xref: /dragonfly/lib/libc/stdtime/localtime.c (revision 73610d44)
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 **
5 ** $FreeBSD: head/contrib/tzcode/stdtime/localtime.c 226828 2011-10-27 08:44:07Z trociny $
6 */
7 
8 /*
9 ** Leap second handling from Bradley White.
10 ** POSIX-style TZ environment variable handling from Guy Harris.
11 */
12 
13 /*LINTLIBRARY*/
14 
15 #include "namespace.h"
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 
19 #include <errno.h>
20 #include <fcntl.h>
21 #include <time.h>
22 #include <pthread.h>
23 #include "private.h"
24 #include "libc_private.h"
25 #include <un-namespace.h>
26 
27 #include "tzfile.h"
28 
29 #ifndef TZ_ABBR_MAX_LEN
30 #define TZ_ABBR_MAX_LEN	16
31 #endif /* !defined TZ_ABBR_MAX_LEN */
32 
33 #ifndef TZ_ABBR_CHAR_SET
34 #define TZ_ABBR_CHAR_SET \
35 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
36 #endif /* !defined TZ_ABBR_CHAR_SET */
37 
38 #ifndef TZ_ABBR_ERR_CHAR
39 #define TZ_ABBR_ERR_CHAR	'_'
40 #endif /* !defined TZ_ABBR_ERR_CHAR */
41 
42 #define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
43 #define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
44 
45 #define _RWLOCK_RDLOCK(x)						\
46 		do {							\
47 			if (__isthreaded) _pthread_rwlock_rdlock(x);	\
48 		} while (0)
49 
50 #define _RWLOCK_WRLOCK(x)						\
51 		do {							\
52 			if (__isthreaded) _pthread_rwlock_wrlock(x);	\
53 		} while (0)
54 
55 #define _RWLOCK_UNLOCK(x)						\
56 		do {							\
57 			if (__isthreaded) _pthread_rwlock_unlock(x);	\
58 		} while (0)
59 
60 /*
61 ** Someone might make incorrect use of a time zone abbreviation:
62 **	1.	They might reference tzname[0] before calling tzset (explicitly
63 **		or implicitly).
64 **	2.	They might reference tzname[1] before calling tzset (explicitly
65 **		or implicitly).
66 **	3.	They might reference tzname[1] after setting to a time zone
67 **		in which Daylight Saving Time is never observed.
68 **	4.	They might reference tzname[0] after setting to a time zone
69 **		in which Standard Time is never observed.
70 **	5.	They might reference tm.TM_ZONE after calling offtime.
71 ** What's best to do in the above cases is open to debate;
72 ** for now, we just set things up so that in any of the five cases
73 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
74 ** string "tzname[0] used before set", and similarly for the other cases.
75 ** And another: initialize tzname[0] to "ERA", with an explanation in the
76 ** manual page of what this "time zone abbreviation" means (doing this so
77 ** that tzname[0] has the "normal" length of three characters).
78 */
79 #define WILDABBR	"   "
80 
81 static char		wildabbr[] = WILDABBR;
82 
83 static const char	gmt[] = "UTC";
84 
85 /*
86 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
87 ** We default to US rules as of 1999-08-17.
88 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
89 ** implementation dependent; for historical reasons, US rules are a
90 ** common default.
91 */
92 #ifndef TZDEFRULESTRING
93 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
94 #endif /* !defined TZDEFDST */
95 
96 struct ttinfo {				/* time type information */
97 	int_fast32_t	tt_gmtoff;	/* UT offset in seconds */
98 	int		tt_isdst;	/* used to set tm_isdst */
99 	int		tt_abbrind;	/* abbreviation list index */
100 	int		tt_ttisstd;	/* TRUE if transition is std time */
101 	int		tt_ttisgmt;	/* TRUE if transition is UT */
102 };
103 
104 struct lsinfo {				/* leap second information */
105 	time_t		ls_trans;	/* transition time */
106 	int_fast64_t	ls_corr;	/* correction to apply */
107 };
108 
109 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
110 
111 #ifdef TZNAME_MAX
112 #define MY_TZNAME_MAX	TZNAME_MAX
113 #endif /* defined TZNAME_MAX */
114 #ifndef TZNAME_MAX
115 #define MY_TZNAME_MAX	255
116 #endif /* !defined TZNAME_MAX */
117 
118 struct state {
119 	int		leapcnt;
120 	int		timecnt;
121 	int		typecnt;
122 	int		charcnt;
123 	int		goback;
124 	int		goahead;
125 	time_t		ats[TZ_MAX_TIMES];
126 	unsigned char	types[TZ_MAX_TIMES];
127 	struct ttinfo	ttis[TZ_MAX_TYPES];
128 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
129 				(2 * (MY_TZNAME_MAX + 1)))];
130 	struct lsinfo	lsis[TZ_MAX_LEAPS];
131 	int		defaulttype; /* for early times or if no transitions */
132 };
133 
134 struct rule {
135 	int		r_type;		/* type of rule--see below */
136 	int		r_day;		/* day number of rule */
137 	int		r_week;		/* week number of rule */
138 	int		r_mon;		/* month number of rule */
139 	int_fast32_t	r_time;		/* transition time of rule */
140 };
141 
142 #define JULIAN_DAY		0	/* Jn - Julian day */
143 #define DAY_OF_YEAR		1	/* n - day of year */
144 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
145 
146 /*
147 ** Prototypes for static functions.
148 */
149 
150 static int_fast32_t	detzcode(const char * codep);
151 static int_fast64_t	detzcode64(const char * codep);
152 static int		differ_by_repeat(time_t t1, time_t t0);
153 static const char *	getzname(const char * strp) __pure;
154 static const char *	getqzname(const char * strp, const int delim) __pure;
155 static const char *	getnum(const char * strp, int * nump, int min,
156 				int max);
157 static const char *	getsecs(const char * strp, int_fast32_t * secsp);
158 static const char *	getoffset(const char * strp, int_fast32_t * offsetp);
159 static const char *	getrule(const char * strp, struct rule * rulep);
160 static void		gmtload(struct state * sp);
161 static struct tm *	gmtsub(const time_t * timep, int_fast32_t offset,
162 				struct tm * tmp);
163 static struct tm *	localsub(const time_t * timep, int_fast32_t offset,
164 				struct tm * tmp);
165 static int		increment_overflow(int * number, int delta);
166 static int		leaps_thru_end_of(int y) __pure;
167 static int		increment_overflow32(int_fast32_t * number, int delta);
168 static int		increment_overflow_time(time_t *t, int_fast32_t delta);
169 static int		normalize_overflow32(int_fast32_t * tensptr,
170 				int * unitsptr, int base);
171 static int		normalize_overflow(int * tensptr, int * unitsptr,
172 				int base);
173 static void		settzname(void);
174 static time_t		time1(struct tm * tmp,
175 				struct tm * (*funcp)(const time_t *,
176 				int_fast32_t, struct tm *),
177 				int_fast32_t offset);
178 static time_t		time2(struct tm *tmp,
179 				struct tm * (*funcp)(const time_t *,
180 				int_fast32_t, struct tm*),
181 				int_fast32_t offset, int * okayp);
182 static time_t		time2sub(struct tm *tmp,
183 				struct tm * (*funcp)(const time_t *,
184 				int_fast32_t, struct tm*),
185 				int_fast32_t offset, int * okayp, int do_norm_secs);
186 static struct tm *	timesub(const time_t * timep, int_fast32_t offset,
187 				const struct state * sp, struct tm * tmp);
188 static int		tmcomp(const struct tm * atmp,
189 				const struct tm * btmp);
190 static int_fast32_t	transtime(int year, const struct rule * rulep,
191 				  int_fast32_t offset) __pure;
192 static int		typesequiv(const struct state * sp, int a, int b);
193 static int		tzload(const char * name, struct state * sp,
194 				int doextend);
195 static int		tzparse(const char * name, struct state * sp,
196 				int lastditch);
197 
198 static struct state	lclmem;
199 static struct state	gmtmem;
200 #define lclptr		(&lclmem)
201 #define gmtptr		(&gmtmem)
202 
203 #ifndef TZ_STRLEN_MAX
204 #define TZ_STRLEN_MAX 255
205 #endif /* !defined TZ_STRLEN_MAX */
206 
207 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
208 static int		lcl_is_set;
209 static pthread_once_t	gmt_once = PTHREAD_ONCE_INIT;
210 static pthread_rwlock_t	lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
211 static pthread_once_t	gmtime_once = PTHREAD_ONCE_INIT;
212 static pthread_key_t	gmtime_key;
213 static int		gmtime_key_error;
214 static pthread_once_t	localtime_once = PTHREAD_ONCE_INIT;
215 static pthread_key_t	localtime_key;
216 static int		localtime_key_error;
217 
218 char *			tzname[2] = {
219 	wildabbr,
220 	wildabbr
221 };
222 
223 /*
224 ** Section 4.12.3 of X3.159-1989 requires that
225 **	Except for the strftime function, these functions [asctime,
226 **	ctime, gmtime, localtime] return values in one of two static
227 **	objects: a broken-down time structure and an array of char.
228 ** Thanks to Paul Eggert for noting this.
229 */
230 
231 static struct tm	tm;
232 
233 long			timezone = 0;
234 int			daylight = 0;
235 
236 static int_fast32_t
237 detzcode(const char * const codep)
238 {
239 	int_fast32_t	result;
240 	int		i;
241 
242 	result = (codep[0] & 0x80) ? -1 : 0;
243 	for (i = 0; i < 4; ++i)
244 		result = (result << 8) | (codep[i] & 0xff);
245 	return result;
246 }
247 
248 static int_fast64_t
249 detzcode64(const char * const codep)
250 {
251 	int_fast64_t result;
252 	int	i;
253 
254 	result = (codep[0] & 0x80) ? -1 : 0;
255 	for (i = 0; i < 8; ++i)
256 		result = (result << 8) | (codep[i] & 0xff);
257 	return result;
258 }
259 
260 static void
261 settzname(void)
262 {
263 	struct state * const	sp = lclptr;
264 	int			i;
265 
266 	tzname[0] = wildabbr;
267 	tzname[1] = wildabbr;
268 	daylight = 0;
269 	timezone = 0;
270 
271 	/*
272 	** And to get the latest zone names into tzname. . .
273 	*/
274 	for (i = 0; i < sp->typecnt; ++i) {
275 		const struct ttinfo * const ttisp = &sp->ttis[i];
276 
277 		tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
278 	}
279 	for (i = 0; i < sp->timecnt; ++i) {
280 		const struct ttinfo * const ttisp = &sp->ttis[sp->types[i]];
281 
282 		tzname[ttisp->tt_isdst] =
283 			&sp->chars[ttisp->tt_abbrind];
284 		if (ttisp->tt_isdst)
285 			daylight = 1;
286 		if (!ttisp->tt_isdst)
287 			timezone = -(ttisp->tt_gmtoff);
288 	}
289 	/*
290 	** Finally, scrub the abbreviations.
291 	** First, replace bogus characters.
292 	*/
293 	for (i = 0; i < sp->charcnt; ++i)
294 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
295 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
296 	/*
297 	** Second, truncate long abbreviations.
298 	*/
299 	for (i = 0; i < sp->typecnt; ++i) {
300 		const struct ttinfo * const	ttisp = &sp->ttis[i];
301 		char *				cp = &sp->chars[ttisp->tt_abbrind];
302 
303 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
304 			strcmp(cp, GRANDPARENTED) != 0)
305 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
306 	}
307 }
308 
309 static int
310 differ_by_repeat(const time_t t1, const time_t t0)
311 {
312 	if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
313 		return 0;
314 	return t1 - t0 == SECSPERREPEAT;
315 }
316 
317 static int
318 tzload(const char *name, struct state * const sp, const int doextend)
319 {
320 	const char *	p;
321 	int		i;
322 	int		fid;
323 	int		stored;
324 	int		nread;
325 	int		res;
326 	typedef union {
327 		struct tzhead	tzhead;
328 		char		buf[2 * sizeof(struct tzhead) +
329 					2 * sizeof *sp +
330 					4 * TZ_MAX_TIMES];
331 	} u_t;
332 	u_t		*u;
333 
334 	u = NULL;
335 	res = -1;
336 	sp->goback = sp->goahead = FALSE;
337 
338 	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
339 	if (name != NULL && issetugid() != 0)
340 		if ((name[0] == ':' && name[1] == '/') ||
341 		    name[0] == '/' || strchr(name, '.'))
342 			name = NULL;
343 	if (name == NULL && (name = TZDEFAULT) == NULL)
344 		return -1;
345 	{
346 		int	doaccess;
347 		struct stat	stab;
348 		/*
349 		** Section 4.9.1 of the C standard says that
350 		** "FILENAME_MAX expands to an integral constant expression
351 		** that is the size needed for an array of char large enough
352 		** to hold the longest file name string that the implementation
353 		** guarantees can be opened."
354 		*/
355 		char		*fullname;
356 
357 		fullname = malloc(FILENAME_MAX + 1);
358 		if (fullname == NULL)
359 			goto out;
360 
361 		if (name[0] == ':')
362 			++name;
363 		doaccess = name[0] == '/';
364 		if (!doaccess) {
365 			if ((p = TZDIR) == NULL) {
366 				free(fullname);
367 				return -1;
368 			}
369 			if (strlen(p) + 1 + strlen(name) >= FILENAME_MAX) {
370 				free(fullname);
371 				return -1;
372 			}
373 			strcpy(fullname, p);
374 			strcat(fullname, "/");
375 			strcat(fullname, name);
376 			/*
377 			** Set doaccess if '.' (as in "../") shows up in name.
378 			*/
379 			if (strchr(name, '.') != NULL)
380 				doaccess = TRUE;
381 			name = fullname;
382 		}
383 		if (doaccess && access(name, R_OK) != 0) {
384 			free(fullname);
385 			return -1;
386 		}
387 		if ((fid = _open(name, O_RDONLY)) == -1) {
388 			free(fullname);
389 			return -1;
390 		}
391 		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
392 			free(fullname);
393 			_close(fid);
394 			return -1;
395 		}
396 		free(fullname);
397 	}
398 	u = malloc(sizeof(*u));
399 	if (u == NULL)
400 		goto out;
401 	nread = _read(fid, u->buf, sizeof u->buf);
402 	if (_close(fid) < 0 || nread <= 0)
403 		goto out;
404 	for (stored = 4; stored <= 8; stored *= 2) {
405 		int		ttisstdcnt;
406 		int		ttisgmtcnt;
407 		int		timecnt;
408 
409 		ttisstdcnt = (int) detzcode(u->tzhead.tzh_ttisstdcnt);
410 		ttisgmtcnt = (int) detzcode(u->tzhead.tzh_ttisgmtcnt);
411 		sp->leapcnt = (int) detzcode(u->tzhead.tzh_leapcnt);
412 		sp->timecnt = (int) detzcode(u->tzhead.tzh_timecnt);
413 		sp->typecnt = (int) detzcode(u->tzhead.tzh_typecnt);
414 		sp->charcnt = (int) detzcode(u->tzhead.tzh_charcnt);
415 		p = u->tzhead.tzh_charcnt + sizeof u->tzhead.tzh_charcnt;
416 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
417 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
418 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
419 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
420 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
421 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
422 				goto out;
423 		if (nread - (p - u->buf) <
424 			sp->timecnt * stored +		/* ats */
425 			sp->timecnt +			/* types */
426 			sp->typecnt * 6 +		/* ttinfos */
427 			sp->charcnt +			/* chars */
428 			sp->leapcnt * (stored + 4) +	/* lsinfos */
429 			ttisstdcnt +			/* ttisstds */
430 			ttisgmtcnt)			/* ttisgmts */
431 				goto out;
432 		timecnt = 0;
433 		for (i = 0; i < sp->timecnt; ++i) {
434 			int_fast64_t at
435 			  = stored == 4 ? detzcode(p) : detzcode64(p);
436 			sp->types[i] = ((TYPE_SIGNED(time_t)
437 					 ? time_t_min <= at
438 					 : 0 <= at)
439 					&& at <= time_t_max);
440 			if (sp->types[i]) {
441 				if (i && !timecnt && at != time_t_min) {
442 					/*
443 					** Keep the earlier record, but tweak
444 					** it so that it starts with the
445 					** minimum time_t value.
446 					*/
447 					sp->types[i - 1] = 1;
448 					sp->ats[timecnt++] = time_t_min;
449 				}
450 				sp->ats[timecnt++] = at;
451 			}
452 			p += stored;
453 		}
454 		timecnt = 0;
455 		for (i = 0; i < sp->timecnt; ++i) {
456 			unsigned char typ = *p++;
457 			if (sp->typecnt <= typ)
458 				goto out;
459 			if (sp->types[i])
460 				sp->types[timecnt++] = typ;
461 		}
462 		sp->timecnt = timecnt;
463 		for (i = 0; i < sp->typecnt; ++i) {
464 			struct ttinfo *	ttisp;
465 
466 			ttisp = &sp->ttis[i];
467 			ttisp->tt_gmtoff = detzcode(p);
468 			p += 4;
469 			ttisp->tt_isdst = (unsigned char) *p++;
470 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
471 				goto out;
472 			ttisp->tt_abbrind = (unsigned char) *p++;
473 			if (ttisp->tt_abbrind < 0 ||
474 				ttisp->tt_abbrind > sp->charcnt)
475 					goto out;
476 		}
477 		for (i = 0; i < sp->charcnt; ++i)
478 			sp->chars[i] = *p++;
479 		sp->chars[i] = '\0';	/* ensure '\0' at end */
480 		for (i = 0; i < sp->leapcnt; ++i) {
481 			struct lsinfo *	lsisp;
482 
483 			lsisp = &sp->lsis[i];
484 			lsisp->ls_trans = (stored == 4) ?
485 				detzcode(p) : detzcode64(p);
486 			p += stored;
487 			lsisp->ls_corr = detzcode(p);
488 			p += 4;
489 		}
490 		for (i = 0; i < sp->typecnt; ++i) {
491 			struct ttinfo *	ttisp;
492 
493 			ttisp = &sp->ttis[i];
494 			if (ttisstdcnt == 0)
495 				ttisp->tt_ttisstd = FALSE;
496 			else {
497 				ttisp->tt_ttisstd = *p++;
498 				if (ttisp->tt_ttisstd != TRUE &&
499 					ttisp->tt_ttisstd != FALSE)
500 						goto out;
501 			}
502 		}
503 		for (i = 0; i < sp->typecnt; ++i) {
504 			struct ttinfo *	ttisp;
505 
506 			ttisp = &sp->ttis[i];
507 			if (ttisgmtcnt == 0)
508 				ttisp->tt_ttisgmt = FALSE;
509 			else {
510 				ttisp->tt_ttisgmt = *p++;
511 				if (ttisp->tt_ttisgmt != TRUE &&
512 					ttisp->tt_ttisgmt != FALSE)
513 						goto out;
514 			}
515 		}
516 		/*
517 		** If this is an old file, we're done.
518 		*/
519 		if (u->tzhead.tzh_version[0] == '\0')
520 			break;
521 		nread -= p - u->buf;
522 		for (i = 0; i < nread; ++i)
523 			u->buf[i] = p[i];
524 		/*
525 		** If this is a signed narrow time_t system, we're done.
526 		*/
527 		if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
528 			break;
529 	}
530 	if (doextend && nread > 2 &&
531 		u->buf[0] == '\n' && u->buf[nread - 1] == '\n' &&
532 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
533 			struct state	*ts;
534 			int		result;
535 
536 			ts = malloc(sizeof(*ts));
537 			if (ts == NULL)
538 				goto out;
539 			u->buf[nread - 1] = '\0';
540 			result = tzparse(&u->buf[1], ts, FALSE);
541 			if (result == 0 && ts->typecnt == 2 &&
542 				sp->charcnt + ts->charcnt <= TZ_MAX_CHARS) {
543 					for (i = 0; i < 2; ++i)
544 						ts->ttis[i].tt_abbrind +=
545 							sp->charcnt;
546 					for (i = 0; i < ts->charcnt; ++i)
547 						sp->chars[sp->charcnt++] =
548 							ts->chars[i];
549 					i = 0;
550 					while (i < ts->timecnt &&
551 						ts->ats[i] <=
552 						sp->ats[sp->timecnt - 1])
553 							++i;
554 					while (i < ts->timecnt &&
555 					    sp->timecnt < TZ_MAX_TIMES) {
556 						sp->ats[sp->timecnt] =
557 							ts->ats[i];
558 						sp->types[sp->timecnt] =
559 							sp->typecnt +
560 							ts->types[i];
561 						++sp->timecnt;
562 						++i;
563 					}
564 					sp->ttis[sp->typecnt++] = ts->ttis[0];
565 					sp->ttis[sp->typecnt++] = ts->ttis[1];
566 			}
567 			free(ts);
568 	}
569 	if (sp->timecnt > 1) {
570 		for (i = 1; i < sp->timecnt; ++i)
571 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
572 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
573 					sp->goback = TRUE;
574 					break;
575 				}
576 		for (i = sp->timecnt - 2; i >= 0; --i)
577 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
578 				sp->types[i]) &&
579 				differ_by_repeat(sp->ats[sp->timecnt - 1],
580 				sp->ats[i])) {
581 					sp->goahead = TRUE;
582 					break;
583 		}
584 	}
585 	/*
586 	** If type 0 is is unused in transitions,
587 	** it's the type to use for early times.
588 	*/
589 	for (i = 0; i < sp->typecnt; ++i)
590 		if (sp->types[i] == 0)
591 			break;
592 	i = (i >= sp->typecnt) ? 0 : -1;
593 	/*
594 	** Absent the above,
595 	** if there are transition times
596 	** and the first transition is to a daylight time
597 	** find the standard type less than and closest to
598 	** the type of the first transition.
599 	*/
600 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
601 		i = sp->types[0];
602 		while (--i >= 0)
603 			if (!sp->ttis[i].tt_isdst)
604 				break;
605 	}
606 	/*
607 	** If no result yet, find the first standard type.
608 	** If there is none, punt to type zero.
609 	*/
610 	if (i < 0) {
611 		i = 0;
612 		while (sp->ttis[i].tt_isdst)
613 			if (++i >= sp->typecnt) {
614 				i = 0;
615 				break;
616 			}
617 	}
618 	sp->defaulttype = i;
619 	res = 0;
620 out:
621 	free(u);
622 	return (res);
623 }
624 
625 static int
626 typesequiv(const struct state * const sp, const int a, const int b)
627 {
628 	int	result;
629 
630 	if (sp == NULL ||
631 		a < 0 || a >= sp->typecnt ||
632 		b < 0 || b >= sp->typecnt)
633 			result = FALSE;
634 	else {
635 		const struct ttinfo *	ap = &sp->ttis[a];
636 		const struct ttinfo *	bp = &sp->ttis[b];
637 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
638 			ap->tt_isdst == bp->tt_isdst &&
639 			ap->tt_ttisstd == bp->tt_ttisstd &&
640 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
641 			strcmp(&sp->chars[ap->tt_abbrind],
642 			&sp->chars[bp->tt_abbrind]) == 0;
643 	}
644 	return result;
645 }
646 
647 static const int	mon_lengths[2][MONSPERYEAR] = {
648 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
649 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
650 };
651 
652 static const int	year_lengths[2] = {
653 	DAYSPERNYEAR, DAYSPERLYEAR
654 };
655 
656 /*
657 ** Given a pointer into a time zone string, scan until a character that is not
658 ** a valid character in a zone name is found. Return a pointer to that
659 ** character.
660 */
661 
662 static const char *
663 getzname(const char *strp)
664 {
665 	char	c;
666 
667 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
668 		c != '+')
669 			++strp;
670 	return strp;
671 }
672 
673 /*
674 ** Given a pointer into an extended time zone string, scan until the ending
675 ** delimiter of the zone name is located. Return a pointer to the delimiter.
676 **
677 ** As with getzname above, the legal character set is actually quite
678 ** restricted, with other characters producing undefined results.
679 ** We don't do any checking here; checking is done later in common-case code.
680 */
681 
682 static const char *
683 getqzname(const char *strp, const int delim)
684 {
685 	int	c;
686 
687 	while ((c = *strp) != '\0' && c != delim)
688 		++strp;
689 	return strp;
690 }
691 
692 /*
693 ** Given a pointer into a time zone string, extract a number from that string.
694 ** Check that the number is within a specified range; if it is not, return
695 ** NULL.
696 ** Otherwise, return a pointer to the first character not part of the number.
697 */
698 
699 static const char *
700 getnum(const char *strp, int * const nump, const int min, const int max)
701 {
702 	char	c;
703 	int	num;
704 
705 	if (strp == NULL || !is_digit(c = *strp))
706 		return NULL;
707 	num = 0;
708 	do {
709 		num = num * 10 + (c - '0');
710 		if (num > max)
711 			return NULL;	/* illegal value */
712 		c = *++strp;
713 	} while (is_digit(c));
714 	if (num < min)
715 		return NULL;		/* illegal value */
716 	*nump = num;
717 	return strp;
718 }
719 
720 /*
721 ** Given a pointer into a time zone string, extract a number of seconds,
722 ** in hh[:mm[:ss]] form, from the string.
723 ** If any error occurs, return NULL.
724 ** Otherwise, return a pointer to the first character not part of the number
725 ** of seconds.
726 */
727 
728 static const char *
729 getsecs(const char *strp, int_fast32_t * const secsp)
730 {
731 	int	num;
732 
733 	/*
734 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
735 	** "M10.4.6/26", which does not conform to Posix,
736 	** but which specifies the equivalent of
737 	** ``02:00 on the first Sunday on or after 23 Oct''.
738 	*/
739 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
740 	if (strp == NULL)
741 		return NULL;
742 	*secsp = num * (int_fast32_t) SECSPERHOUR;
743 	if (*strp == ':') {
744 		++strp;
745 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
746 		if (strp == NULL)
747 			return NULL;
748 		*secsp += num * SECSPERMIN;
749 		if (*strp == ':') {
750 			++strp;
751 			/* `SECSPERMIN' allows for leap seconds. */
752 			strp = getnum(strp, &num, 0, SECSPERMIN);
753 			if (strp == NULL)
754 				return NULL;
755 			*secsp += num;
756 		}
757 	}
758 	return strp;
759 }
760 
761 /*
762 ** Given a pointer into a time zone string, extract an offset, in
763 ** [+-]hh[:mm[:ss]] form, from the string.
764 ** If any error occurs, return NULL.
765 ** Otherwise, return a pointer to the first character not part of the time.
766 */
767 
768 static const char *
769 getoffset(const char *strp, int_fast32_t * const offsetp)
770 {
771 	int	neg = 0;
772 
773 	if (*strp == '-') {
774 		neg = 1;
775 		++strp;
776 	} else if (*strp == '+')
777 		++strp;
778 	strp = getsecs(strp, offsetp);
779 	if (strp == NULL)
780 		return NULL;		/* illegal time */
781 	if (neg)
782 		*offsetp = -*offsetp;
783 	return strp;
784 }
785 
786 /*
787 ** Given a pointer into a time zone string, extract a rule in the form
788 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
789 ** If a valid rule is not found, return NULL.
790 ** Otherwise, return a pointer to the first character not part of the rule.
791 */
792 
793 static const char *
794 getrule(const char *strp, struct rule * const rulep)
795 {
796 	if (*strp == 'J') {
797 		/*
798 		** Julian day.
799 		*/
800 		rulep->r_type = JULIAN_DAY;
801 		++strp;
802 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
803 	} else if (*strp == 'M') {
804 		/*
805 		** Month, week, day.
806 		*/
807 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
808 		++strp;
809 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
810 		if (strp == NULL)
811 			return NULL;
812 		if (*strp++ != '.')
813 			return NULL;
814 		strp = getnum(strp, &rulep->r_week, 1, 5);
815 		if (strp == NULL)
816 			return NULL;
817 		if (*strp++ != '.')
818 			return NULL;
819 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
820 	} else if (is_digit(*strp)) {
821 		/*
822 		** Day of year.
823 		*/
824 		rulep->r_type = DAY_OF_YEAR;
825 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
826 	} else	return NULL;		/* invalid format */
827 	if (strp == NULL)
828 		return NULL;
829 	if (*strp == '/') {
830 		/*
831 		** Time specified.
832 		*/
833 		++strp;
834 		strp = getoffset(strp, &rulep->r_time);
835 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
836 	return strp;
837 }
838 
839 /*
840 ** Given a year, a rule, and the offset from UT at the time that rule takes
841 ** effect, calculate the year-relative time that rule takes effect.
842 */
843 
844 static int_fast32_t
845 transtime(const int year, const struct rule * const rulep,
846 	  const int_fast32_t offset)
847 {
848 	int	leapyear;
849 	int_fast32_t value;
850 	int	i;
851 	int		d, m1, yy0, yy1, yy2, dow;
852 
853 	INITIALIZE(value);
854 	leapyear = isleap(year);
855 	switch (rulep->r_type) {
856 
857 	case JULIAN_DAY:
858 		/*
859 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
860 		** years.
861 		** In non-leap years, or if the day number is 59 or less, just
862 		** add SECSPERDAY times the day number-1 to the time of
863 		** January 1, midnight, to get the day.
864 		*/
865 		value = (rulep->r_day - 1) * SECSPERDAY;
866 		if (leapyear && rulep->r_day >= 60)
867 			value += SECSPERDAY;
868 		break;
869 
870 	case DAY_OF_YEAR:
871 		/*
872 		** n - day of year.
873 		** Just add SECSPERDAY times the day number to the time of
874 		** January 1, midnight, to get the day.
875 		*/
876 		value = rulep->r_day * SECSPERDAY;
877 		break;
878 
879 	case MONTH_NTH_DAY_OF_WEEK:
880 		/*
881 		** Mm.n.d - nth "dth day" of month m.
882 		*/
883 
884 		/*
885 		** Use Zeller's Congruence to get day-of-week of first day of
886 		** month.
887 		*/
888 		m1 = (rulep->r_mon + 9) % 12 + 1;
889 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
890 		yy1 = yy0 / 100;
891 		yy2 = yy0 % 100;
892 		dow = ((26 * m1 - 2) / 10 +
893 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
894 		if (dow < 0)
895 			dow += DAYSPERWEEK;
896 
897 		/*
898 		** "dow" is the day-of-week of the first day of the month. Get
899 		** the day-of-month (zero-origin) of the first "dow" day of the
900 		** month.
901 		*/
902 		d = rulep->r_day - dow;
903 		if (d < 0)
904 			d += DAYSPERWEEK;
905 		for (i = 1; i < rulep->r_week; ++i) {
906 			if (d + DAYSPERWEEK >=
907 				mon_lengths[leapyear][rulep->r_mon - 1])
908 					break;
909 			d += DAYSPERWEEK;
910 		}
911 
912 		/*
913 		** "d" is the day-of-month (zero-origin) of the day we want.
914 		*/
915 		value = d * SECSPERDAY;
916 		for (i = 0; i < rulep->r_mon - 1; ++i)
917 			value += mon_lengths[leapyear][i] * SECSPERDAY;
918 		break;
919 	}
920 
921 	/*
922 	** "value" is the year-relative time of 00:00:00 UT on the day in
923 	** question. To get the year-relative time of the specified local
924 	** time on that day, add the transition time and the current offset
925 	** from UT.
926 	*/
927 	return value + rulep->r_time + offset;
928 }
929 
930 /*
931 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
932 ** appropriate.
933 */
934 
935 static int
936 tzparse(const char *name, struct state * const sp, const int lastditch)
937 {
938 	const char *			stdname;
939 	const char *			dstname;
940 	size_t				stdlen;
941 	size_t				dstlen;
942 	int_fast32_t			stdoffset;
943 	int_fast32_t			dstoffset;
944 	char *				cp;
945 	int				load_result;
946 	static struct ttinfo		zttinfo;
947 
948 	INITIALIZE(dstname);
949 	stdname = name;
950 	if (lastditch) {
951 		stdlen = strlen(name);	/* length of standard zone name */
952 		name += stdlen;
953 		if (stdlen >= sizeof sp->chars)
954 			stdlen = (sizeof sp->chars) - 1;
955 		stdoffset = 0;
956 	} else {
957 		if (*name == '<') {
958 			name++;
959 			stdname = name;
960 			name = getqzname(name, '>');
961 			if (*name != '>')
962 				return (-1);
963 			stdlen = name - stdname;
964 			name++;
965 		} else {
966 			name = getzname(name);
967 			stdlen = name - stdname;
968 		}
969 		if (*name == '\0')
970 			return -1;
971 		name = getoffset(name, &stdoffset);
972 		if (name == NULL)
973 			return -1;
974 	}
975 	load_result = tzload(TZDEFRULES, sp, FALSE);
976 	if (load_result != 0)
977 		sp->leapcnt = 0;		/* so, we're off a little */
978 	if (*name != '\0') {
979 		if (*name == '<') {
980 			dstname = ++name;
981 			name = getqzname(name, '>');
982 			if (*name != '>')
983 				return -1;
984 			dstlen = name - dstname;
985 			name++;
986 		} else {
987 			dstname = name;
988 			name = getzname(name);
989 			dstlen = name - dstname; /* length of DST zone name */
990 		}
991 		if (*name != '\0' && *name != ',' && *name != ';') {
992 			name = getoffset(name, &dstoffset);
993 			if (name == NULL)
994 				return -1;
995 		} else	dstoffset = stdoffset - SECSPERHOUR;
996 		if (*name == '\0' && load_result != 0)
997 			name = TZDEFRULESTRING;
998 		if (*name == ',' || *name == ';') {
999 			struct rule	start;
1000 			struct rule	end;
1001 			int		year;
1002 			int		yearlim;
1003 			int		timecnt;
1004 			time_t		janfirst;
1005 
1006 			++name;
1007 			if ((name = getrule(name, &start)) == NULL)
1008 				return -1;
1009 			if (*name++ != ',')
1010 				return -1;
1011 			if ((name = getrule(name, &end)) == NULL)
1012 				return -1;
1013 			if (*name != '\0')
1014 				return -1;
1015 			sp->typecnt = 2;	/* standard time and DST */
1016 			/*
1017 			** Two transitions per year, from EPOCH_YEAR forward.
1018 			*/
1019 			sp->ttis[0] = sp->ttis[1] = zttinfo;
1020 			sp->ttis[0].tt_gmtoff = -dstoffset;
1021 			sp->ttis[0].tt_isdst = 1;
1022 			sp->ttis[0].tt_abbrind = stdlen + 1;
1023 			sp->ttis[1].tt_gmtoff = -stdoffset;
1024 			sp->ttis[1].tt_isdst = 0;
1025 			sp->ttis[1].tt_abbrind = 0;
1026 			timecnt = 0;
1027 			janfirst = 0;
1028 			yearlim = EPOCH_YEAR + YEARSPERREPEAT;
1029 			for (year = EPOCH_YEAR; year < yearlim; year++) {
1030 				int_fast32_t
1031 				  starttime = transtime(year, &start, stdoffset),
1032 				  endtime = transtime(year, &end, dstoffset);
1033 				int_fast32_t
1034 				  yearsecs = (year_lengths[isleap(year)]
1035 					      * SECSPERDAY);
1036 				int reversed = endtime < starttime;
1037 				if (reversed) {
1038 					int_fast32_t swap = starttime;
1039 					starttime = endtime;
1040 					endtime = swap;
1041 				}
1042 				if (reversed
1043 				    || (starttime < endtime
1044 					&& (endtime - starttime
1045 					    < (yearsecs
1046 					       + (stdoffset - dstoffset))))) {
1047 					if (TZ_MAX_TIMES - 2 < timecnt)
1048 						break;
1049 					yearlim = year + YEARSPERREPEAT + 1;
1050 					sp->ats[timecnt] = janfirst;
1051 					if (increment_overflow_time
1052 					    (&sp->ats[timecnt], starttime))
1053 						break;
1054 					sp->types[timecnt++] = reversed;
1055 					sp->ats[timecnt] = janfirst;
1056 					if (increment_overflow_time
1057 					    (&sp->ats[timecnt], endtime))
1058 						break;
1059 					sp->types[timecnt++] = !reversed;
1060 				}
1061 				if (increment_overflow_time(&janfirst, yearsecs))
1062 					break;
1063 			}
1064 			sp->timecnt = timecnt;
1065 			if (!timecnt)
1066 				sp->typecnt = 1;	/* Perpetual DST.  */
1067 		} else {
1068 			int_fast32_t	theirstdoffset;
1069 			int_fast32_t	theirdstoffset;
1070 			int_fast32_t	theiroffset;
1071 			int		isdst;
1072 			int		i;
1073 			int		j;
1074 
1075 			if (*name != '\0')
1076 				return -1;
1077 			/*
1078 			** Initial values of theirstdoffset and theirdstoffset.
1079 			*/
1080 			theirstdoffset = 0;
1081 			for (i = 0; i < sp->timecnt; ++i) {
1082 				j = sp->types[i];
1083 				if (!sp->ttis[j].tt_isdst) {
1084 					theirstdoffset =
1085 						-sp->ttis[j].tt_gmtoff;
1086 					break;
1087 				}
1088 			}
1089 			theirdstoffset = 0;
1090 			for (i = 0; i < sp->timecnt; ++i) {
1091 				j = sp->types[i];
1092 				if (sp->ttis[j].tt_isdst) {
1093 					theirdstoffset =
1094 						-sp->ttis[j].tt_gmtoff;
1095 					break;
1096 				}
1097 			}
1098 			/*
1099 			** Initially we're assumed to be in standard time.
1100 			*/
1101 			isdst = FALSE;
1102 			theiroffset = theirstdoffset;
1103 			/*
1104 			** Now juggle transition times and types
1105 			** tracking offsets as you do.
1106 			*/
1107 			for (i = 0; i < sp->timecnt; ++i) {
1108 				j = sp->types[i];
1109 				sp->types[i] = sp->ttis[j].tt_isdst;
1110 				if (sp->ttis[j].tt_ttisgmt) {
1111 					/* No adjustment to transition time */
1112 				} else {
1113 					/*
1114 					** If summer time is in effect, and the
1115 					** transition time was not specified as
1116 					** standard time, add the summer time
1117 					** offset to the transition time;
1118 					** otherwise, add the standard time
1119 					** offset to the transition time.
1120 					*/
1121 					/*
1122 					** Transitions from DST to DDST
1123 					** will effectively disappear since
1124 					** POSIX provides for only one DST
1125 					** offset.
1126 					*/
1127 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1128 						sp->ats[i] += dstoffset -
1129 							theirdstoffset;
1130 					} else {
1131 						sp->ats[i] += stdoffset -
1132 							theirstdoffset;
1133 					}
1134 				}
1135 				theiroffset = -sp->ttis[j].tt_gmtoff;
1136 				if (sp->ttis[j].tt_isdst)
1137 					theirdstoffset = theiroffset;
1138 				else	theirstdoffset = theiroffset;
1139 			}
1140 			/*
1141 			** Finally, fill in ttis.
1142 			*/
1143 			sp->ttis[0] = sp->ttis[1] = zttinfo;
1144 			sp->ttis[0].tt_gmtoff = -stdoffset;
1145 			sp->ttis[0].tt_isdst = FALSE;
1146 			sp->ttis[0].tt_abbrind = 0;
1147 			sp->ttis[1].tt_gmtoff = -dstoffset;
1148 			sp->ttis[1].tt_isdst = TRUE;
1149 			sp->ttis[1].tt_abbrind = stdlen + 1;
1150 			sp->typecnt = 2;
1151 		}
1152 	} else {
1153 		dstlen = 0;
1154 		sp->typecnt = 1;		/* only standard time */
1155 		sp->timecnt = 0;
1156 		sp->ttis[0] = zttinfo;
1157 		sp->ttis[0].tt_gmtoff = -stdoffset;
1158 		sp->ttis[0].tt_isdst = 0;
1159 		sp->ttis[0].tt_abbrind = 0;
1160 	}
1161 	sp->charcnt = stdlen + 1;
1162 	if (dstlen != 0)
1163 		sp->charcnt += dstlen + 1;
1164 	if ((size_t) sp->charcnt > sizeof sp->chars)
1165 		return -1;
1166 	cp = sp->chars;
1167 	strncpy(cp, stdname, stdlen);
1168 	cp += stdlen;
1169 	*cp++ = '\0';
1170 	if (dstlen != 0) {
1171 		strncpy(cp, dstname, dstlen);
1172 		*(cp + dstlen) = '\0';
1173 	}
1174 	return 0;
1175 }
1176 
1177 static void
1178 gmtload(struct state * const sp)
1179 {
1180 	if (tzload(gmt, sp, TRUE) != 0)
1181 		tzparse(gmt, sp, TRUE);
1182 }
1183 
1184 static void
1185 tzsetwall_basic(int rdlocked)
1186 {
1187 	if (!rdlocked)
1188 		_RWLOCK_RDLOCK(&lcl_rwlock);
1189 	if (lcl_is_set < 0) {
1190 		if (!rdlocked)
1191 			_RWLOCK_UNLOCK(&lcl_rwlock);
1192 		return;
1193 	}
1194 	_RWLOCK_UNLOCK(&lcl_rwlock);
1195 
1196 	_RWLOCK_WRLOCK(&lcl_rwlock);
1197 	lcl_is_set = -1;
1198 
1199 	if (tzload(NULL, lclptr, TRUE) != 0)
1200 		gmtload(lclptr);
1201 	settzname();
1202 	_RWLOCK_UNLOCK(&lcl_rwlock);
1203 
1204 	if (rdlocked)
1205 		_RWLOCK_RDLOCK(&lcl_rwlock);
1206 }
1207 
1208 void
1209 tzsetwall(void)
1210 {
1211 	tzsetwall_basic(0);
1212 }
1213 
1214 static void
1215 tzset_basic(int rdlocked)
1216 {
1217 	const char *	name;
1218 
1219 	name = getenv("TZ");
1220 	if (name == NULL) {
1221 		tzsetwall_basic(rdlocked);
1222 		return;
1223 	}
1224 
1225 	if (!rdlocked)
1226 		_RWLOCK_RDLOCK(&lcl_rwlock);
1227 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1228 		if (!rdlocked)
1229 			_RWLOCK_UNLOCK(&lcl_rwlock);
1230 		return;
1231 	}
1232 	_RWLOCK_UNLOCK(&lcl_rwlock);
1233 
1234 	_RWLOCK_WRLOCK(&lcl_rwlock);
1235 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1236 	if (lcl_is_set)
1237 		strcpy(lcl_TZname, name);
1238 
1239 	if (*name == '\0') {
1240 		/*
1241 		** User wants it fast rather than right.
1242 		*/
1243 		lclptr->leapcnt = 0;		/* so, we're off a little */
1244 		lclptr->timecnt = 0;
1245 		lclptr->typecnt = 0;
1246 		lclptr->ttis[0].tt_isdst = 0;
1247 		lclptr->ttis[0].tt_gmtoff = 0;
1248 		lclptr->ttis[0].tt_abbrind = 0;
1249 		strcpy(lclptr->chars, gmt);
1250 	} else if (tzload(name, lclptr, TRUE) != 0)
1251 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1252 			gmtload(lclptr);
1253 	settzname();
1254 	_RWLOCK_UNLOCK(&lcl_rwlock);
1255 
1256 	if (rdlocked)
1257 		_RWLOCK_RDLOCK(&lcl_rwlock);
1258 }
1259 
1260 void
1261 tzset(void)
1262 {
1263 	tzset_basic(0);
1264 }
1265 
1266 /*
1267 ** The easy way to behave "as if no library function calls" localtime
1268 ** is to not call it--so we drop its guts into "localsub", which can be
1269 ** freely called. (And no, the PANS doesn't require the above behavior--
1270 ** but it *is* desirable.)
1271 **
1272 ** The unused offset argument is for the benefit of mktime variants.
1273 */
1274 
1275 /*ARGSUSED*/
1276 static struct tm *
1277 localsub(const time_t * const timep, const int_fast32_t offset __unused,
1278 	 struct tm * const tmp)
1279 {
1280 	struct state *		sp;
1281 	const struct ttinfo *	ttisp;
1282 	int			i;
1283 	struct tm *		result;
1284 	const time_t		t = *timep;
1285 
1286 	sp = lclptr;
1287 
1288 	if ((sp->goback && t < sp->ats[0]) ||
1289 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1290 			time_t		newt = t;
1291 			time_t		seconds;
1292 			time_t		years;
1293 
1294 			if (t < sp->ats[0])
1295 				seconds = sp->ats[0] - t;
1296 			else	seconds = t - sp->ats[sp->timecnt - 1];
1297 			--seconds;
1298 			years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT;
1299 			seconds = years * AVGSECSPERYEAR;
1300 			if (t < sp->ats[0])
1301 				newt += seconds;
1302 			else	newt -= seconds;
1303 			if (newt < sp->ats[0] ||
1304 				newt > sp->ats[sp->timecnt - 1])
1305 					return NULL;	/* "cannot happen" */
1306 			result = localsub(&newt, offset, tmp);
1307 			if (result == tmp) {
1308 				time_t	newy;
1309 
1310 				newy = tmp->tm_year;
1311 				if (t < sp->ats[0])
1312 					newy -= years;
1313 				else	newy += years;
1314 				tmp->tm_year = newy;
1315 				if (tmp->tm_year != newy)
1316 					return NULL;
1317 			}
1318 			return result;
1319 	}
1320 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1321 		i = sp->defaulttype;
1322 	} else {
1323 		int	lo = 1;
1324 		int	hi = sp->timecnt;
1325 
1326 		while (lo < hi) {
1327 			int	mid = (lo + hi) >> 1;
1328 
1329 			if (t < sp->ats[mid])
1330 				hi = mid;
1331 			else	lo = mid + 1;
1332 		}
1333 		i = (int) sp->types[lo - 1];
1334 	}
1335 	ttisp = &sp->ttis[i];
1336 	/*
1337 	** To get (wrong) behavior that's compatible with System V Release 2.0
1338 	** you'd replace the statement below with
1339 	**	t += ttisp->tt_gmtoff;
1340 	**	timesub(&t, 0L, sp, tmp);
1341 	*/
1342 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1343 	tmp->tm_isdst = ttisp->tt_isdst;
1344 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1345 #ifdef TM_ZONE
1346 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1347 #endif /* defined TM_ZONE */
1348 	return result;
1349 }
1350 
1351 static void
1352 localtime_key_init(void)
1353 {
1354 
1355 	localtime_key_error = _pthread_key_create(&localtime_key, free);
1356 }
1357 
1358 struct tm *
1359 localtime(const time_t * const timep)
1360 {
1361 	struct tm *p_tm;
1362 
1363 	if (__isthreaded != 0) {
1364 		_pthread_once(&localtime_once, localtime_key_init);
1365 		if (localtime_key_error != 0) {
1366 			errno = localtime_key_error;
1367 			return(NULL);
1368 		}
1369 		p_tm = _pthread_getspecific(localtime_key);
1370 		if (p_tm == NULL) {
1371 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1372 			    == NULL)
1373 				return(NULL);
1374 			_pthread_setspecific(localtime_key, p_tm);
1375 		}
1376 		_RWLOCK_RDLOCK(&lcl_rwlock);
1377 		tzset_basic(1);
1378 		localsub(timep, 0L, p_tm);
1379 		_RWLOCK_UNLOCK(&lcl_rwlock);
1380 		return(p_tm);
1381 	} else {
1382 		tzset_basic(0);
1383 		localsub(timep, 0L, &tm);
1384 		return(&tm);
1385 	}
1386 }
1387 
1388 /*
1389 ** Re-entrant version of localtime.
1390 */
1391 
1392 struct tm *
1393 localtime_r(const time_t * const timep, struct tm *tmp)
1394 {
1395 	_RWLOCK_RDLOCK(&lcl_rwlock);
1396 	tzset_basic(1);
1397 	localsub(timep, 0L, tmp);
1398 	_RWLOCK_UNLOCK(&lcl_rwlock);
1399 	return tmp;
1400 }
1401 
1402 static void
1403 gmt_init(void)
1404 {
1405 	gmtload(gmtptr);
1406 }
1407 
1408 /*
1409 ** gmtsub is to gmtime as localsub is to localtime.
1410 */
1411 
1412 static struct tm *
1413 gmtsub(const time_t * const timep, const int_fast32_t offset,
1414        struct tm * const tmp)
1415 {
1416 	struct tm *	result;
1417 
1418 	_once(&gmt_once, gmt_init);
1419 	result = timesub(timep, offset, gmtptr, tmp);
1420 #ifdef TM_ZONE
1421 	/*
1422 	** Could get fancy here and deliver something such as
1423 	** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
1424 	** but this is no time for a treasure hunt.
1425 	*/
1426 	if (offset != 0)
1427 		tmp->TM_ZONE = wildabbr;
1428 	else
1429 		tmp->TM_ZONE = gmtptr->chars;
1430 #endif /* defined TM_ZONE */
1431 	return result;
1432 }
1433 
1434 static void
1435 gmtime_key_init(void)
1436 {
1437 	gmtime_key_error = _pthread_key_create(&gmtime_key, free);
1438 }
1439 
1440 struct tm *
1441 gmtime(const time_t * const timep)
1442 {
1443 	struct tm *p_tm;
1444 
1445 	if (__isthreaded != 0) {
1446 		_pthread_once(&gmtime_once, gmtime_key_init);
1447 		if (gmtime_key_error != 0) {
1448 			errno = gmtime_key_error;
1449 			return(NULL);
1450 		}
1451 		/*
1452 		 * Changed to follow POSIX.1 threads standard, which
1453 		 * is what BSD currently has.
1454 		 */
1455 		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1456 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1457 			    == NULL) {
1458 				return(NULL);
1459 			}
1460 			_pthread_setspecific(gmtime_key, p_tm);
1461 		}
1462 		return gmtsub(timep, 0L, p_tm);
1463 	} else {
1464 		return gmtsub(timep, 0L, &tm);
1465 	}
1466 }
1467 
1468 /*
1469  * Re-entrant version of gmtime.
1470  */
1471 
1472 struct tm *
1473 gmtime_r(const time_t * timep, struct tm * tmp)
1474 {
1475 	return gmtsub(timep, 0L, tmp);
1476 }
1477 
1478 struct tm *
1479 offtime(const time_t * const timep, const long offset)
1480 {
1481 	return gmtsub(timep, offset, &tm);
1482 }
1483 
1484 /*
1485 ** Return the number of leap years through the end of the given year
1486 ** where, to make the math easy, the answer for year zero is defined as zero.
1487 */
1488 
1489 static int
1490 leaps_thru_end_of(const int y)
1491 {
1492 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1493 		-(leaps_thru_end_of(-(y + 1)) + 1);
1494 }
1495 
1496 static struct tm *
1497 timesub(const time_t * const timep, const int_fast32_t offset,
1498 	const struct state * const sp, struct tm * const tmp)
1499 {
1500 	const struct lsinfo *	lp;
1501 	time_t			tdays;
1502 	int			idays;	/* unsigned would be so 2003 */
1503 	int_fast64_t		rem;
1504 	int			y;
1505 	const int *		ip;
1506 	int_fast64_t		corr;
1507 	int			hit;
1508 	int			i;
1509 
1510 	corr = 0;
1511 	hit = 0;
1512 	i = sp->leapcnt;
1513 
1514 	while (--i >= 0) {
1515 		lp = &sp->lsis[i];
1516 		if (*timep >= lp->ls_trans) {
1517 			if (*timep == lp->ls_trans) {
1518 				hit = ((i == 0 && lp->ls_corr > 0) ||
1519 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1520 				if (hit)
1521 					while (i > 0 &&
1522 						sp->lsis[i].ls_trans ==
1523 						sp->lsis[i - 1].ls_trans + 1 &&
1524 						sp->lsis[i].ls_corr ==
1525 						sp->lsis[i - 1].ls_corr + 1) {
1526 							++hit;
1527 							--i;
1528 					}
1529 			}
1530 			corr = lp->ls_corr;
1531 			break;
1532 		}
1533 	}
1534 	y = EPOCH_YEAR;
1535 	tdays = *timep / SECSPERDAY;
1536 	rem = *timep - tdays * SECSPERDAY;
1537 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1538 		int	newy;
1539 		time_t	tdelta;
1540 		int	idelta;
1541 		int	leapdays;
1542 
1543 		tdelta = tdays / DAYSPERLYEAR;
1544 		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
1545 		       && tdelta <= INT_MAX))
1546 			return NULL;
1547 		idelta = tdelta;
1548 		if (idelta == 0)
1549 			idelta = (tdays < 0) ? -1 : 1;
1550 		newy = y;
1551 		if (increment_overflow(&newy, idelta))
1552 			return NULL;
1553 		leapdays = leaps_thru_end_of(newy - 1) -
1554 			leaps_thru_end_of(y - 1);
1555 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1556 		tdays -= leapdays;
1557 		y = newy;
1558 	}
1559 	{
1560 		int_fast32_t	seconds;
1561 
1562 		seconds = tdays * SECSPERDAY;
1563 		tdays = seconds / SECSPERDAY;
1564 		rem += seconds - tdays * SECSPERDAY;
1565 	}
1566 	/*
1567 	** Given the range, we can now fearlessly cast...
1568 	*/
1569 	idays = tdays;
1570 	rem += offset - corr;
1571 	while (rem < 0) {
1572 		rem += SECSPERDAY;
1573 		--idays;
1574 	}
1575 	while (rem >= SECSPERDAY) {
1576 		rem -= SECSPERDAY;
1577 		++idays;
1578 	}
1579 	while (idays < 0) {
1580 		if (increment_overflow(&y, -1))
1581 			return NULL;
1582 		idays += year_lengths[isleap(y)];
1583 	}
1584 	while (idays >= year_lengths[isleap(y)]) {
1585 		idays -= year_lengths[isleap(y)];
1586 		if (increment_overflow(&y, 1))
1587 			return NULL;
1588 	}
1589 	tmp->tm_year = y;
1590 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1591 		return NULL;
1592 	tmp->tm_yday = idays;
1593 	/*
1594 	** The "extra" mods below avoid overflow problems.
1595 	*/
1596 	tmp->tm_wday = EPOCH_WDAY +
1597 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1598 		(DAYSPERNYEAR % DAYSPERWEEK) +
1599 		leaps_thru_end_of(y - 1) -
1600 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1601 		idays;
1602 	tmp->tm_wday %= DAYSPERWEEK;
1603 	if (tmp->tm_wday < 0)
1604 		tmp->tm_wday += DAYSPERWEEK;
1605 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1606 	rem %= SECSPERHOUR;
1607 	tmp->tm_min = (int) (rem / SECSPERMIN);
1608 	/*
1609 	** A positive leap second requires a special
1610 	** representation. This uses "... ??:59:60" et seq.
1611 	*/
1612 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1613 	ip = mon_lengths[isleap(y)];
1614 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1615 		idays -= ip[tmp->tm_mon];
1616 	tmp->tm_mday = (int) (idays + 1);
1617 	tmp->tm_isdst = 0;
1618 #ifdef TM_GMTOFF
1619 	tmp->TM_GMTOFF = offset;
1620 #endif /* defined TM_GMTOFF */
1621 	return tmp;
1622 }
1623 
1624 char *
1625 ctime(const time_t * const timep)
1626 {
1627 /*
1628 ** Section 4.12.3.2 of X3.159-1989 requires that
1629 **	The ctime function converts the calendar time pointed to by timer
1630 **	to local time in the form of a string. It is equivalent to
1631 **		asctime(localtime(timer))
1632 */
1633 	return asctime(localtime(timep));
1634 }
1635 
1636 char *
1637 ctime_r(const time_t * const timep, char *buf)
1638 {
1639 	struct tm	mytm;
1640 
1641 	return asctime_r(localtime_r(timep, &mytm), buf);
1642 }
1643 
1644 /*
1645 ** Adapted from code provided by Robert Elz, who writes:
1646 **	The "best" way to do mktime I think is based on an idea of Bob
1647 **	Kridle's (so its said...) from a long time ago.
1648 **	It does a binary search of the time_t space. Since time_t's are
1649 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1650 **	would still be very reasonable).
1651 */
1652 
1653 #ifndef WRONG
1654 #define WRONG	(-1)
1655 #endif /* !defined WRONG */
1656 
1657 /*
1658 ** Normalize logic courtesy Paul Eggert.
1659 */
1660 
1661 static int
1662 increment_overflow(int * const ip, int j)
1663 {
1664 	int const	i = *ip;
1665 
1666 	/*
1667 	** If i >= 0 there can only be overflow if i + j > INT_MAX
1668 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1669 	** If i < 0 there can only be overflow if i + j < INT_MIN
1670 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1671 	*/
1672 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1673 		return TRUE;
1674 	*ip += j;
1675 	return FALSE;
1676 }
1677 
1678 static int
1679 increment_overflow32(int_fast32_t * const lp, int const m)
1680 {
1681 	int_fast32_t const	l = *lp;
1682 
1683 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1684 		return TRUE;
1685 	*lp += m;
1686 	return FALSE;
1687 }
1688 
1689 static int
1690 increment_overflow_time(time_t *tp, int_fast32_t j)
1691 {
1692 	/*
1693 	** This is like
1694 	** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
1695 	** except that it does the right thing even if *tp + j would overflow.
1696 	*/
1697 	if (! (j < 0
1698 	       ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
1699 	       : *tp <= time_t_max - j))
1700 		return TRUE;
1701 	*tp += j;
1702 	return FALSE;
1703 }
1704 
1705 static int
1706 normalize_overflow(int * const tensptr, int * const unitsptr, const int base)
1707 {
1708 	int	tensdelta;
1709 
1710 	tensdelta = (*unitsptr >= 0) ?
1711 		(*unitsptr / base) :
1712 		(-1 - (-1 - *unitsptr) / base);
1713 	*unitsptr -= tensdelta * base;
1714 	return increment_overflow(tensptr, tensdelta);
1715 }
1716 
1717 static int
1718 normalize_overflow32(int_fast32_t * const tensptr, int * const unitsptr,
1719 		     const int base)
1720 {
1721 	int	tensdelta;
1722 
1723 	tensdelta = (*unitsptr >= 0) ?
1724 		(*unitsptr / base) :
1725 		(-1 - (-1 - *unitsptr) / base);
1726 	*unitsptr -= tensdelta * base;
1727 	return increment_overflow32(tensptr, tensdelta);
1728 }
1729 
1730 static int
1731 tmcomp(const struct tm * const atmp, const struct tm * const btmp)
1732 {
1733 	int	result;
1734 
1735 	if (atmp->tm_year != btmp->tm_year)
1736 		return atmp->tm_year < btmp->tm_year ? -1 : 1;
1737 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1738 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1739 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1740 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1741 			result = atmp->tm_sec - btmp->tm_sec;
1742 	return result;
1743 }
1744 
1745 static time_t
1746 time2sub(struct tm * const tmp,
1747       struct tm * (* const funcp)(const time_t *, int_fast32_t, struct tm *),
1748       const int_fast32_t offset, int * const okayp, const int do_norm_secs)
1749 {
1750 	const struct state *	sp;
1751 	int			dir;
1752 	int			i, j;
1753 	int			saved_seconds;
1754 	int_fast32_t		li;
1755 	time_t			lo;
1756 	time_t			hi;
1757 	int_fast32_t		y;
1758 	time_t			newt;
1759 	time_t			t;
1760 	struct tm		yourtm, mytm;
1761 
1762 	*okayp = FALSE;
1763 	yourtm = *tmp;
1764 	if (do_norm_secs) {
1765 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1766 			SECSPERMIN))
1767 				return WRONG;
1768 	}
1769 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1770 		return WRONG;
1771 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1772 		return WRONG;
1773 	y = yourtm.tm_year;
1774 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
1775 		return WRONG;
1776 	/*
1777 	** Turn y into an actual year number for now.
1778 	** It is converted back to an offset from TM_YEAR_BASE later.
1779 	*/
1780 	if (increment_overflow32(&y, TM_YEAR_BASE))
1781 		return WRONG;
1782 	while (yourtm.tm_mday <= 0) {
1783 		if (increment_overflow32(&y, -1))
1784 			return WRONG;
1785 		li = y + (1 < yourtm.tm_mon);
1786 		yourtm.tm_mday += year_lengths[isleap(li)];
1787 	}
1788 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1789 		li = y + (1 < yourtm.tm_mon);
1790 		yourtm.tm_mday -= year_lengths[isleap(li)];
1791 		if (increment_overflow32(&y, 1))
1792 			return WRONG;
1793 	}
1794 	for ( ; ; ) {
1795 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1796 		if (yourtm.tm_mday <= i)
1797 			break;
1798 		yourtm.tm_mday -= i;
1799 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1800 			yourtm.tm_mon = 0;
1801 			if (increment_overflow32(&y, 1))
1802 				return WRONG;
1803 		}
1804 	}
1805 	if (increment_overflow32(&y, -TM_YEAR_BASE))
1806 		return WRONG;
1807 	yourtm.tm_year = y;
1808 	if (yourtm.tm_year != y)
1809 		return WRONG;
1810 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1811 		saved_seconds = 0;
1812 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1813 		/*
1814 		** We can't set tm_sec to 0, because that might push the
1815 		** time below the minimum representable time.
1816 		** Set tm_sec to 59 instead.
1817 		** This assumes that the minimum representable time is
1818 		** not in the same minute that a leap second was deleted from,
1819 		** which is a safer assumption than using 58 would be.
1820 		*/
1821 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1822 			return WRONG;
1823 		saved_seconds = yourtm.tm_sec;
1824 		yourtm.tm_sec = SECSPERMIN - 1;
1825 	} else {
1826 		saved_seconds = yourtm.tm_sec;
1827 		yourtm.tm_sec = 0;
1828 	}
1829 	/*
1830 	** Do a binary search (this works whatever time_t's type is).
1831 	*/
1832 	if (!TYPE_SIGNED(time_t)) {
1833 		lo = 0;
1834 		hi = lo - 1;
1835 	} else {
1836 		lo = 1;
1837 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1838 			lo *= 2;
1839 		hi = -(lo + 1);
1840 	}
1841 	for ( ; ; ) {
1842 		t = lo / 2 + hi / 2;
1843 		if (t < lo)
1844 			t = lo;
1845 		else if (t > hi)
1846 			t = hi;
1847 		if ((*funcp)(&t, offset, &mytm) == NULL) {
1848 			/*
1849 			** Assume that t is too extreme to be represented in
1850 			** a struct tm; arrange things so that it is less
1851 			** extreme on the next pass.
1852 			*/
1853 			dir = (t > 0) ? 1 : -1;
1854 		} else	dir = tmcomp(&mytm, &yourtm);
1855 		if (dir != 0) {
1856 			if (t == lo) {
1857 				if (t == time_t_max)
1858 					return WRONG;
1859 				++t;
1860 				++lo;
1861 			} else if (t == hi) {
1862 				if (t == time_t_min)
1863 					return WRONG;
1864 				--t;
1865 				--hi;
1866 			}
1867 			if (lo > hi)
1868 				return WRONG;
1869 			if (dir > 0)
1870 				hi = t;
1871 			else	lo = t;
1872 			continue;
1873 		}
1874 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1875 			break;
1876 		/*
1877 		** Right time, wrong type.
1878 		** Hunt for right time, right type.
1879 		** It's okay to guess wrong since the guess
1880 		** gets checked.
1881 		*/
1882 		sp = (const struct state *)
1883 			((funcp == localsub) ? lclptr : gmtptr);
1884 
1885 		for (i = sp->typecnt - 1; i >= 0; --i) {
1886 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1887 				continue;
1888 			for (j = sp->typecnt - 1; j >= 0; --j) {
1889 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1890 					continue;
1891 				newt = t + sp->ttis[j].tt_gmtoff -
1892 					sp->ttis[i].tt_gmtoff;
1893 				if ((*funcp)(&newt, offset, &mytm) == NULL)
1894 					continue;
1895 				if (tmcomp(&mytm, &yourtm) != 0)
1896 					continue;
1897 				if (mytm.tm_isdst != yourtm.tm_isdst)
1898 					continue;
1899 				/*
1900 				** We have a match.
1901 				*/
1902 				t = newt;
1903 				goto label;
1904 			}
1905 		}
1906 		return WRONG;
1907 	}
1908 label:
1909 	newt = t + saved_seconds;
1910 	if ((newt < t) != (saved_seconds < 0))
1911 		return WRONG;
1912 	t = newt;
1913 	if ((*funcp)(&t, offset, tmp))
1914 		*okayp = TRUE;
1915 	return t;
1916 }
1917 
1918 static time_t
1919 time2(struct tm * const tmp,
1920       struct tm * (* const funcp)(const time_t *, int_fast32_t, struct tm *),
1921       const int_fast32_t offset, int * const okayp)
1922 {
1923 	time_t	t;
1924 
1925 	/*
1926 	** First try without normalization of seconds
1927 	** (in case tm_sec contains a value associated with a leap second).
1928 	** If that fails, try with normalization of seconds.
1929 	*/
1930 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1931 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1932 }
1933 
1934 static time_t
1935 time1(struct tm * const tmp,
1936       struct tm * (* const funcp)(const time_t *, int_fast32_t, struct tm *),
1937       const int_fast32_t offset)
1938 {
1939 	time_t			t;
1940 	const struct state *	sp;
1941 	int			samei, otheri;
1942 	int			sameind, otherind;
1943 	int			i;
1944 	int			nseen;
1945 	int			seen[TZ_MAX_TYPES];
1946 	int			types[TZ_MAX_TYPES];
1947 	int			okay;
1948 
1949 	if (tmp == NULL) {
1950 		errno = EINVAL;
1951 		return WRONG;
1952 	}
1953 	if (tmp->tm_isdst > 1)
1954 		tmp->tm_isdst = 1;
1955 	t = time2(tmp, funcp, offset, &okay);
1956 
1957 	/*
1958 	** PCTS code courtesy Grant Sullivan.
1959 	*/
1960 	if (okay)
1961 		return t;
1962 	if (tmp->tm_isdst < 0)
1963 		tmp->tm_isdst = 0;	/* reset to std and try again */
1964 
1965 	/*
1966 	** We're supposed to assume that somebody took a time of one type
1967 	** and did some math on it that yielded a "struct tm" that's bad.
1968 	** We try to divine the type they started from and adjust to the
1969 	** type they need.
1970 	*/
1971 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
1972 
1973 	for (i = 0; i < sp->typecnt; ++i)
1974 		seen[i] = FALSE;
1975 	nseen = 0;
1976 	for (i = sp->timecnt - 1; i >= 0; --i)
1977 		if (!seen[sp->types[i]]) {
1978 			seen[sp->types[i]] = TRUE;
1979 			types[nseen++] = sp->types[i];
1980 		}
1981 	for (sameind = 0; sameind < nseen; ++sameind) {
1982 		samei = types[sameind];
1983 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1984 			continue;
1985 		for (otherind = 0; otherind < nseen; ++otherind) {
1986 			otheri = types[otherind];
1987 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1988 				continue;
1989 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1990 					sp->ttis[samei].tt_gmtoff;
1991 			tmp->tm_isdst = !tmp->tm_isdst;
1992 			t = time2(tmp, funcp, offset, &okay);
1993 			if (okay)
1994 				return t;
1995 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1996 					sp->ttis[samei].tt_gmtoff;
1997 			tmp->tm_isdst = !tmp->tm_isdst;
1998 		}
1999 	}
2000 	return WRONG;
2001 }
2002 
2003 time_t
2004 mktime(struct tm * const tmp)
2005 {
2006 	time_t mktime_return_value;
2007 	_RWLOCK_RDLOCK(&lcl_rwlock);
2008 	tzset_basic(1);
2009 	mktime_return_value = time1(tmp, localsub, 0L);
2010 	_RWLOCK_UNLOCK(&lcl_rwlock);
2011 	return(mktime_return_value);
2012 }
2013 
2014 time_t
2015 timelocal(struct tm * const tmp)
2016 {
2017 	if (tmp != NULL)
2018 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
2019 	return mktime(tmp);
2020 }
2021 
2022 time_t
2023 timegm(struct tm * const tmp)
2024 {
2025 	if (tmp != NULL)
2026 		tmp->tm_isdst = 0;
2027 	return time1(tmp, gmtsub, 0L);
2028 }
2029 
2030 time_t
2031 timeoff(struct tm * const tmp, const long offset)
2032 {
2033 	if (tmp != NULL)
2034 		tmp->tm_isdst = 0;
2035 	return time1(tmp, gmtsub, offset);
2036 }
2037 
2038 /*
2039 ** XXX--is the below the right way to conditionalize??
2040 */
2041 
2042 /*
2043 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
2044 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2045 ** is not the case if we are accounting for leap seconds.
2046 ** So, we provide the following conversion routines for use
2047 ** when exchanging timestamps with POSIX conforming systems.
2048 */
2049 
2050 static int_fast64_t
2051 leapcorr(time_t *timep)
2052 {
2053 	struct state *		sp;
2054 	struct lsinfo *	lp;
2055 	int			i;
2056 
2057 	sp = lclptr;
2058 	i = sp->leapcnt;
2059 	while (--i >= 0) {
2060 		lp = &sp->lsis[i];
2061 		if (*timep >= lp->ls_trans)
2062 			return lp->ls_corr;
2063 	}
2064 	return 0;
2065 }
2066 
2067 time_t
2068 time2posix(time_t t)
2069 {
2070 	tzset();
2071 	return t - leapcorr(&t);
2072 }
2073 
2074 time_t
2075 posix2time(time_t t)
2076 {
2077 	time_t	x;
2078 	time_t	y;
2079 
2080 	tzset();
2081 	/*
2082 	** For a positive leap second hit, the result
2083 	** is not unique. For a negative leap second
2084 	** hit, the corresponding time doesn't exist,
2085 	** so we return an adjacent second.
2086 	*/
2087 	x = t + leapcorr(&t);
2088 	y = x - leapcorr(&x);
2089 	if (y < t) {
2090 		do {
2091 			x++;
2092 			y = x - leapcorr(&x);
2093 		} while (y < t);
2094 		if (t != y)
2095 			return x - 1;
2096 	} else if (y > t) {
2097 		do {
2098 			--x;
2099 			y = x - leapcorr(&x);
2100 		} while (y > t);
2101 		if (t != y)
2102 			return x + 1;
2103 	}
2104 	return x;
2105 }
2106