xref: /dragonfly/lib/libc/rpc/svc_dg.c (revision 58645856)
1 /*-
2  * Copyright (c) 2009, Sun Microsystems, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  * - Redistributions of source code must retain the above copyright notice,
8  *   this list of conditions and the following disclaimer.
9  * - Redistributions in binary form must reproduce the above copyright notice,
10  *   this list of conditions and the following disclaimer in the documentation
11  *   and/or other materials provided with the distribution.
12  * - Neither the name of Sun Microsystems, Inc. nor the names of its
13  *   contributors may be used to endorse or promote products derived
14  *   from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
20  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  *
28  * @(#)svc_dg.c	1.17	94/04/24 SMI
29  * $NetBSD: svc_dg.c,v 1.4 2000/07/06 03:10:35 christos Exp $
30  * $FreeBSD: src/lib/libc/rpc/svc_dg.c,v 1.8 2006/02/27 22:10:59 deischen Exp $
31  */
32 
33 /*
34  * Copyright (c) 1986-1991 by Sun Microsystems Inc.
35  */
36 
37 /*
38  * svc_dg.c, Server side for connectionless RPC.
39  *
40  * Does some caching in the hopes of achieving execute-at-most-once semantics.
41  */
42 
43 #include "namespace.h"
44 #include "reentrant.h"
45 #include <sys/param.h>
46 #include <sys/socket.h>
47 #include <rpc/rpc.h>
48 #include <rpc/svc_dg.h>
49 #include <errno.h>
50 #include <unistd.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #ifdef RPC_CACHE_DEBUG
55 #include <netconfig.h>
56 #include <netdir.h>
57 #endif
58 #include <err.h>
59 #include "un-namespace.h"
60 
61 #include "rpc_com.h"
62 #include "mt_misc.h"
63 
64 #define	su_data(xprt)	((struct svc_dg_data *)(xprt->xp_p2))
65 #define	rpc_buffer(xprt) ((xprt)->xp_p1)
66 
67 #ifndef MAX
68 #define	MAX(a, b)	(((a) > (b)) ? (a) : (b))
69 #endif
70 
71 static void svc_dg_ops(SVCXPRT *);
72 static enum xprt_stat svc_dg_stat(SVCXPRT *);
73 static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
74 static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
75 static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, void *);
76 static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, void *);
77 static void svc_dg_destroy(SVCXPRT *);
78 static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
79 static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
80 static void cache_set(SVCXPRT *, size_t);
81 int svc_dg_enablecache(SVCXPRT *, u_int);
82 
83 /*
84  * Usage:
85  *	xprt = svc_dg_create(sock, sendsize, recvsize);
86  * Does other connectionless specific initializations.
87  * Once *xprt is initialized, it is registered.
88  * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
89  * system defaults are chosen.
90  * The routines returns NULL if a problem occurred.
91  */
92 static const char svc_dg_str[] = "svc_dg_create: %s";
93 static const char svc_dg_err1[] = "could not get transport information";
94 static const char svc_dg_err2[] = " transport does not support data transfer";
95 static const char __no_mem_str[] = "out of memory";
96 
97 SVCXPRT *
98 svc_dg_create(int fd, u_int sendsize, u_int recvsize)
99 {
100 	SVCXPRT *xprt;
101 	struct svc_dg_data *su = NULL;
102 	struct __rpc_sockinfo si;
103 	struct sockaddr_storage ss;
104 	socklen_t slen;
105 
106 	if (!__rpc_fd2sockinfo(fd, &si)) {
107 		warnx(svc_dg_str, svc_dg_err1);
108 		return (NULL);
109 	}
110 	/*
111 	 * Find the receive and the send size
112 	 */
113 	sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
114 	recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
115 	if ((sendsize == 0) || (recvsize == 0)) {
116 		warnx(svc_dg_str, svc_dg_err2);
117 		return (NULL);
118 	}
119 
120 	xprt = mem_alloc(sizeof (SVCXPRT));
121 	if (xprt == NULL)
122 		goto freedata;
123 	memset(xprt, 0, sizeof (SVCXPRT));
124 
125 	su = mem_alloc(sizeof (*su));
126 	if (su == NULL)
127 		goto freedata;
128 	su->su_iosz = rounddown(MAX(sendsize, recvsize) + 3, 4);
129 	if ((rpc_buffer(xprt) = mem_alloc(su->su_iosz)) == NULL)
130 		goto freedata;
131 	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), su->su_iosz,
132 		XDR_DECODE);
133 	su->su_cache = NULL;
134 	xprt->xp_fd = fd;
135 	xprt->xp_p2 = su;
136 	xprt->xp_verf.oa_base = su->su_verfbody;
137 	svc_dg_ops(xprt);
138 	xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
139 
140 	slen = sizeof ss;
141 	if (_getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0)
142 		goto freedata;
143 	xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
144 	xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
145 	xprt->xp_ltaddr.len = slen;
146 	memcpy(xprt->xp_ltaddr.buf, &ss, slen);
147 
148 	xprt_register(xprt);
149 	return (xprt);
150 freedata:
151 	warnx(svc_dg_str, __no_mem_str);
152 	if (xprt) {
153 		if (su)
154 			mem_free(su, sizeof (*su));
155 		mem_free(xprt, sizeof (SVCXPRT));
156 	}
157 	return (NULL);
158 }
159 
160 /*ARGSUSED*/
161 static enum xprt_stat
162 svc_dg_stat(SVCXPRT *xprt __unused)
163 {
164 	return (XPRT_IDLE);
165 }
166 
167 static bool_t
168 svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg)
169 {
170 	struct svc_dg_data *su = su_data(xprt);
171 	XDR *xdrs = &(su->su_xdrs);
172 	char *reply;
173 	struct sockaddr_storage ss;
174 	socklen_t alen;
175 	size_t replylen;
176 	ssize_t rlen;
177 
178 again:
179 	alen = sizeof (struct sockaddr_storage);
180 	rlen = _recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 0,
181 	    (struct sockaddr *)(void *)&ss, &alen);
182 	if (rlen == -1 && errno == EINTR)
183 		goto again;
184 	if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
185 		return (FALSE);
186 	if (xprt->xp_rtaddr.len < alen) {
187 		if (xprt->xp_rtaddr.len != 0)
188 			mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
189 		xprt->xp_rtaddr.buf = mem_alloc(alen);
190 		xprt->xp_rtaddr.len = alen;
191 	}
192 	memcpy(xprt->xp_rtaddr.buf, &ss, alen);
193 #ifdef PORTMAP
194 	if (ss.ss_family == AF_INET) {
195 		xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
196 		xprt->xp_addrlen = sizeof (struct sockaddr_in);
197 	}
198 #endif				/* PORTMAP */
199 	xdrs->x_op = XDR_DECODE;
200 	XDR_SETPOS(xdrs, 0);
201 	if (! xdr_callmsg(xdrs, msg)) {
202 		return (FALSE);
203 	}
204 	su->su_xid = msg->rm_xid;
205 	if (su->su_cache != NULL) {
206 		if (cache_get(xprt, msg, &reply, &replylen)) {
207 			_sendto(xprt->xp_fd, reply, replylen, 0,
208 			    (struct sockaddr *)(void *)&ss, alen);
209 			return (FALSE);
210 		}
211 	}
212 	return (TRUE);
213 }
214 
215 static bool_t
216 svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg)
217 {
218 	struct svc_dg_data *su = su_data(xprt);
219 	XDR *xdrs = &(su->su_xdrs);
220 	bool_t stat = FALSE;
221 	size_t slen;
222 
223 	xdrs->x_op = XDR_ENCODE;
224 	XDR_SETPOS(xdrs, 0);
225 	msg->rm_xid = su->su_xid;
226 	if (xdr_replymsg(xdrs, msg)) {
227 		slen = XDR_GETPOS(xdrs);
228 		if (_sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 0,
229 		    (struct sockaddr *)xprt->xp_rtaddr.buf,
230 		    (socklen_t)xprt->xp_rtaddr.len) == (ssize_t) slen) {
231 			stat = TRUE;
232 			if (su->su_cache)
233 				cache_set(xprt, slen);
234 		}
235 	}
236 	return (stat);
237 }
238 
239 static bool_t
240 svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
241 {
242 	return (*xdr_args)(&(su_data(xprt)->su_xdrs), args_ptr);
243 }
244 
245 static bool_t
246 svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, void *args_ptr)
247 {
248 	XDR *xdrs = &(su_data(xprt)->su_xdrs);
249 
250 	xdrs->x_op = XDR_FREE;
251 	return (*xdr_args)(xdrs, args_ptr);
252 }
253 
254 static void
255 svc_dg_destroy(SVCXPRT *xprt)
256 {
257 	struct svc_dg_data *su = su_data(xprt);
258 
259 	xprt_unregister(xprt);
260 	if (xprt->xp_fd != -1)
261 		_close(xprt->xp_fd);
262 	XDR_DESTROY(&(su->su_xdrs));
263 	mem_free(rpc_buffer(xprt), su->su_iosz);
264 	mem_free(su, sizeof (*su));
265 	if (xprt->xp_rtaddr.buf)
266 		mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
267 	if (xprt->xp_ltaddr.buf)
268 		mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
269 	if (xprt->xp_tp)
270 		free(xprt->xp_tp);
271 	mem_free(xprt, sizeof (SVCXPRT));
272 }
273 
274 static bool_t
275 /*ARGSUSED*/
276 svc_dg_control(SVCXPRT *xprt __unused, const u_int rq __unused,
277     void *in __unused)
278 {
279 	return (FALSE);
280 }
281 
282 static void
283 svc_dg_ops(SVCXPRT *xprt)
284 {
285 	static struct xp_ops ops;
286 	static struct xp_ops2 ops2;
287 
288 /* VARIABLES PROTECTED BY ops_lock: ops */
289 
290 	mutex_lock(&ops_lock);
291 	if (ops.xp_recv == NULL) {
292 		ops.xp_recv = svc_dg_recv;
293 		ops.xp_stat = svc_dg_stat;
294 		ops.xp_getargs = svc_dg_getargs;
295 		ops.xp_reply = svc_dg_reply;
296 		ops.xp_freeargs = svc_dg_freeargs;
297 		ops.xp_destroy = svc_dg_destroy;
298 		ops2.xp_control = svc_dg_control;
299 	}
300 	xprt->xp_ops = &ops;
301 	xprt->xp_ops2 = &ops2;
302 	mutex_unlock(&ops_lock);
303 }
304 
305 /*  The CACHING COMPONENT */
306 
307 /*
308  * Could have been a separate file, but some part of it depends upon the
309  * private structure of the client handle.
310  *
311  * Fifo cache for cl server
312  * Copies pointers to reply buffers into fifo cache
313  * Buffers are sent again if retransmissions are detected.
314  */
315 
316 #define	SPARSENESS 4	/* 75% sparse */
317 
318 #define	ALLOC(type, size)	\
319 	(type *) mem_alloc((sizeof (type) * (size)))
320 
321 #define	MEMZERO(addr, type, size)	 \
322 	memset((void *) (addr), 0, sizeof (type) * (int) (size))
323 
324 #define	FREE(addr, type, size)	\
325 	mem_free((addr), (sizeof (type) * (size)))
326 
327 /*
328  * An entry in the cache
329  */
330 typedef struct cache_node *cache_ptr;
331 struct cache_node {
332 	/*
333 	 * Index into cache is xid, proc, vers, prog and address
334 	 */
335 	u_int32_t cache_xid;
336 	rpcproc_t cache_proc;
337 	rpcvers_t cache_vers;
338 	rpcprog_t cache_prog;
339 	struct netbuf cache_addr;
340 	/*
341 	 * The cached reply and length
342 	 */
343 	char *cache_reply;
344 	size_t cache_replylen;
345 	/*
346 	 * Next node on the list, if there is a collision
347 	 */
348 	cache_ptr cache_next;
349 };
350 
351 /*
352  * The entire cache
353  */
354 struct cl_cache {
355 	u_int uc_size;		/* size of cache */
356 	cache_ptr *uc_entries;	/* hash table of entries in cache */
357 	cache_ptr *uc_fifo;	/* fifo list of entries in cache */
358 	u_int uc_nextvictim;	/* points to next victim in fifo list */
359 	rpcprog_t uc_prog;	/* saved program number */
360 	rpcvers_t uc_vers;	/* saved version number */
361 	rpcproc_t uc_proc;	/* saved procedure number */
362 };
363 
364 
365 /*
366  * the hashing function
367  */
368 #define	CACHE_LOC(transp, xid)	\
369 	(xid % (SPARSENESS * ((struct cl_cache *) \
370 		su_data(transp)->su_cache)->uc_size))
371 
372 /*
373  * Enable use of the cache. Returns 1 on success, 0 on failure.
374  * Note: there is no disable.
375  */
376 static const char cache_enable_str[] = "svc_enablecache: %s %s";
377 static const char alloc_err[] = "could not allocate cache ";
378 static const char enable_err[] = "cache already enabled";
379 
380 int
381 svc_dg_enablecache(SVCXPRT *transp, u_int size)
382 {
383 	struct svc_dg_data *su = su_data(transp);
384 	struct cl_cache *uc;
385 
386 	mutex_lock(&dupreq_lock);
387 	if (su->su_cache != NULL) {
388 		warnx(cache_enable_str, enable_err, " ");
389 		mutex_unlock(&dupreq_lock);
390 		return (0);
391 	}
392 	uc = ALLOC(struct cl_cache, 1);
393 	if (uc == NULL) {
394 		warnx(cache_enable_str, alloc_err, " ");
395 		mutex_unlock(&dupreq_lock);
396 		return (0);
397 	}
398 	uc->uc_size = size;
399 	uc->uc_nextvictim = 0;
400 	uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
401 	if (uc->uc_entries == NULL) {
402 		warnx(cache_enable_str, alloc_err, "data");
403 		FREE(uc, struct cl_cache, 1);
404 		mutex_unlock(&dupreq_lock);
405 		return (0);
406 	}
407 	MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
408 	uc->uc_fifo = ALLOC(cache_ptr, size);
409 	if (uc->uc_fifo == NULL) {
410 		warnx(cache_enable_str, alloc_err, "fifo");
411 		FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
412 		FREE(uc, struct cl_cache, 1);
413 		mutex_unlock(&dupreq_lock);
414 		return (0);
415 	}
416 	MEMZERO(uc->uc_fifo, cache_ptr, size);
417 	su->su_cache = (char *)(void *)uc;
418 	mutex_unlock(&dupreq_lock);
419 	return (1);
420 }
421 
422 /*
423  * Set an entry in the cache.  It assumes that the uc entry is set from
424  * the earlier call to cache_get() for the same procedure.  This will always
425  * happen because cache_get() is calle by svc_dg_recv and cache_set() is called
426  * by svc_dg_reply().  All this hoopla because the right RPC parameters are
427  * not available at svc_dg_reply time.
428  */
429 
430 static const char cache_set_str[] = "cache_set: %s";
431 static const char cache_set_err1[] = "victim not found";
432 static const char cache_set_err2[] = "victim alloc failed";
433 static const char cache_set_err3[] = "could not allocate new rpc buffer";
434 
435 static void
436 cache_set(SVCXPRT *xprt, size_t replylen)
437 {
438 	cache_ptr victim;
439 	cache_ptr *vicp;
440 	struct svc_dg_data *su = su_data(xprt);
441 	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
442 	u_int loc;
443 	char *newbuf;
444 #ifdef RPC_CACHE_DEBUG
445 	struct netconfig *nconf;
446 	char *uaddr;
447 #endif
448 
449 	mutex_lock(&dupreq_lock);
450 	/*
451 	 * Find space for the new entry, either by
452 	 * reusing an old entry, or by mallocing a new one
453 	 */
454 	victim = uc->uc_fifo[uc->uc_nextvictim];
455 	if (victim != NULL) {
456 		loc = CACHE_LOC(xprt, victim->cache_xid);
457 		for (vicp = &uc->uc_entries[loc];
458 			*vicp != NULL && *vicp != victim;
459 			vicp = &(*vicp)->cache_next)
460 			;
461 		if (*vicp == NULL) {
462 			warnx(cache_set_str, cache_set_err1);
463 			mutex_unlock(&dupreq_lock);
464 			return;
465 		}
466 		*vicp = victim->cache_next;	/* remove from cache */
467 		newbuf = victim->cache_reply;
468 	} else {
469 		victim = ALLOC(struct cache_node, 1);
470 		if (victim == NULL) {
471 			warnx(cache_set_str, cache_set_err2);
472 			mutex_unlock(&dupreq_lock);
473 			return;
474 		}
475 		newbuf = mem_alloc(su->su_iosz);
476 		if (newbuf == NULL) {
477 			warnx(cache_set_str, cache_set_err3);
478 			FREE(victim, struct cache_node, 1);
479 			mutex_unlock(&dupreq_lock);
480 			return;
481 		}
482 	}
483 
484 	/*
485 	 * Store it away
486 	 */
487 #ifdef RPC_CACHE_DEBUG
488 	if (nconf = getnetconfigent(xprt->xp_netid)) {
489 		uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
490 		freenetconfigent(nconf);
491 		printf(
492 	"cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
493 			su->su_xid, uc->uc_prog, uc->uc_vers,
494 			uc->uc_proc, uaddr);
495 		free(uaddr);
496 	}
497 #endif
498 	victim->cache_replylen = replylen;
499 	victim->cache_reply = rpc_buffer(xprt);
500 	rpc_buffer(xprt) = newbuf;
501 	xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt),
502 			su->su_iosz, XDR_ENCODE);
503 	victim->cache_xid = su->su_xid;
504 	victim->cache_proc = uc->uc_proc;
505 	victim->cache_vers = uc->uc_vers;
506 	victim->cache_prog = uc->uc_prog;
507 	victim->cache_addr = xprt->xp_rtaddr;
508 	victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
509 	memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
510 	    (size_t)xprt->xp_rtaddr.len);
511 	loc = CACHE_LOC(xprt, victim->cache_xid);
512 	victim->cache_next = uc->uc_entries[loc];
513 	uc->uc_entries[loc] = victim;
514 	uc->uc_fifo[uc->uc_nextvictim++] = victim;
515 	uc->uc_nextvictim %= uc->uc_size;
516 	mutex_unlock(&dupreq_lock);
517 }
518 
519 /*
520  * Try to get an entry from the cache
521  * return 1 if found, 0 if not found and set the stage for cache_set()
522  */
523 static int
524 cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp)
525 {
526 	u_int loc;
527 	cache_ptr ent;
528 	struct svc_dg_data *su = su_data(xprt);
529 	struct cl_cache *uc = (struct cl_cache *) su->su_cache;
530 #ifdef RPC_CACHE_DEBUG
531 	struct netconfig *nconf;
532 	char *uaddr;
533 #endif
534 
535 	mutex_lock(&dupreq_lock);
536 	loc = CACHE_LOC(xprt, su->su_xid);
537 	for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
538 		if (ent->cache_xid == su->su_xid &&
539 			ent->cache_proc == msg->rm_call.cb_proc &&
540 			ent->cache_vers == msg->rm_call.cb_vers &&
541 			ent->cache_prog == msg->rm_call.cb_prog &&
542 			ent->cache_addr.len == xprt->xp_rtaddr.len &&
543 			(memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
544 				xprt->xp_rtaddr.len) == 0)) {
545 #ifdef RPC_CACHE_DEBUG
546 			if (nconf = getnetconfigent(xprt->xp_netid)) {
547 				uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
548 				freenetconfigent(nconf);
549 				printf(
550 	"cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
551 					su->su_xid, msg->rm_call.cb_prog,
552 					msg->rm_call.cb_vers,
553 					msg->rm_call.cb_proc, uaddr);
554 				free(uaddr);
555 			}
556 #endif
557 			*replyp = ent->cache_reply;
558 			*replylenp = ent->cache_replylen;
559 			mutex_unlock(&dupreq_lock);
560 			return (1);
561 		}
562 	}
563 	/*
564 	 * Failed to find entry
565 	 * Remember a few things so we can do a set later
566 	 */
567 	uc->uc_proc = msg->rm_call.cb_proc;
568 	uc->uc_vers = msg->rm_call.cb_vers;
569 	uc->uc_prog = msg->rm_call.cb_prog;
570 	mutex_unlock(&dupreq_lock);
571 	return (0);
572 }
573