xref: /dragonfly/lib/libc/db/hash/hash_page.c (revision 36a3d1d6)
1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Margo Seltzer.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  * $FreeBSD: src/lib/libc/db/hash/hash_page.c,v 1.5 2000/01/27 23:06:08 jasone Exp $
33  * $DragonFly: src/lib/libc/db/hash/hash_page.c,v 1.8 2005/11/19 20:46:32 swildner Exp $
34  *
35  * @(#)hash_page.c	8.7 (Berkeley) 8/16/94
36  */
37 
38 /*
39  * PACKAGE:  hashing
40  *
41  * DESCRIPTION:
42  *	Page manipulation for hashing package.
43  *
44  * ROUTINES:
45  *
46  * External
47  *	__get_page
48  *	__add_ovflpage
49  * Internal
50  *	overflow_page
51  *	open_temp
52  */
53 
54 #include "namespace.h"
55 #include <sys/types.h>
56 
57 #include <errno.h>
58 #include <fcntl.h>
59 #include <signal.h>
60 #include <stdio.h>
61 #include <stdlib.h>
62 #include <string.h>
63 #include <unistd.h>
64 #ifdef DEBUG
65 #include <assert.h>
66 #endif
67 #include "un-namespace.h"
68 
69 #include <db.h>
70 #include "hash.h"
71 #include "page.h"
72 #include "extern.h"
73 
74 static u_int32_t	*fetch_bitmap (HTAB *, int);
75 static u_int32_t	 first_free (u_int32_t);
76 static int	 open_temp (HTAB *);
77 static u_int16_t	 overflow_page (HTAB *);
78 static void	 putpair (char *, const DBT *, const DBT *);
79 static void	 squeeze_key (u_int16_t *, const DBT *, const DBT *);
80 static int	 ugly_split
81 		    (HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int);
82 
83 #define	PAGE_INIT(P) { \
84 	((u_int16_t *)(P))[0] = 0; \
85 	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
86 	((u_int16_t *)(P))[2] = hashp->BSIZE; \
87 }
88 
89 /*
90  * This is called AFTER we have verified that there is room on the page for
91  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
92  * stuff on.
93  */
94 static void
95 putpair(char *p, const DBT *key, const DBT *val)
96 {
97 	u_int16_t *bp, n, off;
98 
99 	bp = (u_int16_t *)p;
100 
101 	/* Enter the key first. */
102 	n = bp[0];
103 
104 	off = OFFSET(bp) - key->size;
105 	memmove(p + off, key->data, key->size);
106 	bp[++n] = off;
107 
108 	/* Now the data. */
109 	off -= val->size;
110 	memmove(p + off, val->data, val->size);
111 	bp[++n] = off;
112 
113 	/* Adjust page info. */
114 	bp[0] = n;
115 	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
116 	bp[n + 2] = off;
117 }
118 
119 /*
120  * Returns:
121  *	 0 OK
122  *	-1 error
123  */
124 extern int
125 __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
126 {
127 	u_int16_t *bp, newoff;
128 	int n;
129 	u_int16_t pairlen;
130 
131 	bp = (u_int16_t *)bufp->page;
132 	n = bp[0];
133 
134 	if (bp[ndx + 1] < REAL_KEY)
135 		return (__big_delete(hashp, bufp));
136 	if (ndx != 1)
137 		newoff = bp[ndx - 1];
138 	else
139 		newoff = hashp->BSIZE;
140 	pairlen = newoff - bp[ndx + 1];
141 
142 	if (ndx != (n - 1)) {
143 		/* Hard Case -- need to shuffle keys */
144 		int i;
145 		char *src = bufp->page + (int)OFFSET(bp);
146 		char *dst = src + (int)pairlen;
147 		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
148 
149 		/* Now adjust the pointers */
150 		for (i = ndx + 2; i <= n; i += 2) {
151 			if (bp[i + 1] == OVFLPAGE) {
152 				bp[i - 2] = bp[i];
153 				bp[i - 1] = bp[i + 1];
154 			} else {
155 				bp[i - 2] = bp[i] + pairlen;
156 				bp[i - 1] = bp[i + 1] + pairlen;
157 			}
158 		}
159 	}
160 	/* Finally adjust the page data */
161 	bp[n] = OFFSET(bp) + pairlen;
162 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
163 	bp[0] = n - 2;
164 	hashp->NKEYS--;
165 
166 	bufp->flags |= BUF_MOD;
167 	return (0);
168 }
169 /*
170  * Returns:
171  *	 0 ==> OK
172  *	-1 ==> Error
173  */
174 extern int
175 __split_page(HTAB *hashp, u_int32_t obucket, u_int32_t nbucket)
176 {
177 	BUFHEAD *new_bufp, *old_bufp;
178 	u_int16_t *ino;
179 	char *np;
180 	DBT key, val;
181 	int n, ndx, retval;
182 	u_int16_t copyto, diff, off, moved;
183 	char *op;
184 
185 	copyto = (u_int16_t)hashp->BSIZE;
186 	off = (u_int16_t)hashp->BSIZE;
187 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
188 	if (old_bufp == NULL)
189 		return (-1);
190 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
191 	if (new_bufp == NULL)
192 		return (-1);
193 
194 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
195 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
196 
197 	ino = (u_int16_t *)(op = old_bufp->page);
198 	np = new_bufp->page;
199 
200 	moved = 0;
201 
202 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
203 		if (ino[n + 1] < REAL_KEY) {
204 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
205 			    (int)copyto, (int)moved);
206 			old_bufp->flags &= ~BUF_PIN;
207 			new_bufp->flags &= ~BUF_PIN;
208 			return (retval);
209 
210 		}
211 		key.data = (u_char *)op + ino[n];
212 		key.size = off - ino[n];
213 
214 		if (__call_hash(hashp, key.data, key.size) == obucket) {
215 			/* Don't switch page */
216 			diff = copyto - off;
217 			if (diff) {
218 				copyto = ino[n + 1] + diff;
219 				memmove(op + copyto, op + ino[n + 1],
220 				    off - ino[n + 1]);
221 				ino[ndx] = copyto + ino[n] - ino[n + 1];
222 				ino[ndx + 1] = copyto;
223 			} else
224 				copyto = ino[n + 1];
225 			ndx += 2;
226 		} else {
227 			/* Switch page */
228 			val.data = (u_char *)op + ino[n + 1];
229 			val.size = ino[n] - ino[n + 1];
230 			putpair(np, &key, &val);
231 			moved += 2;
232 		}
233 
234 		off = ino[n + 1];
235 	}
236 
237 	/* Now clean up the page */
238 	ino[0] -= moved;
239 	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
240 	OFFSET(ino) = copyto;
241 
242 #ifdef DEBUG3
243 	fprintf(stderr, "split %d/%d\n",
244 	    ((u_int16_t *)np)[0] / 2,
245 	    ((u_int16_t *)op)[0] / 2);
246 #endif
247 	/* unpin both pages */
248 	old_bufp->flags &= ~BUF_PIN;
249 	new_bufp->flags &= ~BUF_PIN;
250 	return (0);
251 }
252 
253 /*
254  * Called when we encounter an overflow or big key/data page during split
255  * handling.  This is special cased since we have to begin checking whether
256  * the key/data pairs fit on their respective pages and because we may need
257  * overflow pages for both the old and new pages.
258  *
259  * The first page might be a page with regular key/data pairs in which case
260  * we have a regular overflow condition and just need to go on to the next
261  * page or it might be a big key/data pair in which case we need to fix the
262  * big key/data pair.
263  *
264  * Parameters:
265  *	obucket - Same as __split_page
266  *	copyto  - First byte on page which contains key/data values
267  *	moved   - Number of pairs moved to new page
268  * Returns:
269  *	 0 ==> success
270  *	-1 ==> failure
271  */
272 static int
273 ugly_split(HTAB *hashp, u_int32_t obucket, BUFHEAD *old_bufp,
274 	   BUFHEAD *new_bufp, int copyto, int moved)
275 {
276 	BUFHEAD *bufp;	/* Buffer header for ino */
277 	u_int16_t *ino;	/* Page keys come off of */
278 	u_int16_t *np;	/* New page */
279 	u_int16_t *op;	/* Page keys go on to if they aren't moving */
280 
281 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
282 	DBT key, val;
283 	SPLIT_RETURN ret;
284 	u_int16_t n, off, ov_addr, scopyto;
285 	char *cino;		/* Character value of ino */
286 
287 	bufp = old_bufp;
288 	ino = (u_int16_t *)old_bufp->page;
289 	np = (u_int16_t *)new_bufp->page;
290 	op = (u_int16_t *)old_bufp->page;
291 	last_bfp = NULL;
292 	scopyto = (u_int16_t)copyto;	/* ANSI */
293 
294 	n = ino[0] - 1;
295 	while (n < ino[0]) {
296 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
297 			if (__big_split(hashp, old_bufp,
298 			    new_bufp, bufp, bufp->addr, obucket, &ret))
299 				return (-1);
300 			old_bufp = ret.oldp;
301 			if (!old_bufp)
302 				return (-1);
303 			op = (u_int16_t *)old_bufp->page;
304 			new_bufp = ret.newp;
305 			if (!new_bufp)
306 				return (-1);
307 			np = (u_int16_t *)new_bufp->page;
308 			bufp = ret.nextp;
309 			if (!bufp)
310 				return (0);
311 			cino = (char *)bufp->page;
312 			ino = (u_int16_t *)cino;
313 			last_bfp = ret.nextp;
314 		} else if (ino[n + 1] == OVFLPAGE) {
315 			ov_addr = ino[n];
316 			/*
317 			 * Fix up the old page -- the extra 2 are the fields
318 			 * which contained the overflow information.
319 			 */
320 			ino[0] -= (moved + 2);
321 			FREESPACE(ino) =
322 			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
323 			OFFSET(ino) = scopyto;
324 
325 			bufp = __get_buf(hashp, ov_addr, bufp, 0);
326 			if (!bufp)
327 				return (-1);
328 
329 			ino = (u_int16_t *)bufp->page;
330 			n = 1;
331 			scopyto = hashp->BSIZE;
332 			moved = 0;
333 
334 			if (last_bfp)
335 				__free_ovflpage(hashp, last_bfp);
336 			last_bfp = bufp;
337 		}
338 		/* Move regular sized pairs of there are any */
339 		off = hashp->BSIZE;
340 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
341 			cino = (char *)ino;
342 			key.data = (u_char *)cino + ino[n];
343 			key.size = off - ino[n];
344 			val.data = (u_char *)cino + ino[n + 1];
345 			val.size = ino[n] - ino[n + 1];
346 			off = ino[n + 1];
347 
348 			if (__call_hash(hashp, key.data, key.size) == obucket) {
349 				/* Keep on old page */
350 				if (PAIRFITS(op, (&key), (&val)))
351 					putpair((char *)op, &key, &val);
352 				else {
353 					old_bufp =
354 					    __add_ovflpage(hashp, old_bufp);
355 					if (!old_bufp)
356 						return (-1);
357 					op = (u_int16_t *)old_bufp->page;
358 					putpair((char *)op, &key, &val);
359 				}
360 				old_bufp->flags |= BUF_MOD;
361 			} else {
362 				/* Move to new page */
363 				if (PAIRFITS(np, (&key), (&val)))
364 					putpair((char *)np, &key, &val);
365 				else {
366 					new_bufp =
367 					    __add_ovflpage(hashp, new_bufp);
368 					if (!new_bufp)
369 						return (-1);
370 					np = (u_int16_t *)new_bufp->page;
371 					putpair((char *)np, &key, &val);
372 				}
373 				new_bufp->flags |= BUF_MOD;
374 			}
375 		}
376 	}
377 	if (last_bfp)
378 		__free_ovflpage(hashp, last_bfp);
379 	return (0);
380 }
381 
382 /*
383  * Add the given pair to the page
384  *
385  * Returns:
386  *	0 ==> OK
387  *	1 ==> failure
388  */
389 extern int
390 __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
391 {
392 	u_int16_t *bp, *sop;
393 	int do_expand;
394 
395 	bp = (u_int16_t *)bufp->page;
396 	do_expand = 0;
397 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
398 		/* Exception case */
399 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
400 			/* This is the last page of a big key/data pair
401 			   and we need to add another page */
402 			break;
403 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
404 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
405 			if (!bufp)
406 				return (-1);
407 			bp = (u_int16_t *)bufp->page;
408 		} else
409 			/* Try to squeeze key on this page */
410 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
411 				squeeze_key(bp, key, val);
412 				return (0);
413 			} else {
414 				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
415 				if (!bufp)
416 					return (-1);
417 				bp = (u_int16_t *)bufp->page;
418 			}
419 
420 	if (PAIRFITS(bp, key, val))
421 		putpair(bufp->page, key, val);
422 	else {
423 		do_expand = 1;
424 		bufp = __add_ovflpage(hashp, bufp);
425 		if (!bufp)
426 			return (-1);
427 		sop = (u_int16_t *)bufp->page;
428 
429 		if (PAIRFITS(sop, key, val))
430 			putpair((char *)sop, key, val);
431 		else
432 			if (__big_insert(hashp, bufp, key, val))
433 				return (-1);
434 	}
435 	bufp->flags |= BUF_MOD;
436 	/*
437 	 * If the average number of keys per bucket exceeds the fill factor,
438 	 * expand the table.
439 	 */
440 	hashp->NKEYS++;
441 	if (do_expand ||
442 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
443 		return (__expand_table(hashp));
444 	return (0);
445 }
446 
447 /*
448  *
449  * Returns:
450  *	pointer on success
451  *	NULL on error
452  */
453 extern BUFHEAD *
454 __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
455 {
456 	u_int16_t *sp;
457 	u_int16_t ndx, ovfl_num;
458 #ifdef DEBUG1
459 	int tmp1, tmp2;
460 #endif
461 	sp = (u_int16_t *)bufp->page;
462 
463 	/* Check if we are dynamically determining the fill factor */
464 	if (hashp->FFACTOR == DEF_FFACTOR) {
465 		hashp->FFACTOR = sp[0] >> 1;
466 		if (hashp->FFACTOR < MIN_FFACTOR)
467 			hashp->FFACTOR = MIN_FFACTOR;
468 	}
469 	bufp->flags |= BUF_MOD;
470 	ovfl_num = overflow_page(hashp);
471 #ifdef DEBUG1
472 	tmp1 = bufp->addr;
473 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
474 #endif
475 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
476 		return (NULL);
477 	bufp->ovfl->flags |= BUF_MOD;
478 #ifdef DEBUG1
479 	fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
480 	    tmp1, tmp2, bufp->ovfl->addr);
481 #endif
482 	ndx = sp[0];
483 	/*
484 	 * Since a pair is allocated on a page only if there's room to add
485 	 * an overflow page, we know that the OVFL information will fit on
486 	 * the page.
487 	 */
488 	sp[ndx + 4] = OFFSET(sp);
489 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
490 	sp[ndx + 1] = ovfl_num;
491 	sp[ndx + 2] = OVFLPAGE;
492 	sp[0] = ndx + 2;
493 #ifdef HASH_STATISTICS
494 	hash_overflows++;
495 #endif
496 	return (bufp->ovfl);
497 }
498 
499 /*
500  * Returns:
501  *	 0 indicates SUCCESS
502  *	-1 indicates FAILURE
503  */
504 extern int
505 __get_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_disk,
506 	   int is_bitmap)
507 {
508 	int fd, page, size;
509 	int rsize;
510 	u_int16_t *bp;
511 
512 	fd = hashp->fp;
513 	size = hashp->BSIZE;
514 
515 	if ((fd == -1) || !is_disk) {
516 		PAGE_INIT(p);
517 		return (0);
518 	}
519 	if (is_bucket)
520 		page = BUCKET_TO_PAGE(bucket);
521 	else
522 		page = OADDR_TO_PAGE(bucket);
523 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
524 	    ((rsize = _read(fd, p, size)) == -1))
525 		return (-1);
526 	bp = (u_int16_t *)p;
527 	if (!rsize)
528 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
529 	else
530 		if (rsize != size) {
531 			errno = EFTYPE;
532 			return (-1);
533 		}
534 	if (!is_bitmap && !bp[0]) {
535 		PAGE_INIT(p);
536 	} else
537 		if (hashp->LORDER != BYTE_ORDER) {
538 			int i, max;
539 
540 			if (is_bitmap) {
541 				max = hashp->BSIZE >> 2; /* divide by 4 */
542 				for (i = 0; i < max; i++)
543 					M_32_SWAP(((int *)p)[i]);
544 			} else {
545 				M_16_SWAP(bp[0]);
546 				max = bp[0] + 2;
547 				for (i = 1; i <= max; i++)
548 					M_16_SWAP(bp[i]);
549 			}
550 		}
551 	return (0);
552 }
553 
554 /*
555  * Write page p to disk
556  *
557  * Returns:
558  *	 0 ==> OK
559  *	-1 ==>failure
560  */
561 extern int
562 __put_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_bitmap)
563 {
564 	int fd, page, size;
565 	int wsize;
566 
567 	size = hashp->BSIZE;
568 	if ((hashp->fp == -1) && open_temp(hashp))
569 		return (-1);
570 	fd = hashp->fp;
571 
572 	if (hashp->LORDER != BYTE_ORDER) {
573 		int i;
574 		int max;
575 
576 		if (is_bitmap) {
577 			max = hashp->BSIZE >> 2;	/* divide by 4 */
578 			for (i = 0; i < max; i++)
579 				M_32_SWAP(((int *)p)[i]);
580 		} else {
581 			max = ((u_int16_t *)p)[0] + 2;
582 			for (i = 0; i <= max; i++)
583 				M_16_SWAP(((u_int16_t *)p)[i]);
584 		}
585 	}
586 	if (is_bucket)
587 		page = BUCKET_TO_PAGE(bucket);
588 	else
589 		page = OADDR_TO_PAGE(bucket);
590 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
591 	    ((wsize = _write(fd, p, size)) == -1))
592 		/* Errno is set */
593 		return (-1);
594 	if (wsize != size) {
595 		errno = EFTYPE;
596 		return (-1);
597 	}
598 	return (0);
599 }
600 
601 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
602 /*
603  * Initialize a new bitmap page.  Bitmap pages are left in memory
604  * once they are read in.
605  */
606 extern int
607 __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
608 {
609 	u_int32_t *ip;
610 	int clearbytes, clearints;
611 
612 	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
613 		return (1);
614 	hashp->nmaps++;
615 	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
616 	clearbytes = clearints << INT_TO_BYTE;
617 	memset((char *)ip, 0, clearbytes);
618 	memset(((char *)ip) + clearbytes, 0xFF,
619 	    hashp->BSIZE - clearbytes);
620 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
621 	SETBIT(ip, 0);
622 	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
623 	hashp->mapp[ndx] = ip;
624 	return (0);
625 }
626 
627 static u_int32_t
628 first_free(u_int32_t map)
629 {
630 	u_int32_t i, mask;
631 
632 	mask = 0x1;
633 	for (i = 0; i < BITS_PER_MAP; i++) {
634 		if (!(mask & map))
635 			return (i);
636 		mask = mask << 1;
637 	}
638 	return (i);
639 }
640 
641 static u_int16_t
642 overflow_page(HTAB *hashp)
643 {
644 	u_int32_t *freep;
645 	int max_free, offset, splitnum;
646 	u_int16_t addr;
647 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
648 #ifdef DEBUG2
649 	int tmp1, tmp2;
650 #endif
651 	freep = NULL;
652 	splitnum = hashp->OVFL_POINT;
653 	max_free = hashp->SPARES[splitnum];
654 
655 	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
656 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
657 
658 	/* Look through all the free maps to find the first free block */
659 	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
660 	for ( i = first_page; i <= free_page; i++ ) {
661 		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
662 		    !(freep = fetch_bitmap(hashp, i)))
663 			return (0);
664 		if (i == free_page)
665 			in_use_bits = free_bit;
666 		else
667 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
668 
669 		if (i == first_page) {
670 			bit = hashp->LAST_FREED &
671 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
672 			j = bit / BITS_PER_MAP;
673 			bit = bit & ~(BITS_PER_MAP - 1);
674 		} else {
675 			bit = 0;
676 			j = 0;
677 		}
678 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
679 			if (freep[j] != ALL_SET)
680 				goto found;
681 	}
682 
683 	/* No Free Page Found */
684 	hashp->LAST_FREED = hashp->SPARES[splitnum];
685 	hashp->SPARES[splitnum]++;
686 	offset = hashp->SPARES[splitnum] -
687 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
688 
689 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
690 	if (offset > SPLITMASK) {
691 		if (++splitnum >= NCACHED) {
692 			_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
693 			return (0);
694 		}
695 		hashp->OVFL_POINT = splitnum;
696 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
697 		hashp->SPARES[splitnum-1]--;
698 		offset = 1;
699 	}
700 
701 	/* Check if we need to allocate a new bitmap page */
702 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
703 		free_page++;
704 		if (free_page >= NCACHED) {
705 			_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
706 			return (0);
707 		}
708 		/*
709 		 * This is tricky.  The 1 indicates that you want the new page
710 		 * allocated with 1 clear bit.  Actually, you are going to
711 		 * allocate 2 pages from this map.  The first is going to be
712 		 * the map page, the second is the overflow page we were
713 		 * looking for.  The init_bitmap routine automatically, sets
714 		 * the first bit of itself to indicate that the bitmap itself
715 		 * is in use.  We would explicitly set the second bit, but
716 		 * don't have to if we tell init_bitmap not to leave it clear
717 		 * in the first place.
718 		 */
719 		if (__ibitmap(hashp,
720 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
721 			return (0);
722 		hashp->SPARES[splitnum]++;
723 #ifdef DEBUG2
724 		free_bit = 2;
725 #endif
726 		offset++;
727 		if (offset > SPLITMASK) {
728 			if (++splitnum >= NCACHED) {
729 				_write(STDERR_FILENO, OVMSG,
730 				    sizeof(OVMSG) - 1);
731 				return (0);
732 			}
733 			hashp->OVFL_POINT = splitnum;
734 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
735 			hashp->SPARES[splitnum-1]--;
736 			offset = 0;
737 		}
738 	} else {
739 		/*
740 		 * Free_bit addresses the last used bit.  Bump it to address
741 		 * the first available bit.
742 		 */
743 		free_bit++;
744 		SETBIT(freep, free_bit);
745 	}
746 
747 	/* Calculate address of the new overflow page */
748 	addr = OADDR_OF(splitnum, offset);
749 #ifdef DEBUG2
750 	fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
751 	    addr, free_bit, free_page);
752 #endif
753 	return (addr);
754 
755 found:
756 	bit = bit + first_free(freep[j]);
757 	SETBIT(freep, bit);
758 #ifdef DEBUG2
759 	tmp1 = bit;
760 	tmp2 = i;
761 #endif
762 	/*
763 	 * Bits are addressed starting with 0, but overflow pages are addressed
764 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
765 	 * it to convert it to a page number.
766 	 */
767 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
768 	if (bit >= hashp->LAST_FREED)
769 		hashp->LAST_FREED = bit - 1;
770 
771 	/* Calculate the split number for this page */
772 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
773 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
774 	if (offset >= SPLITMASK)
775 		return (0);	/* Out of overflow pages */
776 	addr = OADDR_OF(i, offset);
777 #ifdef DEBUG2
778 	fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
779 	    addr, tmp1, tmp2);
780 #endif
781 
782 	/* Allocate and return the overflow page */
783 	return (addr);
784 }
785 
786 /*
787  * Mark this overflow page as free.
788  */
789 extern void
790 __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
791 {
792 	u_int16_t addr;
793 	u_int32_t *freep;
794 	int bit_address, free_page, free_bit;
795 	u_int16_t ndx;
796 
797 	addr = obufp->addr;
798 #ifdef DEBUG1
799 	fprintf(stderr, "Freeing %d\n", addr);
800 #endif
801 	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
802 	bit_address =
803 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
804 	 if (bit_address < hashp->LAST_FREED)
805 		hashp->LAST_FREED = bit_address;
806 	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
807 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
808 
809 	if (!(freep = hashp->mapp[free_page]))
810 		freep = fetch_bitmap(hashp, free_page);
811 #ifdef DEBUG
812 	/*
813 	 * This had better never happen.  It means we tried to read a bitmap
814 	 * that has already had overflow pages allocated off it, and we
815 	 * failed to read it from the file.
816 	 */
817 	if (!freep)
818 		assert(0);
819 #endif
820 	CLRBIT(freep, free_bit);
821 #ifdef DEBUG2
822 	fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
823 	    obufp->addr, free_bit, free_page);
824 #endif
825 	__reclaim_buf(hashp, obufp);
826 }
827 
828 /*
829  * Returns:
830  *	 0 success
831  *	-1 failure
832  */
833 static int
834 open_temp(HTAB *hashp)
835 {
836 	sigset_t set, oset;
837 	static char namestr[] = "_hashXXXXXX";
838 
839 	/* Block signals; make sure file goes away at process exit. */
840 	sigfillset(&set);
841 	_sigprocmask(SIG_BLOCK, &set, &oset);
842 	if ((hashp->fp = mkstemp(namestr)) != -1) {
843 		unlink(namestr);
844 		_fcntl(hashp->fp, F_SETFD, 1);
845 	}
846 	_sigprocmask(SIG_SETMASK, &oset, NULL);
847 	return (hashp->fp != -1 ? 0 : -1);
848 }
849 
850 /*
851  * We have to know that the key will fit, but the last entry on the page is
852  * an overflow pair, so we need to shift things.
853  */
854 static void
855 squeeze_key(u_int16_t *sp, const DBT *key, const DBT *val)
856 {
857 	char *p;
858 	u_int16_t free_space, n, off, pageno;
859 
860 	p = (char *)sp;
861 	n = sp[0];
862 	free_space = FREESPACE(sp);
863 	off = OFFSET(sp);
864 
865 	pageno = sp[n - 1];
866 	off -= key->size;
867 	sp[n - 1] = off;
868 	memmove(p + off, key->data, key->size);
869 	off -= val->size;
870 	sp[n] = off;
871 	memmove(p + off, val->data, val->size);
872 	sp[0] = n + 2;
873 	sp[n + 1] = pageno;
874 	sp[n + 2] = OVFLPAGE;
875 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
876 	OFFSET(sp) = off;
877 }
878 
879 static u_int32_t *
880 fetch_bitmap(HTAB *hashp, int ndx)
881 {
882 	if (ndx >= hashp->nmaps)
883 		return (NULL);
884 	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
885 		return (NULL);
886 	if (__get_page(hashp,
887 	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
888 		free(hashp->mapp[ndx]);
889 		return (NULL);
890 	}
891 	return (hashp->mapp[ndx]);
892 }
893 
894 #ifdef DEBUG4
895 int
896 print_chain(int addr)
897 {
898 	BUFHEAD *bufp;
899 	short *bp, oaddr;
900 
901 	fprintf(stderr, "%d ", addr);
902 	bufp = __get_buf(hashp, addr, NULL, 0);
903 	bp = (short *)bufp->page;
904 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
905 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
906 		oaddr = bp[bp[0] - 1];
907 		fprintf(stderr, "%d ", (int)oaddr);
908 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
909 		bp = (short *)bufp->page;
910 	}
911 	fprintf(stderr, "\n");
912 }
913 #endif
914