A,E,T;
364 	SHA_LONG64	X[9+80],*F;
365 	int i;
366 
367 			while (num--) {
368 
369 	F    = X+80;
370 	A    = ctx->h[0];	F[1] = ctx->h[1];
371 	F[2] = ctx->h[2];	F[3] = ctx->h[3];
372 	E    = ctx->h[4];	F[5] = ctx->h[5];
373 	F[6] = ctx->h[6];	F[7] = ctx->h[7];
374 
375 	for (i=0;i<16;i++,F--)
376 		{
377 		T = PULL64(W[i]);
378 		F[0] = A;
379 		F[4] = E;
380 		F[8] = T;
381 		T   += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
382 		E    = F[3] + T;
383 		A    = T + Sigma0(A) + Maj(A,F[1],F[2]);
384 		}
385 
386 	for (;i<80;i++,F--)
387 		{
388 		T    = sigma0(F[8+16-1]);
389 		T   += sigma1(F[8+16-14]);
390 		T   += F[8+16] + F[8+16-9];
391 
392 		F[0] = A;
393 		F[4] = E;
394 		F[8] = T;
395 		T   += F[7] + Sigma1(E) + Ch(E,F[5],F[6]) + K512[i];
396 		E    = F[3] + T;
397 		A    = T + Sigma0(A) + Maj(A,F[1],F[2]);
398 		}
399 
400 	ctx->h[0] += A;		ctx->h[1] += F[1];
401 	ctx->h[2] += F[2];	ctx->h[3] += F[3];
402 	ctx->h[4] += E;		ctx->h[5] += F[5];
403 	ctx->h[6] += F[6];	ctx->h[7] += F[7];
404 
405 			W+=SHA_LBLOCK;
406 			}
407 	}
408 
409 #elif defined(OPENSSL_SMALL_FOOTPRINT)
410 
411 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
412 	{
413 	const SHA_LONG64 *W=in;
414 	SHA_LONG64	a,b,c,d,e,f,g,h,s0,s1,T1,T2;
415 	SHA_LONG64	X[16];
416 	int i;
417 
418 			while (num--) {
419 
420 	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
421 	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
422 
423 	for (i=0;i<16;i++)
424 		{
425 #if BYTE_ORDER == BIG_ENDIAN
426 		T1 = X[i] = W[i];
427 #else
428 		T1 = X[i] = PULL64(W[i]);
429 #endif
430 		T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
431 		T2 = Sigma0(a) + Maj(a,b,c);
432 		h = g;	g = f;	f = e;	e = d + T1;
433 		d = c;	c = b;	b = a;	a = T1 + T2;
434 		}
435 
436 	for (;i<80;i++)
437 		{
438 		s0 = X[(i+1)&0x0f];	s0 = sigma0(s0);
439 		s1 = X[(i+14)&0x0f];	s1 = sigma1(s1);
440 
441 		T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
442 		T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];
443 		T2 = Sigma0(a) + Maj(a,b,c);
444 		h = g;	g = f;	f = e;	e = d + T1;
445 		d = c;	c = b;	b = a;	a = T1 + T2;
446 		}
447 
448 	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
449 	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
450 
451 			W+=SHA_LBLOCK;
452 			}
453 	}
454 
455 #else
456 
457 #define	ROUND_00_15(i,a,b,c,d,e,f,g,h)		do {	\
458 	T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i];	\
459 	h = Sigma0(a) + Maj(a,b,c);			\
460 	d += T1;	h += T1;		} while (0)
461 
462 #define	ROUND_16_80(i,j,a,b,c,d,e,f,g,h,X)	do {	\
463 	s0 = X[(j+1)&0x0f];	s0 = sigma0(s0);	\
464 	s1 = X[(j+14)&0x0f];	s1 = sigma1(s1);	\
465 	T1 = X[(j)&0x0f] += s0 + s1 + X[(j+9)&0x0f];	\
466 	ROUND_00_15(i+j,a,b,c,d,e,f,g,h);		} while (0)
467 
468 static void sha512_block_data_order (SHA512_CTX *ctx, const void *in, size_t num)
469 	{
470 	const SHA_LONG64 *W=in;
471 	SHA_LONG64	a,b,c,d,e,f,g,h,s0,s1,T1;
472 	SHA_LONG64	X[16];
473 	int i;
474 
475 			while (num--) {
476 
477 	a = ctx->h[0];	b = ctx->h[1];	c = ctx->h[2];	d = ctx->h[3];
478 	e = ctx->h[4];	f = ctx->h[5];	g = ctx->h[6];	h = ctx->h[7];
479 
480 #if BYTE_ORDER == BIG_ENDIAN
481 	T1 = X[0] = W[0];	ROUND_00_15(0,a,b,c,d,e,f,g,h);
482 	T1 = X[1] = W[1];	ROUND_00_15(1,h,a,b,c,d,e,f,g);
483 	T1 = X[2] = W[2];	ROUND_00_15(2,g,h,a,b,c,d,e,f);
484 	T1 = X[3] = W[3];	ROUND_00_15(3,f,g,h,a,b,c,d,e);
485 	T1 = X[4] = W[4];	ROUND_00_15(4,e,f,g,h,a,b,c,d);
486 	T1 = X[5] = W[5];	ROUND_00_15(5,d,e,f,g,h,a,b,c);
487 	T1 = X[6] = W[6];	ROUND_00_15(6,c,d,e,f,g,h,a,b);
488 	T1 = X[7] = W[7];	ROUND_00_15(7,b,c,d,e,f,g,h,a);
489 	T1 = X[8] = W[8];	ROUND_00_15(8,a,b,c,d,e,f,g,h);
490 	T1 = X[9] = W[9];	ROUND_00_15(9,h,a,b,c,d,e,f,g);
491 	T1 = X[10] = W[10];	ROUND_00_15(10,g,h,a,b,c,d,e,f);
492 	T1 = X[11] = W[11];	ROUND_00_15(11,f,g,h,a,b,c,d,e);
493 	T1 = X[12] = W[12];	ROUND_00_15(12,e,f,g,h,a,b,c,d);
494 	T1 = X[13] = W[13];	ROUND_00_15(13,d,e,f,g,h,a,b,c);
495 	T1 = X[14] = W[14];	ROUND_00_15(14,c,d,e,f,g,h,a,b);
496 	T1 = X[15] = W[15];	ROUND_00_15(15,b,c,d,e,f,g,h,a);
497 #else
498 	T1 = X[0]  = PULL64(W[0]);	ROUND_00_15(0,a,b,c,d,e,f,g,h);
499 	T1 = X[1]  = PULL64(W[1]);	ROUND_00_15(1,h,a,b,c,d,e,f,g);
500 	T1 = X[2]  = PULL64(W[2]);	ROUND_00_15(2,g,h,a,b,c,d,e,f);
501 	T1 = X[3]  = PULL64(W[3]);	ROUND_00_15(3,f,g,h,a,b,c,d,e);
502 	T1 = X[4]  = PULL64(W[4]);	ROUND_00_15(4,e,f,g,h,a,b,c,d);
503 	T1 = X[5]  = PULL64(W[5]);	ROUND_00_15(5,d,e,f,g,h,a,b,c);
504 	T1 = X[6]  = PULL64(W[6]);	ROUND_00_15(6,c,d,e,f,g,h,a,b);
505 	T1 = X[7]  = PULL64(W[7]);	ROUND_00_15(7,b,c,d,e,f,g,h,a);
506 	T1 = X[8]  = PULL64(W[8]);	ROUND_00_15(8,a,b,c,d,e,f,g,h);
507 	T1 = X[9]  = PULL64(W[9]);	ROUND_00_15(9,h,a,b,c,d,e,f,g);
508 	T1 = X[10] = PULL64(W[10]);	ROUND_00_15(10,g,h,a,b,c,d,e,f);
509 	T1 = X[11] = PULL64(W[11]);	ROUND_00_15(11,f,g,h,a,b,c,d,e);
510 	T1 = X[12] = PULL64(W[12]);	ROUND_00_15(12,e,f,g,h,a,b,c,d);
511 	T1 = X[13] = PULL64(W[13]);	ROUND_00_15(13,d,e,f,g,h,a,b,c);
512 	T1 = X[14] = PULL64(W[14]);	ROUND_00_15(14,c,d,e,f,g,h,a,b);
513 	T1 = X[15] = PULL64(W[15]);	ROUND_00_15(15,b,c,d,e,f,g,h,a);
514 #endif
515 
516 	for (i=16;i<80;i+=16)
517 		{
518 		ROUND_16_80(i, 0,a,b,c,d,e,f,g,h,X);
519 		ROUND_16_80(i, 1,h,a,b,c,d,e,f,g,X);
520 		ROUND_16_80(i, 2,g,h,a,b,c,d,e,f,X);
521 		ROUND_16_80(i, 3,f,g,h,a,b,c,d,e,X);
522 		ROUND_16_80(i, 4,e,f,g,h,a,b,c,d,X);
523 		ROUND_16_80(i, 5,d,e,f,g,h,a,b,c,X);
524 		ROUND_16_80(i, 6,c,d,e,f,g,h,a,b,X);
525 		ROUND_16_80(i, 7,b,c,d,e,f,g,h,a,X);
526 		ROUND_16_80(i, 8,a,b,c,d,e,f,g,h,X);
527 		ROUND_16_80(i, 9,h,a,b,c,d,e,f,g,X);
528 		ROUND_16_80(i,10,g,h,a,b,c,d,e,f,X);
529 		ROUND_16_80(i,11,f,g,h,a,b,c,d,e,X);
530 		ROUND_16_80(i,12,e,f,g,h,a,b,c,d,X);
531 		ROUND_16_80(i,13,d,e,f,g,h,a,b,c,X);
532 		ROUND_16_80(i,14,c,d,e,f,g,h,a,b,X);
533 		ROUND_16_80(i,15,b,c,d,e,f,g,h,a,X);
534 		}
535 
536 	ctx->h[0] += a;	ctx->h[1] += b;	ctx->h[2] += c;	ctx->h[3] += d;
537 	ctx->h[4] += e;	ctx->h[5] += f;	ctx->h[6] += g;	ctx->h[7] += h;
538 
539 			W+=SHA_LBLOCK;
540 			}
541 	}
542 
543 #endif
544 
545 #endif /* SHA512_ASM */
546 
547 #endif /* !OPENSSL_NO_SHA512 */
548