xref: /dragonfly/lib/libc/stdlib/nmalloc.c (revision b29f78b5)
1 /*
2  * NMALLOC.C	- New Malloc (ported from kernel slab allocator)
3  *
4  * Copyright (c) 2003,2004,2009,2010 The DragonFly Project. All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com> and by
8  * Venkatesh Srinivas <me@endeavour.zapto.org>.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in
18  *    the documentation and/or other materials provided with the
19  *    distribution.
20  * 3. Neither the name of The DragonFly Project nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific, prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
28  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
32  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
33  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
34  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $Id: nmalloc.c,v 1.37 2010/07/23 08:20:35 vsrinivas Exp $
38  */
39 /*
40  * This module implements a slab allocator drop-in replacement for the
41  * libc malloc().
42  *
43  * A slab allocator reserves a ZONE for each chunk size, then lays the
44  * chunks out in an array within the zone.  Allocation and deallocation
45  * is nearly instantaneous, and overhead losses are limited to a fixed
46  * worst-case amount.
47  *
48  * The slab allocator does not have to pre-initialize the list of
49  * free chunks for each zone, and the underlying VM will not be
50  * touched at all beyond the zone header until an actual allocation
51  * needs it.
52  *
53  * Slab management and locking is done on a per-zone basis.
54  *
55  *	Alloc Size	Chunking        Number of zones
56  *	0-127		8		16
57  *	128-255		16		8
58  *	256-511		32		8
59  *	512-1023	64		8
60  *	1024-2047	128		8
61  *	2048-4095	256		8
62  *	4096-8191	512		8
63  *	8192-16383	1024		8
64  *	16384-32767	2048		8
65  *
66  *	Allocations >= ZoneLimit (16K) go directly to mmap and a hash table
67  *	is used to locate for free.  One and Two-page allocations use the
68  *	zone mechanic to avoid excessive mmap()/munmap() calls.
69  *
70  *			   API FEATURES AND SIDE EFFECTS
71  *
72  *    + power-of-2 sized allocations up to a page will be power-of-2 aligned.
73  *	Above that power-of-2 sized allocations are page-aligned.  Non
74  *	power-of-2 sized allocations are aligned the same as the chunk
75  *	size for their zone.
76  *    + malloc(0) returns a special non-NULL value
77  *    + ability to allocate arbitrarily large chunks of memory
78  *    + realloc will reuse the passed pointer if possible, within the
79  *	limitations of the zone chunking.
80  *
81  * Multithreaded enhancements for small allocations introduced August 2010.
82  * These are in the spirit of 'libumem'. See:
83  *	Bonwick, J.; Adams, J. (2001). "Magazines and Vmem: Extending the
84  *	slab allocator to many CPUs and arbitrary resources". In Proc. 2001
85  * 	USENIX Technical Conference. USENIX Association.
86  *
87  * TUNING
88  *
89  * The value of the environment variable MALLOC_OPTIONS is a character string
90  * containing various flags to tune nmalloc.
91  *
92  * 'U'   / ['u']	Generate / do not generate utrace entries for ktrace(1)
93  *			This will generate utrace events for all malloc,
94  *			realloc, and free calls. There are tools (mtrplay) to
95  *			replay and allocation pattern or to graph heap structure
96  *			(mtrgraph) which can interpret these logs.
97  * 'Z'   / ['z']	Zero out / do not zero all allocations.
98  *			Each new byte of memory allocated by malloc, realloc, or
99  *			reallocf will be initialized to 0. This is intended for
100  *			debugging and will affect performance negatively.
101  * 'H'	/  ['h']	Pass a hint to the kernel about pages unused by the
102  *			allocation functions.
103  */
104 
105 /* cc -shared -fPIC -g -O -I/usr/src/lib/libc/include -o nmalloc.so nmalloc.c */
106 
107 #include "libc_private.h"
108 
109 #include <sys/param.h>
110 #include <sys/types.h>
111 #include <sys/mman.h>
112 #include <sys/queue.h>
113 #include <sys/uio.h>
114 #include <sys/ktrace.h>
115 #include <stdio.h>
116 #include <stdint.h>
117 #include <stdlib.h>
118 #include <stdarg.h>
119 #include <stddef.h>
120 #include <unistd.h>
121 #include <string.h>
122 #include <fcntl.h>
123 #include <errno.h>
124 #include <pthread.h>
125 
126 #include "spinlock.h"
127 #include "un-namespace.h"
128 
129 /*
130  * Linked list of large allocations
131  */
132 typedef struct bigalloc {
133 	struct bigalloc *next;	/* hash link */
134 	void	*base;		/* base pointer */
135 	u_long	bytes;		/* bytes allocated */
136 } *bigalloc_t;
137 
138 /*
139  * Note that any allocations which are exact multiples of PAGE_SIZE, or
140  * which are >= ZALLOC_ZONE_LIMIT, will fall through to the kmem subsystem.
141  */
142 #define ZALLOC_ZONE_LIMIT	(16 * 1024)	/* max slab-managed alloc */
143 #define ZALLOC_MIN_ZONE_SIZE	(32 * 1024)	/* minimum zone size */
144 #define ZALLOC_MAX_ZONE_SIZE	(128 * 1024)	/* maximum zone size */
145 #define ZALLOC_ZONE_SIZE	(64 * 1024)
146 #define ZALLOC_SLAB_MAGIC	0x736c6162	/* magic sanity */
147 #define ZALLOC_SLAB_SLIDE	20		/* L1-cache skip */
148 
149 #if ZALLOC_ZONE_LIMIT == 16384
150 #define NZONES			72
151 #elif ZALLOC_ZONE_LIMIT == 32768
152 #define NZONES			80
153 #else
154 #error "I couldn't figure out NZONES"
155 #endif
156 
157 /*
158  * Chunk structure for free elements
159  */
160 typedef struct slchunk {
161 	struct slchunk *c_Next;
162 } *slchunk_t;
163 
164 /*
165  * The IN-BAND zone header is placed at the beginning of each zone.
166  */
167 struct slglobaldata;
168 
169 typedef struct slzone {
170 	int32_t		z_Magic;	/* magic number for sanity check */
171 	int		z_NFree;	/* total free chunks / ualloc space */
172 	struct slzone *z_Next;		/* ZoneAry[] link if z_NFree non-zero */
173 	int		z_NMax;		/* maximum free chunks */
174 	char		*z_BasePtr;	/* pointer to start of chunk array */
175 	int		z_UIndex;	/* current initial allocation index */
176 	int		z_UEndIndex;	/* last (first) allocation index */
177 	int		z_ChunkSize;	/* chunk size for validation */
178 	int		z_FirstFreePg;	/* chunk list on a page-by-page basis */
179 	int		z_ZoneIndex;
180 	int		z_Flags;
181 	struct slchunk *z_PageAry[ZALLOC_ZONE_SIZE / PAGE_SIZE];
182 #if defined(INVARIANTS)
183 	__uint32_t	z_Bitmap[];	/* bitmap of free chunks / sanity */
184 #endif
185 } *slzone_t;
186 
187 typedef struct slglobaldata {
188 	spinlock_t	Spinlock;
189 	slzone_t	ZoneAry[NZONES];/* linked list of zones NFree > 0 */
190 	int		JunkIndex;
191 } *slglobaldata_t;
192 
193 #define SLZF_UNOTZEROD		0x0001
194 
195 #define FASTSLABREALLOC		0x02
196 
197 /*
198  * Misc constants.  Note that allocations that are exact multiples of
199  * PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
200  * IN_SAME_PAGE_MASK is used to sanity-check the per-page free lists.
201  */
202 #define MIN_CHUNK_SIZE		8		/* in bytes */
203 #define MIN_CHUNK_MASK		(MIN_CHUNK_SIZE - 1)
204 #define IN_SAME_PAGE_MASK	(~(intptr_t)PAGE_MASK | MIN_CHUNK_MASK)
205 
206 /*
207  * The WEIRD_ADDR is used as known text to copy into free objects to
208  * try to create deterministic failure cases if the data is accessed after
209  * free.
210  *
211  * WARNING: A limited number of spinlocks are available, BIGXSIZE should
212  *	    not be larger then 64.
213  */
214 #define WEIRD_ADDR      0xdeadc0de
215 #define MAX_COPY        sizeof(weirdary)
216 #define ZERO_LENGTH_PTR	((void *)&malloc_dummy_pointer)
217 
218 #define BIGHSHIFT	10			/* bigalloc hash table */
219 #define BIGHSIZE	(1 << BIGHSHIFT)
220 #define BIGHMASK	(BIGHSIZE - 1)
221 #define BIGXSIZE	(BIGHSIZE / 16)		/* bigalloc lock table */
222 #define BIGXMASK	(BIGXSIZE - 1)
223 
224 #define SAFLAG_ZERO	0x0001
225 #define SAFLAG_PASSIVE	0x0002
226 
227 /*
228  * Thread control
229  */
230 
231 #define arysize(ary)	(sizeof(ary)/sizeof((ary)[0]))
232 
233 #define MASSERT(exp)	do { if (__predict_false(!(exp)))	\
234 				_mpanic("assertion: %s in %s",	\
235 				#exp, __func__);		\
236 			    } while (0)
237 
238 /*
239  * Magazines
240  */
241 
242 #define M_MAX_ROUNDS	64
243 #define M_ZONE_ROUNDS	64
244 #define M_LOW_ROUNDS	32
245 #define M_INIT_ROUNDS	8
246 #define M_BURST_FACTOR  8
247 #define M_BURST_NSCALE	2
248 
249 #define M_BURST		0x0001
250 #define M_BURST_EARLY	0x0002
251 
252 struct magazine {
253 	SLIST_ENTRY(magazine) nextmagazine;
254 
255 	int		flags;
256 	int 		capacity;	/* Max rounds in this magazine */
257 	int 		rounds;		/* Current number of free rounds */
258 	int		burst_factor;	/* Number of blocks to prefill with */
259 	int 		low_factor;	/* Free till low_factor from full mag */
260 	void		*objects[M_MAX_ROUNDS];
261 };
262 
263 SLIST_HEAD(magazinelist, magazine);
264 
265 static spinlock_t zone_mag_lock;
266 static struct magazine zone_magazine = {
267 	.flags = M_BURST | M_BURST_EARLY,
268 	.capacity = M_ZONE_ROUNDS,
269 	.rounds = 0,
270 	.burst_factor = M_BURST_FACTOR,
271 	.low_factor = M_LOW_ROUNDS
272 };
273 
274 #define MAGAZINE_FULL(mp)	(mp->rounds == mp->capacity)
275 #define MAGAZINE_NOTFULL(mp)	(mp->rounds < mp->capacity)
276 #define MAGAZINE_EMPTY(mp)	(mp->rounds == 0)
277 #define MAGAZINE_NOTEMPTY(mp)	(mp->rounds != 0)
278 
279 /* Each thread will have a pair of magazines per size-class (NZONES)
280  * The loaded magazine will support immediate allocations, the previous
281  * magazine will either be full or empty and can be swapped at need */
282 typedef struct magazine_pair {
283 	struct magazine	*loaded;
284 	struct magazine	*prev;
285 } magazine_pair;
286 
287 /* A depot is a collection of magazines for a single zone. */
288 typedef struct magazine_depot {
289 	struct magazinelist full;
290 	struct magazinelist empty;
291 	spinlock_t	lock;
292 } magazine_depot;
293 
294 typedef struct thr_mags {
295 	magazine_pair	mags[NZONES];
296 	struct magazine	*newmag;
297 	int		init;
298 } thr_mags;
299 
300 /*
301  * With this attribute set, do not require a function call for accessing
302  * this variable when the code is compiled -fPIC. Empty for libc_rtld
303  * (like __thread).
304  */
305 #ifdef __LIBC_RTLD
306 #define TLS_ATTRIBUTE
307 #else
308 #define TLS_ATTRIBUTE __attribute__ ((tls_model ("initial-exec")))
309 #endif
310 
311 static int mtmagazine_free_live;
312 static __thread thr_mags thread_mags TLS_ATTRIBUTE;
313 static pthread_key_t thread_mags_key;
314 static pthread_once_t thread_mags_once = PTHREAD_ONCE_INIT;
315 static magazine_depot depots[NZONES];
316 
317 /*
318  * Fixed globals (not per-cpu)
319  */
320 static const int ZoneSize = ZALLOC_ZONE_SIZE;
321 static const int ZoneLimit = ZALLOC_ZONE_LIMIT;
322 static const int ZonePageCount = ZALLOC_ZONE_SIZE / PAGE_SIZE;
323 static const int ZoneMask = ZALLOC_ZONE_SIZE - 1;
324 
325 static int opt_madvise = 0;
326 static int opt_utrace = 0;
327 static int g_malloc_flags = 0;
328 static struct slglobaldata	SLGlobalData;
329 static bigalloc_t bigalloc_array[BIGHSIZE];
330 static spinlock_t bigspin_array[BIGXSIZE];
331 static int malloc_panic;
332 static int malloc_dummy_pointer;
333 
334 static const int32_t weirdary[16] = {
335 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
336 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
337 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR,
338 	WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR, WEIRD_ADDR
339 };
340 
341 static void *_slaballoc(size_t size, int flags);
342 static void *_slabrealloc(void *ptr, size_t size);
343 static void _slabfree(void *ptr, int, bigalloc_t *);
344 static void *_vmem_alloc(size_t bytes, size_t align, int flags);
345 static void _vmem_free(void *ptr, size_t bytes);
346 static void *magazine_alloc(struct magazine *, int *);
347 static int magazine_free(struct magazine *, void *);
348 static void *mtmagazine_alloc(int zi);
349 static int mtmagazine_free(int zi, void *);
350 static void mtmagazine_init(void);
351 static void mtmagazine_destructor(void *);
352 static slzone_t zone_alloc(int flags);
353 static void zone_free(void *z);
354 static void _mpanic(const char *ctl, ...) __printflike(1, 2);
355 static void malloc_init(void) __constructor(101);
356 #if defined(INVARIANTS)
357 static void chunk_mark_allocated(slzone_t z, void *chunk);
358 static void chunk_mark_free(slzone_t z, void *chunk);
359 #endif
360 
361 struct nmalloc_utrace {
362 	void *p;
363 	size_t s;
364 	void *r;
365 };
366 
367 #define UTRACE(a, b, c)						\
368 	if (opt_utrace) {					\
369 		struct nmalloc_utrace ut = {			\
370 			.p = (a),				\
371 			.s = (b),				\
372 			.r = (c)				\
373 		};						\
374 		utrace(&ut, sizeof(ut));			\
375 	}
376 
377 #ifdef INVARIANTS
378 /*
379  * If enabled any memory allocated without M_ZERO is initialized to -1.
380  */
381 static int  use_malloc_pattern;
382 #endif
383 
384 static void
385 malloc_init(void)
386 {
387 	const char *p = NULL;
388 
389 	if (issetugid() == 0)
390 		p = getenv("MALLOC_OPTIONS");
391 
392 	for (; p != NULL && *p != '\0'; p++) {
393 		switch(*p) {
394 		case 'u':	opt_utrace = 0; break;
395 		case 'U':	opt_utrace = 1; break;
396 		case 'h':	opt_madvise = 0; break;
397 		case 'H':	opt_madvise = 1; break;
398 		case 'z':	g_malloc_flags = 0; break;
399 		case 'Z': 	g_malloc_flags = SAFLAG_ZERO; break;
400 		default:
401 			break;
402 		}
403 	}
404 
405 	UTRACE((void *) -1, 0, NULL);
406 }
407 
408 /*
409  * We have to install a handler for nmalloc thread teardowns when
410  * the thread is created.  We cannot delay this because destructors in
411  * sophisticated userland programs can call malloc() for the first time
412  * during their thread exit.
413  *
414  * This routine is called directly from pthreads.
415  */
416 void
417 _nmalloc_thr_init(void)
418 {
419 	thr_mags *tp;
420 
421 	/*
422 	 * Disallow mtmagazine operations until the mtmagazine is
423 	 * initialized.
424 	 */
425 	tp = &thread_mags;
426 	tp->init = -1;
427 
428 	if (mtmagazine_free_live == 0) {
429 		mtmagazine_free_live = 1;
430 		pthread_once(&thread_mags_once, mtmagazine_init);
431 	}
432 	pthread_setspecific(thread_mags_key, tp);
433 	tp->init = 1;
434 }
435 
436 /*
437  * Thread locks.
438  */
439 static __inline void
440 slgd_lock(slglobaldata_t slgd)
441 {
442 	if (__isthreaded)
443 		_SPINLOCK(&slgd->Spinlock);
444 }
445 
446 static __inline void
447 slgd_unlock(slglobaldata_t slgd)
448 {
449 	if (__isthreaded)
450 		_SPINUNLOCK(&slgd->Spinlock);
451 }
452 
453 static __inline void
454 depot_lock(magazine_depot *dp)
455 {
456 	if (__isthreaded)
457 		_SPINLOCK(&dp->lock);
458 }
459 
460 static __inline void
461 depot_unlock(magazine_depot *dp)
462 {
463 	if (__isthreaded)
464 		_SPINUNLOCK(&dp->lock);
465 }
466 
467 static __inline void
468 zone_magazine_lock(void)
469 {
470 	if (__isthreaded)
471 		_SPINLOCK(&zone_mag_lock);
472 }
473 
474 static __inline void
475 zone_magazine_unlock(void)
476 {
477 	if (__isthreaded)
478 		_SPINUNLOCK(&zone_mag_lock);
479 }
480 
481 static __inline void
482 swap_mags(magazine_pair *mp)
483 {
484 	struct magazine *tmp;
485 	tmp = mp->loaded;
486 	mp->loaded = mp->prev;
487 	mp->prev = tmp;
488 }
489 
490 /*
491  * bigalloc hashing and locking support.
492  *
493  * Return an unmasked hash code for the passed pointer.
494  */
495 static __inline int
496 _bigalloc_hash(void *ptr)
497 {
498 	int hv;
499 
500 	hv = ((int)(intptr_t)ptr >> PAGE_SHIFT) ^
501 	      ((int)(intptr_t)ptr >> (PAGE_SHIFT + BIGHSHIFT));
502 
503 	return(hv);
504 }
505 
506 /*
507  * Lock the hash chain and return a pointer to its base for the specified
508  * address.
509  */
510 static __inline bigalloc_t *
511 bigalloc_lock(void *ptr)
512 {
513 	int hv = _bigalloc_hash(ptr);
514 	bigalloc_t *bigp;
515 
516 	bigp = &bigalloc_array[hv & BIGHMASK];
517 	if (__isthreaded)
518 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
519 	return(bigp);
520 }
521 
522 /*
523  * Lock the hash chain and return a pointer to its base for the specified
524  * address.
525  *
526  * BUT, if the hash chain is empty, just return NULL and do not bother
527  * to lock anything.
528  */
529 static __inline bigalloc_t *
530 bigalloc_check_and_lock(void *ptr)
531 {
532 	int hv = _bigalloc_hash(ptr);
533 	bigalloc_t *bigp;
534 
535 	bigp = &bigalloc_array[hv & BIGHMASK];
536 	if (*bigp == NULL)
537 		return(NULL);
538 	if (__isthreaded) {
539 		_SPINLOCK(&bigspin_array[hv & BIGXMASK]);
540 	}
541 	return(bigp);
542 }
543 
544 static __inline void
545 bigalloc_unlock(void *ptr)
546 {
547 	int hv;
548 
549 	if (__isthreaded) {
550 		hv = _bigalloc_hash(ptr);
551 		_SPINUNLOCK(&bigspin_array[hv & BIGXMASK]);
552 	}
553 }
554 
555 /*
556  * Calculate the zone index for the allocation request size and set the
557  * allocation request size to that particular zone's chunk size.
558  */
559 static __inline int
560 zoneindex(size_t *bytes, size_t *chunking)
561 {
562 	size_t n = (unsigned int)*bytes;	/* unsigned for shift opt */
563 	if (n < 128) {
564 		*bytes = n = (n + 7) & ~7;
565 		*chunking = 8;
566 		return(n / 8 - 1);		/* 8 byte chunks, 16 zones */
567 	}
568 	if (n < 256) {
569 		*bytes = n = (n + 15) & ~15;
570 		*chunking = 16;
571 		return(n / 16 + 7);
572 	}
573 	if (n < 8192) {
574 		if (n < 512) {
575 			*bytes = n = (n + 31) & ~31;
576 			*chunking = 32;
577 			return(n / 32 + 15);
578 		}
579 		if (n < 1024) {
580 			*bytes = n = (n + 63) & ~63;
581 			*chunking = 64;
582 			return(n / 64 + 23);
583 		}
584 		if (n < 2048) {
585 			*bytes = n = (n + 127) & ~127;
586 			*chunking = 128;
587 			return(n / 128 + 31);
588 		}
589 		if (n < 4096) {
590 			*bytes = n = (n + 255) & ~255;
591 			*chunking = 256;
592 			return(n / 256 + 39);
593 		}
594 		*bytes = n = (n + 511) & ~511;
595 		*chunking = 512;
596 		return(n / 512 + 47);
597 	}
598 #if ZALLOC_ZONE_LIMIT > 8192
599 	if (n < 16384) {
600 		*bytes = n = (n + 1023) & ~1023;
601 		*chunking = 1024;
602 		return(n / 1024 + 55);
603 	}
604 #endif
605 #if ZALLOC_ZONE_LIMIT > 16384
606 	if (n < 32768) {
607 		*bytes = n = (n + 2047) & ~2047;
608 		*chunking = 2048;
609 		return(n / 2048 + 63);
610 	}
611 #endif
612 	_mpanic("Unexpected byte count %zu", n);
613 	return(0);
614 }
615 
616 /*
617  * malloc() - call internal slab allocator
618  */
619 void *
620 malloc(size_t size)
621 {
622 	void *ptr;
623 
624 	ptr = _slaballoc(size, 0);
625 	if (ptr == NULL)
626 		errno = ENOMEM;
627 	else
628 		UTRACE(0, size, ptr);
629 	return(ptr);
630 }
631 
632 #define MUL_NO_OVERFLOW	(1UL << (sizeof(size_t) * 4))
633 
634 /*
635  * calloc() - call internal slab allocator
636  */
637 void *
638 calloc(size_t number, size_t size)
639 {
640 	void *ptr;
641 
642 	if ((number >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) &&
643 	     number > 0 && SIZE_MAX / number < size) {
644 		errno = ENOMEM;
645 		return(NULL);
646 	}
647 
648 	ptr = _slaballoc(number * size, SAFLAG_ZERO);
649 	if (ptr == NULL)
650 		errno = ENOMEM;
651 	else
652 		UTRACE(0, number * size, ptr);
653 	return(ptr);
654 }
655 
656 /*
657  * realloc() (SLAB ALLOCATOR)
658  *
659  * We do not attempt to optimize this routine beyond reusing the same
660  * pointer if the new size fits within the chunking of the old pointer's
661  * zone.
662  */
663 void *
664 realloc(void *ptr, size_t size)
665 {
666 	void *ret;
667 	ret = _slabrealloc(ptr, size);
668 	if (ret == NULL)
669 		errno = ENOMEM;
670 	else
671 		UTRACE(ptr, size, ret);
672 	return(ret);
673 }
674 
675 /*
676  * posix_memalign()
677  *
678  * Allocate (size) bytes with a alignment of (alignment), where (alignment)
679  * is a power of 2 >= sizeof(void *).
680  *
681  * The slab allocator will allocate on power-of-2 boundaries up to
682  * at least PAGE_SIZE.  We use the zoneindex mechanic to find a
683  * zone matching the requirements, and _vmem_alloc() otherwise.
684  */
685 int
686 posix_memalign(void **memptr, size_t alignment, size_t size)
687 {
688 	bigalloc_t *bigp;
689 	bigalloc_t big;
690 	size_t chunking;
691 	int zi __unused;
692 
693 	/*
694 	 * OpenGroup spec issue 6 checks
695 	 */
696 	if ((alignment | (alignment - 1)) + 1 != (alignment << 1)) {
697 		*memptr = NULL;
698 		return(EINVAL);
699 	}
700 	if (alignment < sizeof(void *)) {
701 		*memptr = NULL;
702 		return(EINVAL);
703 	}
704 
705 	/*
706 	 * Our zone mechanism guarantees same-sized alignment for any
707 	 * power-of-2 allocation.  If size is a power-of-2 and reasonable
708 	 * we can just call _slaballoc() and be done.  We round size up
709 	 * to the nearest alignment boundary to improve our odds of
710 	 * it becoming a power-of-2 if it wasn't before.
711 	 */
712 	if (size <= alignment)
713 		size = alignment;
714 	else
715 		size = (size + alignment - 1) & ~(size_t)(alignment - 1);
716 	if (size < PAGE_SIZE && (size | (size - 1)) + 1 == (size << 1)) {
717 		*memptr = _slaballoc(size, 0);
718 		return(*memptr ? 0 : ENOMEM);
719 	}
720 
721 	/*
722 	 * Otherwise locate a zone with a chunking that matches
723 	 * the requested alignment, within reason.   Consider two cases:
724 	 *
725 	 * (1) A 1K allocation on a 32-byte alignment.  The first zoneindex
726 	 *     we find will be the best fit because the chunking will be
727 	 *     greater or equal to the alignment.
728 	 *
729 	 * (2) A 513 allocation on a 256-byte alignment.  In this case
730 	 *     the first zoneindex we find will be for 576 byte allocations
731 	 *     with a chunking of 64, which is not sufficient.  To fix this
732 	 *     we simply find the nearest power-of-2 >= size and use the
733 	 *     same side-effect of _slaballoc() which guarantees
734 	 *     same-alignment on a power-of-2 allocation.
735 	 */
736 	if (size < PAGE_SIZE) {
737 		zi = zoneindex(&size, &chunking);
738 		if (chunking >= alignment) {
739 			*memptr = _slaballoc(size, 0);
740 			return(*memptr ? 0 : ENOMEM);
741 		}
742 		if (size >= 1024)
743 			alignment = 1024;
744 		if (size >= 16384)
745 			alignment = 16384;
746 		while (alignment < size)
747 			alignment <<= 1;
748 		*memptr = _slaballoc(alignment, 0);
749 		return(*memptr ? 0 : ENOMEM);
750 	}
751 
752 	/*
753 	 * If the slab allocator cannot handle it use vmem_alloc().
754 	 *
755 	 * Alignment must be adjusted up to at least PAGE_SIZE in this case.
756 	 */
757 	if (alignment < PAGE_SIZE)
758 		alignment = PAGE_SIZE;
759 	if (size < alignment)
760 		size = alignment;
761 	size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
762 	*memptr = _vmem_alloc(size, alignment, 0);
763 	if (*memptr == NULL)
764 		return(ENOMEM);
765 
766 	big = _slaballoc(sizeof(struct bigalloc), 0);
767 	if (big == NULL) {
768 		_vmem_free(*memptr, size);
769 		*memptr = NULL;
770 		return(ENOMEM);
771 	}
772 	bigp = bigalloc_lock(*memptr);
773 	big->base = *memptr;
774 	big->bytes = size;
775 	big->next = *bigp;
776 	*bigp = big;
777 	bigalloc_unlock(*memptr);
778 
779 	return(0);
780 }
781 
782 /*
783  * free() (SLAB ALLOCATOR) - do the obvious
784  */
785 void
786 free(void *ptr)
787 {
788 	UTRACE(ptr, 0, 0);
789 	_slabfree(ptr, 0, NULL);
790 }
791 
792 /*
793  * _slaballoc()	(SLAB ALLOCATOR)
794  *
795  *	Allocate memory via the slab allocator.  If the request is too large,
796  *	or if it page-aligned beyond a certain size, we fall back to the
797  *	KMEM subsystem
798  */
799 static void *
800 _slaballoc(size_t size, int flags)
801 {
802 	slzone_t z;
803 	slchunk_t chunk;
804 	slglobaldata_t slgd;
805 	size_t chunking;
806 	int zi;
807 #ifdef INVARIANTS
808 	int i;
809 #endif
810 	int off;
811 	void *obj;
812 
813 	/*
814 	 * Handle the degenerate size == 0 case.  Yes, this does happen.
815 	 * Return a special pointer.  This is to maintain compatibility with
816 	 * the original malloc implementation.  Certain devices, such as the
817 	 * adaptec driver, not only allocate 0 bytes, they check for NULL and
818 	 * also realloc() later on.  Joy.
819 	 */
820 	if (size == 0)
821 		return(ZERO_LENGTH_PTR);
822 
823 	/* Capture global flags */
824 	flags |= g_malloc_flags;
825 
826 	/*
827 	 * Handle large allocations directly.  There should not be very many
828 	 * of these so performance is not a big issue.
829 	 *
830 	 * The backend allocator is pretty nasty on a SMP system.   Use the
831 	 * slab allocator for one and two page-sized chunks even though we
832 	 * lose some efficiency.
833 	 */
834 	if (size >= ZoneLimit ||
835 	    ((size & PAGE_MASK) == 0 && size > PAGE_SIZE*2)) {
836 		bigalloc_t big;
837 		bigalloc_t *bigp;
838 
839 		/*
840 		 * Page-align and cache-color in case of virtually indexed
841 		 * physically tagged L1 caches (aka SandyBridge).  No sweat
842 		 * otherwise, so just do it.
843 		 */
844 		size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
845 		if ((size & 8191) == 0)
846 			size += 4096;
847 
848 		chunk = _vmem_alloc(size, PAGE_SIZE, flags);
849 		if (chunk == NULL)
850 			return(NULL);
851 
852 		big = _slaballoc(sizeof(struct bigalloc), 0);
853 		if (big == NULL) {
854 			_vmem_free(chunk, size);
855 			return(NULL);
856 		}
857 		bigp = bigalloc_lock(chunk);
858 		big->base = chunk;
859 		big->bytes = size;
860 		big->next = *bigp;
861 		*bigp = big;
862 		bigalloc_unlock(chunk);
863 
864 		return(chunk);
865 	}
866 
867 	/* Compute allocation zone; zoneindex will panic on excessive sizes */
868 	zi = zoneindex(&size, &chunking);
869 	MASSERT(zi < NZONES);
870 
871 	obj = mtmagazine_alloc(zi);
872 	if (obj != NULL) {
873 		if (flags & SAFLAG_ZERO)
874 			bzero(obj, size);
875 		return (obj);
876 	}
877 
878 	slgd = &SLGlobalData;
879 	slgd_lock(slgd);
880 
881 	/*
882 	 * Attempt to allocate out of an existing zone.  If all zones are
883 	 * exhausted pull one off the free list or allocate a new one.
884 	 */
885 	if ((z = slgd->ZoneAry[zi]) == NULL) {
886 		z = zone_alloc(flags);
887 		if (z == NULL)
888 			goto fail;
889 
890 		/*
891 		 * How big is the base structure?
892 		 */
893 #if defined(INVARIANTS)
894 		/*
895 		 * Make room for z_Bitmap.  An exact calculation is
896 		 * somewhat more complicated so don't make an exact
897 		 * calculation.
898 		 */
899 		off = offsetof(struct slzone,
900 				z_Bitmap[(ZoneSize / size + 31) / 32]);
901 		bzero(z->z_Bitmap, (ZoneSize / size + 31) / 8);
902 #else
903 		off = sizeof(struct slzone);
904 #endif
905 
906 		/*
907 		 * Align the storage in the zone based on the chunking.
908 		 *
909 		 * Guarantee power-of-2 alignment for power-of-2-sized
910 		 * chunks.  Otherwise align based on the chunking size
911 		 * (typically 8 or 16 bytes for small allocations).
912 		 *
913 		 * NOTE: Allocations >= ZoneLimit are governed by the
914 		 * bigalloc code and typically only guarantee page-alignment.
915 		 *
916 		 * Set initial conditions for UIndex near the zone header
917 		 * to reduce unecessary page faults, vs semi-randomization
918 		 * to improve L1 cache saturation.
919 		 */
920 		if ((size | (size - 1)) + 1 == (size << 1))
921 			off = (off + size - 1) & ~(size - 1);
922 		else
923 			off = (off + chunking - 1) & ~(chunking - 1);
924 		z->z_Magic = ZALLOC_SLAB_MAGIC;
925 		z->z_ZoneIndex = zi;
926 		z->z_NMax = (ZoneSize - off) / size;
927 		z->z_NFree = z->z_NMax;
928 		z->z_BasePtr = (char *)z + off;
929 		z->z_UIndex = z->z_UEndIndex = 0;
930 		z->z_ChunkSize = size;
931 		z->z_FirstFreePg = ZonePageCount;
932 		z->z_Next = slgd->ZoneAry[zi];
933 		slgd->ZoneAry[zi] = z;
934 		if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
935 			flags &= ~SAFLAG_ZERO;	/* already zero'd */
936 			flags |= SAFLAG_PASSIVE;
937 		}
938 
939 		/*
940 		 * Slide the base index for initial allocations out of the
941 		 * next zone we create so we do not over-weight the lower
942 		 * part of the cpu memory caches.
943 		 */
944 		slgd->JunkIndex = (slgd->JunkIndex + ZALLOC_SLAB_SLIDE)
945 					& (ZALLOC_MAX_ZONE_SIZE - 1);
946 	}
947 
948 	/*
949 	 * Ok, we have a zone from which at least one chunk is available.
950 	 *
951 	 * Remove us from the ZoneAry[] when we become empty
952 	 */
953 	MASSERT(z->z_NFree > 0);
954 
955 	if (--z->z_NFree == 0) {
956 		slgd->ZoneAry[zi] = z->z_Next;
957 		z->z_Next = NULL;
958 	}
959 
960 	/*
961 	 * Locate a chunk in a free page.  This attempts to localize
962 	 * reallocations into earlier pages without us having to sort
963 	 * the chunk list.  A chunk may still overlap a page boundary.
964 	 */
965 	while (z->z_FirstFreePg < ZonePageCount) {
966 		if ((chunk = z->z_PageAry[z->z_FirstFreePg]) != NULL) {
967 #ifdef DIAGNOSTIC
968 			/*
969 			 * Diagnostic: c_Next is not total garbage.
970 			 */
971 			MASSERT(chunk->c_Next == NULL ||
972 			    ((intptr_t)chunk->c_Next & IN_SAME_PAGE_MASK) ==
973 			    ((intptr_t)chunk & IN_SAME_PAGE_MASK));
974 #endif
975 #ifdef INVARIANTS
976 			chunk_mark_allocated(z, chunk);
977 #endif
978 			MASSERT((uintptr_t)chunk & ZoneMask);
979 			z->z_PageAry[z->z_FirstFreePg] = chunk->c_Next;
980 			goto done;
981 		}
982 		++z->z_FirstFreePg;
983 	}
984 
985 	/*
986 	 * No chunks are available but NFree said we had some memory,
987 	 * so it must be available in the never-before-used-memory
988 	 * area governed by UIndex.  The consequences are very
989 	 * serious if our zone got corrupted so we use an explicit
990 	 * panic rather then a KASSERT.
991 	 */
992 	chunk = (slchunk_t)(z->z_BasePtr + z->z_UIndex * size);
993 
994 	if (++z->z_UIndex == z->z_NMax)
995 		z->z_UIndex = 0;
996 	if (z->z_UIndex == z->z_UEndIndex) {
997 		if (z->z_NFree != 0)
998 			_mpanic("slaballoc: corrupted zone");
999 	}
1000 
1001 	if ((z->z_Flags & SLZF_UNOTZEROD) == 0) {
1002 		flags &= ~SAFLAG_ZERO;
1003 		flags |= SAFLAG_PASSIVE;
1004 	}
1005 #if defined(INVARIANTS)
1006 	chunk_mark_allocated(z, chunk);
1007 #endif
1008 
1009 done:
1010 	slgd_unlock(slgd);
1011 	if (flags & SAFLAG_ZERO) {
1012 		bzero(chunk, size);
1013 #ifdef INVARIANTS
1014 	} else if ((flags & (SAFLAG_ZERO|SAFLAG_PASSIVE)) == 0) {
1015 		if (use_malloc_pattern) {
1016 			for (i = 0; i < size; i += sizeof(int)) {
1017 				*(int *)((char *)chunk + i) = -1;
1018 			}
1019 		}
1020 		/* avoid accidental double-free check */
1021 		chunk->c_Next = (void *)-1;
1022 #endif
1023 	}
1024 	return(chunk);
1025 fail:
1026 	slgd_unlock(slgd);
1027 	return(NULL);
1028 }
1029 
1030 /*
1031  * Reallocate memory within the chunk
1032  */
1033 static void *
1034 _slabrealloc(void *ptr, size_t size)
1035 {
1036 	bigalloc_t *bigp;
1037 	void *nptr;
1038 	slzone_t z;
1039 	size_t chunking;
1040 
1041 	if (ptr == NULL || ptr == ZERO_LENGTH_PTR) {
1042 		return(_slaballoc(size, 0));
1043 	}
1044 
1045 	if (size == 0) {
1046 		free(ptr);
1047 		return(ZERO_LENGTH_PTR);
1048 	}
1049 
1050 	/*
1051 	 * Handle oversized allocations.
1052 	 */
1053 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1054 		bigalloc_t big;
1055 		size_t bigbytes;
1056 
1057 		while ((big = *bigp) != NULL) {
1058 			if (big->base == ptr) {
1059 				size = (size + PAGE_MASK) & ~(size_t)PAGE_MASK;
1060 				bigbytes = big->bytes;
1061 				if (bigbytes == size) {
1062 					bigalloc_unlock(ptr);
1063 					return(ptr);
1064 				}
1065 				*bigp = big->next;
1066 				bigalloc_unlock(ptr);
1067 				if ((nptr = _slaballoc(size, 0)) == NULL) {
1068 					/* Relink block */
1069 					bigp = bigalloc_lock(ptr);
1070 					big->next = *bigp;
1071 					*bigp = big;
1072 					bigalloc_unlock(ptr);
1073 					return(NULL);
1074 				}
1075 				if (size > bigbytes)
1076 					size = bigbytes;
1077 				bcopy(ptr, nptr, size);
1078 				_slabfree(ptr, FASTSLABREALLOC, &big);
1079 				return(nptr);
1080 			}
1081 			bigp = &big->next;
1082 		}
1083 		bigalloc_unlock(ptr);
1084 	}
1085 
1086 	/*
1087 	 * Get the original allocation's zone.  If the new request winds
1088 	 * up using the same chunk size we do not have to do anything.
1089 	 *
1090 	 * NOTE: We don't have to lock the globaldata here, the fields we
1091 	 * access here will not change at least as long as we have control
1092 	 * over the allocation.
1093 	 */
1094 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1095 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1096 
1097 	/*
1098 	 * Use zoneindex() to chunk-align the new size, as long as the
1099 	 * new size is not too large.
1100 	 */
1101 	if (size < ZoneLimit) {
1102 		zoneindex(&size, &chunking);
1103 		if (z->z_ChunkSize == size) {
1104 			return(ptr);
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Allocate memory for the new request size and copy as appropriate.
1110 	 */
1111 	if ((nptr = _slaballoc(size, 0)) != NULL) {
1112 		if (size > z->z_ChunkSize)
1113 			size = z->z_ChunkSize;
1114 		bcopy(ptr, nptr, size);
1115 		_slabfree(ptr, 0, NULL);
1116 	}
1117 
1118 	return(nptr);
1119 }
1120 
1121 /*
1122  * free (SLAB ALLOCATOR)
1123  *
1124  * Free a memory block previously allocated by malloc.  Note that we do not
1125  * attempt to uplodate ks_loosememuse as MP races could prevent us from
1126  * checking memory limits in malloc.
1127  *
1128  * flags:
1129  *	FASTSLABREALLOC		Fast call from realloc, *rbigp already
1130  *				unlinked.
1131  *
1132  * MPSAFE
1133  */
1134 static void
1135 _slabfree(void *ptr, int flags, bigalloc_t *rbigp)
1136 {
1137 	slzone_t z;
1138 	slchunk_t chunk;
1139 	bigalloc_t big;
1140 	bigalloc_t *bigp;
1141 	slglobaldata_t slgd;
1142 	size_t size;
1143 	int zi;
1144 	int pgno;
1145 
1146 	/* Fast realloc path for big allocations */
1147 	if (flags & FASTSLABREALLOC) {
1148 		big = *rbigp;
1149 		goto fastslabrealloc;
1150 	}
1151 
1152 	/*
1153 	 * Handle NULL frees and special 0-byte allocations
1154 	 */
1155 	if (ptr == NULL)
1156 		return;
1157 	if (ptr == ZERO_LENGTH_PTR)
1158 		return;
1159 
1160 	/*
1161 	 * Handle oversized allocations.
1162 	 */
1163 	if ((bigp = bigalloc_check_and_lock(ptr)) != NULL) {
1164 		while ((big = *bigp) != NULL) {
1165 			if (big->base == ptr) {
1166 				*bigp = big->next;
1167 				bigalloc_unlock(ptr);
1168 fastslabrealloc:
1169 				size = big->bytes;
1170 				_slabfree(big, 0, NULL);
1171 #ifdef INVARIANTS
1172 				MASSERT(sizeof(weirdary) <= size);
1173 				bcopy(weirdary, ptr, sizeof(weirdary));
1174 #endif
1175 				_vmem_free(ptr, size);
1176 				return;
1177 			}
1178 			bigp = &big->next;
1179 		}
1180 		bigalloc_unlock(ptr);
1181 	}
1182 
1183 	/*
1184 	 * Zone case.  Figure out the zone based on the fact that it is
1185 	 * ZoneSize aligned.
1186 	 */
1187 	z = (slzone_t)((uintptr_t)ptr & ~(uintptr_t)ZoneMask);
1188 	MASSERT(z->z_Magic == ZALLOC_SLAB_MAGIC);
1189 
1190 	size = z->z_ChunkSize;
1191 	zi = z->z_ZoneIndex;
1192 
1193 	if (g_malloc_flags & SAFLAG_ZERO)
1194 		bzero(ptr, size);
1195 
1196 	if (mtmagazine_free(zi, ptr) == 0)
1197 		return;
1198 
1199 	pgno = ((char *)ptr - (char *)z) >> PAGE_SHIFT;
1200 	chunk = ptr;
1201 	slgd = &SLGlobalData;
1202 	slgd_lock(slgd);
1203 
1204 #ifdef INVARIANTS
1205 	/*
1206 	 * Attempt to detect a double-free.  To reduce overhead we only check
1207 	 * if there appears to be link pointer at the base of the data.
1208 	 */
1209 	if (((intptr_t)chunk->c_Next - (intptr_t)z) >> PAGE_SHIFT == pgno) {
1210 		slchunk_t scan;
1211 
1212 		for (scan = z->z_PageAry[pgno]; scan; scan = scan->c_Next) {
1213 			if (scan == chunk)
1214 				_mpanic("Double free at %p", chunk);
1215 		}
1216 	}
1217 	chunk_mark_free(z, chunk);
1218 #endif
1219 
1220 	/*
1221 	 * Put weird data into the memory to detect modifications after
1222 	 * freeing, illegal pointer use after freeing (we should fault on
1223 	 * the odd address), and so forth.
1224 	 */
1225 #ifdef INVARIANTS
1226 	if (z->z_ChunkSize < sizeof(weirdary))
1227 		bcopy(weirdary, chunk, z->z_ChunkSize);
1228 	else
1229 		bcopy(weirdary, chunk, sizeof(weirdary));
1230 #endif
1231 
1232 	/*
1233 	 * Add this free non-zero'd chunk to a linked list for reuse, adjust
1234 	 * z_FirstFreePg.
1235 	 */
1236 	chunk->c_Next = z->z_PageAry[pgno];
1237 	z->z_PageAry[pgno] = chunk;
1238 	if (z->z_FirstFreePg > pgno)
1239 		z->z_FirstFreePg = pgno;
1240 
1241 	/*
1242 	 * Bump the number of free chunks.  If it becomes non-zero the zone
1243 	 * must be added back onto the appropriate list.
1244 	 */
1245 	if (z->z_NFree++ == 0) {
1246 		z->z_Next = slgd->ZoneAry[z->z_ZoneIndex];
1247 		slgd->ZoneAry[z->z_ZoneIndex] = z;
1248 	}
1249 
1250 	/*
1251 	 * If the zone becomes totally free then release it.
1252 	 */
1253 	if (z->z_NFree == z->z_NMax) {
1254 		slzone_t *pz;
1255 
1256 		pz = &slgd->ZoneAry[z->z_ZoneIndex];
1257 		while (z != *pz)
1258 			pz = &(*pz)->z_Next;
1259 		*pz = z->z_Next;
1260 		z->z_Magic = -1;
1261 		z->z_Next = NULL;
1262 		zone_free(z);
1263 		/* slgd lock released */
1264 		return;
1265 	}
1266 	slgd_unlock(slgd);
1267 }
1268 
1269 #if defined(INVARIANTS)
1270 /*
1271  * Helper routines for sanity checks
1272  */
1273 static
1274 void
1275 chunk_mark_allocated(slzone_t z, void *chunk)
1276 {
1277 	int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1278 	__uint32_t *bitptr;
1279 
1280 	MASSERT(bitdex >= 0 && bitdex < z->z_NMax);
1281 	bitptr = &z->z_Bitmap[bitdex >> 5];
1282 	bitdex &= 31;
1283 	MASSERT((*bitptr & (1 << bitdex)) == 0);
1284 	*bitptr |= 1 << bitdex;
1285 }
1286 
1287 static
1288 void
1289 chunk_mark_free(slzone_t z, void *chunk)
1290 {
1291 	int bitdex = ((char *)chunk - (char *)z->z_BasePtr) / z->z_ChunkSize;
1292 	__uint32_t *bitptr;
1293 
1294 	MASSERT(bitdex >= 0 && bitdex < z->z_NMax);
1295 	bitptr = &z->z_Bitmap[bitdex >> 5];
1296 	bitdex &= 31;
1297 	MASSERT((*bitptr & (1 << bitdex)) != 0);
1298 	*bitptr &= ~(1 << bitdex);
1299 }
1300 
1301 #endif
1302 
1303 /*
1304  * Allocate and return a magazine.  NULL is returned and *burst is adjusted
1305  * if the magazine is empty.
1306  */
1307 static __inline void *
1308 magazine_alloc(struct magazine *mp, int *burst)
1309 {
1310 	void *obj;
1311 
1312 	if (mp == NULL)
1313 		return(NULL);
1314 	if (MAGAZINE_NOTEMPTY(mp)) {
1315 		obj = mp->objects[--mp->rounds];
1316 		return(obj);
1317 	}
1318 
1319 	/*
1320 	 * Return burst factor to caller along with NULL
1321 	 */
1322 	if ((mp->flags & M_BURST) && (burst != NULL)) {
1323 		*burst = mp->burst_factor;
1324 	}
1325 	/* Reduce burst factor by NSCALE; if it hits 1, disable BURST */
1326 	if ((mp->flags & M_BURST) && (mp->flags & M_BURST_EARLY) &&
1327 	    (burst != NULL)) {
1328 		mp->burst_factor -= M_BURST_NSCALE;
1329 		if (mp->burst_factor <= 1) {
1330 			mp->burst_factor = 1;
1331 			mp->flags &= ~(M_BURST);
1332 			mp->flags &= ~(M_BURST_EARLY);
1333 		}
1334 	}
1335 	return (NULL);
1336 }
1337 
1338 static __inline int
1339 magazine_free(struct magazine *mp, void *p)
1340 {
1341 	if (mp != NULL && MAGAZINE_NOTFULL(mp)) {
1342 		mp->objects[mp->rounds++] = p;
1343 		return 0;
1344 	}
1345 
1346 	return -1;
1347 }
1348 
1349 static void *
1350 mtmagazine_alloc(int zi)
1351 {
1352 	thr_mags *tp;
1353 	struct magazine *mp, *emptymag;
1354 	magazine_depot *d;
1355 	void *obj;
1356 
1357 	/*
1358 	 * Do not try to access per-thread magazines while the mtmagazine
1359 	 * is being initialized or destroyed.
1360 	 */
1361 	tp = &thread_mags;
1362 	if (tp->init < 0)
1363 		return(NULL);
1364 
1365 	/*
1366 	 * Primary per-thread allocation loop
1367 	 */
1368 	for (;;) {
1369 		/*
1370 		 * If the loaded magazine has rounds, allocate and return
1371 		 */
1372 		mp = tp->mags[zi].loaded;
1373 		obj = magazine_alloc(mp, NULL);
1374 		if (obj)
1375 			break;
1376 
1377 		/*
1378 		 * If the prev magazine is full, swap with the loaded
1379 		 * magazine and retry.
1380 		 */
1381 		mp = tp->mags[zi].prev;
1382 		if (mp && MAGAZINE_FULL(mp)) {
1383 			MASSERT(mp->rounds != 0);
1384 			swap_mags(&tp->mags[zi]);	/* prev now empty */
1385 			continue;
1386 		}
1387 
1388 		/*
1389 		 * Try to get a full magazine from the depot.  Cycle
1390 		 * through depot(full)->loaded->prev->depot(empty).
1391 		 * Retry if a full magazine was available from the depot.
1392 		 *
1393 		 * Return NULL (caller will fall through) if no magazines
1394 		 * can be found anywhere.
1395 		 */
1396 		d = &depots[zi];
1397 		depot_lock(d);
1398 		emptymag = tp->mags[zi].prev;
1399 		if (emptymag)
1400 			SLIST_INSERT_HEAD(&d->empty, emptymag, nextmagazine);
1401 		tp->mags[zi].prev = tp->mags[zi].loaded;
1402 		mp = SLIST_FIRST(&d->full);	/* loaded magazine */
1403 		tp->mags[zi].loaded = mp;
1404 		if (mp) {
1405 			SLIST_REMOVE_HEAD(&d->full, nextmagazine);
1406 			MASSERT(MAGAZINE_NOTEMPTY(mp));
1407 			depot_unlock(d);
1408 			continue;
1409 		}
1410 		depot_unlock(d);
1411 		break;
1412 	}
1413 
1414 	return (obj);
1415 }
1416 
1417 static int
1418 mtmagazine_free(int zi, void *ptr)
1419 {
1420 	thr_mags *tp;
1421 	struct magazine *mp, *loadedmag;
1422 	magazine_depot *d;
1423 	int rc = -1;
1424 
1425 	/*
1426 	 * Do not try to access per-thread magazines while the mtmagazine
1427 	 * is being initialized or destroyed.
1428 	 */
1429 	tp = &thread_mags;
1430 	if (tp->init < 0)
1431 		return(-1);
1432 
1433 	/*
1434 	 * Primary per-thread freeing loop
1435 	 */
1436 	for (;;) {
1437 		/*
1438 		 * Make sure a new magazine is available in case we have
1439 		 * to use it.  Staging the newmag allows us to avoid
1440 		 * some locking/reentrancy complexity.
1441 		 *
1442 		 * Temporarily disable the per-thread caches for this
1443 		 * allocation to avoid reentrancy and/or to avoid a
1444 		 * stack overflow if the [zi] happens to be the same that
1445 		 * would be used to allocate the new magazine.
1446 		 */
1447 		if (tp->newmag == NULL) {
1448 			tp->init = -1;
1449 			tp->newmag = _slaballoc(sizeof(struct magazine),
1450 						SAFLAG_ZERO);
1451 			tp->init = 1;
1452 			if (tp->newmag == NULL) {
1453 				rc = -1;
1454 				break;
1455 			}
1456 		}
1457 
1458 		/*
1459 		 * If the loaded magazine has space, free directly to it
1460 		 */
1461 		rc = magazine_free(tp->mags[zi].loaded, ptr);
1462 		if (rc == 0)
1463 			break;
1464 
1465 		/*
1466 		 * If the prev magazine is empty, swap with the loaded
1467 		 * magazine and retry.
1468 		 */
1469 		mp = tp->mags[zi].prev;
1470 		if (mp && MAGAZINE_EMPTY(mp)) {
1471 			MASSERT(mp->rounds == 0);
1472 			swap_mags(&tp->mags[zi]);	/* prev now full */
1473 			continue;
1474 		}
1475 
1476 		/*
1477 		 * Try to get an empty magazine from the depot.  Cycle
1478 		 * through depot(empty)->loaded->prev->depot(full).
1479 		 * Retry if an empty magazine was available from the depot.
1480 		 */
1481 		d = &depots[zi];
1482 		depot_lock(d);
1483 
1484 		if ((loadedmag = tp->mags[zi].prev) != NULL)
1485 			SLIST_INSERT_HEAD(&d->full, loadedmag, nextmagazine);
1486 		tp->mags[zi].prev = tp->mags[zi].loaded;
1487 		mp = SLIST_FIRST(&d->empty);
1488 		if (mp) {
1489 			tp->mags[zi].loaded = mp;
1490 			SLIST_REMOVE_HEAD(&d->empty, nextmagazine);
1491 			MASSERT(MAGAZINE_NOTFULL(mp));
1492 		} else {
1493 			mp = tp->newmag;
1494 			tp->newmag = NULL;
1495 			mp->capacity = M_MAX_ROUNDS;
1496 			mp->rounds = 0;
1497 			mp->flags = 0;
1498 			tp->mags[zi].loaded = mp;
1499 		}
1500 		depot_unlock(d);
1501 	}
1502 
1503 	return rc;
1504 }
1505 
1506 static void
1507 mtmagazine_init(void)
1508 {
1509 	int error;
1510 
1511 	error = pthread_key_create(&thread_mags_key, mtmagazine_destructor);
1512 	if (error)
1513 		abort();
1514 }
1515 
1516 /*
1517  * This function is only used by the thread exit destructor
1518  */
1519 static void
1520 mtmagazine_drain(struct magazine *mp)
1521 {
1522 	void *obj;
1523 
1524 	while (MAGAZINE_NOTEMPTY(mp)) {
1525 		obj = magazine_alloc(mp, NULL);
1526 		_slabfree(obj, 0, NULL);
1527 	}
1528 }
1529 
1530 /*
1531  * mtmagazine_destructor()
1532  *
1533  * When a thread exits, we reclaim all its resources; all its magazines are
1534  * drained and the structures are freed.
1535  *
1536  * WARNING!  The destructor can be called multiple times if the larger user
1537  *	     program has its own destructors which run after ours which
1538  *	     allocate or free memory.
1539  */
1540 static void
1541 mtmagazine_destructor(void *thrp)
1542 {
1543 	thr_mags *tp = thrp;
1544 	struct magazine *mp;
1545 	int i;
1546 
1547 	/*
1548 	 * Prevent further use of mtmagazines while we are destructing
1549 	 * them, as well as for any destructors which are run after us
1550 	 * prior to the thread actually being destroyed.
1551 	 */
1552 	tp->init = -1;
1553 
1554 	for (i = 0; i < NZONES; i++) {
1555 		mp = tp->mags[i].loaded;
1556 		tp->mags[i].loaded = NULL;
1557 		if (mp) {
1558 			if (MAGAZINE_NOTEMPTY(mp))
1559 				mtmagazine_drain(mp);
1560 			_slabfree(mp, 0, NULL);
1561 		}
1562 
1563 		mp = tp->mags[i].prev;
1564 		tp->mags[i].prev = NULL;
1565 		if (mp) {
1566 			if (MAGAZINE_NOTEMPTY(mp))
1567 				mtmagazine_drain(mp);
1568 			_slabfree(mp, 0, NULL);
1569 		}
1570 	}
1571 
1572 	if (tp->newmag) {
1573 		mp = tp->newmag;
1574 		tp->newmag = NULL;
1575 		_slabfree(mp, 0, NULL);
1576 	}
1577 }
1578 
1579 /*
1580  * zone_alloc()
1581  *
1582  * Attempt to allocate a zone from the zone magazine; the zone magazine has
1583  * M_BURST_EARLY enabled, so honor the burst request from the magazine.
1584  */
1585 static slzone_t
1586 zone_alloc(int flags)
1587 {
1588 	slglobaldata_t slgd = &SLGlobalData;
1589 	int burst = 1;
1590 	int i, j;
1591 	slzone_t z;
1592 
1593 	zone_magazine_lock();
1594 	slgd_unlock(slgd);
1595 
1596 	z = magazine_alloc(&zone_magazine, &burst);
1597 	if (z == NULL && burst == 1) {
1598 		zone_magazine_unlock();
1599 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1600 	} else if (z == NULL) {
1601 		z = _vmem_alloc(ZoneSize * burst, ZoneSize, flags);
1602 		if (z) {
1603 			for (i = 1; i < burst; i++) {
1604 				j = magazine_free(&zone_magazine,
1605 						  (char *) z + (ZoneSize * i));
1606 				MASSERT(j == 0);
1607 			}
1608 		}
1609 		zone_magazine_unlock();
1610 	} else {
1611 		z->z_Flags |= SLZF_UNOTZEROD;
1612 		zone_magazine_unlock();
1613 	}
1614 	slgd_lock(slgd);
1615 	return z;
1616 }
1617 
1618 /*
1619  * zone_free()
1620  *
1621  * Release a zone and unlock the slgd lock.
1622  */
1623 static void
1624 zone_free(void *z)
1625 {
1626 	slglobaldata_t slgd = &SLGlobalData;
1627 	void *excess[M_ZONE_ROUNDS - M_LOW_ROUNDS] = {};
1628 	int i, j;
1629 
1630 	zone_magazine_lock();
1631 	slgd_unlock(slgd);
1632 
1633 	bzero(z, sizeof(struct slzone));
1634 
1635 	if (opt_madvise)
1636 		madvise(z, ZoneSize, MADV_FREE);
1637 
1638 	i = magazine_free(&zone_magazine, z);
1639 
1640 	/*
1641 	 * If we failed to free, collect excess magazines; release the zone
1642 	 * magazine lock, and then free to the system via _vmem_free. Re-enable
1643 	 * BURST mode for the magazine.
1644 	 */
1645 	if (i == -1) {
1646 		j = zone_magazine.rounds - zone_magazine.low_factor;
1647 		for (i = 0; i < j; i++) {
1648 			excess[i] = magazine_alloc(&zone_magazine, NULL);
1649 			MASSERT(excess[i] !=  NULL);
1650 		}
1651 
1652 		zone_magazine_unlock();
1653 
1654 		for (i = 0; i < j; i++)
1655 			_vmem_free(excess[i], ZoneSize);
1656 
1657 		_vmem_free(z, ZoneSize);
1658 	} else {
1659 		zone_magazine_unlock();
1660 	}
1661 }
1662 
1663 /*
1664  * _vmem_alloc()
1665  *
1666  *	Directly map memory in PAGE_SIZE'd chunks with the specified
1667  *	alignment.
1668  *
1669  *	Alignment must be a multiple of PAGE_SIZE.
1670  *
1671  *	Size must be >= alignment.
1672  */
1673 static void *
1674 _vmem_alloc(size_t size, size_t align, int flags)
1675 {
1676 	char *addr;
1677 	char *save;
1678 	size_t excess;
1679 
1680 	/*
1681 	 * Map anonymous private memory.
1682 	 */
1683 	addr = mmap(NULL, size, PROT_READ|PROT_WRITE,
1684 		    MAP_PRIVATE|MAP_ANON, -1, 0);
1685 	if (addr == MAP_FAILED)
1686 		return(NULL);
1687 
1688 	/*
1689 	 * Check alignment.  The misaligned offset is also the excess
1690 	 * amount.  If misaligned unmap the excess so we have a chance of
1691 	 * mapping at the next alignment point and recursively try again.
1692 	 *
1693 	 * BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB	block alignment
1694 	 *   aaaaaaaaa aaaaaaaaaaa aa		mis-aligned allocation
1695 	 *   xxxxxxxxx				final excess calculation
1696 	 *   ^ returned address
1697 	 */
1698 	excess = (uintptr_t)addr & (align - 1);
1699 
1700 	if (excess) {
1701 		excess = align - excess;
1702 		save = addr;
1703 
1704 		munmap(save + excess, size - excess);
1705 		addr = _vmem_alloc(size, align, flags);
1706 		munmap(save, excess);
1707 	}
1708 	return((void *)addr);
1709 }
1710 
1711 /*
1712  * _vmem_free()
1713  *
1714  *	Free a chunk of memory allocated with _vmem_alloc()
1715  */
1716 static void
1717 _vmem_free(void *ptr, size_t size)
1718 {
1719 	munmap(ptr, size);
1720 }
1721 
1722 /*
1723  * Panic on fatal conditions
1724  */
1725 static void
1726 _mpanic(const char *ctl, ...)
1727 {
1728 	va_list va;
1729 
1730 	if (malloc_panic == 0) {
1731 		malloc_panic = 1;
1732 		va_start(va, ctl);
1733 		vfprintf(stderr, ctl, va);
1734 		fprintf(stderr, "\n");
1735 		fflush(stderr);
1736 		va_end(va);
1737 	}
1738 	abort();
1739 }
1740