xref: /dragonfly/lib/libc/stdlib/random.c (revision e65bc1c3)
1 /*
2  * Copyright (c) 1983, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * @(#)random.c	8.2 (Berkeley) 5/19/95
30  * $FreeBSD: src/lib/libc/stdlib/random.c,v 1.25 2007/01/09 00:28:10 imp Exp $
31  * $DragonFly: src/lib/libc/stdlib/random.c,v 1.9 2005/11/24 17:18:30 swildner Exp $
32  */
33 
34 #include "namespace.h"
35 #include <sys/time.h>          /* for srandomdev() */
36 #include <fcntl.h>             /* for srandomdev() */
37 #include <stdint.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <unistd.h>            /* for srandomdev() */
41 #include "un-namespace.h"
42 
43 /*
44  * random.c:
45  *
46  * An improved random number generation package.  In addition to the standard
47  * rand()/srand() like interface, this package also has a special state info
48  * interface.  The initstate() routine is called with a seed, an array of
49  * bytes, and a count of how many bytes are being passed in; this array is
50  * then initialized to contain information for random number generation with
51  * that much state information.  Good sizes for the amount of state
52  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
53  * calling the setstate() routine with the same array as was initiallized
54  * with initstate().  By default, the package runs with 128 bytes of state
55  * information and generates far better random numbers than a linear
56  * congruential generator.  If the amount of state information is less than
57  * 32 bytes, a simple linear congruential R.N.G. is used.
58  *
59  * Internally, the state information is treated as an array of uint32_t's; the
60  * zeroeth element of the array is the type of R.N.G. being used (small
61  * integer); the remainder of the array is the state information for the
62  * R.N.G.  Thus, 32 bytes of state information will give 7 ints worth of
63  * state information, which will allow a degree seven polynomial.  (Note:
64  * the zeroeth word of state information also has some other information
65  * stored in it -- see setstate() for details).
66  *
67  * The random number generation technique is a linear feedback shift register
68  * approach, employing trinomials (since there are fewer terms to sum up that
69  * way).  In this approach, the least significant bit of all the numbers in
70  * the state table will act as a linear feedback shift register, and will
71  * have period 2^deg - 1 (where deg is the degree of the polynomial being
72  * used, assuming that the polynomial is irreducible and primitive).  The
73  * higher order bits will have longer periods, since their values are also
74  * influenced by pseudo-random carries out of the lower bits.  The total
75  * period of the generator is approximately deg*(2**deg - 1); thus doubling
76  * the amount of state information has a vast influence on the period of the
77  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
78  * large deg, when the period of the shift is the dominant factor.
79  * With deg equal to seven, the period is actually much longer than the
80  * 7*(2**7 - 1) predicted by this formula.
81  *
82  * Modified 28 December 1994 by Jacob S. Rosenberg.
83  * The following changes have been made:
84  * All references to the type u_int have been changed to unsigned long.
85  * All references to type int have been changed to type long.  Other
86  * cleanups have been made as well.  A warning for both initstate and
87  * setstate has been inserted to the effect that on Sparc platforms
88  * the 'arg_state' variable must be forced to begin on word boundaries.
89  * This can be easily done by casting a long integer array to char *.
90  * The overall logic has been left STRICTLY alone.  This software was
91  * tested on both a VAX and Sun SpacsStation with exactly the same
92  * results.  The new version and the original give IDENTICAL results.
93  * The new version is somewhat faster than the original.  As the
94  * documentation says:  "By default, the package runs with 128 bytes of
95  * state information and generates far better random numbers than a linear
96  * congruential generator.  If the amount of state information is less than
97  * 32 bytes, a simple linear congruential R.N.G. is used."  For a buffer of
98  * 128 bytes, this new version runs about 19 percent faster and for a 16
99  * byte buffer it is about 5 percent faster.
100  */
101 
102 /*
103  * For each of the currently supported random number generators, we have a
104  * break value on the amount of state information (you need at least this
105  * many bytes of state info to support this random number generator), a degree
106  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
107  * the separation between the two lower order coefficients of the trinomial.
108  */
109 #define	TYPE_0		0		/* linear congruential */
110 #define	BREAK_0		8
111 #define	DEG_0		0
112 #define	SEP_0		0
113 
114 #define	TYPE_1		1		/* x**7 + x**3 + 1 */
115 #define	BREAK_1		32
116 #define	DEG_1		7
117 #define	SEP_1		3
118 
119 #define	TYPE_2		2		/* x**15 + x + 1 */
120 #define	BREAK_2		64
121 #define	DEG_2		15
122 #define	SEP_2		1
123 
124 #define	TYPE_3		3		/* x**31 + x**3 + 1 */
125 #define	BREAK_3		128
126 #define	DEG_3		31
127 #define	SEP_3		3
128 
129 #define	TYPE_4		4		/* x**63 + x + 1 */
130 #define	BREAK_4		256
131 #define	DEG_4		63
132 #define	SEP_4		1
133 
134 /*
135  * Array versions of the above information to make code run faster --
136  * relies on fact that TYPE_i == i.
137  */
138 #define	MAX_TYPES	5		/* max number of types above */
139 
140 #ifdef  USE_WEAK_SEEDING
141 #define NSHUFF 0
142 #else   /* !USE_WEAK_SEEDING */
143 #define NSHUFF 50       /* to drop some "seed -> 1st value" linearity */
144 #endif  /* !USE_WEAK_SEEDING */
145 
146 static const int degrees[MAX_TYPES] =	{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
147 static const int seps [MAX_TYPES] =	{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
148 
149 /*
150  * Initially, everything is set up as if from:
151  *
152  *	initstate(1, randtbl, 128);
153  *
154  * Note that this initialization takes advantage of the fact that srandom()
155  * advances the front and rear pointers 10*rand_deg times, and hence the
156  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
157  * element of the state information, which contains info about the current
158  * position of the rear pointer is just
159  *
160  *	MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
161  */
162 
163 static uint32_t randtbl[DEG_3 + 1] = {
164 	TYPE_3,
165 #ifdef  USE_WEAK_SEEDING
166 /* Historic implementation compatibility */
167 /* The random sequences do not vary much with the seed */
168 	0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
169 	0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
170 	0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
171 	0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
172 	0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
173 	0x27fb47b9,
174 #else   /* !USE_WEAK_SEEDING */
175 	0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
176 	0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
177 	0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
178 	0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
179 	0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
180 	0xf3bec5da
181 #endif  /* !USE_WEAK_SEEDING */
182 };
183 
184 /*
185  * fptr and rptr are two pointers into the state info, a front and a rear
186  * pointer.  These two pointers are always rand_sep places aparts, as they
187  * cycle cyclically through the state information.  (Yes, this does mean we
188  * could get away with just one pointer, but the code for random() is more
189  * efficient this way).  The pointers are left positioned as they would be
190  * from the call
191  *
192  *	initstate(1, randtbl, 128);
193  *
194  * (The position of the rear pointer, rptr, is really 0 (as explained above
195  * in the initialization of randtbl) because the state table pointer is set
196  * to point to randtbl[1] (as explained below).
197  */
198 static uint32_t *fptr = &randtbl[SEP_3 + 1];
199 static uint32_t *rptr = &randtbl[1];
200 
201 /*
202  * The following things are the pointer to the state information table, the
203  * type of the current generator, the degree of the current polynomial being
204  * used, and the separation between the two pointers.  Note that for efficiency
205  * of random(), we remember the first location of the state information, not
206  * the zeroeth.  Hence it is valid to access state[-1], which is used to
207  * store the type of the R.N.G.  Also, we remember the last location, since
208  * this is more efficient than indexing every time to find the address of
209  * the last element to see if the front and rear pointers have wrapped.
210  */
211 static uint32_t *state = &randtbl[1];
212 static int rand_type = TYPE_3;
213 static int rand_deg = DEG_3;
214 static int rand_sep = SEP_3;
215 static uint32_t *end_ptr = &randtbl[DEG_3 + 1];
216 
217 static inline uint32_t good_rand(int32_t);
218 
219 static inline uint32_t
220 good_rand(int32_t x)
221 {
222 #ifdef  USE_WEAK_SEEDING
223 /*
224  * Historic implementation compatibility.
225  * The random sequences do not vary much with the seed,
226  * even with overflowing.
227  */
228 	return (1103515245 * x + 12345);
229 #else   /* !USE_WEAK_SEEDING */
230 /*
231  * Compute x = (7^5 * x) mod (2^31 - 1)
232  * wihout overflowing 31 bits:
233  *      (2^31 - 1) = 127773 * (7^5) + 2836
234  * From "Random number generators: good ones are hard to find",
235  * Park and Miller, Communications of the ACM, vol. 31, no. 10,
236  * October 1988, p. 1195.
237  */
238 	int32_t hi, lo;
239 
240 	/* Can't be initialized with 0, so use another value. */
241 	if (x == 0)
242 		x = 123459876;
243 	hi = x / 127773;
244 	lo = x % 127773;
245 	x = 16807 * lo - 2836 * hi;
246 	if (x < 0)
247 		x += 0x7fffffff;
248 	return (x);
249 #endif  /* !USE_WEAK_SEEDING */
250 }
251 
252 /*
253  * srandom:
254  *
255  * Initialize the random number generator based on the given seed.  If the
256  * type is the trivial no-state-information type, just remember the seed.
257  * Otherwise, initializes state[] based on the given "seed" via a linear
258  * congruential generator.  Then, the pointers are set to known locations
259  * that are exactly rand_sep places apart.  Lastly, it cycles the state
260  * information a given number of times to get rid of any initial dependencies
261  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
262  * for default usage relies on values produced by this routine.
263  */
264 void
265 srandom(unsigned long x)
266 {
267 	int i, lim;
268 
269 	state[0] = (uint32_t)x;
270 	if (rand_type == TYPE_0)
271 		lim = NSHUFF;
272 	else {
273 		for (i = 1; i < rand_deg; i++)
274 			state[i] = good_rand(state[i - 1]);
275 		fptr = &state[rand_sep];
276 		rptr = &state[0];
277 		lim = 10 * rand_deg;
278 	}
279 	for (i = 0; i < lim; i++)
280 		random();
281 }
282 
283 /*
284  * srandomdev:
285  *
286  * Many programs choose the seed value in a totally predictable manner.
287  * This often causes problems.  We seed the generator using the much more
288  * secure random(4) interface.  Note that this particular seeding
289  * procedure can generate states which are impossible to reproduce by
290  * calling srandom() with any value, since the succeeding terms in the
291  * state buffer are no longer derived from the LC algorithm applied to
292  * a fixed seed.
293  */
294 void
295 srandomdev(void)
296 {
297 	int fd, done;
298 	size_t len;
299 
300 	if (rand_type == TYPE_0)
301 		len = sizeof state[0];
302 	else
303 		len = rand_deg * sizeof state[0];
304 
305 	done = 0;
306 	fd = _open("/dev/random", O_RDONLY, 0);
307 	if (fd >= 0) {
308 		if (_read(fd, (void *) state, len) == (ssize_t) len)
309 			done = 1;
310 		_close(fd);
311 	}
312 
313 	if (!done) {
314 		struct timeval tv;
315 		unsigned long junk;	/* XXX left uninitialized on purpose */
316 
317 		gettimeofday(&tv, NULL);
318 		srandom((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec ^ junk);
319 		return;
320 	}
321 
322 	if (rand_type != TYPE_0) {
323 		fptr = &state[rand_sep];
324 		rptr = &state[0];
325 	}
326 }
327 
328 /*
329  * initstate:
330  *
331  * Initialize the state information in the given array of n bytes for future
332  * random number generation.  Based on the number of bytes we are given, and
333  * the break values for the different R.N.G.'s, we choose the best (largest)
334  * one we can and set things up for it.  srandom() is then called to
335  * initialize the state information.
336  *
337  * Note that on return from srandom(), we set state[-1] to be the type
338  * multiplexed with the current value of the rear pointer; this is so
339  * successive calls to initstate() won't lose this information and will be
340  * able to restart with setstate().
341  *
342  * Note: the first thing we do is save the current state, if any, just like
343  * setstate() so that it doesn't matter when initstate is called.
344  *
345  * Parameters:
346  *	seed:		seed for R.N.G.
347  *	arg_state:	pointer to state array
348  *	n:		# bytes of state info
349  *
350  * Returns a pointer to the old state.
351  *
352  * Note: The Sparc platform requires that arg_state begin on an int
353  * word boundary; otherwise a bus error will occur. Even so, lint will
354  * complain about mis-alignment, but you should disregard these messages.
355  */
356 char *
357 initstate(unsigned long seed, char *arg_state, long n)
358 {
359 	char *ostate = (char *)(&state[-1]);
360 	uint32_t *int_arg_state = (uint32_t *)arg_state;
361 
362 	if (rand_type == TYPE_0)
363 		state[-1] = rand_type;
364 	else
365 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
366 	if (n < BREAK_0) {
367 		fprintf(stderr,
368 		    "random: not enough state (%ld bytes); ignored.\n", n);
369 		return(0);
370 	}
371 	if (n < BREAK_1) {
372 		rand_type = TYPE_0;
373 		rand_deg = DEG_0;
374 		rand_sep = SEP_0;
375 	} else if (n < BREAK_2) {
376 		rand_type = TYPE_1;
377 		rand_deg = DEG_1;
378 		rand_sep = SEP_1;
379 	} else if (n < BREAK_3) {
380 		rand_type = TYPE_2;
381 		rand_deg = DEG_2;
382 		rand_sep = SEP_2;
383 	} else if (n < BREAK_4) {
384 		rand_type = TYPE_3;
385 		rand_deg = DEG_3;
386 		rand_sep = SEP_3;
387 	} else {
388 		rand_type = TYPE_4;
389 		rand_deg = DEG_4;
390 		rand_sep = SEP_4;
391 	}
392 	state = int_arg_state + 1; /* first location */
393 	end_ptr = &state[rand_deg];	/* must set end_ptr before srandom */
394 	srandom(seed);
395 	if (rand_type == TYPE_0)
396 		int_arg_state[0] = rand_type;
397 	else
398 		int_arg_state[0] = MAX_TYPES * (rptr - state) + rand_type;
399 	return(ostate);
400 }
401 
402 /*
403  * setstate:
404  *
405  * Restore the state from the given state array.
406  *
407  * Note: it is important that we also remember the locations of the pointers
408  * in the current state information, and restore the locations of the pointers
409  * from the old state information.  This is done by multiplexing the pointer
410  * location into the zeroeth word of the state information.
411  *
412  * Note that due to the order in which things are done, it is OK to call
413  * setstate() with the same state as the current state.
414  *
415  * Parameters:
416  *	arg_state:	pointer to state array
417  *
418  * Returns a pointer to the old state information.
419  *
420  * Note: The Sparc platform requires that arg_state begin on an int
421  * word boundary; otherwise a bus error will occur. Even so, lint will
422  * complain about mis-alignment, but you should disregard these messages.
423  */
424 char *
425 setstate(char *arg_state)
426 {
427 	uint32_t *new_state = (uint32_t *)arg_state;
428 	uint32_t type = new_state[0] % MAX_TYPES;
429 	uint32_t rear = new_state[0] / MAX_TYPES;
430 	char *ostate = (char *)(&state[-1]);
431 
432 	if (rand_type == TYPE_0)
433 		state[-1] = rand_type;
434 	else
435 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
436 	switch(type) {
437 	case TYPE_0:
438 	case TYPE_1:
439 	case TYPE_2:
440 	case TYPE_3:
441 	case TYPE_4:
442 		rand_type = type;
443 		rand_deg = degrees[type];
444 		rand_sep = seps[type];
445 		break;
446 	default:
447 		fprintf(stderr,
448 		    "random: state info corrupted; not changed.\n");
449 	}
450 	state = new_state + 1;
451 	if (rand_type != TYPE_0) {
452 		rptr = &state[rear];
453 		fptr = &state[(rear + rand_sep) % rand_deg];
454 	}
455 	end_ptr = &state[rand_deg];		/* set end_ptr too */
456 	return(ostate);
457 }
458 
459 /*
460  * random:
461  *
462  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
463  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
464  * the same in all the other cases due to all the global variables that have
465  * been set up.  The basic operation is to add the number at the rear pointer
466  * into the one at the front pointer.  Then both pointers are advanced to
467  * the next location cyclically in the table.  The value returned is the sum
468  * generated, reduced to 31 bits by throwing away the "least random" low bit.
469  *
470  * Note: the code takes advantage of the fact that both the front and
471  * rear pointers can't wrap on the same call by not testing the rear
472  * pointer if the front one has wrapped.
473  *
474  * Returns a 31-bit random number.
475  */
476 long
477 random(void)
478 {
479 	uint32_t i;
480 	uint32_t *f, *r;
481 
482 	if (rand_type == TYPE_0) {
483 		i = state[0];
484 		state[0] = i = (good_rand(i)) & 0x7fffffff;
485 	} else {
486 		/*
487 		 * Use local variables rather than static variables for speed.
488 		 */
489 		f = fptr; r = rptr;
490 		*f += *r;
491 		/* chucking least random bit */
492 		i = (*f >> 1) & 0x7fffffff;
493 		if (++f >= end_ptr) {
494 			f = state;
495 			++r;
496 		}
497 		else if (++r >= end_ptr) {
498 			r = state;
499 		}
500 
501 		fptr = f; rptr = r;
502 	}
503 	return((long)i);
504 }
505