xref: /dragonfly/lib/libc/db/hash/hash_page.c (revision 509221ae)
1 /*-
2  * Copyright (c) 1990, 1993, 1994
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Margo Seltzer.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  * $FreeBSD: src/lib/libc/db/hash/hash_page.c,v 1.5 2000/01/27 23:06:08 jasone Exp $
37  * $DragonFly: src/lib/libc/db/hash/hash_page.c,v 1.5 2005/01/31 22:29:09 dillon Exp $
38  *
39  * @(#)hash_page.c	8.7 (Berkeley) 8/16/94
40  */
41 
42 /*
43  * PACKAGE:  hashing
44  *
45  * DESCRIPTION:
46  *	Page manipulation for hashing package.
47  *
48  * ROUTINES:
49  *
50  * External
51  *	__get_page
52  *	__add_ovflpage
53  * Internal
54  *	overflow_page
55  *	open_temp
56  */
57 
58 #include "namespace.h"
59 #include <sys/types.h>
60 
61 #include <errno.h>
62 #include <fcntl.h>
63 #include <signal.h>
64 #include <stdio.h>
65 #include <stdlib.h>
66 #include <string.h>
67 #include <unistd.h>
68 #ifdef DEBUG
69 #include <assert.h>
70 #endif
71 #include "un-namespace.h"
72 
73 #include <db.h>
74 #include "hash.h"
75 #include "page.h"
76 #include "extern.h"
77 
78 static u_int32_t	*fetch_bitmap (HTAB *, int);
79 static u_int32_t	 first_free (u_int32_t);
80 static int	 open_temp (HTAB *);
81 static u_int16_t	 overflow_page (HTAB *);
82 static void	 putpair (char *, const DBT *, const DBT *);
83 static void	 squeeze_key (u_int16_t *, const DBT *, const DBT *);
84 static int	 ugly_split
85 		    (HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int);
86 
87 #define	PAGE_INIT(P) { \
88 	((u_int16_t *)(P))[0] = 0; \
89 	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
90 	((u_int16_t *)(P))[2] = hashp->BSIZE; \
91 }
92 
93 /*
94  * This is called AFTER we have verified that there is room on the page for
95  * the pair (PAIRFITS has returned true) so we go right ahead and start moving
96  * stuff on.
97  */
98 static void
99 putpair(p, key, val)
100 	char *p;
101 	const DBT *key, *val;
102 {
103 	u_int16_t *bp, n, off;
104 
105 	bp = (u_int16_t *)p;
106 
107 	/* Enter the key first. */
108 	n = bp[0];
109 
110 	off = OFFSET(bp) - key->size;
111 	memmove(p + off, key->data, key->size);
112 	bp[++n] = off;
113 
114 	/* Now the data. */
115 	off -= val->size;
116 	memmove(p + off, val->data, val->size);
117 	bp[++n] = off;
118 
119 	/* Adjust page info. */
120 	bp[0] = n;
121 	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
122 	bp[n + 2] = off;
123 }
124 
125 /*
126  * Returns:
127  *	 0 OK
128  *	-1 error
129  */
130 extern int
131 __delpair(hashp, bufp, ndx)
132 	HTAB *hashp;
133 	BUFHEAD *bufp;
134 	int ndx;
135 {
136 	u_int16_t *bp, newoff;
137 	int n;
138 	u_int16_t pairlen;
139 
140 	bp = (u_int16_t *)bufp->page;
141 	n = bp[0];
142 
143 	if (bp[ndx + 1] < REAL_KEY)
144 		return (__big_delete(hashp, bufp));
145 	if (ndx != 1)
146 		newoff = bp[ndx - 1];
147 	else
148 		newoff = hashp->BSIZE;
149 	pairlen = newoff - bp[ndx + 1];
150 
151 	if (ndx != (n - 1)) {
152 		/* Hard Case -- need to shuffle keys */
153 		int i;
154 		char *src = bufp->page + (int)OFFSET(bp);
155 		char *dst = src + (int)pairlen;
156 		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
157 
158 		/* Now adjust the pointers */
159 		for (i = ndx + 2; i <= n; i += 2) {
160 			if (bp[i + 1] == OVFLPAGE) {
161 				bp[i - 2] = bp[i];
162 				bp[i - 1] = bp[i + 1];
163 			} else {
164 				bp[i - 2] = bp[i] + pairlen;
165 				bp[i - 1] = bp[i + 1] + pairlen;
166 			}
167 		}
168 	}
169 	/* Finally adjust the page data */
170 	bp[n] = OFFSET(bp) + pairlen;
171 	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
172 	bp[0] = n - 2;
173 	hashp->NKEYS--;
174 
175 	bufp->flags |= BUF_MOD;
176 	return (0);
177 }
178 /*
179  * Returns:
180  *	 0 ==> OK
181  *	-1 ==> Error
182  */
183 extern int
184 __split_page(hashp, obucket, nbucket)
185 	HTAB *hashp;
186 	u_int32_t obucket, nbucket;
187 {
188 	BUFHEAD *new_bufp, *old_bufp;
189 	u_int16_t *ino;
190 	char *np;
191 	DBT key, val;
192 	int n, ndx, retval;
193 	u_int16_t copyto, diff, off, moved;
194 	char *op;
195 
196 	copyto = (u_int16_t)hashp->BSIZE;
197 	off = (u_int16_t)hashp->BSIZE;
198 	old_bufp = __get_buf(hashp, obucket, NULL, 0);
199 	if (old_bufp == NULL)
200 		return (-1);
201 	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
202 	if (new_bufp == NULL)
203 		return (-1);
204 
205 	old_bufp->flags |= (BUF_MOD | BUF_PIN);
206 	new_bufp->flags |= (BUF_MOD | BUF_PIN);
207 
208 	ino = (u_int16_t *)(op = old_bufp->page);
209 	np = new_bufp->page;
210 
211 	moved = 0;
212 
213 	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
214 		if (ino[n + 1] < REAL_KEY) {
215 			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
216 			    (int)copyto, (int)moved);
217 			old_bufp->flags &= ~BUF_PIN;
218 			new_bufp->flags &= ~BUF_PIN;
219 			return (retval);
220 
221 		}
222 		key.data = (u_char *)op + ino[n];
223 		key.size = off - ino[n];
224 
225 		if (__call_hash(hashp, key.data, key.size) == obucket) {
226 			/* Don't switch page */
227 			diff = copyto - off;
228 			if (diff) {
229 				copyto = ino[n + 1] + diff;
230 				memmove(op + copyto, op + ino[n + 1],
231 				    off - ino[n + 1]);
232 				ino[ndx] = copyto + ino[n] - ino[n + 1];
233 				ino[ndx + 1] = copyto;
234 			} else
235 				copyto = ino[n + 1];
236 			ndx += 2;
237 		} else {
238 			/* Switch page */
239 			val.data = (u_char *)op + ino[n + 1];
240 			val.size = ino[n] - ino[n + 1];
241 			putpair(np, &key, &val);
242 			moved += 2;
243 		}
244 
245 		off = ino[n + 1];
246 	}
247 
248 	/* Now clean up the page */
249 	ino[0] -= moved;
250 	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
251 	OFFSET(ino) = copyto;
252 
253 #ifdef DEBUG3
254 	(void)fprintf(stderr, "split %d/%d\n",
255 	    ((u_int16_t *)np)[0] / 2,
256 	    ((u_int16_t *)op)[0] / 2);
257 #endif
258 	/* unpin both pages */
259 	old_bufp->flags &= ~BUF_PIN;
260 	new_bufp->flags &= ~BUF_PIN;
261 	return (0);
262 }
263 
264 /*
265  * Called when we encounter an overflow or big key/data page during split
266  * handling.  This is special cased since we have to begin checking whether
267  * the key/data pairs fit on their respective pages and because we may need
268  * overflow pages for both the old and new pages.
269  *
270  * The first page might be a page with regular key/data pairs in which case
271  * we have a regular overflow condition and just need to go on to the next
272  * page or it might be a big key/data pair in which case we need to fix the
273  * big key/data pair.
274  *
275  * Returns:
276  *	 0 ==> success
277  *	-1 ==> failure
278  */
279 static int
280 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
281 	HTAB *hashp;
282 	u_int32_t obucket;	/* Same as __split_page. */
283 	BUFHEAD *old_bufp, *new_bufp;
284 	int copyto;	/* First byte on page which contains key/data values. */
285 	int moved;	/* Number of pairs moved to new page. */
286 {
287 	BUFHEAD *bufp;	/* Buffer header for ino */
288 	u_int16_t *ino;	/* Page keys come off of */
289 	u_int16_t *np;	/* New page */
290 	u_int16_t *op;	/* Page keys go on to if they aren't moving */
291 
292 	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
293 	DBT key, val;
294 	SPLIT_RETURN ret;
295 	u_int16_t n, off, ov_addr, scopyto;
296 	char *cino;		/* Character value of ino */
297 
298 	bufp = old_bufp;
299 	ino = (u_int16_t *)old_bufp->page;
300 	np = (u_int16_t *)new_bufp->page;
301 	op = (u_int16_t *)old_bufp->page;
302 	last_bfp = NULL;
303 	scopyto = (u_int16_t)copyto;	/* ANSI */
304 
305 	n = ino[0] - 1;
306 	while (n < ino[0]) {
307 		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
308 			if (__big_split(hashp, old_bufp,
309 			    new_bufp, bufp, bufp->addr, obucket, &ret))
310 				return (-1);
311 			old_bufp = ret.oldp;
312 			if (!old_bufp)
313 				return (-1);
314 			op = (u_int16_t *)old_bufp->page;
315 			new_bufp = ret.newp;
316 			if (!new_bufp)
317 				return (-1);
318 			np = (u_int16_t *)new_bufp->page;
319 			bufp = ret.nextp;
320 			if (!bufp)
321 				return (0);
322 			cino = (char *)bufp->page;
323 			ino = (u_int16_t *)cino;
324 			last_bfp = ret.nextp;
325 		} else if (ino[n + 1] == OVFLPAGE) {
326 			ov_addr = ino[n];
327 			/*
328 			 * Fix up the old page -- the extra 2 are the fields
329 			 * which contained the overflow information.
330 			 */
331 			ino[0] -= (moved + 2);
332 			FREESPACE(ino) =
333 			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
334 			OFFSET(ino) = scopyto;
335 
336 			bufp = __get_buf(hashp, ov_addr, bufp, 0);
337 			if (!bufp)
338 				return (-1);
339 
340 			ino = (u_int16_t *)bufp->page;
341 			n = 1;
342 			scopyto = hashp->BSIZE;
343 			moved = 0;
344 
345 			if (last_bfp)
346 				__free_ovflpage(hashp, last_bfp);
347 			last_bfp = bufp;
348 		}
349 		/* Move regular sized pairs of there are any */
350 		off = hashp->BSIZE;
351 		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
352 			cino = (char *)ino;
353 			key.data = (u_char *)cino + ino[n];
354 			key.size = off - ino[n];
355 			val.data = (u_char *)cino + ino[n + 1];
356 			val.size = ino[n] - ino[n + 1];
357 			off = ino[n + 1];
358 
359 			if (__call_hash(hashp, key.data, key.size) == obucket) {
360 				/* Keep on old page */
361 				if (PAIRFITS(op, (&key), (&val)))
362 					putpair((char *)op, &key, &val);
363 				else {
364 					old_bufp =
365 					    __add_ovflpage(hashp, old_bufp);
366 					if (!old_bufp)
367 						return (-1);
368 					op = (u_int16_t *)old_bufp->page;
369 					putpair((char *)op, &key, &val);
370 				}
371 				old_bufp->flags |= BUF_MOD;
372 			} else {
373 				/* Move to new page */
374 				if (PAIRFITS(np, (&key), (&val)))
375 					putpair((char *)np, &key, &val);
376 				else {
377 					new_bufp =
378 					    __add_ovflpage(hashp, new_bufp);
379 					if (!new_bufp)
380 						return (-1);
381 					np = (u_int16_t *)new_bufp->page;
382 					putpair((char *)np, &key, &val);
383 				}
384 				new_bufp->flags |= BUF_MOD;
385 			}
386 		}
387 	}
388 	if (last_bfp)
389 		__free_ovflpage(hashp, last_bfp);
390 	return (0);
391 }
392 
393 /*
394  * Add the given pair to the page
395  *
396  * Returns:
397  *	0 ==> OK
398  *	1 ==> failure
399  */
400 extern int
401 __addel(hashp, bufp, key, val)
402 	HTAB *hashp;
403 	BUFHEAD *bufp;
404 	const DBT *key, *val;
405 {
406 	u_int16_t *bp, *sop;
407 	int do_expand;
408 
409 	bp = (u_int16_t *)bufp->page;
410 	do_expand = 0;
411 	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
412 		/* Exception case */
413 		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
414 			/* This is the last page of a big key/data pair
415 			   and we need to add another page */
416 			break;
417 		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
418 			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
419 			if (!bufp)
420 				return (-1);
421 			bp = (u_int16_t *)bufp->page;
422 		} else
423 			/* Try to squeeze key on this page */
424 			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
425 				squeeze_key(bp, key, val);
426 				return (0);
427 			} else {
428 				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
429 				if (!bufp)
430 					return (-1);
431 				bp = (u_int16_t *)bufp->page;
432 			}
433 
434 	if (PAIRFITS(bp, key, val))
435 		putpair(bufp->page, key, val);
436 	else {
437 		do_expand = 1;
438 		bufp = __add_ovflpage(hashp, bufp);
439 		if (!bufp)
440 			return (-1);
441 		sop = (u_int16_t *)bufp->page;
442 
443 		if (PAIRFITS(sop, key, val))
444 			putpair((char *)sop, key, val);
445 		else
446 			if (__big_insert(hashp, bufp, key, val))
447 				return (-1);
448 	}
449 	bufp->flags |= BUF_MOD;
450 	/*
451 	 * If the average number of keys per bucket exceeds the fill factor,
452 	 * expand the table.
453 	 */
454 	hashp->NKEYS++;
455 	if (do_expand ||
456 	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
457 		return (__expand_table(hashp));
458 	return (0);
459 }
460 
461 /*
462  *
463  * Returns:
464  *	pointer on success
465  *	NULL on error
466  */
467 extern BUFHEAD *
468 __add_ovflpage(hashp, bufp)
469 	HTAB *hashp;
470 	BUFHEAD *bufp;
471 {
472 	u_int16_t *sp;
473 	u_int16_t ndx, ovfl_num;
474 #ifdef DEBUG1
475 	int tmp1, tmp2;
476 #endif
477 	sp = (u_int16_t *)bufp->page;
478 
479 	/* Check if we are dynamically determining the fill factor */
480 	if (hashp->FFACTOR == DEF_FFACTOR) {
481 		hashp->FFACTOR = sp[0] >> 1;
482 		if (hashp->FFACTOR < MIN_FFACTOR)
483 			hashp->FFACTOR = MIN_FFACTOR;
484 	}
485 	bufp->flags |= BUF_MOD;
486 	ovfl_num = overflow_page(hashp);
487 #ifdef DEBUG1
488 	tmp1 = bufp->addr;
489 	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
490 #endif
491 	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
492 		return (NULL);
493 	bufp->ovfl->flags |= BUF_MOD;
494 #ifdef DEBUG1
495 	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
496 	    tmp1, tmp2, bufp->ovfl->addr);
497 #endif
498 	ndx = sp[0];
499 	/*
500 	 * Since a pair is allocated on a page only if there's room to add
501 	 * an overflow page, we know that the OVFL information will fit on
502 	 * the page.
503 	 */
504 	sp[ndx + 4] = OFFSET(sp);
505 	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
506 	sp[ndx + 1] = ovfl_num;
507 	sp[ndx + 2] = OVFLPAGE;
508 	sp[0] = ndx + 2;
509 #ifdef HASH_STATISTICS
510 	hash_overflows++;
511 #endif
512 	return (bufp->ovfl);
513 }
514 
515 /*
516  * Returns:
517  *	 0 indicates SUCCESS
518  *	-1 indicates FAILURE
519  */
520 extern int
521 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
522 	HTAB *hashp;
523 	char *p;
524 	u_int32_t bucket;
525 	int is_bucket, is_disk, is_bitmap;
526 {
527 	int fd, page, size;
528 	int rsize;
529 	u_int16_t *bp;
530 
531 	fd = hashp->fp;
532 	size = hashp->BSIZE;
533 
534 	if ((fd == -1) || !is_disk) {
535 		PAGE_INIT(p);
536 		return (0);
537 	}
538 	if (is_bucket)
539 		page = BUCKET_TO_PAGE(bucket);
540 	else
541 		page = OADDR_TO_PAGE(bucket);
542 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
543 	    ((rsize = _read(fd, p, size)) == -1))
544 		return (-1);
545 	bp = (u_int16_t *)p;
546 	if (!rsize)
547 		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
548 	else
549 		if (rsize != size) {
550 			errno = EFTYPE;
551 			return (-1);
552 		}
553 	if (!is_bitmap && !bp[0]) {
554 		PAGE_INIT(p);
555 	} else
556 		if (hashp->LORDER != BYTE_ORDER) {
557 			int i, max;
558 
559 			if (is_bitmap) {
560 				max = hashp->BSIZE >> 2; /* divide by 4 */
561 				for (i = 0; i < max; i++)
562 					M_32_SWAP(((int *)p)[i]);
563 			} else {
564 				M_16_SWAP(bp[0]);
565 				max = bp[0] + 2;
566 				for (i = 1; i <= max; i++)
567 					M_16_SWAP(bp[i]);
568 			}
569 		}
570 	return (0);
571 }
572 
573 /*
574  * Write page p to disk
575  *
576  * Returns:
577  *	 0 ==> OK
578  *	-1 ==>failure
579  */
580 extern int
581 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
582 	HTAB *hashp;
583 	char *p;
584 	u_int32_t bucket;
585 	int is_bucket, is_bitmap;
586 {
587 	int fd, page, size;
588 	int wsize;
589 
590 	size = hashp->BSIZE;
591 	if ((hashp->fp == -1) && open_temp(hashp))
592 		return (-1);
593 	fd = hashp->fp;
594 
595 	if (hashp->LORDER != BYTE_ORDER) {
596 		int i;
597 		int max;
598 
599 		if (is_bitmap) {
600 			max = hashp->BSIZE >> 2;	/* divide by 4 */
601 			for (i = 0; i < max; i++)
602 				M_32_SWAP(((int *)p)[i]);
603 		} else {
604 			max = ((u_int16_t *)p)[0] + 2;
605 			for (i = 0; i <= max; i++)
606 				M_16_SWAP(((u_int16_t *)p)[i]);
607 		}
608 	}
609 	if (is_bucket)
610 		page = BUCKET_TO_PAGE(bucket);
611 	else
612 		page = OADDR_TO_PAGE(bucket);
613 	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
614 	    ((wsize = _write(fd, p, size)) == -1))
615 		/* Errno is set */
616 		return (-1);
617 	if (wsize != size) {
618 		errno = EFTYPE;
619 		return (-1);
620 	}
621 	return (0);
622 }
623 
624 #define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
625 /*
626  * Initialize a new bitmap page.  Bitmap pages are left in memory
627  * once they are read in.
628  */
629 extern int
630 __ibitmap(hashp, pnum, nbits, ndx)
631 	HTAB *hashp;
632 	int pnum, nbits, ndx;
633 {
634 	u_int32_t *ip;
635 	int clearbytes, clearints;
636 
637 	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
638 		return (1);
639 	hashp->nmaps++;
640 	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
641 	clearbytes = clearints << INT_TO_BYTE;
642 	(void)memset((char *)ip, 0, clearbytes);
643 	(void)memset(((char *)ip) + clearbytes, 0xFF,
644 	    hashp->BSIZE - clearbytes);
645 	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
646 	SETBIT(ip, 0);
647 	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
648 	hashp->mapp[ndx] = ip;
649 	return (0);
650 }
651 
652 static u_int32_t
653 first_free(map)
654 	u_int32_t map;
655 {
656 	u_int32_t i, mask;
657 
658 	mask = 0x1;
659 	for (i = 0; i < BITS_PER_MAP; i++) {
660 		if (!(mask & map))
661 			return (i);
662 		mask = mask << 1;
663 	}
664 	return (i);
665 }
666 
667 static u_int16_t
668 overflow_page(hashp)
669 	HTAB *hashp;
670 {
671 	u_int32_t *freep;
672 	int max_free, offset, splitnum;
673 	u_int16_t addr;
674 	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
675 #ifdef DEBUG2
676 	int tmp1, tmp2;
677 #endif
678 	splitnum = hashp->OVFL_POINT;
679 	max_free = hashp->SPARES[splitnum];
680 
681 	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
682 	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
683 
684 	/* Look through all the free maps to find the first free block */
685 	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
686 	for ( i = first_page; i <= free_page; i++ ) {
687 		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
688 		    !(freep = fetch_bitmap(hashp, i)))
689 			return (0);
690 		if (i == free_page)
691 			in_use_bits = free_bit;
692 		else
693 			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
694 
695 		if (i == first_page) {
696 			bit = hashp->LAST_FREED &
697 			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
698 			j = bit / BITS_PER_MAP;
699 			bit = bit & ~(BITS_PER_MAP - 1);
700 		} else {
701 			bit = 0;
702 			j = 0;
703 		}
704 		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
705 			if (freep[j] != ALL_SET)
706 				goto found;
707 	}
708 
709 	/* No Free Page Found */
710 	hashp->LAST_FREED = hashp->SPARES[splitnum];
711 	hashp->SPARES[splitnum]++;
712 	offset = hashp->SPARES[splitnum] -
713 	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
714 
715 #define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
716 	if (offset > SPLITMASK) {
717 		if (++splitnum >= NCACHED) {
718 			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
719 			return (0);
720 		}
721 		hashp->OVFL_POINT = splitnum;
722 		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
723 		hashp->SPARES[splitnum-1]--;
724 		offset = 1;
725 	}
726 
727 	/* Check if we need to allocate a new bitmap page */
728 	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
729 		free_page++;
730 		if (free_page >= NCACHED) {
731 			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
732 			return (0);
733 		}
734 		/*
735 		 * This is tricky.  The 1 indicates that you want the new page
736 		 * allocated with 1 clear bit.  Actually, you are going to
737 		 * allocate 2 pages from this map.  The first is going to be
738 		 * the map page, the second is the overflow page we were
739 		 * looking for.  The init_bitmap routine automatically, sets
740 		 * the first bit of itself to indicate that the bitmap itself
741 		 * is in use.  We would explicitly set the second bit, but
742 		 * don't have to if we tell init_bitmap not to leave it clear
743 		 * in the first place.
744 		 */
745 		if (__ibitmap(hashp,
746 		    (int)OADDR_OF(splitnum, offset), 1, free_page))
747 			return (0);
748 		hashp->SPARES[splitnum]++;
749 #ifdef DEBUG2
750 		free_bit = 2;
751 #endif
752 		offset++;
753 		if (offset > SPLITMASK) {
754 			if (++splitnum >= NCACHED) {
755 				(void)_write(STDERR_FILENO, OVMSG,
756 				    sizeof(OVMSG) - 1);
757 				return (0);
758 			}
759 			hashp->OVFL_POINT = splitnum;
760 			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
761 			hashp->SPARES[splitnum-1]--;
762 			offset = 0;
763 		}
764 	} else {
765 		/*
766 		 * Free_bit addresses the last used bit.  Bump it to address
767 		 * the first available bit.
768 		 */
769 		free_bit++;
770 		SETBIT(freep, free_bit);
771 	}
772 
773 	/* Calculate address of the new overflow page */
774 	addr = OADDR_OF(splitnum, offset);
775 #ifdef DEBUG2
776 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
777 	    addr, free_bit, free_page);
778 #endif
779 	return (addr);
780 
781 found:
782 	bit = bit + first_free(freep[j]);
783 	SETBIT(freep, bit);
784 #ifdef DEBUG2
785 	tmp1 = bit;
786 	tmp2 = i;
787 #endif
788 	/*
789 	 * Bits are addressed starting with 0, but overflow pages are addressed
790 	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
791 	 * it to convert it to a page number.
792 	 */
793 	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
794 	if (bit >= hashp->LAST_FREED)
795 		hashp->LAST_FREED = bit - 1;
796 
797 	/* Calculate the split number for this page */
798 	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
799 	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
800 	if (offset >= SPLITMASK)
801 		return (0);	/* Out of overflow pages */
802 	addr = OADDR_OF(i, offset);
803 #ifdef DEBUG2
804 	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
805 	    addr, tmp1, tmp2);
806 #endif
807 
808 	/* Allocate and return the overflow page */
809 	return (addr);
810 }
811 
812 /*
813  * Mark this overflow page as free.
814  */
815 extern void
816 __free_ovflpage(hashp, obufp)
817 	HTAB *hashp;
818 	BUFHEAD *obufp;
819 {
820 	u_int16_t addr;
821 	u_int32_t *freep;
822 	int bit_address, free_page, free_bit;
823 	u_int16_t ndx;
824 
825 	addr = obufp->addr;
826 #ifdef DEBUG1
827 	(void)fprintf(stderr, "Freeing %d\n", addr);
828 #endif
829 	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
830 	bit_address =
831 	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
832 	 if (bit_address < hashp->LAST_FREED)
833 		hashp->LAST_FREED = bit_address;
834 	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
835 	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
836 
837 	if (!(freep = hashp->mapp[free_page]))
838 		freep = fetch_bitmap(hashp, free_page);
839 #ifdef DEBUG
840 	/*
841 	 * This had better never happen.  It means we tried to read a bitmap
842 	 * that has already had overflow pages allocated off it, and we
843 	 * failed to read it from the file.
844 	 */
845 	if (!freep)
846 		assert(0);
847 #endif
848 	CLRBIT(freep, free_bit);
849 #ifdef DEBUG2
850 	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
851 	    obufp->addr, free_bit, free_page);
852 #endif
853 	__reclaim_buf(hashp, obufp);
854 }
855 
856 /*
857  * Returns:
858  *	 0 success
859  *	-1 failure
860  */
861 static int
862 open_temp(hashp)
863 	HTAB *hashp;
864 {
865 	sigset_t set, oset;
866 	static char namestr[] = "_hashXXXXXX";
867 
868 	/* Block signals; make sure file goes away at process exit. */
869 	(void)sigfillset(&set);
870 	(void)_sigprocmask(SIG_BLOCK, &set, &oset);
871 	if ((hashp->fp = mkstemp(namestr)) != -1) {
872 		(void)unlink(namestr);
873 		(void)_fcntl(hashp->fp, F_SETFD, 1);
874 	}
875 	(void)_sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
876 	return (hashp->fp != -1 ? 0 : -1);
877 }
878 
879 /*
880  * We have to know that the key will fit, but the last entry on the page is
881  * an overflow pair, so we need to shift things.
882  */
883 static void
884 squeeze_key(sp, key, val)
885 	u_int16_t *sp;
886 	const DBT *key, *val;
887 {
888 	char *p;
889 	u_int16_t free_space, n, off, pageno;
890 
891 	p = (char *)sp;
892 	n = sp[0];
893 	free_space = FREESPACE(sp);
894 	off = OFFSET(sp);
895 
896 	pageno = sp[n - 1];
897 	off -= key->size;
898 	sp[n - 1] = off;
899 	memmove(p + off, key->data, key->size);
900 	off -= val->size;
901 	sp[n] = off;
902 	memmove(p + off, val->data, val->size);
903 	sp[0] = n + 2;
904 	sp[n + 1] = pageno;
905 	sp[n + 2] = OVFLPAGE;
906 	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
907 	OFFSET(sp) = off;
908 }
909 
910 static u_int32_t *
911 fetch_bitmap(hashp, ndx)
912 	HTAB *hashp;
913 	int ndx;
914 {
915 	if (ndx >= hashp->nmaps)
916 		return (NULL);
917 	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
918 		return (NULL);
919 	if (__get_page(hashp,
920 	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
921 		free(hashp->mapp[ndx]);
922 		return (NULL);
923 	}
924 	return (hashp->mapp[ndx]);
925 }
926 
927 #ifdef DEBUG4
928 int
929 print_chain(addr)
930 	int addr;
931 {
932 	BUFHEAD *bufp;
933 	short *bp, oaddr;
934 
935 	(void)fprintf(stderr, "%d ", addr);
936 	bufp = __get_buf(hashp, addr, NULL, 0);
937 	bp = (short *)bufp->page;
938 	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
939 		((bp[0] > 2) && bp[2] < REAL_KEY))) {
940 		oaddr = bp[bp[0] - 1];
941 		(void)fprintf(stderr, "%d ", (int)oaddr);
942 		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
943 		bp = (short *)bufp->page;
944 	}
945 	(void)fprintf(stderr, "\n");
946 }
947 #endif
948