xref: /dragonfly/lib/libc/stdlib/random.c (revision 82730a9c)
1 /*
2  * Copyright (c) 1983, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * @(#)random.c	8.2 (Berkeley) 5/19/95
30  * $FreeBSD: src/lib/libc/stdlib/random.c,v 1.25 2007/01/09 00:28:10 imp Exp $
31  * $DragonFly: src/lib/libc/stdlib/random.c,v 1.9 2005/11/24 17:18:30 swildner Exp $
32  */
33 
34 #include "namespace.h"
35 #include <sys/time.h>          /* for srandomdev() */
36 #include <sys/sysctl.h>
37 #include <fcntl.h>             /* for srandomdev() */
38 #include <stdint.h>
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <unistd.h>            /* for srandomdev() */
42 #include "un-namespace.h"
43 
44 /*
45  * random.c:
46  *
47  * An improved random number generation package.  In addition to the standard
48  * rand()/srand() like interface, this package also has a special state info
49  * interface.  The initstate() routine is called with a seed, an array of
50  * bytes, and a count of how many bytes are being passed in; this array is
51  * then initialized to contain information for random number generation with
52  * that much state information.  Good sizes for the amount of state
53  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
54  * calling the setstate() routine with the same array as was initiallized
55  * with initstate().  By default, the package runs with 128 bytes of state
56  * information and generates far better random numbers than a linear
57  * congruential generator.  If the amount of state information is less than
58  * 32 bytes, a simple linear congruential R.N.G. is used.
59  *
60  * Internally, the state information is treated as an array of uint32_t's; the
61  * zeroeth element of the array is the type of R.N.G. being used (small
62  * integer); the remainder of the array is the state information for the
63  * R.N.G.  Thus, 32 bytes of state information will give 7 ints worth of
64  * state information, which will allow a degree seven polynomial.  (Note:
65  * the zeroeth word of state information also has some other information
66  * stored in it -- see setstate() for details).
67  *
68  * The random number generation technique is a linear feedback shift register
69  * approach, employing trinomials (since there are fewer terms to sum up that
70  * way).  In this approach, the least significant bit of all the numbers in
71  * the state table will act as a linear feedback shift register, and will
72  * have period 2^deg - 1 (where deg is the degree of the polynomial being
73  * used, assuming that the polynomial is irreducible and primitive).  The
74  * higher order bits will have longer periods, since their values are also
75  * influenced by pseudo-random carries out of the lower bits.  The total
76  * period of the generator is approximately deg*(2**deg - 1); thus doubling
77  * the amount of state information has a vast influence on the period of the
78  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
79  * large deg, when the period of the shift is the dominant factor.
80  * With deg equal to seven, the period is actually much longer than the
81  * 7*(2**7 - 1) predicted by this formula.
82  *
83  * Modified 28 December 1994 by Jacob S. Rosenberg.
84  * The following changes have been made:
85  * All references to the type u_int have been changed to unsigned long.
86  * All references to type int have been changed to type long.  Other
87  * cleanups have been made as well.  A warning for both initstate and
88  * setstate has been inserted to the effect that on Sparc platforms
89  * the 'arg_state' variable must be forced to begin on word boundaries.
90  * This can be easily done by casting a long integer array to char *.
91  * The overall logic has been left STRICTLY alone.  This software was
92  * tested on both a VAX and Sun SpacsStation with exactly the same
93  * results.  The new version and the original give IDENTICAL results.
94  * The new version is somewhat faster than the original.  As the
95  * documentation says:  "By default, the package runs with 128 bytes of
96  * state information and generates far better random numbers than a linear
97  * congruential generator.  If the amount of state information is less than
98  * 32 bytes, a simple linear congruential R.N.G. is used."  For a buffer of
99  * 128 bytes, this new version runs about 19 percent faster and for a 16
100  * byte buffer it is about 5 percent faster.
101  */
102 
103 /*
104  * For each of the currently supported random number generators, we have a
105  * break value on the amount of state information (you need at least this
106  * many bytes of state info to support this random number generator), a degree
107  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
108  * the separation between the two lower order coefficients of the trinomial.
109  */
110 #define	TYPE_0		0		/* linear congruential */
111 #define	BREAK_0		8
112 #define	DEG_0		0
113 #define	SEP_0		0
114 
115 #define	TYPE_1		1		/* x**7 + x**3 + 1 */
116 #define	BREAK_1		32
117 #define	DEG_1		7
118 #define	SEP_1		3
119 
120 #define	TYPE_2		2		/* x**15 + x + 1 */
121 #define	BREAK_2		64
122 #define	DEG_2		15
123 #define	SEP_2		1
124 
125 #define	TYPE_3		3		/* x**31 + x**3 + 1 */
126 #define	BREAK_3		128
127 #define	DEG_3		31
128 #define	SEP_3		3
129 
130 #define	TYPE_4		4		/* x**63 + x + 1 */
131 #define	BREAK_4		256
132 #define	DEG_4		63
133 #define	SEP_4		1
134 
135 /*
136  * Array versions of the above information to make code run faster --
137  * relies on fact that TYPE_i == i.
138  */
139 #define	MAX_TYPES	5		/* max number of types above */
140 
141 #ifdef  USE_WEAK_SEEDING
142 #define NSHUFF 0
143 #else   /* !USE_WEAK_SEEDING */
144 #define NSHUFF 50       /* to drop some "seed -> 1st value" linearity */
145 #endif  /* !USE_WEAK_SEEDING */
146 
147 static const int degrees[MAX_TYPES] =	{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
148 static const int seps [MAX_TYPES] =	{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
149 
150 /*
151  * Initially, everything is set up as if from:
152  *
153  *	initstate(1, randtbl, 128);
154  *
155  * Note that this initialization takes advantage of the fact that srandom()
156  * advances the front and rear pointers 10*rand_deg times, and hence the
157  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
158  * element of the state information, which contains info about the current
159  * position of the rear pointer is just
160  *
161  *	MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
162  */
163 
164 static uint32_t randtbl[DEG_3 + 1] = {
165 	TYPE_3,
166 #ifdef  USE_WEAK_SEEDING
167 /* Historic implementation compatibility */
168 /* The random sequences do not vary much with the seed */
169 	0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
170 	0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
171 	0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
172 	0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
173 	0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
174 	0x27fb47b9,
175 #else   /* !USE_WEAK_SEEDING */
176 	0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
177 	0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
178 	0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
179 	0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
180 	0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
181 	0xf3bec5da
182 #endif  /* !USE_WEAK_SEEDING */
183 };
184 
185 /*
186  * fptr and rptr are two pointers into the state info, a front and a rear
187  * pointer.  These two pointers are always rand_sep places aparts, as they
188  * cycle cyclically through the state information.  (Yes, this does mean we
189  * could get away with just one pointer, but the code for random() is more
190  * efficient this way).  The pointers are left positioned as they would be
191  * from the call
192  *
193  *	initstate(1, randtbl, 128);
194  *
195  * (The position of the rear pointer, rptr, is really 0 (as explained above
196  * in the initialization of randtbl) because the state table pointer is set
197  * to point to randtbl[1] (as explained below).
198  */
199 static uint32_t *fptr = &randtbl[SEP_3 + 1];
200 static uint32_t *rptr = &randtbl[1];
201 
202 /*
203  * The following things are the pointer to the state information table, the
204  * type of the current generator, the degree of the current polynomial being
205  * used, and the separation between the two pointers.  Note that for efficiency
206  * of random(), we remember the first location of the state information, not
207  * the zeroeth.  Hence it is valid to access state[-1], which is used to
208  * store the type of the R.N.G.  Also, we remember the last location, since
209  * this is more efficient than indexing every time to find the address of
210  * the last element to see if the front and rear pointers have wrapped.
211  */
212 static uint32_t *state = &randtbl[1];
213 static int rand_type = TYPE_3;
214 static int rand_deg = DEG_3;
215 static int rand_sep = SEP_3;
216 static uint32_t *end_ptr = &randtbl[DEG_3 + 1];
217 
218 static inline uint32_t good_rand(int32_t);
219 
220 static inline uint32_t
221 good_rand(int32_t x)
222 {
223 #ifdef  USE_WEAK_SEEDING
224 /*
225  * Historic implementation compatibility.
226  * The random sequences do not vary much with the seed,
227  * even with overflowing.
228  */
229 	return (1103515245 * x + 12345);
230 #else   /* !USE_WEAK_SEEDING */
231 /*
232  * Compute x = (7^5 * x) mod (2^31 - 1)
233  * wihout overflowing 31 bits:
234  *      (2^31 - 1) = 127773 * (7^5) + 2836
235  * From "Random number generators: good ones are hard to find",
236  * Park and Miller, Communications of the ACM, vol. 31, no. 10,
237  * October 1988, p. 1195.
238  */
239 	int32_t hi, lo;
240 
241 	/* Can't be initialized with 0, so use another value. */
242 	if (x == 0)
243 		x = 123459876;
244 	hi = x / 127773;
245 	lo = x % 127773;
246 	x = 16807 * lo - 2836 * hi;
247 	if (x < 0)
248 		x += 0x7fffffff;
249 	return (x);
250 #endif  /* !USE_WEAK_SEEDING */
251 }
252 
253 /*
254  * srandom:
255  *
256  * Initialize the random number generator based on the given seed.  If the
257  * type is the trivial no-state-information type, just remember the seed.
258  * Otherwise, initializes state[] based on the given "seed" via a linear
259  * congruential generator.  Then, the pointers are set to known locations
260  * that are exactly rand_sep places apart.  Lastly, it cycles the state
261  * information a given number of times to get rid of any initial dependencies
262  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
263  * for default usage relies on values produced by this routine.
264  */
265 void
266 srandom(unsigned long x)
267 {
268 	int i, lim;
269 
270 	state[0] = (uint32_t)x;
271 	if (rand_type == TYPE_0)
272 		lim = NSHUFF;
273 	else {
274 		for (i = 1; i < rand_deg; i++)
275 			state[i] = good_rand(state[i - 1]);
276 		fptr = &state[rand_sep];
277 		rptr = &state[0];
278 		lim = 10 * rand_deg;
279 	}
280 	for (i = 0; i < lim; i++)
281 		random();
282 }
283 
284 /*
285  * srandomdev:
286  *
287  * Many programs choose the seed value in a totally predictable manner.
288  * This often causes problems.  We seed the generator using the much more
289  * secure random(4) interface.  Note that this particular seeding
290  * procedure can generate states which are impossible to reproduce by
291  * calling srandom() with any value, since the succeeding terms in the
292  * state buffer are no longer derived from the LC algorithm applied to
293  * a fixed seed.
294  */
295 
296 void
297 srandomdev(void)
298 {
299 	size_t len;
300 	size_t n;
301 	int fd;
302 
303 	if (rand_type == TYPE_0)
304 		len = sizeof state[0];
305 	else
306 		len = rand_deg * sizeof state[0];
307 
308 	/*
309 	 * Standard
310 	 */
311 	fd = _open("/dev/random", O_RDONLY, 0);
312 	if (fd >= 0) {
313 		n = _read(fd, (void *)state, len);
314 		_close(fd);
315 		if ((ssize_t)n < 0)
316 			n = 0;
317 	}
318 
319 	/*
320 	 * Back-off incase chroot has no access to /dev/random
321 	 */
322 	n = n & ~15;
323 	if (n < len) {
324 		size_t r = len - n;
325 		if (sysctlbyname("kern.random", (char *)state + n,
326 				 &r, NULL, 0) == 0) {
327 			n += r;
328 		}
329 	}
330 
331 	/*
332 	 * Pray
333 	 *
334 	 * NOTE: 'random' data on the stack is not random, don't try to
335 	 *	 access it.
336 	 */
337 	n = n & ~15;
338 	if (n < len) {
339 		struct timeval tv;
340 
341 		gettimeofday(&tv, NULL);
342 		srandom((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec);
343 		return;
344 	}
345 
346 	if (rand_type != TYPE_0) {
347 		fptr = &state[rand_sep];
348 		rptr = &state[0];
349 	}
350 }
351 
352 /*
353  * initstate:
354  *
355  * Initialize the state information in the given array of n bytes for future
356  * random number generation.  Based on the number of bytes we are given, and
357  * the break values for the different R.N.G.'s, we choose the best (largest)
358  * one we can and set things up for it.  srandom() is then called to
359  * initialize the state information.
360  *
361  * Note that on return from srandom(), we set state[-1] to be the type
362  * multiplexed with the current value of the rear pointer; this is so
363  * successive calls to initstate() won't lose this information and will be
364  * able to restart with setstate().
365  *
366  * Note: the first thing we do is save the current state, if any, just like
367  * setstate() so that it doesn't matter when initstate is called.
368  *
369  * Parameters:
370  *	seed:		seed for R.N.G.
371  *	arg_state:	pointer to state array
372  *	n:		# bytes of state info
373  *
374  * Returns a pointer to the old state.
375  *
376  * Note: The Sparc platform requires that arg_state begin on an int
377  * word boundary; otherwise a bus error will occur. Even so, lint will
378  * complain about mis-alignment, but you should disregard these messages.
379  */
380 char *
381 initstate(unsigned long seed, char *arg_state, long n)
382 {
383 	char *ostate = (char *)(&state[-1]);
384 	uint32_t *int_arg_state = (uint32_t *)arg_state;
385 
386 	if (rand_type == TYPE_0)
387 		state[-1] = rand_type;
388 	else
389 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
390 	if (n < BREAK_0) {
391 		fprintf(stderr,
392 		    "random: not enough state (%ld bytes); ignored.\n", n);
393 		return(0);
394 	}
395 	if (n < BREAK_1) {
396 		rand_type = TYPE_0;
397 		rand_deg = DEG_0;
398 		rand_sep = SEP_0;
399 	} else if (n < BREAK_2) {
400 		rand_type = TYPE_1;
401 		rand_deg = DEG_1;
402 		rand_sep = SEP_1;
403 	} else if (n < BREAK_3) {
404 		rand_type = TYPE_2;
405 		rand_deg = DEG_2;
406 		rand_sep = SEP_2;
407 	} else if (n < BREAK_4) {
408 		rand_type = TYPE_3;
409 		rand_deg = DEG_3;
410 		rand_sep = SEP_3;
411 	} else {
412 		rand_type = TYPE_4;
413 		rand_deg = DEG_4;
414 		rand_sep = SEP_4;
415 	}
416 	state = int_arg_state + 1; /* first location */
417 	end_ptr = &state[rand_deg];	/* must set end_ptr before srandom */
418 	srandom(seed);
419 	if (rand_type == TYPE_0)
420 		int_arg_state[0] = rand_type;
421 	else
422 		int_arg_state[0] = MAX_TYPES * (rptr - state) + rand_type;
423 	return(ostate);
424 }
425 
426 /*
427  * setstate:
428  *
429  * Restore the state from the given state array.
430  *
431  * Note: it is important that we also remember the locations of the pointers
432  * in the current state information, and restore the locations of the pointers
433  * from the old state information.  This is done by multiplexing the pointer
434  * location into the zeroeth word of the state information.
435  *
436  * Note that due to the order in which things are done, it is OK to call
437  * setstate() with the same state as the current state.
438  *
439  * Parameters:
440  *	arg_state:	pointer to state array
441  *
442  * Returns a pointer to the old state information.
443  *
444  * Note: The Sparc platform requires that arg_state begin on an int
445  * word boundary; otherwise a bus error will occur. Even so, lint will
446  * complain about mis-alignment, but you should disregard these messages.
447  */
448 char *
449 setstate(char *arg_state)
450 {
451 	uint32_t *new_state = (uint32_t *)arg_state;
452 	uint32_t type = new_state[0] % MAX_TYPES;
453 	uint32_t rear = new_state[0] / MAX_TYPES;
454 	char *ostate = (char *)(&state[-1]);
455 
456 	if (rand_type == TYPE_0)
457 		state[-1] = rand_type;
458 	else
459 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
460 	switch(type) {
461 	case TYPE_0:
462 	case TYPE_1:
463 	case TYPE_2:
464 	case TYPE_3:
465 	case TYPE_4:
466 		rand_type = type;
467 		rand_deg = degrees[type];
468 		rand_sep = seps[type];
469 		break;
470 	default:
471 		fprintf(stderr,
472 		    "random: state info corrupted; not changed.\n");
473 	}
474 	state = new_state + 1;
475 	if (rand_type != TYPE_0) {
476 		rptr = &state[rear];
477 		fptr = &state[(rear + rand_sep) % rand_deg];
478 	}
479 	end_ptr = &state[rand_deg];		/* set end_ptr too */
480 	return(ostate);
481 }
482 
483 /*
484  * random:
485  *
486  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
487  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
488  * the same in all the other cases due to all the global variables that have
489  * been set up.  The basic operation is to add the number at the rear pointer
490  * into the one at the front pointer.  Then both pointers are advanced to
491  * the next location cyclically in the table.  The value returned is the sum
492  * generated, reduced to 31 bits by throwing away the "least random" low bit.
493  *
494  * Note: the code takes advantage of the fact that both the front and
495  * rear pointers can't wrap on the same call by not testing the rear
496  * pointer if the front one has wrapped.
497  *
498  * Returns a 31-bit random number.
499  */
500 long
501 random(void)
502 {
503 	uint32_t i;
504 	uint32_t *f, *r;
505 
506 	if (rand_type == TYPE_0) {
507 		i = state[0];
508 		state[0] = i = (good_rand(i)) & 0x7fffffff;
509 	} else {
510 		/*
511 		 * Use local variables rather than static variables for speed.
512 		 */
513 		f = fptr; r = rptr;
514 		*f += *r;
515 		/* chucking least random bit */
516 		i = (*f >> 1) & 0x7fffffff;
517 		if (++f >= end_ptr) {
518 			f = state;
519 			++r;
520 		}
521 		else if (++r >= end_ptr) {
522 			r = state;
523 		}
524 
525 		fptr = f; rptr = r;
526 	}
527 	return((long)i);
528 }
529