xref: /dragonfly/lib/libc/stdlib/nmalloc.c (revision 59a92d18)
1 /*
2  * NMALLOC.C	- New Malloc (ported from kernel slab allocator)
3  *
4  * Copyright (c) 2003,2004,2009,2010 The DragonFly Project. All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com> and by
8  * Venkatesh Srinivas <me@endeavour.zapto.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $Id: nmalloc.c,v 1.37 2010/07/23 08:20:35 vsrinivas Exp $
38  */
39 /*
40  * This module implements a slab allocator drop-in replacement for the
41  * libc malloc().
42  *
43  * A slab allocator reserves a ZONE for each chunk size, then lays the
44  * chunks out in an array within the zone.  Allocation and deallocation
45  * is nearly instantaneous, and overhead losses are limited to a fixed
46  * worst-case amount.
47  *
48  * The slab allocator does not have to pre-initialize the list of
49  * free chunks for each zone, and the underlying VM will not be
50  * touched at all beyond the zone header until an actual allocation
51  * needs it.
52  *
53  * Slab management and locking is done on a per-zone basis.
54  *
55  *	Alloc Size	Chunking        Number of zones
56  *	0-127		8		16
57  *	128-255		16		8
58  *	256-511		32		8
59  *	512-1023	64		8
60  *	1024-2047	128		8
61  *	2048-4095	256		8
62  *	4096-8191	512		8
63  *	8192-16383	1024		8
64  *	16384-32767	2048		8
65  *
66  *	Allocations >= ZoneLimit (16K) go directly to mmap and a hash table
67  *	is used to locate for free.  One and Two-page allocations use the
68  *	zone mechanic to avoid excessive mmap()/munmap() calls.
69  *
70  *			   API FEATURES AND SIDE EFFECTS
71  *
72  *    + power-of-2 sized allocations up to a page will be power-of-2 aligned.
73  *	Above that power-of-2 sized allocations are page-aligned.  Non
74  *	power-of-2 sized allocations are aligned the same as the chunk
75  *	size for their zone.
76  *    + malloc(0) returns a special non-NULL value
77  *    + ability to allocate arbitrarily large chunks of memory
78  *    + realloc will reuse the passed pointer if possible, within the
79  *	limitations of the zone chunking.
80  *
81  * Multithreaded enhancements for small allocations introduced August 2010.
82  * These are in the spirit of 'libumem'. See:
83  *	Bonwick, J.; Adams, J. (2001). "Magazines and Vmem: Extending the
84  *	slab allocator to many CPUs and arbitrary resources". In Proc. 2001
85  * 	USENIX Technical Conference. USENIX Association.
86  *
87  * TUNING
88  *
89  * The value of the environment variable MALLOC_OPTIONS is a character string
90  * containing various flags to tune nmalloc.
91  *
92  * 'U'   / ['u']	Generate / do not generate utrace entries for ktrace(1)
93  *			This will generate utrace events for all malloc,
94  *			realloc, and free calls. There are tools (mtrplay) to
95  *			replay and allocation pattern or to graph heap structure
96  *			(mtrgraph) which can interpret these logs.
97  * 'Z'   / ['z']	Zero out / do not zero all allocations.
98  *			Each new byte of memory allocated by malloc, realloc, or
99  *			reallocf will be initialized to 0. This is intended for
100  *			debugging and will affect performance negatively.
101  * 'H'	/  ['h']	Pass a hint to the kernel about pages unused by the
102  *			allocation functions.
103  */
104 
105 /* cc -shared -fPIC -g -O -I/usr/src/lib/libc/include -o nmalloc.so nmalloc.c */
106 
107 #include "libc_private.h"
108 
109 #include <sys/param.h>
110 #include <sys/types.h>
111 #include <sys/mman.h>
112 #include <sys/queue.h>
113 #include <sys/uio.h>
114 #include <sys/ktrace.h>
115 #include <stdio.h>
116 #include <stdint.h>
117 #include <stdlib.h>
118 #include <stdarg.h>
119 #include <stddef.h>
120 #include <unistd.h>
121 #include <string.h>
122 #include <fcntl.h>
123 #include <errno.h>
124 #include <pthread.h>
125 
126 #include "spinlock.h"
127 #include "un-namespace.h"
128 
129 /*
130  * Linked list of large allocations
131  */
132 typedef struct bigalloc {
133 	struct bigalloc *next;	/* hash link */
134 	void	*base;		/* base pointer */
135 	u_long	bytes;		/* bytes allocated */
136 } *bigalloc_t;
137 
138 /*
139  * Note that any allocations which are exact multiples of PAGE_SIZE, or
140  * which are >= ZALLOC_ZONE_LIMIT, will fall through to the kmem subsystem.
141  */
142 #define ZALLOC_ZONE_LIMIT	(16 * 1024)	/* max slab-managed alloc */
143 #define ZALLOC_MIN_ZONE_SIZE	(32 * 1024)	/* minimum zone size */
144 #define ZALLOC_MAX_ZONE_SIZE	(128 * 1024)	/* maximum zone size */
145 #define ZALLOC_ZONE_SIZE	(64 * 1024)
146 #define ZALLOC_SLAB_MAGIC	0x736c6162	/* magic sanity */
147 #define ZALLOC_SLAB_SLIDE	20		/* L1-cache skip */
148 
149 #if ZALLOC_ZONE_LIMIT == 16384
150 #define NZONES			72
151 #elif ZALLOC_ZONE_LIMIT == 32768
152 #define NZONES			80
153 #else
154 #error "I couldn't figure out NZONES"
155 #endif
156 
157 /*
158  * Chunk structure for free elements
159  */
160 typedef struct slchunk {
161 	struct slchunk *c_Next;
162 } *slchunk_t;
163 
164 /*
165  * The IN-BAND zone header is placed at the beginning of each zone.
166  */
167 struct slglobaldata;
168 
169 typedef struct slzone {
170 	int32_t		z_Magic;	/* magic number for sanity check */
171 	int		z_NFree;	/* total free chunks / ualloc space */
172 	struct slzone *z_Next;		/* ZoneAry[] link if z_NFree non-zero */
173 	int		z_NMax;		/* maximum free chunks */
174 	char		*z_BasePtr;	/* pointer to start of chunk array */
175 	int		z_UIndex;	/* current initial allocation index */
176 	int		z_UEndIndex;	/* last (first) allocation index */
177 	int		z_ChunkSize;	/* chunk size for validation */
178 	int		z_FirstFreePg;	/* chunk list on a page-by-page basis */
179 	int		z_ZoneIndex;
180 	int		z_Flags;
181 	struct slchunk *z_PageAry[ZALLOC_ZONE_SIZE / PAGE_SIZE];
182 #if defined(INVARIANTS)
183 	__uint32_t	z_Bitmap[];	/* bitmap of free chunks / sanity */
184 #endif
185 } *slzone_t;
186 
187 typedef struct slglobaldata {
188 	spinlock_t	Spinlock;
189 	slzone_t	ZoneAry[NZONES];/* linked list of zones NFree > 0 */
190 	int		JunkIndex;
191 } *slglobaldata_t;
192 
193 #define SLZF_UNOTZEROD		0x0001
194 
195 #define FASTSLABREALLOC		0x02
196 
197 /*
198  * Misc constants.  Note that allocations that are exact multiples of
199  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
200  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
201  */
202 #define MIN_CHUNK_SIZE		8		/* in bytes */
203 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
204 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
205 
206 /*
207  * The WEIRD_ADDR is used as known text to copy into free objects to
208  * try to create deterministic failure cases if the data is accessed after
209  * free.
210  *
211  * WARNING: A limited number of spinlocks are available, BIGXSIZE should
212  *	    not be larger then 64.
213  */
214 #define WEIRD_ADDR      0xdeadc0de
215 #define MAX_COPY        sizeof(weirdary)
216 #define ZERO_LENGTH_PTR	((void *)&malloc_dummy_pointer)
217 
218 #define BIGHSHIFT	10			/* bigalloc hash table */
219 #define BIGHSIZE	(1 << BIGHSHIFT)
220 #define BIGHMASK	(BIGHSIZE - 1)
221 #define BIGXSIZE	(BIGHSIZE / 16)		/* bigalloc lock table */
222 #define BIGXMASK	(BIGXSIZE - 1)
223 
224 #define SAFLAG_ZERO	0x0001
225 #define SAFLAG_PASSIVE	0x0002
226 
227 /*
228  * Thread control
229  */
230 
231 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
232 
233 #define MASSERT(exp)	do { if (__predict_false(!(exp)))	\
234 				_mpanic("assertion: %s in %s",	\
235 				#exp, __func__);		\
236 			    } while (0)
237 
238 /*
239  * Magazines
240  */
241 
242 #define M_MAX_ROUNDS	64
243 #define M_ZONE_ROUNDS	64
244 #define M_LOW_ROUNDS	32
245 #define M_INIT_ROUNDS	8
246 #define M_BURST_FACTOR  8
247 #define M_BURST_NSCALE	2
248 
249 #define M_BURST		0x0001
250 #define M_BURST_EARLY	0x0002
251 
252 struct magazine {
253 	SLIST_ENTRY(magazine) nextmagazine;
254 
255 	int		flags;
256 	int 		capacity;	/* Max rounds in this magazine */
257 	int 		rounds;		/* Current number of free rounds */
258 	int		burst_factor;	/* Number of blocks to prefill with */
259 	int 		low_factor;	/* Free till low_factor from full mag */
260 	void		*objects[M_MAX_ROUNDS];
261 };
262 
263 SLIST_HEAD(magazinelist, magazine);
264 
265 static spinlock_t zone_mag_lock;
266 static struct magazine zone_magazine = {
267 	.flags = M_BURST | M_BURST_EARLY,
268 	.capacity = M_ZONE_ROUNDS,
269 	.rounds = 0,
270 	.burst_factor = M_BURST_FACTOR,
271 	.low_factor = M_LOW_ROUNDS
272 };
273 
274 #define MAGAZINE_FULL(mp)	(mp->rounds == mp->capacity)
275 #define MAGAZINE_NOTFULL(mp)	(mp->rounds < mp->capacity)
276 #define MAGAZINE_EMPTY(mp)	(mp->rounds == 0)
277 #define MAGAZINE_NOTEMPTY(mp)	(mp->rounds != 0)
278 
279 /* Each thread will have a pair of magazines per size-class (NZONES)
280  * The loaded magazine will support immediate allocations, the previous
281  * magazine will either be full or empty and can be swapped at need */
282 typedef struct magazine_pair {
283 	struct magazine	*loaded;
284 	struct magazine	*prev;
285 } magazine_pair;
286 
287 /* A depot is a collection of magazines for a single zone. */
288 typedef struct magazine_depot {
289 	struct magazinelist full;
290 	struct magazinelist empty;
291 	spinlock_t	lock;
292 } magazine_depot;
293 
294 typedef struct thr_mags {
295 	magazine_pair	mags[NZONES];
296 	struct magazine	*newmag;
297 	int		init;
298 } thr_mags;
299 
300 /* With this attribute set, do not require a function call for accessing
301  * this variable when the code is compiled -fPIC */
302 #define TLS_ATTRIBUTE __attribute__ ((tls_model ("initial-exec")));
303 
304 static int mtmagazine_free_live;
305 static __thread thr_mags thread_mags TLS_ATTRIBUTE;
306 static pthread_key_t thread_mags_key;
307 static pthread_once_t thread_mags_once = PTHREAD_ONCE_INIT;
308 static magazine_depot depots[NZONES];
309 
310 /*
311  * Fixed globals (not per-cpu)
312  */
313 static const int ZoneSize = ZALLOC_ZONE_SIZE;
314 static const int ZoneLimit = ZALLOC_ZONE_LIMIT;
315 static const int ZonePageCount = ZALLOC_ZONE_SIZE / PAGE_SIZE;
316 static const int ZoneMask = ZALLOC_ZONE_SIZE - 1;
317 
318 static int opt_madvise = 0;
319 static int opt_utrace = 0;
320 static int g_malloc_flags = 0;
321 static struct slglobaldata	SLGlobalData;
322 static bigalloc_t bigalloc_array[BIGHSIZE];
323 static spinlock_t bigspin_array[BIGXSIZE];
324 static int malloc_panic;
325 static int malloc_dummy_pointer;
326 
327 static const int32_t weirdary[16] = {
328 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
329 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
330 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
331 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR
332 };
333 
334 static void *_slaballoc(size_t size, int flags);
335 static void *_slabrealloc(void *ptr, size_t size);
336 static void _slabfree(void *ptr, int, bigalloc_t *);
337 static void *_vmem_alloc(size_t bytes, size_t align, int flags);
338 static void _vmem_free(void *ptr, size_t bytes);
339 static void *magazine_alloc(struct magazine *, int *);
340 static int magazine_free(struct magazine *, void *);
341 static void *mtmagazine_alloc(int zi);
342 static int mtmagazine_free(int zi, void *);
343 static void mtmagazine_init(void);
344 static void mtmagazine_destructor(void *);
345 static slzone_t zone_alloc(int flags);
346 static void zone_free(void *z);
347 static void _mpanic(const char *ctl, ...);
348 static void malloc_init(void) __constructor(0);
349 #if defined(INVARIANTS)
350 static void chunk_mark_allocated(slzone_t z, void *chunk);
351 static void chunk_mark_free(slzone_t z, void *chunk);
352 #endif
353 
354 struct nmalloc_utrace {
355 	void *p;
356 	size_t s;
357 	void *r;
358 };
359 
360 #define UTRACE(a, b, c)						\
361 	if (opt_utrace) {					\
362 		struct nmalloc_utrace ut = {			\
363 			.p = (a),				\
364 			.s = (b),				\
365 			.r = (c)				\
366 		};						\
367 		utrace(&ut, sizeof(ut));			\
368 	}
369 
370 #ifdef INVARIANTS
371 /*
372  * If enabled any memory allocated without M_ZERO is initialized to -1.
373  */
374 static int  use_malloc_pattern;
375 #endif
376 
377 static void
378 malloc_init(void)
379 {
380 	const char *p = NULL;
381 
382 	if (issetugid() == 0)
383 		p = getenv("MALLOC_OPTIONS");
384 
385 	for (; p != NULL && *p != '\0'; p++) {
386 		switch(*p) {
387 		case 'u':	opt_utrace = 0; break;
388 		case 'U':	opt_utrace = 1; break;
389 		case 'h':	opt_madvise = 0; break;
390 		case 'H':	opt_madvise = 1; break;
391 		case 'z':	g_malloc_flags = 0; break;
392 		case 'Z': 	g_malloc_flags = SAFLAG_ZERO; break;
393 		default:
394 			break;
395 		}
396 	}
397 
398 	UTRACE((void *) -1, 0, NULL);
399 }
400 
401 /*
402  * We have to install a handler for nmalloc thread teardowns when
403  * the thread is created.  We cannot delay this because destructors in
404  * sophisticated userland programs can call malloc() for the first time
405  * during their thread exit.
406  *
407  * This routine is called directly from pthreads.
408  */
409 void
410 _nmalloc_thr_init(void)
411 {
412 	thr_mags *tp;
413 
414 	/*
415 	 * Disallow mtmagazine operations until the mtmagazine is
416 	 * initialized.
417 	 */
418 	tp = &thread_mags;
419 	tp->init = -1;
420 
421 	pthread_setspecific(thread_mags_key, tp);
422 	if (mtmagazine_free_live == 0) {
423 		mtmagazine_free_live = 1;
424 		pthread_once(&thread_mags_once, mtmagazine_init);
425 	}
426 	tp->init = 1;
427 }
428 
429 /*
430  * Thread locks.
431  */
432 static __inline void
433 slgd_lock(slglobaldata_t slgd)
434 {
435 	if (__isthreaded)
436 		_SPINLOCK(&slgd->Spinlock);
437 }
438 
439 static __inline void
440 slgd_unlock(slglobaldata_t slgd)
441 {
442 	if (__isthreaded)
443 		_SPINUNLOCK(&slgd->Spinlock);
444 }
445 
446 static __inline void
447 depot_lock(magazine_depot *dp)
448 {
449 	if (__isthreaded)
450 		_SPINLOCK(&dp->lock);
451 }
452 
453 static __inline void
454 depot_unlock(magazine_depot *dp)
455 {
456 	if (__isthreaded)
457 		_SPINUNLOCK(&dp->lock);
458 }
459 
460 static __inline void
461 zone_magazine_lock(void)
462 {
463 	if (__isthreaded)
464 		_SPINLOCK(&zone_mag_lock);
465 }
466 
467 static __inline void
468 zone_magazine_unlock(void)
469 {
470 	if (__isthreaded)
471 		_SPINUNLOCK(&zone_mag_lock);
472 }
473 
474 static __inline void
475 swap_mags(magazine_pair *mp)
476 {
477 	struct magazine *tmp;
478 	tmp = mp->loaded;
479 	mp->loaded = mp->prev;
480 	mp->prev = tmp;
481 }
482 
483 /*
484  * bigalloc hashing and locking support.
485  *
486  * Return an unmasked hash code for the passed pointer.
487  */
488 static __inline int
489 _bigalloc_hash(void *ptr)
490 {
491 	int hv;
492 
493 	hv = ((int)(intptr_t)ptr >> PAGE_SHIFT) ^
494 	      ((int)(intptr_t)ptr >> (PAGE_SHIFT + BIGHSHIFT));
495 
496 	return(hv);
497 }
498 
499 /*
500  * Lock the hash chain and return a pointer to its base for the specified
501  * address.
502  */
503 static __inline bigalloc_t *
504 bigalloc_lock(void *ptr)
505 {
506 	int hv = _bigalloc_hash(ptr);
507 	bigalloc_t *bigp;
508 
509 	bigp = &bigalloc_array[hv & BIGHMASK];
510 	if (__isthreaded)
511 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
512 	return(bigp);
513 }
514 
515 /*
516  * Lock the hash chain and return a pointer to its base for the specified
517  * address.
518  *
519  * BUT, if the hash chain is empty, just return NULL and do not bother
520  * to lock anything.
521  */
522 static __inline bigalloc_t *
523 bigalloc_check_and_lock(void *ptr)
524 {
525 	int hv = _bigalloc_hash(ptr);
526 	bigalloc_t *bigp;
527 
528 	bigp = &bigalloc_array[hv & BIGHMASK];
529 	if (*bigp == NULL)
530 		return(NULL);
531 	if (__isthreaded) {
532 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
533 	}
534 	return(bigp);
535 }
536 
537 static __inline void
538 bigalloc_unlock(void *ptr)
539 {
540 	int hv;
541 
542 	if (__isthreaded) {
543 		hv = _bigalloc_hash(ptr);
544 		_SPINUNLOCK(&bigspin_array[hv & BIGXMASK]);
545 	}
546 }
547 
548 /*
549  * Calculate the zone index for the allocation request size and set the
550  * allocation request size to that particular zone's chunk size.
551  */
552 static __inline int
553 zoneindex(size_t *bytes, size_t *chunking)
554 {
555 	size_t n = (unsigned int)*bytes;	/* unsigned for shift opt */
556 	if (n < 128) {
557 		*bytes = n = (n + 7) & ~7;
558 		*chunking = 8;
559 		return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
560 	}
561 	if (n < 256) {
562 		*bytes = n = (n + 15) & ~15;
563 		*chunking = 16;
564 		return(n / 16 + 7);
565 	}
566 	if (n < 8192) {
567 		if (n < 512) {
568 			*bytes = n = (n + 31) & ~31;
569 			*chunking = 32;
570 			return(n / 32 + 15);
571 		}
572 		if (n < 1024) {
573 			*bytes = n = (n + 63) & ~63;
574 			*chunking = 64;
575 			return(n / 64 + 23);
576 		}
577 		if (n < 2048) {
578 			*bytes = n = (n + 127) & ~127;
579 			*chunking = 128;
580 			return(n / 128 + 31);
581 		}
582 		if (n < 4096) {
583 			*bytes = n = (n + 255) & ~255;
584 			*chunking = 256;
585 			return(n / 256 + 39);
586 		}
587 		*bytes = n = (n + 511) & ~511;
588 		*chunking = 512;
589 		return(n / 512 + 47);
590 	}
591 #if ZALLOC_ZONE_LIMIT > 8192
592 	if (n < 16384) {
593 		*bytes = n = (n + 1023) & ~1023;
594 		*chunking = 1024;
595 		return(n / 1024 + 55);
596 	}
597 #endif
598 #if ZALLOC_ZONE_LIMIT > 16384
599 	if (n < 32768) {
600 		*bytes = n = (n + 2047) & ~2047;
601 		*chunking = 2048;
602 		return(n / 2048 + 63);
603 	}
604 #endif
605 	_mpanic("Unexpected byte count %d", n);
606 	return(0);
607 }
608 
609 /*
610  * malloc() - call internal slab allocator
611  */
612 void *
613 malloc(size_t size)
614 {
615 	void *ptr;
616 
617 	ptr = _slaballoc(size, 0);
618 	if (ptr == NULL)
619 		errno = ENOMEM;
620 	else
621 		UTRACE(0, size, ptr);
622 	return(ptr);
623 }
624 
625 /*
626  * calloc() - call internal slab allocator
627  */
628 void *
629 calloc(size_t number, size_t size)
630 {
631 	void *ptr;
632 
633 	ptr = _slaballoc(number * size, SAFLAG_ZERO);
634 	if (ptr == NULL)
635 		errno = ENOMEM;
636 	else
637 		UTRACE(0, number * size, ptr);
638 	return(ptr);
639 }
640 
641 /*
642  * realloc() (SLAB ALLOCATOR)
643  *
644  * We do not attempt to optimize this routine beyond reusing the same
645  * pointer if the new size fits within the chunking of the old pointer's
646  * zone.
647  */
648 void *
649 realloc(void *ptr, size_t size)
650 {
651 	void *ret;
652 	ret = _slabrealloc(ptr, size);
653 	if (ret == NULL)
654 		errno = ENOMEM;
655 	else
656 		UTRACE(ptr, size, ret);
657 	return(ret);
658 }
659 
660 /*
661  * posix_memalign()
662  *
663  * Allocate (size) bytes with a alignment of (alignment), where (alignment)
664  * is a power of 2 >= sizeof(void *).
665  *
666  * The slab allocator will allocate on power-of-2 boundaries up to
667  * at least PAGE_SIZE.  We use the zoneindex mechanic to find a
668  * zone matching the requirements, and _vmem_alloc() otherwise.
669  */
670 int
671 posix_memalign(void **memptr, size_t alignment, size_t size)
672 {
673 	bigalloc_t *bigp;
674 	bigalloc_t big;
675 	size_t chunking;
676 	int zi;
677 
678 	/*
679 	 * OpenGroup spec issue 6 checks
680 	 */
681 	if ((alignment | (alignment - 1)) + 1 != (alignment << 1)) {
682 		*memptr = NULL;
683 		return(EINVAL);
684 	}
685 	if (alignment < sizeof(void *)) {
686 		*memptr = NULL;
687 		return(EINVAL);
688 	}
689 
690 	/*
691 	 * Our zone mechanism guarantees same-sized alignment for any
692 	 * power-of-2 allocation.  If size is a power-of-2 and reasonable
693 	 * we can just call _slaballoc() and be done.  We round size up
694 	 * to the nearest alignment boundary to improve our odds of
695 	 * it becoming a power-of-2 if it wasn't before.
696 	 */
697 	if (size <= alignment)
698 		size = alignment;
699 	else
700 		size = (size + alignment - 1) & ~(size_t)(alignment - 1);
701 	if (size < PAGE_SIZE && (size | (size - 1)) + 1 == (size << 1)) {
702 		*memptr = _slaballoc(size, 0);
703 		return(*memptr ? 0 : ENOMEM);
704 	}
705 
706 	/*
707 	 * Otherwise locate a zone with a chunking that matches
708 	 * the requested alignment, within reason.   Consider two cases:
709 	 *
710 	 * (1) A 1K allocation on a 32-byte alignment.  The first zoneindex
711 	 *     we find will be the best fit because the chunking will be
712 	 *     greater or equal to the alignment.
713 	 *
714 	 * (2) A 513 allocation on a 256-byte alignment.  In this case
715 	 *     the first zoneindex we find will be for 576 byte allocations
716 	 *     with a chunking of 64, which is not sufficient.  To fix this
717 	 *     we simply find the nearest power-of-2 >= size and use the
718 	 *     same side-effect of _slaballoc() which guarantees
719 	 *     same-alignment on a power-of-2 allocation.
720 	 */
721 	if (size < PAGE_SIZE) {
722 		zi = zoneindex(&size, &chunking);
723 		if (chunking >= alignment) {
724 			*memptr = _slaballoc(size, 0);
725 			return(*memptr ? 0 : ENOMEM);
726 		}
727 		if (size >= 1024)
728 			alignment = 1024;
729 		if (size >= 16384)
730 			alignment = 16384;
731 		while (alignment < size)
732 			alignment <<= 1;
733 		*memptr = _slaballoc(alignment, 0);
734 		return(*memptr ? 0 : ENOMEM);
735 	}
736 
737 	/*
738 	 * If the slab allocator cannot handle it use vmem_alloc().
739 	 *
740 	 * Alignment must be adjusted up to at least PAGE_SIZE in this case.
741 	 */
742 	if (alignment < PAGE_SIZE)
743 		alignment = PAGE_SIZE;
744 	if (size < alignment)
745 		size = alignment;
746 	size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
747 	*memptr = _vmem_alloc(size, alignment, 0);
748 	if (*memptr == NULL)
749 		return(ENOMEM);
750 
751 	big = _slaballoc(sizeof(struct bigalloc), 0);
752 	if (big == NULL) {
753 		_vmem_free(*memptr, size);
754 		*memptr = NULL;
755 		return(ENOMEM);
756 	}
757 	bigp = bigalloc_lock(*memptr);
758 	big->base = *memptr;
759 	big->bytes = size;
760 	big->next = *bigp;
761 	*bigp = big;
762 	bigalloc_unlock(*memptr);
763 
764 	return(0);
765 }
766 
767 /*
768  * free() (SLAB ALLOCATOR) - do the obvious
769  */
770 void
771 free(void *ptr)
772 {
773 	UTRACE(ptr, 0, 0);
774 	_slabfree(ptr, 0, NULL);
775 }
776 
777 /*
778  * _slaballoc()	(SLAB ALLOCATOR)
779  *
780  *	Allocate memory via the slab allocator.  If the request is too large,
781  *	or if it page-aligned beyond a certain size, we fall back to the
782  *	KMEM subsystem
783  */
784 static void *
785 _slaballoc(size_t size, int flags)
786 {
787 	slzone_t z;
788 	slchunk_t chunk;
789 	slglobaldata_t slgd;
790 	size_t chunking;
791 	int zi;
792 #ifdef INVARIANTS
793 	int i;
794 #endif
795 	int off;
796 	void *obj;
797 
798 	/*
799 	 * Handle the degenerate size == 0 case.  Yes, this does happen.
800 	 * Return a special pointer.  This is to maintain compatibility with
801 	 * the original malloc implementation.  Certain devices, such as the
802 	 * adaptec driver, not only allocate 0 bytes, they check for NULL and
803 	 * also realloc() later on.  Joy.
804 	 */
805 	if (size == 0)
806 		return(ZERO_LENGTH_PTR);
807 
808 	/* Capture global flags */
809 	flags |= g_malloc_flags;
810 
811 	/*
812 	 * Handle large allocations directly.  There should not be very many
813 	 * of these so performance is not a big issue.
814 	 *
815 	 * The backend allocator is pretty nasty on a SMP system.   Use the
816 	 * slab allocator for one and two page-sized chunks even though we
817 	 * lose some efficiency.
818 	 */
819 	if (size >= ZoneLimit ||
820 	    ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
821 		bigalloc_t big;
822 		bigalloc_t *bigp;
823 
824 		size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
825 		chunk = _vmem_alloc(size, PAGE_SIZE, flags);
826 		if (chunk == NULL)
827 			return(NULL);
828 
829 		big = _slaballoc(sizeof(struct bigalloc), 0);
830 		if (big == NULL) {
831 			_vmem_free(chunk, size);
832 			return(NULL);
833 		}
834 		bigp = bigalloc_lock(chunk);
835 		big->base = chunk;
836 		big->bytes = size;
837 		big->next = *bigp;
838 		*bigp = big;
839 		bigalloc_unlock(chunk);
840 
841 		return(chunk);
842 	}
843 
844 	/* Compute allocation zone; zoneindex will panic on excessive sizes */
845 	zi = zoneindex(&size, &chunking);
846 	MASSERT(zi < NZONES);
847 
848 	obj = mtmagazine_alloc(zi);
849 	if (obj != NULL) {
850 		if (flags & SAFLAG_ZERO)
851 			bzero(obj, size);
852 		return (obj);
853 	}
854 
855 	slgd = &SLGlobalData;
856 	slgd_lock(slgd);
857 
858 	/*
859 	 * Attempt to allocate out of an existing zone.  If all zones are
860 	 * exhausted pull one off the free list or allocate a new one.
861 	 */
862 	if ((z = slgd->ZoneAry[zi]) == NULL) {
863 		z = zone_alloc(flags);
864 		if (z == NULL)
865 			goto fail;
866 
867 		/*
868 		 * How big is the base structure?
869 		 */
870 #if defined(INVARIANTS)
871 		/*
872 		 * Make room for z_Bitmap.  An exact calculation is
873 		 * somewhat more complicated so don't make an exact
874 		 * calculation.
875 		 */
876 		off = offsetof(struct slzone,
877 				z_Bitmap[(ZoneSize / size + 31) / 32]);
878 		bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
879 #else
880 		off = sizeof(struct slzone);
881 #endif
882 
883 		/*
884 		 * Align the storage in the zone based on the chunking.
885 		 *
886 		 * Guarantee power-of-2 alignment for power-of-2-sized
887 		 * chunks.  Otherwise align based on the chunking size
888 		 * (typically 8 or 16 bytes for small allocations).
889 		 *
890 		 * NOTE: Allocations >= ZoneLimit are governed by the
891 		 * bigalloc code and typically only guarantee page-alignment.
892 		 *
893 		 * Set initial conditions for UIndex near the zone header
894 		 * to reduce unecessary page faults, vs semi-randomization
895 		 * to improve L1 cache saturation.
896 		 */
897 		if ((size | (size - 1)) + 1 == (size << 1))
898 			off = (off + size - 1) & ~(size - 1);
899 		else
900 			off = (off + chunking - 1) & ~(chunking - 1);
901 		z->z_Magic = ZALLOC_SLAB_MAGIC;
902 		z->z_ZoneIndex = zi;
903 		z->z_NMax = (ZoneSize - off) / size;
904 		z->z_NFree = z->z_NMax;
905 		z->z_BasePtr = (char *)z + off;
906 		z->z_UIndex = z->z_UEndIndex = 0;
907 		z->z_ChunkSize = size;
908 		z->z_FirstFreePg = ZonePageCount;
909 		z->z_Next = slgd->ZoneAry[zi];
910 		slgd->ZoneAry[zi] = z;
911 		if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
912 			flags &= ~SAFLAG_ZERO;	/* already zero'd */
913 			flags |= SAFLAG_PASSIVE;
914 		}
915 
916 		/*
917 		 * Slide the base index for initial allocations out of the
918 		 * next zone we create so we do not over-weight the lower
919 		 * part of the cpu memory caches.
920 		 */
921 		slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
922 					& (ZALLOC_MAX_ZONE_SIZE - 1);
923 	}
924 
925 	/*
926 	 * Ok, we have a zone from which at least one chunk is available.
927 	 *
928 	 * Remove us from the ZoneAry[] when we become empty
929 	 */
930 	MASSERT(z->z_NFree > 0);
931 
932 	if (--z->z_NFree == 0) {
933 		slgd->ZoneAry[zi] = z->z_Next;
934 		z->z_Next = NULL;
935 	}
936 
937 	/*
938 	 * Locate a chunk in a free page.  This attempts to localize
939 	 * reallocations into earlier pages without us having to sort
940 	 * the chunk list.  A chunk may still overlap a page boundary.
941 	 */
942 	while (z->z_FirstFreePg < ZonePageCount) {
943 		if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
944 #ifdef DIAGNOSTIC
945 			/*
946 			 * Diagnostic: c_Next is not total garbage.
947 			 */
948 			MASSERT(chunk->c_Next == NULL ||
949 			    ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
950 			    ((intptr_t)chunk & IN_SAME_PAGE_MASK));
951 #endif
952 #ifdef INVARIANTS
953 			chunk_mark_allocated(z, chunk);
954 #endif
955 			MASSERT((uintptr_t)chunk & ZoneMask);
956 			z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
957 			goto done;
958 		}
959 		++z->z_FirstFreePg;
960 	}
961 
962 	/*
963 	 * No chunks are available but NFree said we had some memory,
964 	 * so it must be available in the never-before-used-memory
965 	 * area governed by UIndex.  The consequences are very
966 	 * serious if our zone got corrupted so we use an explicit
967 	 * panic rather then a KASSERT.
968 	 */
969 	chunk = (slchunk_t)(z->z_BasePtr + z->z_UIndex * size);
970 
971 	if (++z->z_UIndex == z->z_NMax)
972 		z->z_UIndex = 0;
973 	if (z->z_UIndex == z->z_UEndIndex) {
974 		if (z->z_NFree != 0)
975 			_mpanic("slaballoc: corrupted zone");
976 	}
977 
978 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
979 		flags &= ~SAFLAG_ZERO;
980 		flags |= SAFLAG_PASSIVE;
981 	}
982 #if defined(INVARIANTS)
983 	chunk_mark_allocated(z, chunk);
984 #endif
985 
986 done:
987 	slgd_unlock(slgd);
988 	if (flags & SAFLAG_ZERO) {
989 		bzero(chunk, size);
990 #ifdef INVARIANTS
991 	} else if ((flags & (SAFLAG_ZERO|SAFLAG_PASSIVE)) == 0) {
992 		if (use_malloc_pattern) {
993 			for (i = 0; i < size; i += sizeof(int)) {
994 				*(int *)((char *)chunk + i) = -1;
995 			}
996 		}
997 		/* avoid accidental double-free check */
998 		chunk->c_Next = (void *)-1;
999 #endif
1000 	}
1001 	return(chunk);
1002 fail:
1003 	slgd_unlock(slgd);
1004 	return(NULL);
1005 }
1006 
1007 /*
1008  * Reallocate memory within the chunk
1009  */
1010 static void *
1011 _slabrealloc(void *ptr, size_t size)
1012 {
1013 	bigalloc_t *bigp;
1014 	void *nptr;
1015 	slzone_t z;
1016 	size_t chunking;
1017 
1018 	if (ptr == NULL || ptr == ZERO_LENGTH_PTR) {
1019 		return(_slaballoc(size, 0));
1020 	}
1021 
1022 	if (size == 0) {
1023 		free(ptr);
1024 		return(ZERO_LENGTH_PTR);
1025 	}
1026 
1027 	/*
1028 	 * Handle oversized allocations.
1029 	 */
1030 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1031 		bigalloc_t big;
1032 		size_t bigbytes;
1033 
1034 		while ((big = *bigp) != NULL) {
1035 			if (big->base == ptr) {
1036 				size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
1037 				bigbytes = big->bytes;
1038 				if (bigbytes == size) {
1039 					bigalloc_unlock(ptr);
1040 					return(ptr);
1041 				}
1042 				*bigp = big->next;
1043 				bigalloc_unlock(ptr);
1044 				if ((nptr = _slaballoc(size, 0)) == NULL) {
1045 					/* Relink block */
1046 					bigp = bigalloc_lock(ptr);
1047 					big->next = *bigp;
1048 					*bigp = big;
1049 					bigalloc_unlock(ptr);
1050 					return(NULL);
1051 				}
1052 				if (size > bigbytes)
1053 					size = bigbytes;
1054 				bcopy(ptr, nptr, size);
1055 				_slabfree(ptr, FASTSLABREALLOC, &big);
1056 				return(nptr);
1057 			}
1058 			bigp = &big->next;
1059 		}
1060 		bigalloc_unlock(ptr);
1061 	}
1062 
1063 	/*
1064 	 * Get the original allocation's zone.  If the new request winds
1065 	 * up using the same chunk size we do not have to do anything.
1066 	 *
1067 	 * NOTE: We don't have to lock the globaldata here, the fields we
1068 	 * access here will not change at least as long as we have control
1069 	 * over the allocation.
1070 	 */
1071 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1072 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1073 
1074 	/*
1075 	 * Use zoneindex() to chunk-align the new size, as long as the
1076 	 * new size is not too large.
1077 	 */
1078 	if (size < ZoneLimit) {
1079 		zoneindex(&size, &chunking);
1080 		if (z->z_ChunkSize == size) {
1081 			return(ptr);
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * Allocate memory for the new request size and copy as appropriate.
1087 	 */
1088 	if ((nptr = _slaballoc(size, 0)) != NULL) {
1089 		if (size > z->z_ChunkSize)
1090 			size = z->z_ChunkSize;
1091 		bcopy(ptr, nptr, size);
1092 		_slabfree(ptr, 0, NULL);
1093 	}
1094 
1095 	return(nptr);
1096 }
1097 
1098 /*
1099  * free (SLAB ALLOCATOR)
1100  *
1101  * Free a memory block previously allocated by malloc.  Note that we do not
1102  * attempt to uplodate ks_loosememuse as MP races could prevent us from
1103  * checking memory limits in malloc.
1104  *
1105  * flags:
1106  *	FASTSLABREALLOC		Fast call from realloc, *rbigp already
1107  *				unlinked.
1108  *
1109  * MPSAFE
1110  */
1111 static void
1112 _slabfree(void *ptr, int flags, bigalloc_t *rbigp)
1113 {
1114 	slzone_t z;
1115 	slchunk_t chunk;
1116 	bigalloc_t big;
1117 	bigalloc_t *bigp;
1118 	slglobaldata_t slgd;
1119 	size_t size;
1120 	int zi;
1121 	int pgno;
1122 
1123 	/* Fast realloc path for big allocations */
1124 	if (flags & FASTSLABREALLOC) {
1125 		big = *rbigp;
1126 		goto fastslabrealloc;
1127 	}
1128 
1129 	/*
1130 	 * Handle NULL frees and special 0-byte allocations
1131 	 */
1132 	if (ptr == NULL)
1133 		return;
1134 	if (ptr == ZERO_LENGTH_PTR)
1135 		return;
1136 
1137 	/*
1138 	 * Handle oversized allocations.
1139 	 */
1140 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1141 		while ((big = *bigp) != NULL) {
1142 			if (big->base == ptr) {
1143 				*bigp = big->next;
1144 				bigalloc_unlock(ptr);
1145 fastslabrealloc:
1146 				size = big->bytes;
1147 				_slabfree(big, 0, NULL);
1148 #ifdef INVARIANTS
1149 				MASSERT(sizeof(weirdary) <= size);
1150 				bcopy(weirdary, ptr, sizeof(weirdary));
1151 #endif
1152 				_vmem_free(ptr, size);
1153 				return;
1154 			}
1155 			bigp = &big->next;
1156 		}
1157 		bigalloc_unlock(ptr);
1158 	}
1159 
1160 	/*
1161 	 * Zone case.  Figure out the zone based on the fact that it is
1162 	 * ZoneSize aligned.
1163 	 */
1164 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1165 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1166 
1167 	size = z->z_ChunkSize;
1168 	zi = z->z_ZoneIndex;
1169 
1170 	if (g_malloc_flags & SAFLAG_ZERO)
1171 		bzero(ptr, size);
1172 
1173 	if (mtmagazine_free(zi, ptr) == 0)
1174 		return;
1175 
1176 	pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
1177 	chunk = ptr;
1178 	slgd = &SLGlobalData;
1179 	slgd_lock(slgd);
1180 
1181 #ifdef INVARIANTS
1182 	/*
1183 	 * Attempt to detect a double-free.  To reduce overhead we only check
1184 	 * if there appears to be link pointer at the base of the data.
1185 	 */
1186 	if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
1187 		slchunk_t scan;
1188 
1189 		for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
1190 			if (scan == chunk)
1191 				_mpanic("Double free at %p", chunk);
1192 		}
1193 	}
1194 	chunk_mark_free(z, chunk);
1195 #endif
1196 
1197 	/*
1198 	 * Put weird data into the memory to detect modifications after
1199 	 * freeing, illegal pointer use after freeing (we should fault on
1200 	 * the odd address), and so forth.
1201 	 */
1202 #ifdef INVARIANTS
1203 	if (z->z_ChunkSize < sizeof(weirdary))
1204 		bcopy(weirdary, chunk, z->z_ChunkSize);
1205 	else
1206 		bcopy(weirdary, chunk, sizeof(weirdary));
1207 #endif
1208 
1209 	/*
1210 	 * Add this free non-zero'd chunk to a linked list for reuse, adjust
1211 	 * z_FirstFreePg.
1212 	 */
1213 	chunk->c_Next = z->z_PageAry[pgno];
1214 	z->z_PageAry[pgno] = chunk;
1215 	if (z->z_FirstFreePg > pgno)
1216 		z->z_FirstFreePg = pgno;
1217 
1218 	/*
1219 	 * Bump the number of free chunks.  If it becomes non-zero the zone
1220 	 * must be added back onto the appropriate list.
1221 	 */
1222 	if (z->z_NFree++ == 0) {
1223 		z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1224 		slgd->ZoneAry[z->z_ZoneIndex] = z;
1225 	}
1226 
1227 	/*
1228 	 * If the zone becomes totally free then release it.
1229 	 */
1230 	if (z->z_NFree == z->z_NMax) {
1231 		slzone_t *pz;
1232 
1233 		pz = &slgd->ZoneAry[z->z_ZoneIndex];
1234 		while (z != *pz)
1235 			pz = &(*pz)->z_Next;
1236 		*pz = z->z_Next;
1237 		z->z_Magic = -1;
1238 		z->z_Next = NULL;
1239 		zone_free(z);
1240 		/* slgd lock released */
1241 		return;
1242 	}
1243 	slgd_unlock(slgd);
1244 }
1245 
1246 #if defined(INVARIANTS)
1247 /*
1248  * Helper routines for sanity checks
1249  */
1250 static
1251 void
1252 chunk_mark_allocated(slzone_t z, void *chunk)
1253 {
1254 	int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1255 	__uint32_t *bitptr;
1256 
1257 	MASSERT(bitdex >= 0 && bitdex < z->z_NMax);
1258 	bitptr = &z->z_Bitmap[bitdex >> 5];
1259 	bitdex &= 31;
1260 	MASSERT((*bitptr & (1 << bitdex)) == 0);
1261 	*bitptr |= 1 << bitdex;
1262 }
1263 
1264 static
1265 void
1266 chunk_mark_free(slzone_t z, void *chunk)
1267 {
1268 	int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1269 	__uint32_t *bitptr;
1270 
1271 	MASSERT(bitdex >= 0 && bitdex < z->z_NMax);
1272 	bitptr = &z->z_Bitmap[bitdex >> 5];
1273 	bitdex &= 31;
1274 	MASSERT((*bitptr & (1 << bitdex)) != 0);
1275 	*bitptr &= ~(1 << bitdex);
1276 }
1277 
1278 #endif
1279 
1280 /*
1281  * Allocate and return a magazine.  NULL is returned and *burst is adjusted
1282  * if the magazine is empty.
1283  */
1284 static __inline void *
1285 magazine_alloc(struct magazine *mp, int *burst)
1286 {
1287 	void *obj;
1288 
1289 	if (mp == NULL)
1290 		return(NULL);
1291 	if (MAGAZINE_NOTEMPTY(mp)) {
1292 		obj = mp->objects[--mp->rounds];
1293 		return(obj);
1294 	}
1295 
1296 	/*
1297 	 * Return burst factor to caller along with NULL
1298 	 */
1299 	if ((mp->flags & M_BURST) && (burst != NULL)) {
1300 		*burst = mp->burst_factor;
1301 	}
1302 	/* Reduce burst factor by NSCALE; if it hits 1, disable BURST */
1303 	if ((mp->flags & M_BURST) && (mp->flags & M_BURST_EARLY) &&
1304 	    (burst != NULL)) {
1305 		mp->burst_factor -= M_BURST_NSCALE;
1306 		if (mp->burst_factor <= 1) {
1307 			mp->burst_factor = 1;
1308 			mp->flags &= ~(M_BURST);
1309 			mp->flags &= ~(M_BURST_EARLY);
1310 		}
1311 	}
1312 	return (NULL);
1313 }
1314 
1315 static __inline int
1316 magazine_free(struct magazine *mp, void *p)
1317 {
1318 	if (mp != NULL && MAGAZINE_NOTFULL(mp)) {
1319 		mp->objects[mp->rounds++] = p;
1320 		return 0;
1321 	}
1322 
1323 	return -1;
1324 }
1325 
1326 static void *
1327 mtmagazine_alloc(int zi)
1328 {
1329 	thr_mags *tp;
1330 	struct magazine *mp, *emptymag;
1331 	magazine_depot *d;
1332 	void *obj;
1333 
1334 	/*
1335 	 * Do not try to access per-thread magazines while the mtmagazine
1336 	 * is being initialized or destroyed.
1337 	 */
1338 	tp = &thread_mags;
1339 	if (tp->init < 0)
1340 		return(NULL);
1341 
1342 	/*
1343 	 * Primary per-thread allocation loop
1344 	 */
1345 	for (;;) {
1346 		/*
1347 		 * If the loaded magazine has rounds, allocate and return
1348 		 */
1349 		mp = tp->mags[zi].loaded;
1350 		obj = magazine_alloc(mp, NULL);
1351 		if (obj)
1352 			break;
1353 
1354 		/*
1355 		 * If the prev magazine is full, swap with the loaded
1356 		 * magazine and retry.
1357 		 */
1358 		mp = tp->mags[zi].prev;
1359 		if (mp && MAGAZINE_FULL(mp)) {
1360 			MASSERT(mp->rounds != 0);
1361 			swap_mags(&tp->mags[zi]);	/* prev now empty */
1362 			continue;
1363 		}
1364 
1365 		/*
1366 		 * Try to get a full magazine from the depot.  Cycle
1367 		 * through depot(full)->loaded->prev->depot(empty).
1368 		 * Retry if a full magazine was available from the depot.
1369 		 *
1370 		 * Return NULL (caller will fall through) if no magazines
1371 		 * can be found anywhere.
1372 		 */
1373 		d = &depots[zi];
1374 		depot_lock(d);
1375 		emptymag = tp->mags[zi].prev;
1376 		if (emptymag)
1377 			SLIST_INSERT_HEAD(&d->empty, emptymag, nextmagazine);
1378 		tp->mags[zi].prev = tp->mags[zi].loaded;
1379 		mp = SLIST_FIRST(&d->full);	/* loaded magazine */
1380 		tp->mags[zi].loaded = mp;
1381 		if (mp) {
1382 			SLIST_REMOVE_HEAD(&d->full, nextmagazine);
1383 			MASSERT(MAGAZINE_NOTEMPTY(mp));
1384 			depot_unlock(d);
1385 			continue;
1386 		}
1387 		depot_unlock(d);
1388 		break;
1389 	}
1390 
1391 	return (obj);
1392 }
1393 
1394 static int
1395 mtmagazine_free(int zi, void *ptr)
1396 {
1397 	thr_mags *tp;
1398 	struct magazine *mp, *loadedmag;
1399 	magazine_depot *d;
1400 	int rc = -1;
1401 
1402 	/*
1403 	 * Do not try to access per-thread magazines while the mtmagazine
1404 	 * is being initialized or destroyed.
1405 	 */
1406 	tp = &thread_mags;
1407 	if (tp->init < 0)
1408 		return(-1);
1409 
1410 	/*
1411 	 * Primary per-thread freeing loop
1412 	 */
1413 	for (;;) {
1414 		/*
1415 		 * Make sure a new magazine is available in case we have
1416 		 * to use it.  Staging the newmag allows us to avoid
1417 		 * some locking/reentrancy complexity.
1418 		 *
1419 		 * Temporarily disable the per-thread caches for this
1420 		 * allocation to avoid reentrancy and/or to avoid a
1421 		 * stack overflow if the [zi] happens to be the same that
1422 		 * would be used to allocate the new magazine.
1423 		 */
1424 		if (tp->newmag == NULL) {
1425 			tp->init = -1;
1426 			tp->newmag = _slaballoc(sizeof(struct magazine),
1427 						SAFLAG_ZERO);
1428 			tp->init = 1;
1429 			if (tp->newmag == NULL) {
1430 				rc = -1;
1431 				break;
1432 			}
1433 		}
1434 
1435 		/*
1436 		 * If the loaded magazine has space, free directly to it
1437 		 */
1438 		rc = magazine_free(tp->mags[zi].loaded, ptr);
1439 		if (rc == 0)
1440 			break;
1441 
1442 		/*
1443 		 * If the prev magazine is empty, swap with the loaded
1444 		 * magazine and retry.
1445 		 */
1446 		mp = tp->mags[zi].prev;
1447 		if (mp && MAGAZINE_EMPTY(mp)) {
1448 			MASSERT(mp->rounds == 0);
1449 			swap_mags(&tp->mags[zi]);	/* prev now full */
1450 			continue;
1451 		}
1452 
1453 		/*
1454 		 * Try to get an empty magazine from the depot.  Cycle
1455 		 * through depot(empty)->loaded->prev->depot(full).
1456 		 * Retry if an empty magazine was available from the depot.
1457 		 */
1458 		d = &depots[zi];
1459 		depot_lock(d);
1460 
1461 		if ((loadedmag = tp->mags[zi].prev) != NULL)
1462 			SLIST_INSERT_HEAD(&d->full, loadedmag, nextmagazine);
1463 		tp->mags[zi].prev = tp->mags[zi].loaded;
1464 		mp = SLIST_FIRST(&d->empty);
1465 		if (mp) {
1466 			tp->mags[zi].loaded = mp;
1467 			SLIST_REMOVE_HEAD(&d->empty, nextmagazine);
1468 			MASSERT(MAGAZINE_NOTFULL(mp));
1469 		} else {
1470 			mp = tp->newmag;
1471 			tp->newmag = NULL;
1472 			mp->capacity = M_MAX_ROUNDS;
1473 			mp->rounds = 0;
1474 			mp->flags = 0;
1475 			tp->mags[zi].loaded = mp;
1476 		}
1477 		depot_unlock(d);
1478 	}
1479 
1480 	return rc;
1481 }
1482 
1483 static void
1484 mtmagazine_init(void)
1485 {
1486 	int error;
1487 
1488 	error = pthread_key_create(&thread_mags_key, mtmagazine_destructor);
1489 	if (error)
1490 		abort();
1491 }
1492 
1493 /*
1494  * This function is only used by the thread exit destructor
1495  */
1496 static void
1497 mtmagazine_drain(struct magazine *mp)
1498 {
1499 	void *obj;
1500 
1501 	while (MAGAZINE_NOTEMPTY(mp)) {
1502 		obj = magazine_alloc(mp, NULL);
1503 		_slabfree(obj, 0, NULL);
1504 	}
1505 }
1506 
1507 /*
1508  * mtmagazine_destructor()
1509  *
1510  * When a thread exits, we reclaim all its resources; all its magazines are
1511  * drained and the structures are freed.
1512  *
1513  * WARNING!  The destructor can be called multiple times if the larger user
1514  *	     program has its own destructors which run after ours which
1515  *	     allocate or free memory.
1516  */
1517 static void
1518 mtmagazine_destructor(void *thrp)
1519 {
1520 	thr_mags *tp = thrp;
1521 	struct magazine *mp;
1522 	int i;
1523 
1524 	/*
1525 	 * Prevent further use of mtmagazines while we are destructing
1526 	 * them, as well as for any destructors which are run after us
1527 	 * prior to the thread actually being destroyed.
1528 	 */
1529 	tp->init = -1;
1530 
1531 	for (i = 0; i < NZONES; i++) {
1532 		mp = tp->mags[i].loaded;
1533 		tp->mags[i].loaded = NULL;
1534 		if (mp) {
1535 			if (MAGAZINE_NOTEMPTY(mp))
1536 				mtmagazine_drain(mp);
1537 			_slabfree(mp, 0, NULL);
1538 		}
1539 
1540 		mp = tp->mags[i].prev;
1541 		tp->mags[i].prev = NULL;
1542 		if (mp) {
1543 			if (MAGAZINE_NOTEMPTY(mp))
1544 				mtmagazine_drain(mp);
1545 			_slabfree(mp, 0, NULL);
1546 		}
1547 	}
1548 
1549 	if (tp->newmag) {
1550 		mp = tp->newmag;
1551 		tp->newmag = NULL;
1552 		_slabfree(mp, 0, NULL);
1553 	}
1554 }
1555 
1556 /*
1557  * zone_alloc()
1558  *
1559  * Attempt to allocate a zone from the zone magazine; the zone magazine has
1560  * M_BURST_EARLY enabled, so honor the burst request from the magazine.
1561  */
1562 static slzone_t
1563 zone_alloc(int flags)
1564 {
1565 	slglobaldata_t slgd = &SLGlobalData;
1566 	int burst = 1;
1567 	int i, j;
1568 	slzone_t z;
1569 
1570 	zone_magazine_lock();
1571 	slgd_unlock(slgd);
1572 
1573 	z = magazine_alloc(&zone_magazine, &burst);
1574 	if (z == NULL && burst == 1) {
1575 		zone_magazine_unlock();
1576 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1577 	} else if (z == NULL) {
1578 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1579 		if (z) {
1580 			for (i = 1; i < burst; i++) {
1581 				j = magazine_free(&zone_magazine,
1582 						  (char *) z + (ZoneSize * i));
1583 				MASSERT(j == 0);
1584 			}
1585 		}
1586 		zone_magazine_unlock();
1587 	} else {
1588 		z->z_Flags |= SLZF_UNOTZEROD;
1589 		zone_magazine_unlock();
1590 	}
1591 	slgd_lock(slgd);
1592 	return z;
1593 }
1594 
1595 /*
1596  * zone_free()
1597  *
1598  * Release a zone and unlock the slgd lock.
1599  */
1600 static void
1601 zone_free(void *z)
1602 {
1603 	slglobaldata_t slgd = &SLGlobalData;
1604 	void *excess[M_ZONE_ROUNDS - M_LOW_ROUNDS] = {};
1605 	int i, j;
1606 
1607 	zone_magazine_lock();
1608 	slgd_unlock(slgd);
1609 
1610 	bzero(z, sizeof(struct slzone));
1611 
1612 	if (opt_madvise)
1613 		madvise(z, ZoneSize, MADV_FREE);
1614 
1615 	i = magazine_free(&zone_magazine, z);
1616 
1617 	/*
1618 	 * If we failed to free, collect excess magazines; release the zone
1619 	 * magazine lock, and then free to the system via _vmem_free. Re-enable
1620 	 * BURST mode for the magazine.
1621 	 */
1622 	if (i == -1) {
1623 		j = zone_magazine.rounds - zone_magazine.low_factor;
1624 		for (i = 0; i < j; i++) {
1625 			excess[i] = magazine_alloc(&zone_magazine, NULL);
1626 			MASSERT(excess[i] !=  NULL);
1627 		}
1628 
1629 		zone_magazine_unlock();
1630 
1631 		for (i = 0; i < j; i++)
1632 			_vmem_free(excess[i], ZoneSize);
1633 
1634 		_vmem_free(z, ZoneSize);
1635 	} else {
1636 		zone_magazine_unlock();
1637 	}
1638 }
1639 
1640 /*
1641  * _vmem_alloc()
1642  *
1643  *	Directly map memory in PAGE_SIZE'd chunks with the specified
1644  *	alignment.
1645  *
1646  *	Alignment must be a multiple of PAGE_SIZE.
1647  *
1648  *	Size must be >= alignment.
1649  */
1650 static void *
1651 _vmem_alloc(size_t size, size_t align, int flags)
1652 {
1653 	char *addr;
1654 	char *save;
1655 	size_t excess;
1656 
1657 	/*
1658 	 * Map anonymous private memory.
1659 	 */
1660 	addr = mmap(NULL, size, PROT_READ|PROT_WRITE,
1661 		    MAP_PRIVATE|MAP_ANON, -1, 0);
1662 	if (addr == MAP_FAILED)
1663 		return(NULL);
1664 
1665 	/*
1666 	 * Check alignment.  The misaligned offset is also the excess
1667 	 * amount.  If misaligned unmap the excess so we have a chance of
1668 	 * mapping at the next alignment point and recursively try again.
1669 	 *
1670 	 * BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB	block alignment
1671 	 *   aaaaaaaaa aaaaaaaaaaa aa		mis-aligned allocation
1672 	 *   xxxxxxxxx				final excess calculation
1673 	 *   ^ returned address
1674 	 */
1675 	excess = (uintptr_t)addr & (align - 1);
1676 
1677 	if (excess) {
1678 		excess = align - excess;
1679 		save = addr;
1680 
1681 		munmap(save + excess, size - excess);
1682 		addr = _vmem_alloc(size, align, flags);
1683 		munmap(save, excess);
1684 	}
1685 	return((void *)addr);
1686 }
1687 
1688 /*
1689  * _vmem_free()
1690  *
1691  *	Free a chunk of memory allocated with _vmem_alloc()
1692  */
1693 static void
1694 _vmem_free(void *ptr, size_t size)
1695 {
1696 	munmap(ptr, size);
1697 }
1698 
1699 /*
1700  * Panic on fatal conditions
1701  */
1702 static void
1703 _mpanic(const char *ctl, ...)
1704 {
1705 	va_list va;
1706 
1707 	if (malloc_panic == 0) {
1708 		malloc_panic = 1;
1709 		va_start(va, ctl);
1710 		vfprintf(stderr, ctl, va);
1711 		fprintf(stderr, "\n");
1712 		fflush(stderr);
1713 		va_end(va);
1714 	}
1715 	abort();
1716 }
1717