xref: /dragonfly/lib/libc/stdlib/nmalloc.c (revision 3948dfa0)
1 /*
2  * NMALLOC.C	- New Malloc (ported from kernel slab allocator)
3  *
4  * Copyright (c) 2003,2004,2009,2010 The DragonFly Project. All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com> and by
8  * Venkatesh Srinivas <me@endeavour.zapto.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $Id: nmalloc.c,v 1.37 2010/07/23 08:20:35 vsrinivas Exp $
38  */
39 /*
40  * This module implements a slab allocator drop-in replacement for the
41  * libc malloc().
42  *
43  * A slab allocator reserves a ZONE for each chunk size, then lays the
44  * chunks out in an array within the zone.  Allocation and deallocation
45  * is nearly instantaneous, and overhead losses are limited to a fixed
46  * worst-case amount.
47  *
48  * The slab allocator does not have to pre-initialize the list of
49  * free chunks for each zone, and the underlying VM will not be
50  * touched at all beyond the zone header until an actual allocation
51  * needs it.
52  *
53  * Slab management and locking is done on a per-zone basis.
54  *
55  *	Alloc Size	Chunking        Number of zones
56  *	0-127		8		16
57  *	128-255		16		8
58  *	256-511		32		8
59  *	512-1023	64		8
60  *	1024-2047	128		8
61  *	2048-4095	256		8
62  *	4096-8191	512		8
63  *	8192-16383	1024		8
64  *	16384-32767	2048		8
65  *
66  *	Allocations >= ZoneLimit (16K) go directly to mmap and a hash table
67  *	is used to locate for free.  One and Two-page allocations use the
68  *	zone mechanic to avoid excessive mmap()/munmap() calls.
69  *
70  *			   API FEATURES AND SIDE EFFECTS
71  *
72  *    + power-of-2 sized allocations up to a page will be power-of-2 aligned.
73  *	Above that power-of-2 sized allocations are page-aligned.  Non
74  *	power-of-2 sized allocations are aligned the same as the chunk
75  *	size for their zone.
76  *    + malloc(0) returns a special non-NULL value
77  *    + ability to allocate arbitrarily large chunks of memory
78  *    + realloc will reuse the passed pointer if possible, within the
79  *	limitations of the zone chunking.
80  *
81  * Multithreaded enhancements for small allocations introduced August 2010.
82  * These are in the spirit of 'libumem'. See:
83  *	Bonwick, J.; Adams, J. (2001). "Magazines and Vmem: Extending the
84  *	slab allocator to many CPUs and arbitrary resources". In Proc. 2001
85  * 	USENIX Technical Conference. USENIX Association.
86  *
87  * Oversized allocations employ the BIGCACHE mechanic whereby large
88  * allocations may be handed significantly larger buffers, allowing them
89  * to avoid mmap/munmap operations even through significant realloc()s.
90  * The excess space is only trimmed if too many large allocations have been
91  * given this treatment.
92  *
93  * TUNING
94  *
95  * The value of the environment variable MALLOC_OPTIONS is a character string
96  * containing various flags to tune nmalloc.
97  *
98  * 'U'   / ['u']	Generate / do not generate utrace entries for ktrace(1)
99  *			This will generate utrace events for all malloc,
100  *			realloc, and free calls. There are tools (mtrplay) to
101  *			replay and allocation pattern or to graph heap structure
102  *			(mtrgraph) which can interpret these logs.
103  * 'Z'   / ['z']	Zero out / do not zero all allocations.
104  *			Each new byte of memory allocated by malloc, realloc, or
105  *			reallocf will be initialized to 0. This is intended for
106  *			debugging and will affect performance negatively.
107  * 'H'	/  ['h']	Pass a hint to the kernel about pages unused by the
108  *			allocation functions.
109  */
110 
111 /* cc -shared -fPIC -g -O -I/usr/src/lib/libc/include -o nmalloc.so nmalloc.c */
112 
113 #include "libc_private.h"
114 
115 #include <sys/param.h>
116 #include <sys/types.h>
117 #include <sys/mman.h>
118 #include <sys/queue.h>
119 #include <sys/uio.h>
120 #include <sys/ktrace.h>
121 #include <stdio.h>
122 #include <stdint.h>
123 #include <stdlib.h>
124 #include <stdarg.h>
125 #include <stddef.h>
126 #include <unistd.h>
127 #include <string.h>
128 #include <fcntl.h>
129 #include <errno.h>
130 #include <pthread.h>
131 #include <machine/atomic.h>
132 
133 #include "spinlock.h"
134 #include "un-namespace.h"
135 
136 
137 /*
138  * Linked list of large allocations
139  */
140 typedef struct bigalloc {
141 	struct bigalloc *next;	/* hash link */
142 	void	*base;		/* base pointer */
143 	u_long	active;		/* bytes active */
144 	u_long	bytes;		/* bytes allocated */
145 } *bigalloc_t;
146 
147 /*
148  * Note that any allocations which are exact multiples of PAGE_SIZE, or
149  * which are >= ZALLOC_ZONE_LIMIT, will fall through to the kmem subsystem.
150  */
151 #define ZALLOC_ZONE_LIMIT	(16 * 1024)	/* max slab-managed alloc */
152 #define ZALLOC_MIN_ZONE_SIZE	(32 * 1024)	/* minimum zone size */
153 #define ZALLOC_MAX_ZONE_SIZE	(128 * 1024)	/* maximum zone size */
154 #define ZALLOC_ZONE_SIZE	(64 * 1024)
155 #define ZALLOC_SLAB_MAGIC	0x736c6162	/* magic sanity */
156 #define ZALLOC_SLAB_SLIDE	20		/* L1-cache skip */
157 
158 #if ZALLOC_ZONE_LIMIT == 16384
159 #define NZONES			72
160 #elif ZALLOC_ZONE_LIMIT == 32768
161 #define NZONES			80
162 #else
163 #error "I couldn't figure out NZONES"
164 #endif
165 
166 /*
167  * Chunk structure for free elements
168  */
169 typedef struct slchunk {
170 	struct slchunk *c_Next;
171 } *slchunk_t;
172 
173 /*
174  * The IN-BAND zone header is placed at the beginning of each zone.
175  */
176 struct slglobaldata;
177 
178 typedef struct slzone {
179 	int32_t		z_Magic;	/* magic number for sanity check */
180 	int		z_NFree;	/* total free chunks / ualloc space */
181 	struct slzone *z_Next;		/* ZoneAry[] link if z_NFree non-zero */
182 	int		z_NMax;		/* maximum free chunks */
183 	char		*z_BasePtr;	/* pointer to start of chunk array */
184 	int		z_UIndex;	/* current initial allocation index */
185 	int		z_UEndIndex;	/* last (first) allocation index */
186 	int		z_ChunkSize;	/* chunk size for validation */
187 	int		z_FirstFreePg;	/* chunk list on a page-by-page basis */
188 	int		z_ZoneIndex;
189 	int		z_Flags;
190 	struct slchunk *z_PageAry[ZALLOC_ZONE_SIZE / PAGE_SIZE];
191 } *slzone_t;
192 
193 typedef struct slglobaldata {
194 	spinlock_t	Spinlock;
195 	slzone_t	ZoneAry[NZONES];/* linked list of zones NFree > 0 */
196 	int		JunkIndex;
197 } *slglobaldata_t;
198 
199 #define SLZF_UNOTZEROD		0x0001
200 
201 #define FASTSLABREALLOC		0x02
202 
203 /*
204  * Misc constants.  Note that allocations that are exact multiples of
205  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
206  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
207  */
208 #define MIN_CHUNK_SIZE		8		/* in bytes */
209 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
210 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
211 
212 /*
213  * WARNING: A limited number of spinlocks are available, BIGXSIZE should
214  *	    not be larger then 64.
215  */
216 #define BIGHSHIFT	10			/* bigalloc hash table */
217 #define BIGHSIZE	(1 << BIGHSHIFT)
218 #define BIGHMASK	(BIGHSIZE - 1)
219 #define BIGXSIZE	(BIGHSIZE / 16)		/* bigalloc lock table */
220 #define BIGXMASK	(BIGXSIZE - 1)
221 
222 /*
223  * BIGCACHE caches oversized allocations.  Note that a linear search is
224  * performed, so do not make the cache too large.
225  *
226  * BIGCACHE will garbage-collect excess space when the excess exceeds the
227  * specified value.  A relatively large number should be used here because
228  * garbage collection is expensive.
229  */
230 #define BIGCACHE	16
231 #define BIGCACHE_MASK	(BIGCACHE - 1)
232 #define BIGCACHE_LIMIT	(1024 * 1024)		/* size limit */
233 #define BIGCACHE_EXCESS	(16 * 1024 * 1024)	/* garbage collect */
234 
235 #define SAFLAG_ZERO	0x0001
236 #define SAFLAG_PASSIVE	0x0002
237 
238 /*
239  * Thread control
240  */
241 
242 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
243 
244 #define MASSERT(exp)	do { if (__predict_false(!(exp)))	\
245 				_mpanic("assertion: %s in %s",	\
246 				#exp, __func__);		\
247 			    } while (0)
248 
249 /*
250  * Magazines
251  */
252 
253 #define M_MAX_ROUNDS	64
254 #define M_ZONE_ROUNDS	64
255 #define M_LOW_ROUNDS	32
256 #define M_INIT_ROUNDS	8
257 #define M_BURST_FACTOR  8
258 #define M_BURST_NSCALE	2
259 
260 #define M_BURST		0x0001
261 #define M_BURST_EARLY	0x0002
262 
263 struct magazine {
264 	SLIST_ENTRY(magazine) nextmagazine;
265 
266 	int		flags;
267 	int 		capacity;	/* Max rounds in this magazine */
268 	int 		rounds;		/* Current number of free rounds */
269 	int		burst_factor;	/* Number of blocks to prefill with */
270 	int 		low_factor;	/* Free till low_factor from full mag */
271 	void		*objects[M_MAX_ROUNDS];
272 };
273 
274 SLIST_HEAD(magazinelist, magazine);
275 
276 static spinlock_t zone_mag_lock;
277 static spinlock_t depot_spinlock;
278 static struct magazine zone_magazine = {
279 	.flags = M_BURST | M_BURST_EARLY,
280 	.capacity = M_ZONE_ROUNDS,
281 	.rounds = 0,
282 	.burst_factor = M_BURST_FACTOR,
283 	.low_factor = M_LOW_ROUNDS
284 };
285 
286 #define MAGAZINE_FULL(mp)	(mp->rounds == mp->capacity)
287 #define MAGAZINE_NOTFULL(mp)	(mp->rounds < mp->capacity)
288 #define MAGAZINE_EMPTY(mp)	(mp->rounds == 0)
289 #define MAGAZINE_NOTEMPTY(mp)	(mp->rounds != 0)
290 
291 /*
292  * Each thread will have a pair of magazines per size-class (NZONES)
293  * The loaded magazine will support immediate allocations, the previous
294  * magazine will either be full or empty and can be swapped at need
295  */
296 typedef struct magazine_pair {
297 	struct magazine	*loaded;
298 	struct magazine	*prev;
299 } magazine_pair;
300 
301 /* A depot is a collection of magazines for a single zone. */
302 typedef struct magazine_depot {
303 	struct magazinelist full;
304 	struct magazinelist empty;
305 	spinlock_t	lock;
306 } magazine_depot;
307 
308 typedef struct thr_mags {
309 	magazine_pair	mags[NZONES];
310 	struct magazine	*newmag;
311 	int		init;
312 } thr_mags;
313 
314 /*
315  * With this attribute set, do not require a function call for accessing
316  * this variable when the code is compiled -fPIC.
317  *
318  * Must be empty for libc_rtld (similar to __thread).
319  */
320 #ifdef __LIBC_RTLD
321 #define TLS_ATTRIBUTE
322 #else
323 #define TLS_ATTRIBUTE __attribute__ ((tls_model ("initial-exec")))
324 #endif
325 
326 static __thread thr_mags thread_mags TLS_ATTRIBUTE;
327 static pthread_key_t thread_mags_key;
328 static pthread_once_t thread_mags_once = PTHREAD_ONCE_INIT;
329 static magazine_depot depots[NZONES];
330 
331 /*
332  * Fixed globals (not per-cpu)
333  */
334 static const int ZoneSize = ZALLOC_ZONE_SIZE;
335 static const int ZoneLimit = ZALLOC_ZONE_LIMIT;
336 static const int ZonePageCount = ZALLOC_ZONE_SIZE / PAGE_SIZE;
337 static const int ZoneMask = ZALLOC_ZONE_SIZE - 1;
338 
339 static int opt_madvise = 0;
340 static int opt_utrace = 0;
341 static int g_malloc_flags = 0;
342 static struct slglobaldata	SLGlobalData;
343 static bigalloc_t bigalloc_array[BIGHSIZE];
344 static spinlock_t bigspin_array[BIGXSIZE];
345 static volatile void *bigcache_array[BIGCACHE];		/* atomic swap */
346 static volatile size_t bigcache_size_array[BIGCACHE];	/* SMP races ok */
347 static volatile int bigcache_index;			/* SMP races ok */
348 static int malloc_panic;
349 static size_t excess_alloc;				/* excess big allocs */
350 
351 static void *_slaballoc(size_t size, int flags);
352 static void *_slabrealloc(void *ptr, size_t size);
353 static void _slabfree(void *ptr, int, bigalloc_t *);
354 static void *_vmem_alloc(size_t bytes, size_t align, int flags);
355 static void _vmem_free(void *ptr, size_t bytes);
356 static void *magazine_alloc(struct magazine *, int *);
357 static int magazine_free(struct magazine *, void *);
358 static void *mtmagazine_alloc(int zi);
359 static int mtmagazine_free(int zi, void *);
360 static void mtmagazine_init(void);
361 static void mtmagazine_destructor(void *);
362 static slzone_t zone_alloc(int flags);
363 static void zone_free(void *z);
364 static void _mpanic(const char *ctl, ...) __printflike(1, 2);
365 static void malloc_init(void) __constructor(101);
366 
367 struct nmalloc_utrace {
368 	void *p;
369 	size_t s;
370 	void *r;
371 };
372 
373 #define UTRACE(a, b, c)						\
374 	if (opt_utrace) {					\
375 		struct nmalloc_utrace ut = {			\
376 			.p = (a),				\
377 			.s = (b),				\
378 			.r = (c)				\
379 		};						\
380 		utrace(&ut, sizeof(ut));			\
381 	}
382 
383 static void
384 malloc_init(void)
385 {
386 	const char *p = NULL;
387 
388 	if (issetugid() == 0)
389 		p = getenv("MALLOC_OPTIONS");
390 
391 	for (; p != NULL && *p != '\0'; p++) {
392 		switch(*p) {
393 		case 'u':	opt_utrace = 0; break;
394 		case 'U':	opt_utrace = 1; break;
395 		case 'h':	opt_madvise = 0; break;
396 		case 'H':	opt_madvise = 1; break;
397 		case 'z':	g_malloc_flags = 0; break;
398 		case 'Z': 	g_malloc_flags = SAFLAG_ZERO; break;
399 		default:
400 			break;
401 		}
402 	}
403 
404 	UTRACE((void *) -1, 0, NULL);
405 }
406 
407 /*
408  * We have to install a handler for nmalloc thread teardowns when
409  * the thread is created.  We cannot delay this because destructors in
410  * sophisticated userland programs can call malloc() for the first time
411  * during their thread exit.
412  *
413  * This routine is called directly from pthreads.
414  */
415 void
416 _nmalloc_thr_init(void)
417 {
418 	static int init_once;
419 	thr_mags *tp;
420 
421 	/*
422 	 * Disallow mtmagazine operations until the mtmagazine is
423 	 * initialized.
424 	 */
425 	tp = &thread_mags;
426 	tp->init = -1;
427 
428 	if (init_once == 0) {
429 		init_once = 1;
430 		pthread_once(&thread_mags_once, mtmagazine_init);
431 	}
432 	pthread_setspecific(thread_mags_key, tp);
433 	tp->init = 1;
434 }
435 
436 void
437 _nmalloc_thr_prepfork(void)
438 {
439 	if (__isthreaded) {
440 		_SPINLOCK(&zone_mag_lock);
441 		_SPINLOCK(&depot_spinlock);
442 	}
443 }
444 
445 void
446 _nmalloc_thr_parentfork(void)
447 {
448 	if (__isthreaded) {
449 		_SPINUNLOCK(&depot_spinlock);
450 		_SPINUNLOCK(&zone_mag_lock);
451 	}
452 }
453 
454 void
455 _nmalloc_thr_childfork(void)
456 {
457 	if (__isthreaded) {
458 		_SPINUNLOCK(&depot_spinlock);
459 		_SPINUNLOCK(&zone_mag_lock);
460 	}
461 }
462 
463 /*
464  * Thread locks.
465  */
466 static __inline void
467 slgd_lock(slglobaldata_t slgd)
468 {
469 	if (__isthreaded)
470 		_SPINLOCK(&slgd->Spinlock);
471 }
472 
473 static __inline void
474 slgd_unlock(slglobaldata_t slgd)
475 {
476 	if (__isthreaded)
477 		_SPINUNLOCK(&slgd->Spinlock);
478 }
479 
480 static __inline void
481 depot_lock(magazine_depot *dp)
482 {
483 	if (__isthreaded)
484 		_SPINLOCK(&depot_spinlock);
485 #if 0
486 	if (__isthreaded)
487 		_SPINLOCK(&dp->lock);
488 #endif
489 }
490 
491 static __inline void
492 depot_unlock(magazine_depot *dp)
493 {
494 	if (__isthreaded)
495 		_SPINUNLOCK(&depot_spinlock);
496 #if 0
497 	if (__isthreaded)
498 		_SPINUNLOCK(&dp->lock);
499 #endif
500 }
501 
502 static __inline void
503 zone_magazine_lock(void)
504 {
505 	if (__isthreaded)
506 		_SPINLOCK(&zone_mag_lock);
507 }
508 
509 static __inline void
510 zone_magazine_unlock(void)
511 {
512 	if (__isthreaded)
513 		_SPINUNLOCK(&zone_mag_lock);
514 }
515 
516 static __inline void
517 swap_mags(magazine_pair *mp)
518 {
519 	struct magazine *tmp;
520 	tmp = mp->loaded;
521 	mp->loaded = mp->prev;
522 	mp->prev = tmp;
523 }
524 
525 /*
526  * bigalloc hashing and locking support.
527  *
528  * Return an unmasked hash code for the passed pointer.
529  */
530 static __inline int
531 _bigalloc_hash(void *ptr)
532 {
533 	int hv;
534 
535 	hv = ((int)(intptr_t)ptr >> PAGE_SHIFT) ^
536 	      ((int)(intptr_t)ptr >> (PAGE_SHIFT + BIGHSHIFT));
537 
538 	return(hv);
539 }
540 
541 /*
542  * Lock the hash chain and return a pointer to its base for the specified
543  * address.
544  */
545 static __inline bigalloc_t *
546 bigalloc_lock(void *ptr)
547 {
548 	int hv = _bigalloc_hash(ptr);
549 	bigalloc_t *bigp;
550 
551 	bigp = &bigalloc_array[hv & BIGHMASK];
552 	if (__isthreaded)
553 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
554 	return(bigp);
555 }
556 
557 /*
558  * Lock the hash chain and return a pointer to its base for the specified
559  * address.
560  *
561  * BUT, if the hash chain is empty, just return NULL and do not bother
562  * to lock anything.
563  */
564 static __inline bigalloc_t *
565 bigalloc_check_and_lock(void *ptr)
566 {
567 	int hv = _bigalloc_hash(ptr);
568 	bigalloc_t *bigp;
569 
570 	bigp = &bigalloc_array[hv & BIGHMASK];
571 	if (*bigp == NULL)
572 		return(NULL);
573 	if (__isthreaded) {
574 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
575 	}
576 	return(bigp);
577 }
578 
579 static __inline void
580 bigalloc_unlock(void *ptr)
581 {
582 	int hv;
583 
584 	if (__isthreaded) {
585 		hv = _bigalloc_hash(ptr);
586 		_SPINUNLOCK(&bigspin_array[hv & BIGXMASK]);
587 	}
588 }
589 
590 /*
591  * Find a bigcache entry that might work for the allocation.  SMP races are
592  * ok here except for the swap (that is, it is ok if bigcache_size_array[i]
593  * is wrong or if a NULL or too-small big is returned).
594  *
595  * Generally speaking it is ok to find a large entry even if the bytes
596  * requested are relatively small (but still oversized), because we really
597  * don't know *what* the application is going to do with the buffer.
598  */
599 static __inline
600 bigalloc_t
601 bigcache_find_alloc(size_t bytes)
602 {
603 	bigalloc_t big = NULL;
604 	size_t test;
605 	int i;
606 
607 	for (i = 0; i < BIGCACHE; ++i) {
608 		test = bigcache_size_array[i];
609 		if (bytes <= test) {
610 			bigcache_size_array[i] = 0;
611 			big = atomic_swap_ptr(&bigcache_array[i], NULL);
612 			break;
613 		}
614 	}
615 	return big;
616 }
617 
618 /*
619  * Free a bigcache entry, possibly returning one that the caller really must
620  * free.  This is used to cache recent oversized memory blocks.  Only
621  * big blocks smaller than BIGCACHE_LIMIT will be cached this way, so try
622  * to collect the biggest ones we can that are under the limit.
623  */
624 static __inline
625 bigalloc_t
626 bigcache_find_free(bigalloc_t big)
627 {
628 	int i;
629 	int j;
630 	int b;
631 
632 	b = ++bigcache_index;
633 	for (i = 0; i < BIGCACHE; ++i) {
634 		j = (b + i) & BIGCACHE_MASK;
635 		if (bigcache_size_array[j] < big->bytes) {
636 			bigcache_size_array[j] = big->bytes;
637 			big = atomic_swap_ptr(&bigcache_array[j], big);
638 			break;
639 		}
640 	}
641 	return big;
642 }
643 
644 static __inline
645 void
646 handle_excess_big(void)
647 {
648 	int i;
649 	bigalloc_t big;
650 	bigalloc_t *bigp;
651 
652 	if (excess_alloc <= BIGCACHE_EXCESS)
653 		return;
654 
655 	for (i = 0; i < BIGHSIZE; ++i) {
656 		bigp = &bigalloc_array[i];
657 		if (*bigp == NULL)
658 			continue;
659 		if (__isthreaded)
660 			_SPINLOCK(&bigspin_array[i & BIGXMASK]);
661 		for (big = *bigp; big; big = big->next) {
662 			if (big->active < big->bytes) {
663 				MASSERT((big->active & PAGE_MASK) == 0);
664 				MASSERT((big->bytes & PAGE_MASK) == 0);
665 				munmap((char *)big->base + big->active,
666 				       big->bytes - big->active);
667 				atomic_add_long(&excess_alloc,
668 						big->active - big->bytes);
669 				big->bytes = big->active;
670 			}
671 		}
672 		if (__isthreaded)
673 			_SPINUNLOCK(&bigspin_array[i & BIGXMASK]);
674 	}
675 }
676 
677 /*
678  * Calculate the zone index for the allocation request size and set the
679  * allocation request size to that particular zone's chunk size.
680  */
681 static __inline int
682 zoneindex(size_t *bytes, size_t *chunking)
683 {
684 	size_t n = (unsigned int)*bytes;	/* unsigned for shift opt */
685 
686 	/*
687 	 * This used to be 8-byte chunks and 16 zones for n < 128.
688 	 * However some instructions may require 16-byte alignment
689 	 * (aka SIMD) and programs might not request an aligned size
690 	 * (aka GCC-7), so change this as follows:
691 	 *
692 	 * 0-15 bytes	8-byte alignment in two zones	(0-1)
693 	 * 16-127 bytes	16-byte alignment in four zones	(3-10)
694 	 * zone index 2 and 11-15 are currently unused.
695 	 */
696 	if (n < 16) {
697 		*bytes = n = (n + 7) & ~7;
698 		*chunking = 8;
699 		return(n / 8 - 1);		/* 8 byte chunks, 2 zones */
700 		/* zones 0,1, zone 2 is unused */
701 	}
702 	if (n < 128) {
703 		*bytes = n = (n + 15) & ~15;
704 		*chunking = 16;
705 		return(n / 16 + 2);		/* 16 byte chunks, 8 zones */
706 		/* zones 3-10, zones 11-15 unused */
707 	}
708 	if (n < 256) {
709 		*bytes = n = (n + 15) & ~15;
710 		*chunking = 16;
711 		return(n / 16 + 7);
712 	}
713 	if (n < 8192) {
714 		if (n < 512) {
715 			*bytes = n = (n + 31) & ~31;
716 			*chunking = 32;
717 			return(n / 32 + 15);
718 		}
719 		if (n < 1024) {
720 			*bytes = n = (n + 63) & ~63;
721 			*chunking = 64;
722 			return(n / 64 + 23);
723 		}
724 		if (n < 2048) {
725 			*bytes = n = (n + 127) & ~127;
726 			*chunking = 128;
727 			return(n / 128 + 31);
728 		}
729 		if (n < 4096) {
730 			*bytes = n = (n + 255) & ~255;
731 			*chunking = 256;
732 			return(n / 256 + 39);
733 		}
734 		*bytes = n = (n + 511) & ~511;
735 		*chunking = 512;
736 		return(n / 512 + 47);
737 	}
738 #if ZALLOC_ZONE_LIMIT > 8192
739 	if (n < 16384) {
740 		*bytes = n = (n + 1023) & ~1023;
741 		*chunking = 1024;
742 		return(n / 1024 + 55);
743 	}
744 #endif
745 #if ZALLOC_ZONE_LIMIT > 16384
746 	if (n < 32768) {
747 		*bytes = n = (n + 2047) & ~2047;
748 		*chunking = 2048;
749 		return(n / 2048 + 63);
750 	}
751 #endif
752 	_mpanic("Unexpected byte count %zu", n);
753 	return(0);
754 }
755 
756 /*
757  * malloc() - call internal slab allocator
758  */
759 void *
760 __malloc(size_t size)
761 {
762 	void *ptr;
763 
764 	ptr = _slaballoc(size, 0);
765 	if (ptr == NULL)
766 		errno = ENOMEM;
767 	else
768 		UTRACE(0, size, ptr);
769 	return(ptr);
770 }
771 
772 #define MUL_NO_OVERFLOW	(1UL << (sizeof(size_t) * 4))
773 
774 /*
775  * calloc() - call internal slab allocator
776  */
777 void *
778 __calloc(size_t number, size_t size)
779 {
780 	void *ptr;
781 
782 	if ((number >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
783 	     number > 0 && SIZE_MAX / number < size) {
784 		errno = ENOMEM;
785 		return(NULL);
786 	}
787 
788 	ptr = _slaballoc(number * size, SAFLAG_ZERO);
789 	if (ptr == NULL)
790 		errno = ENOMEM;
791 	else
792 		UTRACE(0, number * size, ptr);
793 	return(ptr);
794 }
795 
796 /*
797  * realloc() (SLAB ALLOCATOR)
798  *
799  * We do not attempt to optimize this routine beyond reusing the same
800  * pointer if the new size fits within the chunking of the old pointer's
801  * zone.
802  */
803 void *
804 __realloc(void *ptr, size_t size)
805 {
806 	void *ret;
807 	ret = _slabrealloc(ptr, size);
808 	if (ret == NULL)
809 		errno = ENOMEM;
810 	else
811 		UTRACE(ptr, size, ret);
812 	return(ret);
813 }
814 
815 /*
816  * posix_memalign()
817  *
818  * Allocate (size) bytes with a alignment of (alignment), where (alignment)
819  * is a power of 2 >= sizeof(void *).
820  *
821  * The slab allocator will allocate on power-of-2 boundaries up to
822  * at least PAGE_SIZE.  We use the zoneindex mechanic to find a
823  * zone matching the requirements, and _vmem_alloc() otherwise.
824  */
825 int
826 __posix_memalign(void **memptr, size_t alignment, size_t size)
827 {
828 	bigalloc_t *bigp;
829 	bigalloc_t big;
830 	size_t chunking;
831 	int zi __unused;
832 
833 	/*
834 	 * OpenGroup spec issue 6 checks
835 	 */
836 	if ((alignment | (alignment - 1)) + 1 != (alignment << 1)) {
837 		*memptr = NULL;
838 		return(EINVAL);
839 	}
840 	if (alignment < sizeof(void *)) {
841 		*memptr = NULL;
842 		return(EINVAL);
843 	}
844 
845 	/*
846 	 * Our zone mechanism guarantees same-sized alignment for any
847 	 * power-of-2 allocation.  If size is a power-of-2 and reasonable
848 	 * we can just call _slaballoc() and be done.  We round size up
849 	 * to the nearest alignment boundary to improve our odds of
850 	 * it becoming a power-of-2 if it wasn't before.
851 	 */
852 	if (size <= alignment)
853 		size = alignment;
854 	else
855 		size = (size + alignment - 1) & ~(size_t)(alignment - 1);
856 	if (size < PAGE_SIZE && (size | (size - 1)) + 1 == (size << 1)) {
857 		*memptr = _slaballoc(size, 0);
858 		return(*memptr ? 0 : ENOMEM);
859 	}
860 
861 	/*
862 	 * Otherwise locate a zone with a chunking that matches
863 	 * the requested alignment, within reason.   Consider two cases:
864 	 *
865 	 * (1) A 1K allocation on a 32-byte alignment.  The first zoneindex
866 	 *     we find will be the best fit because the chunking will be
867 	 *     greater or equal to the alignment.
868 	 *
869 	 * (2) A 513 allocation on a 256-byte alignment.  In this case
870 	 *     the first zoneindex we find will be for 576 byte allocations
871 	 *     with a chunking of 64, which is not sufficient.  To fix this
872 	 *     we simply find the nearest power-of-2 >= size and use the
873 	 *     same side-effect of _slaballoc() which guarantees
874 	 *     same-alignment on a power-of-2 allocation.
875 	 */
876 	if (size < PAGE_SIZE) {
877 		zi = zoneindex(&size, &chunking);
878 		if (chunking >= alignment) {
879 			*memptr = _slaballoc(size, 0);
880 			return(*memptr ? 0 : ENOMEM);
881 		}
882 		if (size >= 1024)
883 			alignment = 1024;
884 		if (size >= 16384)
885 			alignment = 16384;
886 		while (alignment < size)
887 			alignment <<= 1;
888 		*memptr = _slaballoc(alignment, 0);
889 		return(*memptr ? 0 : ENOMEM);
890 	}
891 
892 	/*
893 	 * If the slab allocator cannot handle it use vmem_alloc().
894 	 *
895 	 * Alignment must be adjusted up to at least PAGE_SIZE in this case.
896 	 */
897 	if (alignment < PAGE_SIZE)
898 		alignment = PAGE_SIZE;
899 	if (size < alignment)
900 		size = alignment;
901 	size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
902 	*memptr = _vmem_alloc(size, alignment, 0);
903 	if (*memptr == NULL)
904 		return(ENOMEM);
905 
906 	big = _slaballoc(sizeof(struct bigalloc), 0);
907 	if (big == NULL) {
908 		_vmem_free(*memptr, size);
909 		*memptr = NULL;
910 		return(ENOMEM);
911 	}
912 	bigp = bigalloc_lock(*memptr);
913 	big->base = *memptr;
914 	big->active = size;
915 	big->bytes = size;		/* no excess */
916 	big->next = *bigp;
917 	*bigp = big;
918 	bigalloc_unlock(*memptr);
919 
920 	return(0);
921 }
922 
923 /*
924  * free() (SLAB ALLOCATOR) - do the obvious
925  */
926 void
927 __free(void *ptr)
928 {
929 	UTRACE(ptr, 0, 0);
930 	_slabfree(ptr, 0, NULL);
931 }
932 
933 /*
934  * _slaballoc()	(SLAB ALLOCATOR)
935  *
936  *	Allocate memory via the slab allocator.  If the request is too large,
937  *	or if it page-aligned beyond a certain size, we fall back to the
938  *	KMEM subsystem
939  */
940 static void *
941 _slaballoc(size_t size, int flags)
942 {
943 	slzone_t z;
944 	slchunk_t chunk;
945 	slglobaldata_t slgd;
946 	size_t chunking;
947 	int zi;
948 	int off;
949 	void *obj;
950 
951 	/*
952 	 * Handle the degenerate size == 0 case.  Yes, this does happen.
953 	 * Return a special pointer.  This is to maintain compatibility with
954 	 * the original malloc implementation.  Certain devices, such as the
955 	 * adaptec driver, not only allocate 0 bytes, they check for NULL and
956 	 * also realloc() later on.  Joy.
957 	 */
958 	if (size == 0)
959 		size = 1;
960 
961 	/* Capture global flags */
962 	flags |= g_malloc_flags;
963 
964 	/*
965 	 * Handle large allocations directly.  There should not be very many
966 	 * of these so performance is not a big issue.
967 	 *
968 	 * The backend allocator is pretty nasty on a SMP system.   Use the
969 	 * slab allocator for one and two page-sized chunks even though we
970 	 * lose some efficiency.
971 	 */
972 	if (size >= ZoneLimit ||
973 	    ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
974 		bigalloc_t big;
975 		bigalloc_t *bigp;
976 
977 		/*
978 		 * Page-align and cache-color in case of virtually indexed
979 		 * physically tagged L1 caches (aka SandyBridge).  No sweat
980 		 * otherwise, so just do it.
981 		 *
982 		 * (don't count as excess).
983 		 */
984 		size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
985 		if ((size & (PAGE_SIZE * 2 - 1)) == 0)
986 			size += PAGE_SIZE;
987 
988 		/*
989 		 * Try to reuse a cached big block to avoid mmap'ing.  If it
990 		 * turns out not to fit our requirements we throw it away
991 		 * and allocate normally.
992 		 */
993 		big = NULL;
994 		if (size <= BIGCACHE_LIMIT) {
995 			big = bigcache_find_alloc(size);
996 			if (big && big->bytes < size) {
997 				_slabfree(big->base, FASTSLABREALLOC, &big);
998 				big = NULL;
999 			}
1000 		}
1001 		if (big) {
1002 			chunk = big->base;
1003 			if (flags & SAFLAG_ZERO)
1004 				bzero(chunk, size);
1005 		} else {
1006 			chunk = _vmem_alloc(size, PAGE_SIZE, flags);
1007 			if (chunk == NULL)
1008 				return(NULL);
1009 
1010 			big = _slaballoc(sizeof(struct bigalloc), 0);
1011 			if (big == NULL) {
1012 				_vmem_free(chunk, size);
1013 				return(NULL);
1014 			}
1015 			big->base = chunk;
1016 			big->bytes = size;
1017 		}
1018 		big->active = size;
1019 
1020 		bigp = bigalloc_lock(chunk);
1021 		if (big->active < big->bytes) {
1022 			atomic_add_long(&excess_alloc,
1023 					big->bytes - big->active);
1024 		}
1025 		big->next = *bigp;
1026 		*bigp = big;
1027 		bigalloc_unlock(chunk);
1028 		handle_excess_big();
1029 
1030 		return(chunk);
1031 	}
1032 
1033 	/* Compute allocation zone; zoneindex will panic on excessive sizes */
1034 	zi = zoneindex(&size, &chunking);
1035 	MASSERT(zi < NZONES);
1036 
1037 	obj = mtmagazine_alloc(zi);
1038 	if (obj != NULL) {
1039 		if (flags & SAFLAG_ZERO)
1040 			bzero(obj, size);
1041 		return (obj);
1042 	}
1043 
1044 	slgd = &SLGlobalData;
1045 	slgd_lock(slgd);
1046 
1047 	/*
1048 	 * Attempt to allocate out of an existing zone.  If all zones are
1049 	 * exhausted pull one off the free list or allocate a new one.
1050 	 */
1051 	if ((z = slgd->ZoneAry[zi]) == NULL) {
1052 		z = zone_alloc(flags);
1053 		if (z == NULL)
1054 			goto fail;
1055 
1056 		/*
1057 		 * How big is the base structure?
1058 		 */
1059 		off = sizeof(struct slzone);
1060 
1061 		/*
1062 		 * Align the storage in the zone based on the chunking.
1063 		 *
1064 		 * Guarantee power-of-2 alignment for power-of-2-sized
1065 		 * chunks.  Otherwise align based on the chunking size
1066 		 * (typically 8 or 16 bytes for small allocations).
1067 		 *
1068 		 * NOTE: Allocations >= ZoneLimit are governed by the
1069 		 * bigalloc code and typically only guarantee page-alignment.
1070 		 *
1071 		 * Set initial conditions for UIndex near the zone header
1072 		 * to reduce unecessary page faults, vs semi-randomization
1073 		 * to improve L1 cache saturation.
1074 		 */
1075 		if ((size | (size - 1)) + 1 == (size << 1))
1076 			off = roundup2(off, size);
1077 		else
1078 			off = roundup2(off, chunking);
1079 		z->z_Magic = ZALLOC_SLAB_MAGIC;
1080 		z->z_ZoneIndex = zi;
1081 		z->z_NMax = (ZoneSize - off) / size;
1082 		z->z_NFree = z->z_NMax;
1083 		z->z_BasePtr = (char *)z + off;
1084 		z->z_UIndex = z->z_UEndIndex = 0;
1085 		z->z_ChunkSize = size;
1086 		z->z_FirstFreePg = ZonePageCount;
1087 		z->z_Next = slgd->ZoneAry[zi];
1088 		slgd->ZoneAry[zi] = z;
1089 		if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1090 			flags &= ~SAFLAG_ZERO;	/* already zero'd */
1091 			flags |= SAFLAG_PASSIVE;
1092 		}
1093 
1094 		/*
1095 		 * Slide the base index for initial allocations out of the
1096 		 * next zone we create so we do not over-weight the lower
1097 		 * part of the cpu memory caches.
1098 		 */
1099 		slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
1100 					& (ZALLOC_MAX_ZONE_SIZE - 1);
1101 	}
1102 
1103 	/*
1104 	 * Ok, we have a zone from which at least one chunk is available.
1105 	 *
1106 	 * Remove us from the ZoneAry[] when we become empty
1107 	 */
1108 	MASSERT(z->z_NFree > 0);
1109 
1110 	if (--z->z_NFree == 0) {
1111 		slgd->ZoneAry[zi] = z->z_Next;
1112 		z->z_Next = NULL;
1113 	}
1114 
1115 	/*
1116 	 * Locate a chunk in a free page.  This attempts to localize
1117 	 * reallocations into earlier pages without us having to sort
1118 	 * the chunk list.  A chunk may still overlap a page boundary.
1119 	 */
1120 	while (z->z_FirstFreePg < ZonePageCount) {
1121 		if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
1122 			MASSERT((uintptr_t)chunk & ZoneMask);
1123 			z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
1124 			goto done;
1125 		}
1126 		++z->z_FirstFreePg;
1127 	}
1128 
1129 	/*
1130 	 * No chunks are available but NFree said we had some memory,
1131 	 * so it must be available in the never-before-used-memory
1132 	 * area governed by UIndex.  The consequences are very
1133 	 * serious if our zone got corrupted so we use an explicit
1134 	 * panic rather then a KASSERT.
1135 	 */
1136 	chunk = (slchunk_t)(z->z_BasePtr + z->z_UIndex * size);
1137 
1138 	if (++z->z_UIndex == z->z_NMax)
1139 		z->z_UIndex = 0;
1140 	if (z->z_UIndex == z->z_UEndIndex) {
1141 		if (z->z_NFree != 0)
1142 			_mpanic("slaballoc: corrupted zone");
1143 	}
1144 
1145 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1146 		flags &= ~SAFLAG_ZERO;
1147 		flags |= SAFLAG_PASSIVE;
1148 	}
1149 
1150 done:
1151 	slgd_unlock(slgd);
1152 	if (flags & SAFLAG_ZERO)
1153 		bzero(chunk, size);
1154 	return(chunk);
1155 fail:
1156 	slgd_unlock(slgd);
1157 	return(NULL);
1158 }
1159 
1160 /*
1161  * Reallocate memory within the chunk
1162  */
1163 static void *
1164 _slabrealloc(void *ptr, size_t size)
1165 {
1166 	bigalloc_t *bigp;
1167 	void *nptr;
1168 	slzone_t z;
1169 	size_t chunking;
1170 
1171 	if (ptr == NULL) {
1172 		return(_slaballoc(size, 0));
1173 	}
1174 
1175 	if (size == 0)
1176 		size = 1;
1177 
1178 	/*
1179 	 * Handle oversized allocations.
1180 	 */
1181 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1182 		bigalloc_t big;
1183 		size_t bigbytes;
1184 
1185 		while ((big = *bigp) != NULL) {
1186 			if (big->base == ptr) {
1187 				size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
1188 				bigbytes = big->bytes;
1189 
1190 				/*
1191 				 * If it already fits determine if it makes
1192 				 * sense to shrink/reallocate.  Try to optimize
1193 				 * programs which stupidly make incremental
1194 				 * reallocations larger or smaller by scaling
1195 				 * the allocation.  Also deal with potential
1196 				 * coloring.
1197 				 */
1198 				if (size >= (bigbytes >> 1) &&
1199 				    size <= bigbytes) {
1200 					if (big->active != size) {
1201 						atomic_add_long(&excess_alloc,
1202 								big->active -
1203 								size);
1204 					}
1205 					big->active = size;
1206 					bigalloc_unlock(ptr);
1207 					return(ptr);
1208 				}
1209 
1210 				/*
1211 				 * For large reallocations, allocate more space
1212 				 * than we need to try to avoid excessive
1213 				 * reallocations later on.
1214 				 */
1215 				chunking = size + (size >> 3);
1216 				chunking = (chunking + PAGE_MASK) &
1217 					   ~(size_t)PAGE_MASK;
1218 
1219 				/*
1220 				 * Try to allocate adjacently in case the
1221 				 * program is idiotically realloc()ing a
1222 				 * huge memory block just slightly bigger.
1223 				 * (llvm's llc tends to do this a lot).
1224 				 *
1225 				 * (MAP_TRYFIXED forces mmap to fail if there
1226 				 *  is already something at the address).
1227 				 */
1228 				if (chunking > bigbytes) {
1229 					char *addr;
1230 					int errno_save = errno;
1231 
1232 					addr = mmap((char *)ptr + bigbytes,
1233 						    chunking - bigbytes,
1234 						    PROT_READ|PROT_WRITE,
1235 						    MAP_PRIVATE|MAP_ANON|
1236 						    MAP_TRYFIXED,
1237 						    -1, 0);
1238 					errno = errno_save;
1239 					if (addr == (char *)ptr + bigbytes) {
1240 						atomic_add_long(&excess_alloc,
1241 								big->active -
1242 								big->bytes +
1243 								chunking -
1244 								size);
1245 						big->bytes = chunking;
1246 						big->active = size;
1247 						bigalloc_unlock(ptr);
1248 
1249 						return(ptr);
1250 					}
1251 					MASSERT((void *)addr == MAP_FAILED);
1252 				}
1253 
1254 				/*
1255 				 * Failed, unlink big and allocate fresh.
1256 				 * (note that we have to leave (big) intact
1257 				 * in case the slaballoc fails).
1258 				 */
1259 				*bigp = big->next;
1260 				bigalloc_unlock(ptr);
1261 				if ((nptr = _slaballoc(size, 0)) == NULL) {
1262 					/* Relink block */
1263 					bigp = bigalloc_lock(ptr);
1264 					big->next = *bigp;
1265 					*bigp = big;
1266 					bigalloc_unlock(ptr);
1267 					return(NULL);
1268 				}
1269 				if (size > bigbytes)
1270 					size = bigbytes;
1271 				bcopy(ptr, nptr, size);
1272 				atomic_add_long(&excess_alloc, big->active -
1273 							       big->bytes);
1274 				_slabfree(ptr, FASTSLABREALLOC, &big);
1275 
1276 				return(nptr);
1277 			}
1278 			bigp = &big->next;
1279 		}
1280 		bigalloc_unlock(ptr);
1281 		handle_excess_big();
1282 	}
1283 
1284 	/*
1285 	 * Get the original allocation's zone.  If the new request winds
1286 	 * up using the same chunk size we do not have to do anything.
1287 	 *
1288 	 * NOTE: We don't have to lock the globaldata here, the fields we
1289 	 * access here will not change at least as long as we have control
1290 	 * over the allocation.
1291 	 */
1292 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1293 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1294 
1295 	/*
1296 	 * Use zoneindex() to chunk-align the new size, as long as the
1297 	 * new size is not too large.
1298 	 */
1299 	if (size < ZoneLimit) {
1300 		zoneindex(&size, &chunking);
1301 		if (z->z_ChunkSize == size) {
1302 			return(ptr);
1303 		}
1304 	}
1305 
1306 	/*
1307 	 * Allocate memory for the new request size and copy as appropriate.
1308 	 */
1309 	if ((nptr = _slaballoc(size, 0)) != NULL) {
1310 		if (size > z->z_ChunkSize)
1311 			size = z->z_ChunkSize;
1312 		bcopy(ptr, nptr, size);
1313 		_slabfree(ptr, 0, NULL);
1314 	}
1315 
1316 	return(nptr);
1317 }
1318 
1319 /*
1320  * free (SLAB ALLOCATOR)
1321  *
1322  * Free a memory block previously allocated by malloc.  Note that we do not
1323  * attempt to uplodate ks_loosememuse as MP races could prevent us from
1324  * checking memory limits in malloc.
1325  *
1326  * flags:
1327  *	FASTSLABREALLOC		Fast call from realloc, *rbigp already
1328  *				unlinked.
1329  *
1330  * MPSAFE
1331  */
1332 static void
1333 _slabfree(void *ptr, int flags, bigalloc_t *rbigp)
1334 {
1335 	slzone_t z;
1336 	slchunk_t chunk;
1337 	bigalloc_t big;
1338 	bigalloc_t *bigp;
1339 	slglobaldata_t slgd;
1340 	size_t size;
1341 	int zi;
1342 	int pgno;
1343 
1344 	/* Fast realloc path for big allocations */
1345 	if (flags & FASTSLABREALLOC) {
1346 		big = *rbigp;
1347 		goto fastslabrealloc;
1348 	}
1349 
1350 	/*
1351 	 * Handle NULL frees and special 0-byte allocations
1352 	 */
1353 	if (ptr == NULL)
1354 		return;
1355 
1356 	/*
1357 	 * Handle oversized allocations.
1358 	 */
1359 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1360 		while ((big = *bigp) != NULL) {
1361 			if (big->base == ptr) {
1362 				*bigp = big->next;
1363 				atomic_add_long(&excess_alloc, big->active -
1364 							       big->bytes);
1365 				bigalloc_unlock(ptr);
1366 
1367 				/*
1368 				 * Try to stash the block we are freeing,
1369 				 * potentially receiving another block in
1370 				 * return which must be freed.
1371 				 */
1372 fastslabrealloc:
1373 				if (big->bytes <= BIGCACHE_LIMIT) {
1374 					big = bigcache_find_free(big);
1375 					if (big == NULL)
1376 						return;
1377 				}
1378 				ptr = big->base;	/* reload */
1379 				size = big->bytes;
1380 				_slabfree(big, 0, NULL);
1381 				_vmem_free(ptr, size);
1382 				return;
1383 			}
1384 			bigp = &big->next;
1385 		}
1386 		bigalloc_unlock(ptr);
1387 		handle_excess_big();
1388 	}
1389 
1390 	/*
1391 	 * Zone case.  Figure out the zone based on the fact that it is
1392 	 * ZoneSize aligned.
1393 	 */
1394 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1395 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1396 
1397 	size = z->z_ChunkSize;
1398 	zi = z->z_ZoneIndex;
1399 
1400 	if (g_malloc_flags & SAFLAG_ZERO)
1401 		bzero(ptr, size);
1402 
1403 	if (mtmagazine_free(zi, ptr) == 0)
1404 		return;
1405 
1406 	pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
1407 	chunk = ptr;
1408 	slgd = &SLGlobalData;
1409 	slgd_lock(slgd);
1410 
1411 	/*
1412 	 * Add this free non-zero'd chunk to a linked list for reuse, adjust
1413 	 * z_FirstFreePg.
1414 	 */
1415 	chunk->c_Next = z->z_PageAry[pgno];
1416 	z->z_PageAry[pgno] = chunk;
1417 	if (z->z_FirstFreePg > pgno)
1418 		z->z_FirstFreePg = pgno;
1419 
1420 	/*
1421 	 * Bump the number of free chunks.  If it becomes non-zero the zone
1422 	 * must be added back onto the appropriate list.
1423 	 */
1424 	if (z->z_NFree++ == 0) {
1425 		z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1426 		slgd->ZoneAry[z->z_ZoneIndex] = z;
1427 	}
1428 
1429 	/*
1430 	 * If the zone becomes totally free then release it.
1431 	 */
1432 	if (z->z_NFree == z->z_NMax) {
1433 		slzone_t *pz;
1434 
1435 		pz = &slgd->ZoneAry[z->z_ZoneIndex];
1436 		while (z != *pz)
1437 			pz = &(*pz)->z_Next;
1438 		*pz = z->z_Next;
1439 		z->z_Magic = -1;
1440 		z->z_Next = NULL;
1441 		zone_free(z);
1442 		/* slgd lock released */
1443 		return;
1444 	}
1445 	slgd_unlock(slgd);
1446 }
1447 
1448 /*
1449  * Allocate and return a magazine.  NULL is returned and *burst is adjusted
1450  * if the magazine is empty.
1451  */
1452 static __inline void *
1453 magazine_alloc(struct magazine *mp, int *burst)
1454 {
1455 	void *obj;
1456 
1457 	if (mp == NULL)
1458 		return(NULL);
1459 	if (MAGAZINE_NOTEMPTY(mp)) {
1460 		obj = mp->objects[--mp->rounds];
1461 		return(obj);
1462 	}
1463 
1464 	/*
1465 	 * Return burst factor to caller along with NULL
1466 	 */
1467 	if ((mp->flags & M_BURST) && (burst != NULL)) {
1468 		*burst = mp->burst_factor;
1469 	}
1470 	/* Reduce burst factor by NSCALE; if it hits 1, disable BURST */
1471 	if ((mp->flags & M_BURST) && (mp->flags & M_BURST_EARLY) &&
1472 	    (burst != NULL)) {
1473 		mp->burst_factor -= M_BURST_NSCALE;
1474 		if (mp->burst_factor <= 1) {
1475 			mp->burst_factor = 1;
1476 			mp->flags &= ~(M_BURST);
1477 			mp->flags &= ~(M_BURST_EARLY);
1478 		}
1479 	}
1480 	return (NULL);
1481 }
1482 
1483 static __inline int
1484 magazine_free(struct magazine *mp, void *p)
1485 {
1486 	if (mp != NULL && MAGAZINE_NOTFULL(mp)) {
1487 		mp->objects[mp->rounds++] = p;
1488 		return 0;
1489 	}
1490 
1491 	return -1;
1492 }
1493 
1494 static void *
1495 mtmagazine_alloc(int zi)
1496 {
1497 	thr_mags *tp;
1498 	struct magazine *mp, *emptymag;
1499 	magazine_depot *d;
1500 	void *obj;
1501 
1502 	/*
1503 	 * Do not try to access per-thread magazines while the mtmagazine
1504 	 * is being initialized or destroyed.
1505 	 */
1506 	tp = &thread_mags;
1507 	if (tp->init < 0)
1508 		return(NULL);
1509 
1510 	/*
1511 	 * Primary per-thread allocation loop
1512 	 */
1513 	for (;;) {
1514 		/*
1515 		 * If the loaded magazine has rounds, allocate and return
1516 		 */
1517 		mp = tp->mags[zi].loaded;
1518 		obj = magazine_alloc(mp, NULL);
1519 		if (obj)
1520 			break;
1521 
1522 		/*
1523 		 * If the prev magazine is full, swap with the loaded
1524 		 * magazine and retry.
1525 		 */
1526 		mp = tp->mags[zi].prev;
1527 		if (mp && MAGAZINE_FULL(mp)) {
1528 			MASSERT(mp->rounds != 0);
1529 			swap_mags(&tp->mags[zi]);	/* prev now empty */
1530 			continue;
1531 		}
1532 
1533 		/*
1534 		 * Try to get a full magazine from the depot.  Cycle
1535 		 * through depot(full)->loaded->prev->depot(empty).
1536 		 * Retry if a full magazine was available from the depot.
1537 		 *
1538 		 * Return NULL (caller will fall through) if no magazines
1539 		 * can be found anywhere.
1540 		 */
1541 		d = &depots[zi];
1542 		depot_lock(d);
1543 		emptymag = tp->mags[zi].prev;
1544 		if (emptymag)
1545 			SLIST_INSERT_HEAD(&d->empty, emptymag, nextmagazine);
1546 		tp->mags[zi].prev = tp->mags[zi].loaded;
1547 		mp = SLIST_FIRST(&d->full);	/* loaded magazine */
1548 		tp->mags[zi].loaded = mp;
1549 		if (mp) {
1550 			SLIST_REMOVE_HEAD(&d->full, nextmagazine);
1551 			MASSERT(MAGAZINE_NOTEMPTY(mp));
1552 			depot_unlock(d);
1553 			continue;
1554 		}
1555 		depot_unlock(d);
1556 		break;
1557 	}
1558 
1559 	return (obj);
1560 }
1561 
1562 static int
1563 mtmagazine_free(int zi, void *ptr)
1564 {
1565 	thr_mags *tp;
1566 	struct magazine *mp, *loadedmag;
1567 	magazine_depot *d;
1568 	int rc = -1;
1569 
1570 	/*
1571 	 * Do not try to access per-thread magazines while the mtmagazine
1572 	 * is being initialized or destroyed.
1573 	 */
1574 	tp = &thread_mags;
1575 	if (tp->init < 0)
1576 		return(-1);
1577 
1578 	/*
1579 	 * Primary per-thread freeing loop
1580 	 */
1581 	for (;;) {
1582 		/*
1583 		 * Make sure a new magazine is available in case we have
1584 		 * to use it.  Staging the newmag allows us to avoid
1585 		 * some locking/reentrancy complexity.
1586 		 *
1587 		 * Temporarily disable the per-thread caches for this
1588 		 * allocation to avoid reentrancy and/or to avoid a
1589 		 * stack overflow if the [zi] happens to be the same that
1590 		 * would be used to allocate the new magazine.
1591 		 */
1592 		if (tp->newmag == NULL) {
1593 			tp->init = -1;
1594 			tp->newmag = _slaballoc(sizeof(struct magazine),
1595 						SAFLAG_ZERO);
1596 			tp->init = 1;
1597 			if (tp->newmag == NULL) {
1598 				rc = -1;
1599 				break;
1600 			}
1601 		}
1602 
1603 		/*
1604 		 * If the loaded magazine has space, free directly to it
1605 		 */
1606 		rc = magazine_free(tp->mags[zi].loaded, ptr);
1607 		if (rc == 0)
1608 			break;
1609 
1610 		/*
1611 		 * If the prev magazine is empty, swap with the loaded
1612 		 * magazine and retry.
1613 		 */
1614 		mp = tp->mags[zi].prev;
1615 		if (mp && MAGAZINE_EMPTY(mp)) {
1616 			MASSERT(mp->rounds == 0);
1617 			swap_mags(&tp->mags[zi]);	/* prev now full */
1618 			continue;
1619 		}
1620 
1621 		/*
1622 		 * Try to get an empty magazine from the depot.  Cycle
1623 		 * through depot(empty)->loaded->prev->depot(full).
1624 		 * Retry if an empty magazine was available from the depot.
1625 		 */
1626 		d = &depots[zi];
1627 		depot_lock(d);
1628 
1629 		if ((loadedmag = tp->mags[zi].prev) != NULL)
1630 			SLIST_INSERT_HEAD(&d->full, loadedmag, nextmagazine);
1631 		tp->mags[zi].prev = tp->mags[zi].loaded;
1632 		mp = SLIST_FIRST(&d->empty);
1633 		if (mp) {
1634 			tp->mags[zi].loaded = mp;
1635 			SLIST_REMOVE_HEAD(&d->empty, nextmagazine);
1636 			MASSERT(MAGAZINE_NOTFULL(mp));
1637 		} else {
1638 			mp = tp->newmag;
1639 			tp->newmag = NULL;
1640 			mp->capacity = M_MAX_ROUNDS;
1641 			mp->rounds = 0;
1642 			mp->flags = 0;
1643 			tp->mags[zi].loaded = mp;
1644 		}
1645 		depot_unlock(d);
1646 	}
1647 
1648 	return rc;
1649 }
1650 
1651 static void
1652 mtmagazine_init(void)
1653 {
1654 	int error;
1655 
1656 	error = pthread_key_create(&thread_mags_key, mtmagazine_destructor);
1657 	if (error)
1658 		abort();
1659 }
1660 
1661 /*
1662  * This function is only used by the thread exit destructor
1663  */
1664 static void
1665 mtmagazine_drain(struct magazine *mp)
1666 {
1667 	void *obj;
1668 
1669 	while (MAGAZINE_NOTEMPTY(mp)) {
1670 		obj = magazine_alloc(mp, NULL);
1671 		_slabfree(obj, 0, NULL);
1672 	}
1673 }
1674 
1675 /*
1676  * mtmagazine_destructor()
1677  *
1678  * When a thread exits, we reclaim all its resources; all its magazines are
1679  * drained and the structures are freed.
1680  *
1681  * WARNING!  The destructor can be called multiple times if the larger user
1682  *	     program has its own destructors which run after ours which
1683  *	     allocate or free memory.
1684  */
1685 static void
1686 mtmagazine_destructor(void *thrp)
1687 {
1688 	thr_mags *tp = thrp;
1689 	struct magazine *mp;
1690 	int i;
1691 
1692 	/*
1693 	 * Prevent further use of mtmagazines while we are destructing
1694 	 * them, as well as for any destructors which are run after us
1695 	 * prior to the thread actually being destroyed.
1696 	 */
1697 	tp->init = -1;
1698 
1699 	for (i = 0; i < NZONES; i++) {
1700 		mp = tp->mags[i].loaded;
1701 		tp->mags[i].loaded = NULL;
1702 		if (mp) {
1703 			if (MAGAZINE_NOTEMPTY(mp))
1704 				mtmagazine_drain(mp);
1705 			_slabfree(mp, 0, NULL);
1706 		}
1707 
1708 		mp = tp->mags[i].prev;
1709 		tp->mags[i].prev = NULL;
1710 		if (mp) {
1711 			if (MAGAZINE_NOTEMPTY(mp))
1712 				mtmagazine_drain(mp);
1713 			_slabfree(mp, 0, NULL);
1714 		}
1715 	}
1716 
1717 	if (tp->newmag) {
1718 		mp = tp->newmag;
1719 		tp->newmag = NULL;
1720 		_slabfree(mp, 0, NULL);
1721 	}
1722 }
1723 
1724 /*
1725  * zone_alloc()
1726  *
1727  * Attempt to allocate a zone from the zone magazine; the zone magazine has
1728  * M_BURST_EARLY enabled, so honor the burst request from the magazine.
1729  */
1730 static slzone_t
1731 zone_alloc(int flags)
1732 {
1733 	slglobaldata_t slgd = &SLGlobalData;
1734 	int burst = 1;
1735 	int i, j;
1736 	slzone_t z;
1737 
1738 	zone_magazine_lock();
1739 	slgd_unlock(slgd);
1740 
1741 	z = magazine_alloc(&zone_magazine, &burst);
1742 	if (z == NULL && burst == 1) {
1743 		zone_magazine_unlock();
1744 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1745 	} else if (z == NULL) {
1746 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1747 		if (z) {
1748 			for (i = 1; i < burst; i++) {
1749 				j = magazine_free(&zone_magazine,
1750 						  (char *) z + (ZoneSize * i));
1751 				MASSERT(j == 0);
1752 			}
1753 		}
1754 		zone_magazine_unlock();
1755 	} else {
1756 		z->z_Flags |= SLZF_UNOTZEROD;
1757 		zone_magazine_unlock();
1758 	}
1759 	slgd_lock(slgd);
1760 	return z;
1761 }
1762 
1763 /*
1764  * zone_free()
1765  *
1766  * Release a zone and unlock the slgd lock.
1767  */
1768 static void
1769 zone_free(void *z)
1770 {
1771 	slglobaldata_t slgd = &SLGlobalData;
1772 	void *excess[M_ZONE_ROUNDS - M_LOW_ROUNDS] = {};
1773 	int i, j;
1774 
1775 	zone_magazine_lock();
1776 	slgd_unlock(slgd);
1777 
1778 	bzero(z, sizeof(struct slzone));
1779 
1780 	if (opt_madvise)
1781 		madvise(z, ZoneSize, MADV_FREE);
1782 
1783 	i = magazine_free(&zone_magazine, z);
1784 
1785 	/*
1786 	 * If we failed to free, collect excess magazines; release the zone
1787 	 * magazine lock, and then free to the system via _vmem_free. Re-enable
1788 	 * BURST mode for the magazine.
1789 	 */
1790 	if (i == -1) {
1791 		j = zone_magazine.rounds - zone_magazine.low_factor;
1792 		for (i = 0; i < j; i++) {
1793 			excess[i] = magazine_alloc(&zone_magazine, NULL);
1794 			MASSERT(excess[i] !=  NULL);
1795 		}
1796 
1797 		zone_magazine_unlock();
1798 
1799 		for (i = 0; i < j; i++)
1800 			_vmem_free(excess[i], ZoneSize);
1801 
1802 		_vmem_free(z, ZoneSize);
1803 	} else {
1804 		zone_magazine_unlock();
1805 	}
1806 }
1807 
1808 /*
1809  * _vmem_alloc()
1810  *
1811  *	Directly map memory in PAGE_SIZE'd chunks with the specified
1812  *	alignment.
1813  *
1814  *	Alignment must be a multiple of PAGE_SIZE.
1815  *
1816  *	Size must be >= alignment.
1817  */
1818 static void *
1819 _vmem_alloc(size_t size, size_t align, int flags)
1820 {
1821 	char *addr;
1822 	char *save;
1823 	size_t excess;
1824 
1825 	/*
1826 	 * Map anonymous private memory.
1827 	 */
1828 	addr = mmap(NULL, size, PROT_READ|PROT_WRITE,
1829 		    MAP_PRIVATE|MAP_ANON, -1, 0);
1830 	if (addr == MAP_FAILED)
1831 		return(NULL);
1832 
1833 	/*
1834 	 * Check alignment.  The misaligned offset is also the excess
1835 	 * amount.  If misaligned unmap the excess so we have a chance of
1836 	 * mapping at the next alignment point and recursively try again.
1837 	 *
1838 	 * BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB	block alignment
1839 	 *   aaaaaaaaa aaaaaaaaaaa aa		mis-aligned allocation
1840 	 *   xxxxxxxxx				final excess calculation
1841 	 *   ^ returned address
1842 	 */
1843 	excess = (uintptr_t)addr & (align - 1);
1844 
1845 	if (excess) {
1846 		excess = align - excess;
1847 		save = addr;
1848 
1849 		munmap(save + excess, size - excess);
1850 		addr = _vmem_alloc(size, align, flags);
1851 		munmap(save, excess);
1852 	}
1853 	return((void *)addr);
1854 }
1855 
1856 /*
1857  * _vmem_free()
1858  *
1859  *	Free a chunk of memory allocated with _vmem_alloc()
1860  */
1861 static void
1862 _vmem_free(void *ptr, size_t size)
1863 {
1864 	munmap(ptr, size);
1865 }
1866 
1867 /*
1868  * Panic on fatal conditions
1869  */
1870 static void
1871 _mpanic(const char *ctl, ...)
1872 {
1873 	va_list va;
1874 
1875 	if (malloc_panic == 0) {
1876 		malloc_panic = 1;
1877 		va_start(va, ctl);
1878 		vfprintf(stderr, ctl, va);
1879 		fprintf(stderr, "\n");
1880 		fflush(stderr);
1881 		va_end(va);
1882 	}
1883 	abort();
1884 }
1885 
1886 __weak_reference(__malloc, malloc);
1887 __weak_reference(__calloc, calloc);
1888 __weak_reference(__posix_memalign, posix_memalign);
1889 __weak_reference(__realloc, realloc);
1890 __weak_reference(__free, free);
1891