xref: /dragonfly/lib/libc/db/btree/bt_seq.c (revision 6e285212)
1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Mike Olson.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * @(#)bt_seq.c	8.7 (Berkeley) 7/20/94
37  */
38 
39 #include <sys/types.h>
40 
41 #include <errno.h>
42 #include <stddef.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 
46 #include <db.h>
47 #include "btree.h"
48 
49 static int __bt_first __P((BTREE *, const DBT *, EPG *, int *));
50 static int __bt_seqadv __P((BTREE *, EPG *, int));
51 static int __bt_seqset __P((BTREE *, EPG *, DBT *, int));
52 
53 /*
54  * Sequential scan support.
55  *
56  * The tree can be scanned sequentially, starting from either end of the
57  * tree or from any specific key.  A scan request before any scanning is
58  * done is initialized as starting from the least node.
59  */
60 
61 /*
62  * __bt_seq --
63  *	Btree sequential scan interface.
64  *
65  * Parameters:
66  *	dbp:	pointer to access method
67  *	key:	key for positioning and return value
68  *	data:	data return value
69  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV.
70  *
71  * Returns:
72  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
73  */
74 int
75 __bt_seq(dbp, key, data, flags)
76 	const DB *dbp;
77 	DBT *key, *data;
78 	u_int flags;
79 {
80 	BTREE *t;
81 	EPG e;
82 	int status;
83 
84 	t = dbp->internal;
85 
86 	/* Toss any page pinned across calls. */
87 	if (t->bt_pinned != NULL) {
88 		mpool_put(t->bt_mp, t->bt_pinned, 0);
89 		t->bt_pinned = NULL;
90 	}
91 
92 	/*
93 	 * If scan unitialized as yet, or starting at a specific record, set
94 	 * the scan to a specific key.  Both __bt_seqset and __bt_seqadv pin
95 	 * the page the cursor references if they're successful.
96 	 */
97 	switch (flags) {
98 	case R_NEXT:
99 	case R_PREV:
100 		if (F_ISSET(&t->bt_cursor, CURS_INIT)) {
101 			status = __bt_seqadv(t, &e, flags);
102 			break;
103 		}
104 		/* FALLTHROUGH */
105 	case R_FIRST:
106 	case R_LAST:
107 	case R_CURSOR:
108 		status = __bt_seqset(t, &e, key, flags);
109 		break;
110 	default:
111 		errno = EINVAL;
112 		return (RET_ERROR);
113 	}
114 
115 	if (status == RET_SUCCESS) {
116 		__bt_setcur(t, e.page->pgno, e.index);
117 
118 		status =
119 		    __bt_ret(t, &e, key, &t->bt_rkey, data, &t->bt_rdata, 0);
120 
121 		/*
122 		 * If the user is doing concurrent access, we copied the
123 		 * key/data, toss the page.
124 		 */
125 		if (F_ISSET(t, B_DB_LOCK))
126 			mpool_put(t->bt_mp, e.page, 0);
127 		else
128 			t->bt_pinned = e.page;
129 	}
130 	return (status);
131 }
132 
133 /*
134  * __bt_seqset --
135  *	Set the sequential scan to a specific key.
136  *
137  * Parameters:
138  *	t:	tree
139  *	ep:	storage for returned key
140  *	key:	key for initial scan position
141  *	flags:	R_CURSOR, R_FIRST, R_LAST, R_NEXT, R_PREV
142  *
143  * Side effects:
144  *	Pins the page the cursor references.
145  *
146  * Returns:
147  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
148  */
149 static int
150 __bt_seqset(t, ep, key, flags)
151 	BTREE *t;
152 	EPG *ep;
153 	DBT *key;
154 	int flags;
155 {
156 	PAGE *h;
157 	pgno_t pg;
158 	int exact;
159 
160 	/*
161 	 * Find the first, last or specific key in the tree and point the
162 	 * cursor at it.  The cursor may not be moved until a new key has
163 	 * been found.
164 	 */
165 	switch (flags) {
166 	case R_CURSOR:				/* Keyed scan. */
167 		/*
168 		 * Find the first instance of the key or the smallest key
169 		 * which is greater than or equal to the specified key.
170 		 */
171 		if (key->data == NULL || key->size == 0) {
172 			errno = EINVAL;
173 			return (RET_ERROR);
174 		}
175 		return (__bt_first(t, key, ep, &exact));
176 	case R_FIRST:				/* First record. */
177 	case R_NEXT:
178 		/* Walk down the left-hand side of the tree. */
179 		for (pg = P_ROOT;;) {
180 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
181 				return (RET_ERROR);
182 
183 			/* Check for an empty tree. */
184 			if (NEXTINDEX(h) == 0) {
185 				mpool_put(t->bt_mp, h, 0);
186 				return (RET_SPECIAL);
187 			}
188 
189 			if (h->flags & (P_BLEAF | P_RLEAF))
190 				break;
191 			pg = GETBINTERNAL(h, 0)->pgno;
192 			mpool_put(t->bt_mp, h, 0);
193 		}
194 		ep->page = h;
195 		ep->index = 0;
196 		break;
197 	case R_LAST:				/* Last record. */
198 	case R_PREV:
199 		/* Walk down the right-hand side of the tree. */
200 		for (pg = P_ROOT;;) {
201 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
202 				return (RET_ERROR);
203 
204 			/* Check for an empty tree. */
205 			if (NEXTINDEX(h) == 0) {
206 				mpool_put(t->bt_mp, h, 0);
207 				return (RET_SPECIAL);
208 			}
209 
210 			if (h->flags & (P_BLEAF | P_RLEAF))
211 				break;
212 			pg = GETBINTERNAL(h, NEXTINDEX(h) - 1)->pgno;
213 			mpool_put(t->bt_mp, h, 0);
214 		}
215 
216 		ep->page = h;
217 		ep->index = NEXTINDEX(h) - 1;
218 		break;
219 	}
220 	return (RET_SUCCESS);
221 }
222 
223 /*
224  * __bt_seqadvance --
225  *	Advance the sequential scan.
226  *
227  * Parameters:
228  *	t:	tree
229  *	flags:	R_NEXT, R_PREV
230  *
231  * Side effects:
232  *	Pins the page the new key/data record is on.
233  *
234  * Returns:
235  *	RET_ERROR, RET_SUCCESS or RET_SPECIAL if there's no next key.
236  */
237 static int
238 __bt_seqadv(t, ep, flags)
239 	BTREE *t;
240 	EPG *ep;
241 	int flags;
242 {
243 	CURSOR *c;
244 	PAGE *h;
245 	indx_t index;
246 	pgno_t pg;
247 	int exact;
248 
249 	/*
250 	 * There are a couple of states that we can be in.  The cursor has
251 	 * been initialized by the time we get here, but that's all we know.
252 	 */
253 	c = &t->bt_cursor;
254 
255 	/*
256 	 * The cursor was deleted where there weren't any duplicate records,
257 	 * so the key was saved.  Find out where that key would go in the
258 	 * current tree.  It doesn't matter if the returned key is an exact
259 	 * match or not -- if it's an exact match, the record was added after
260 	 * the delete so we can just return it.  If not, as long as there's
261 	 * a record there, return it.
262 	 */
263 	if (F_ISSET(c, CURS_ACQUIRE))
264 		return (__bt_first(t, &c->key, ep, &exact));
265 
266 	/* Get the page referenced by the cursor. */
267 	if ((h = mpool_get(t->bt_mp, c->pg.pgno, 0)) == NULL)
268 		return (RET_ERROR);
269 
270 	/*
271  	 * Find the next/previous record in the tree and point the cursor at
272 	 * it.  The cursor may not be moved until a new key has been found.
273 	 */
274 	switch (flags) {
275 	case R_NEXT:			/* Next record. */
276 		/*
277 		 * The cursor was deleted in duplicate records, and moved
278 		 * forward to a record that has yet to be returned.  Clear
279 		 * that flag, and return the record.
280 		 */
281 		if (F_ISSET(c, CURS_AFTER))
282 			goto usecurrent;
283 		index = c->pg.index;
284 		if (++index == NEXTINDEX(h)) {
285 			pg = h->nextpg;
286 			mpool_put(t->bt_mp, h, 0);
287 			if (pg == P_INVALID)
288 				return (RET_SPECIAL);
289 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
290 				return (RET_ERROR);
291 			index = 0;
292 		}
293 		break;
294 	case R_PREV:			/* Previous record. */
295 		/*
296 		 * The cursor was deleted in duplicate records, and moved
297 		 * backward to a record that has yet to be returned.  Clear
298 		 * that flag, and return the record.
299 		 */
300 		if (F_ISSET(c, CURS_BEFORE)) {
301 usecurrent:		F_CLR(c, CURS_AFTER | CURS_BEFORE);
302 			ep->page = h;
303 			ep->index = c->pg.index;
304 			return (RET_SUCCESS);
305 		}
306 		index = c->pg.index;
307 		if (index == 0) {
308 			pg = h->prevpg;
309 			mpool_put(t->bt_mp, h, 0);
310 			if (pg == P_INVALID)
311 				return (RET_SPECIAL);
312 			if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
313 				return (RET_ERROR);
314 			index = NEXTINDEX(h) - 1;
315 		} else
316 			--index;
317 		break;
318 	}
319 
320 	ep->page = h;
321 	ep->index = index;
322 	return (RET_SUCCESS);
323 }
324 
325 /*
326  * __bt_first --
327  *	Find the first entry.
328  *
329  * Parameters:
330  *	t:	the tree
331  *    key:	the key
332  *  erval:	return EPG
333  * exactp:	pointer to exact match flag
334  *
335  * Returns:
336  *	The first entry in the tree greater than or equal to key,
337  *	or RET_SPECIAL if no such key exists.
338  */
339 static int
340 __bt_first(t, key, erval, exactp)
341 	BTREE *t;
342 	const DBT *key;
343 	EPG *erval;
344 	int *exactp;
345 {
346 	PAGE *h;
347 	EPG *ep, save;
348 	pgno_t pg;
349 
350 	/*
351 	 * Find any matching record; __bt_search pins the page.
352 	 *
353 	 * If it's an exact match and duplicates are possible, walk backwards
354 	 * in the tree until we find the first one.  Otherwise, make sure it's
355 	 * a valid key (__bt_search may return an index just past the end of a
356 	 * page) and return it.
357 	 */
358 	if ((ep = __bt_search(t, key, exactp)) == NULL)
359 		return (0);
360 	if (*exactp) {
361 		if (F_ISSET(t, B_NODUPS)) {
362 			*erval = *ep;
363 			return (RET_SUCCESS);
364 		}
365 
366 		/*
367 		 * Walk backwards, as long as the entry matches and there are
368 		 * keys left in the tree.  Save a copy of each match in case
369 		 * we go too far.
370 		 */
371 		save = *ep;
372 		h = ep->page;
373 		do {
374 			if (save.page->pgno != ep->page->pgno) {
375 				mpool_put(t->bt_mp, save.page, 0);
376 				save = *ep;
377 			} else
378 				save.index = ep->index;
379 
380 			/*
381 			 * Don't unpin the page the last (or original) match
382 			 * was on, but make sure it's unpinned if an error
383 			 * occurs.
384 			 */
385 			if (ep->index == 0) {
386 				if (h->prevpg == P_INVALID)
387 					break;
388 				if (h->pgno != save.page->pgno)
389 					mpool_put(t->bt_mp, h, 0);
390 				if ((h = mpool_get(t->bt_mp,
391 				    h->prevpg, 0)) == NULL) {
392 					if (h->pgno == save.page->pgno)
393 						mpool_put(t->bt_mp,
394 						    save.page, 0);
395 					return (RET_ERROR);
396 				}
397 				ep->page = h;
398 				ep->index = NEXTINDEX(h);
399 			}
400 			--ep->index;
401 		} while (__bt_cmp(t, key, ep) == 0);
402 
403 		/*
404 		 * Reach here with the last page that was looked at pinned,
405 		 * which may or may not be the same as the last (or original)
406 		 * match page.  If it's not useful, release it.
407 		 */
408 		if (h->pgno != save.page->pgno)
409 			mpool_put(t->bt_mp, h, 0);
410 
411 		*erval = save;
412 		return (RET_SUCCESS);
413 	}
414 
415 	/* If at the end of a page, find the next entry. */
416 	if (ep->index == NEXTINDEX(ep->page)) {
417 		h = ep->page;
418 		pg = h->nextpg;
419 		mpool_put(t->bt_mp, h, 0);
420 		if (pg == P_INVALID)
421 			return (RET_SPECIAL);
422 		if ((h = mpool_get(t->bt_mp, pg, 0)) == NULL)
423 			return (RET_ERROR);
424 		ep->index = 0;
425 		ep->page = h;
426 	}
427 	*erval = *ep;
428 	return (RET_SUCCESS);
429 }
430 
431 /*
432  * __bt_setcur --
433  *	Set the cursor to an entry in the tree.
434  *
435  * Parameters:
436  *	t:	the tree
437  *   pgno:	page number
438  *  index:	page index
439  */
440 void
441 __bt_setcur(t, pgno, index)
442 	BTREE *t;
443 	pgno_t pgno;
444 	u_int index;
445 {
446 	/* Lose any already deleted key. */
447 	if (t->bt_cursor.key.data != NULL) {
448 		free(t->bt_cursor.key.data);
449 		t->bt_cursor.key.size = 0;
450 		t->bt_cursor.key.data = NULL;
451 	}
452 	F_CLR(&t->bt_cursor, CURS_ACQUIRE | CURS_AFTER | CURS_BEFORE);
453 
454 	/* Update the cursor. */
455 	t->bt_cursor.pg.pgno = pgno;
456 	t->bt_cursor.pg.index = index;
457 	F_SET(&t->bt_cursor, CURS_INIT);
458 }
459