xref: /dragonfly/lib/libc/stdtime/localtime.c (revision 7d013f97)
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 **
5 ** @(#)localtime.c	8.9
6 ** $FreeBSD: src/lib/libc/stdtime/localtime.c,v 1.25.2.2 2002/08/13 16:08:07 bmilekic Exp $
7 ** $DragonFly: src/lib/libc/stdtime/localtime.c,v 1.7 2008/10/19 20:15:58 swildner Exp $
8 */
9 
10 /*
11 ** Leap second handling from Bradley White.
12 ** POSIX-style TZ environment variable handling from Guy Harris.
13 */
14 
15 /*LINTLIBRARY*/
16 
17 #include "namespace.h"
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 
21 #include <fcntl.h>
22 #include <float.h>	/* for FLT_MAX and DBL_MAX */
23 #include <time.h>
24 #include <pthread.h>
25 #include "private.h"
26 #include <un-namespace.h>
27 
28 #include "tzfile.h"
29 
30 #include "libc_private.h"
31 
32 #define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
33 #define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
34 
35 #ifndef TZ_ABBR_MAX_LEN
36 #define TZ_ABBR_MAX_LEN	16
37 #endif /* !defined TZ_ABBR_MAX_LEN */
38 
39 #ifndef TZ_ABBR_CHAR_SET
40 #define TZ_ABBR_CHAR_SET \
41 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
42 #endif /* !defined TZ_ABBR_CHAR_SET */
43 
44 #ifndef TZ_ABBR_ERR_CHAR
45 #define TZ_ABBR_ERR_CHAR	'_'
46 #endif /* !defined TZ_ABBR_ERR_CHAR */
47 
48 /*
49 ** Someone might make incorrect use of a time zone abbreviation:
50 **	1.	They might reference tzname[0] before calling tzset (explicitly
51 **		or implicitly).
52 **	2.	They might reference tzname[1] before calling tzset (explicitly
53 **		or implicitly).
54 **	3.	They might reference tzname[1] after setting to a time zone
55 **		in which Daylight Saving Time is never observed.
56 **	4.	They might reference tzname[0] after setting to a time zone
57 **		in which Standard Time is never observed.
58 **	5.	They might reference tm.TM_ZONE after calling offtime.
59 ** What's best to do in the above cases is open to debate;
60 ** for now, we just set things up so that in any of the five cases
61 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
62 ** string "tzname[0] used before set", and similarly for the other cases.
63 ** And another: initialize tzname[0] to "ERA", with an explanation in the
64 ** manual page of what this "time zone abbreviation" means (doing this so
65 ** that tzname[0] has the "normal" length of three characters).
66 */
67 #define WILDABBR	"   "
68 
69 static char		wildabbr[] = WILDABBR;
70 
71 static const char	gmt[] = "UTC";
72 
73 /*
74 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
75 ** We default to US rules as of 1999-08-17.
76 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
77 ** implementation dependent; for historical reasons, US rules are a
78 ** common default.
79 */
80 #ifndef TZDEFRULESTRING
81 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
82 #endif /* !defined TZDEFDST */
83 
84 struct ttinfo {				/* time type information */
85 	long		tt_gmtoff;	/* UTC offset in seconds */
86 	int		tt_isdst;	/* used to set tm_isdst */
87 	int		tt_abbrind;	/* abbreviation list index */
88 	int		tt_ttisstd;	/* TRUE if transition is std time */
89 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
90 };
91 
92 struct lsinfo {				/* leap second information */
93 	time_t		ls_trans;	/* transition time */
94 	long		ls_corr;	/* correction to apply */
95 };
96 
97 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
98 
99 #ifdef TZNAME_MAX
100 #define MY_TZNAME_MAX	TZNAME_MAX
101 #endif /* defined TZNAME_MAX */
102 #ifndef TZNAME_MAX
103 #define MY_TZNAME_MAX	255
104 #endif /* !defined TZNAME_MAX */
105 
106 struct state {
107 	int		leapcnt;
108 	int		timecnt;
109 	int		typecnt;
110 	int		charcnt;
111 	int		goback;
112 	int		goahead;
113 	time_t		ats[TZ_MAX_TIMES];
114 	unsigned char	types[TZ_MAX_TIMES];
115 	struct ttinfo	ttis[TZ_MAX_TYPES];
116 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
117 				(2 * (MY_TZNAME_MAX + 1)))];
118 	struct lsinfo	lsis[TZ_MAX_LEAPS];
119 };
120 
121 struct rule {
122 	int		r_type;		/* type of rule--see below */
123 	int		r_day;		/* day number of rule */
124 	int		r_week;		/* week number of rule */
125 	int		r_mon;		/* month number of rule */
126 	long		r_time;		/* transition time of rule */
127 };
128 
129 #define JULIAN_DAY		0	/* Jn - Julian day */
130 #define DAY_OF_YEAR		1	/* n - day of year */
131 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
132 
133 /*
134 ** Prototypes for static functions.
135 */
136 
137 static long		detzcode(const char * codep);
138 static time_t		detzcode64(const char * codep);
139 static int		differ_by_repeat(time_t t1, time_t t0);
140 static const char *	getzname(const char * strp);
141 static const char *	getqzname(const char * strp, const int delim);
142 static const char *	getnum(const char * strp, int * nump, int min,
143 				int max);
144 static const char *	getsecs(const char * strp, long * secsp);
145 static const char *	getoffset(const char * strp, long * offsetp);
146 static const char *	getrule(const char * strp, struct rule * rulep);
147 static void		gmtload(struct state * sp);
148 static struct tm *	gmtsub(const time_t * timep, long offset,
149 				struct tm * tmp);
150 static struct tm *	localsub(const time_t * timep, long offset,
151 				struct tm * tmp);
152 static int		increment_overflow(int * number, int delta);
153 static int		leaps_thru_end_of(int y);
154 static int		long_increment_overflow(long * number, int delta);
155 static int		long_normalize_overflow(long * tensptr,
156 				int * unitsptr, int base);
157 static int		normalize_overflow(int * tensptr, int * unitsptr,
158 				int base);
159 static void		settzname(void);
160 static time_t		time1(struct tm * tmp,
161 				struct tm * (*funcp)(const time_t *,
162 				long, struct tm *),
163 				long offset);
164 static time_t		time2(struct tm *tmp,
165 				struct tm * (*funcp)(const time_t *,
166 				long, struct tm*),
167 				long offset, int * okayp);
168 static time_t		time2sub(struct tm *tmp,
169 				struct tm * (*funcp)(const time_t *,
170 				long, struct tm*),
171 				long offset, int * okayp, int do_norm_secs);
172 static struct tm *	timesub(const time_t * timep, long offset,
173 				const struct state * sp, struct tm * tmp);
174 static int		tmcomp(const struct tm * atmp,
175 				const struct tm * btmp);
176 static time_t		transtime(time_t janfirst, int year,
177 				const struct rule * rulep, long offset);
178 static int		typesequiv(const struct state * sp, int a, int b);
179 static int		tzload(const char * name, struct state * sp,
180 				int doextend);
181 static int		tzparse(const char * name, struct state * sp,
182 				int lastditch);
183 
184 static struct state	lclmem;
185 static struct state	gmtmem;
186 #define lclptr		(&lclmem)
187 #define gmtptr		(&gmtmem)
188 
189 #ifndef TZ_STRLEN_MAX
190 #define TZ_STRLEN_MAX 255
191 #endif /* !defined TZ_STRLEN_MAX */
192 
193 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
194 static int		lcl_is_set;
195 static int		gmt_is_set;
196 static pthread_mutex_t	lcl_mutex = PTHREAD_MUTEX_INITIALIZER;
197 static pthread_mutex_t	gmt_mutex = PTHREAD_MUTEX_INITIALIZER;
198 
199 char *			tzname[2] = {
200 	wildabbr,
201 	wildabbr
202 };
203 
204 /*
205 ** Section 4.12.3 of X3.159-1989 requires that
206 **	Except for the strftime function, these functions [asctime,
207 **	ctime, gmtime, localtime] return values in one of two static
208 **	objects: a broken-down time structure and an array of char.
209 ** Thanks to Paul Eggert for noting this.
210 */
211 
212 static struct tm	tm;
213 
214 time_t			timezone = 0;
215 int			daylight = 0;
216 
217 static long
218 detzcode(const char * const codep)
219 {
220 	long	result;
221 	int	i;
222 
223 	result = (codep[0] & 0x80) ? ~0L : 0;
224 	for (i = 0; i < 4; ++i)
225 		result = (result << 8) | (codep[i] & 0xff);
226 	return result;
227 }
228 
229 static time_t
230 detzcode64(const char * const codep)
231 {
232 	time_t	result;
233 	int	i;
234 
235 	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
236 	for (i = 0; i < 8; ++i)
237 		result = result * 256 + (codep[i] & 0xff);
238 	return result;
239 }
240 
241 static void
242 settzname(void)
243 {
244 	struct state * const	sp = lclptr;
245 	int			i;
246 
247 	tzname[0] = wildabbr;
248 	tzname[1] = wildabbr;
249 	daylight = 0;
250 	timezone = 0;
251 
252 	for (i = 0; i < sp->typecnt; ++i) {
253 		const struct ttinfo * const	ttisp = &sp->ttis[i];
254 
255 		tzname[ttisp->tt_isdst] =
256 			&sp->chars[ttisp->tt_abbrind];
257 		if (ttisp->tt_isdst)
258 			daylight = 1;
259 		if (i == 0 || !ttisp->tt_isdst)
260 			timezone = -(ttisp->tt_gmtoff);
261 	}
262 	/*
263 	** And to get the latest zone names into tzname. . .
264 	*/
265 	for (i = 0; i < sp->timecnt; ++i) {
266 		const struct ttinfo * const	ttisp =
267 							&sp->ttis[
268 								sp->types[i]];
269 
270 		tzname[ttisp->tt_isdst] =
271 			&sp->chars[ttisp->tt_abbrind];
272 	}
273 	/*
274 	** Finally, scrub the abbreviations.
275 	** First, replace bogus characters.
276 	*/
277 	for (i = 0; i < sp->charcnt; ++i)
278 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
279 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
280 	/*
281 	** Second, truncate long abbreviations.
282 	*/
283 	for (i = 0; i < sp->typecnt; ++i) {
284 		const struct ttinfo * const	ttisp = &sp->ttis[i];
285 		char *				cp = &sp->chars[ttisp->tt_abbrind];
286 
287 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
288 			strcmp(cp, GRANDPARENTED) != 0)
289 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
290 	}
291 }
292 
293 static int
294 differ_by_repeat(const time_t t1, const time_t t0)
295 {
296 	if (TYPE_INTEGRAL(time_t) &&
297 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
298 			return 0;
299 	return t1 - t0 == SECSPERREPEAT;
300 }
301 
302 static int
303 tzload(const char *name, struct state * const sp, const int doextend)
304 {
305 	const char *		p;
306 	int			i;
307 	int			fid;
308 	int			stored;
309 	int			nread;
310 	union {
311 		struct tzhead	tzhead;
312 		char		buf[2 * sizeof(struct tzhead) +
313 					2 * sizeof *sp +
314 					4 * TZ_MAX_TIMES];
315 	} u;
316 
317 	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
318 	if (name != NULL && issetugid() != 0)
319 		if ((name[0] == ':' && name[1] == '/') ||
320 		    name[0] == '/' || strchr(name, '.'))
321 			name = NULL;
322 	if (name == NULL && (name = TZDEFAULT) == NULL)
323 		return -1;
324 	{
325 		int	doaccess;
326 		struct stat	stab;
327 		/*
328 		** Section 4.9.1 of the C standard says that
329 		** "FILENAME_MAX expands to an integral constant expression
330 		** that is the size needed for an array of char large enough
331 		** to hold the longest file name string that the implementation
332 		** guarantees can be opened."
333 		*/
334 		char		fullname[FILENAME_MAX + 1];
335 
336 		if (name[0] == ':')
337 			++name;
338 		doaccess = name[0] == '/';
339 		if (!doaccess) {
340 			if ((p = TZDIR) == NULL)
341 				return -1;
342 			if ((strlen(p) + 1 + strlen(name) + 1) >= sizeof fullname)
343 				return -1;
344 			strcpy(fullname, p);
345 			strcat(fullname, "/");
346 			strcat(fullname, name);
347 			/*
348 			** Set doaccess if '.' (as in "../") shows up in name.
349 			*/
350 			if (strchr(name, '.') != NULL)
351 				doaccess = TRUE;
352 			name = fullname;
353 		}
354 		if (doaccess && access(name, R_OK) != 0)
355 			return -1;
356 		if ((fid = _open(name, O_RDONLY)) == -1)
357 			return -1;
358 		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
359 			_close(fid);
360 			return -1;
361 		}
362 	}
363 	nread = read(fid, u.buf, sizeof u.buf);
364 	if (close(fid) < 0 || nread <= 0)
365 		return -1;
366 	for (stored = 4; stored <= 8; stored *= 2) {
367 		int		ttisstdcnt;
368 		int		ttisgmtcnt;
369 
370 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
371 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
372 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
373 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
374 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
375 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
376 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
377 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
378 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
379 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
380 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
381 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
382 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
383 				return -1;
384 		if (nread - (p - u.buf) <
385 			sp->timecnt * stored +		/* ats */
386 			sp->timecnt +			/* types */
387 			sp->typecnt * 6 +		/* ttinfos */
388 			sp->charcnt +			/* chars */
389 			sp->leapcnt * (stored + 4) +	/* lsinfos */
390 			ttisstdcnt +			/* ttisstds */
391 			ttisgmtcnt)			/* ttisgmts */
392 				return -1;
393 		for (i = 0; i < sp->timecnt; ++i) {
394 			sp->ats[i] = (stored == 4) ?
395 				detzcode(p) : detzcode64(p);
396 			p += stored;
397 		}
398 		for (i = 0; i < sp->timecnt; ++i) {
399 			sp->types[i] = (unsigned char) *p++;
400 			if (sp->types[i] >= sp->typecnt)
401 				return -1;
402 		}
403 		for (i = 0; i < sp->typecnt; ++i) {
404 			struct ttinfo *	ttisp;
405 
406 			ttisp = &sp->ttis[i];
407 			ttisp->tt_gmtoff = detzcode(p);
408 			p += 4;
409 			ttisp->tt_isdst = (unsigned char) *p++;
410 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
411 				return -1;
412 			ttisp->tt_abbrind = (unsigned char) *p++;
413 			if (ttisp->tt_abbrind < 0 ||
414 				ttisp->tt_abbrind > sp->charcnt)
415 					return -1;
416 		}
417 		for (i = 0; i < sp->charcnt; ++i)
418 			sp->chars[i] = *p++;
419 		sp->chars[i] = '\0';	/* ensure '\0' at end */
420 		for (i = 0; i < sp->leapcnt; ++i) {
421 			struct lsinfo *	lsisp;
422 
423 			lsisp = &sp->lsis[i];
424 			lsisp->ls_trans = (stored == 4) ?
425 				detzcode(p) : detzcode64(p);
426 			p += stored;
427 			lsisp->ls_corr = detzcode(p);
428 			p += 4;
429 		}
430 		for (i = 0; i < sp->typecnt; ++i) {
431 			struct ttinfo *	ttisp;
432 
433 			ttisp = &sp->ttis[i];
434 			if (ttisstdcnt == 0)
435 				ttisp->tt_ttisstd = FALSE;
436 			else {
437 				ttisp->tt_ttisstd = *p++;
438 				if (ttisp->tt_ttisstd != TRUE &&
439 					ttisp->tt_ttisstd != FALSE)
440 						return -1;
441 			}
442 		}
443 		for (i = 0; i < sp->typecnt; ++i) {
444 			struct ttinfo *	ttisp;
445 
446 			ttisp = &sp->ttis[i];
447 			if (ttisgmtcnt == 0)
448 				ttisp->tt_ttisgmt = FALSE;
449 			else {
450 				ttisp->tt_ttisgmt = *p++;
451 				if (ttisp->tt_ttisgmt != TRUE &&
452 					ttisp->tt_ttisgmt != FALSE)
453 						return -1;
454 			}
455 		}
456 		/*
457 		** Out-of-sort ats should mean we're running on a
458 		** signed time_t system but using a data file with
459 		** unsigned values (or vice versa).
460 		*/
461 		for (i = 0; i < sp->timecnt - 2; ++i)
462 			if (sp->ats[i] > sp->ats[i + 1]) {
463 				++i;
464 				if (TYPE_SIGNED(time_t)) {
465 					/*
466 					** Ignore the end (easy).
467 					*/
468 					sp->timecnt = i;
469 				} else {
470 					/*
471 					** Ignore the beginning (harder).
472 					*/
473 					int	j;
474 
475 					for (j = 0; j + i < sp->timecnt; ++j) {
476 						sp->ats[j] = sp->ats[j + i];
477 						sp->types[j] = sp->types[j + i];
478 					}
479 					sp->timecnt = j;
480 				}
481 				break;
482 			}
483 		/*
484 		** If this is an old file, we're done.
485 		*/
486 		if (u.tzhead.tzh_version[0] == '\0')
487 			break;
488 		nread -= p - u.buf;
489 		for (i = 0; i < nread; ++i)
490 			u.buf[i] = p[i];
491 		/*
492 		** If this is a narrow integer time_t system, we're done.
493 		*/
494 		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
495 			break;
496 	}
497 	if (doextend && nread > 2 &&
498 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
499 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
500 			struct state	ts;
501 			int		result;
502 
503 			u.buf[nread - 1] = '\0';
504 			result = tzparse(&u.buf[1], &ts, FALSE);
505 			if (result == 0 && ts.typecnt == 2 &&
506 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
507 					for (i = 0; i < 2; ++i)
508 						ts.ttis[i].tt_abbrind +=
509 							sp->charcnt;
510 					for (i = 0; i < ts.charcnt; ++i)
511 						sp->chars[sp->charcnt++] =
512 							ts.chars[i];
513 					i = 0;
514 					while (i < ts.timecnt &&
515 						ts.ats[i] <=
516 						sp->ats[sp->timecnt - 1])
517 							++i;
518 					while (i < ts.timecnt &&
519 					    sp->timecnt < TZ_MAX_TIMES) {
520 						sp->ats[sp->timecnt] =
521 							ts.ats[i];
522 						sp->types[sp->timecnt] =
523 							sp->typecnt +
524 							ts.types[i];
525 						++sp->timecnt;
526 						++i;
527 					}
528 					sp->ttis[sp->typecnt++] = ts.ttis[0];
529 					sp->ttis[sp->typecnt++] = ts.ttis[1];
530 			}
531 	}
532 	sp->goback = sp->goahead = FALSE;
533 	if (sp->timecnt > 1) {
534 		for (i = 1; i < sp->timecnt; ++i)
535 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
536 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
537 					sp->goback = TRUE;
538 					break;
539 				}
540 		for (i = sp->timecnt - 2; i >= 0; --i)
541 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
542 				sp->types[i]) &&
543 				differ_by_repeat(sp->ats[sp->timecnt - 1],
544 				sp->ats[i])) {
545 					sp->goahead = TRUE;
546 					break;
547 		}
548 	}
549 	return 0;
550 }
551 
552 static int
553 typesequiv(const struct state * const sp, const int a, const int b)
554 {
555 	int	result;
556 
557 	if (sp == NULL ||
558 		a < 0 || a >= sp->typecnt ||
559 		b < 0 || b >= sp->typecnt)
560 			result = FALSE;
561 	else {
562 		const struct ttinfo *	ap = &sp->ttis[a];
563 		const struct ttinfo *	bp = &sp->ttis[b];
564 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
565 			ap->tt_isdst == bp->tt_isdst &&
566 			ap->tt_ttisstd == bp->tt_ttisstd &&
567 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
568 			strcmp(&sp->chars[ap->tt_abbrind],
569 			&sp->chars[bp->tt_abbrind]) == 0;
570 	}
571 	return result;
572 }
573 
574 static const int	mon_lengths[2][MONSPERYEAR] = {
575 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
576 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
577 };
578 
579 static const int	year_lengths[2] = {
580 	DAYSPERNYEAR, DAYSPERLYEAR
581 };
582 
583 /*
584 ** Given a pointer into a time zone string, scan until a character that is not
585 ** a valid character in a zone name is found. Return a pointer to that
586 ** character.
587 */
588 
589 static const char *
590 getzname(const char *strp)
591 {
592 	char	c;
593 
594 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
595 		c != '+')
596 			++strp;
597 	return strp;
598 }
599 
600 /*
601 ** Given a pointer into an extended time zone string, scan until the ending
602 ** delimiter of the zone name is located. Return a pointer to the delimiter.
603 **
604 ** As with getzname above, the legal character set is actually quite
605 ** restricted, with other characters producing undefined results.
606 ** We don't do any checking here; checking is done later in common-case code.
607 */
608 
609 static const char *
610 getqzname(const char *strp, const int delim)
611 {
612 	int	c;
613 
614 	while ((c = *strp) != '\0' && c != delim)
615 		++strp;
616 	return strp;
617 }
618 
619 /*
620 ** Given a pointer into a time zone string, extract a number from that string.
621 ** Check that the number is within a specified range; if it is not, return
622 ** NULL.
623 ** Otherwise, return a pointer to the first character not part of the number.
624 */
625 
626 static const char *
627 getnum(const char *strp, int * const nump, const int min, const int max)
628 {
629 	char	c;
630 	int	num;
631 
632 	if (strp == NULL || !is_digit(c = *strp))
633 		return NULL;
634 	num = 0;
635 	do {
636 		num = num * 10 + (c - '0');
637 		if (num > max)
638 			return NULL;	/* illegal value */
639 		c = *++strp;
640 	} while (is_digit(c));
641 	if (num < min)
642 		return NULL;		/* illegal value */
643 	*nump = num;
644 	return strp;
645 }
646 
647 /*
648 ** Given a pointer into a time zone string, extract a number of seconds,
649 ** in hh[:mm[:ss]] form, from the string.
650 ** If any error occurs, return NULL.
651 ** Otherwise, return a pointer to the first character not part of the number
652 ** of seconds.
653 */
654 
655 static const char *
656 getsecs(const char *strp, long * const secsp)
657 {
658 	int	num;
659 
660 	/*
661 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
662 	** "M10.4.6/26", which does not conform to Posix,
663 	** but which specifies the equivalent of
664 	** ``02:00 on the first Sunday on or after 23 Oct''.
665 	*/
666 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
667 	if (strp == NULL)
668 		return NULL;
669 	*secsp = num * (long) SECSPERHOUR;
670 	if (*strp == ':') {
671 		++strp;
672 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
673 		if (strp == NULL)
674 			return NULL;
675 		*secsp += num * SECSPERMIN;
676 		if (*strp == ':') {
677 			++strp;
678 			/* `SECSPERMIN' allows for leap seconds. */
679 			strp = getnum(strp, &num, 0, SECSPERMIN);
680 			if (strp == NULL)
681 				return NULL;
682 			*secsp += num;
683 		}
684 	}
685 	return strp;
686 }
687 
688 /*
689 ** Given a pointer into a time zone string, extract an offset, in
690 ** [+-]hh[:mm[:ss]] form, from the string.
691 ** If any error occurs, return NULL.
692 ** Otherwise, return a pointer to the first character not part of the time.
693 */
694 
695 static const char *
696 getoffset(const char *strp, long * const offsetp)
697 {
698 	int	neg = 0;
699 
700 	if (*strp == '-') {
701 		neg = 1;
702 		++strp;
703 	} else if (*strp == '+')
704 		++strp;
705 	strp = getsecs(strp, offsetp);
706 	if (strp == NULL)
707 		return NULL;		/* illegal time */
708 	if (neg)
709 		*offsetp = -*offsetp;
710 	return strp;
711 }
712 
713 /*
714 ** Given a pointer into a time zone string, extract a rule in the form
715 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
716 ** If a valid rule is not found, return NULL.
717 ** Otherwise, return a pointer to the first character not part of the rule.
718 */
719 
720 static const char *
721 getrule(const char *strp, struct rule * const rulep)
722 {
723 	if (*strp == 'J') {
724 		/*
725 		** Julian day.
726 		*/
727 		rulep->r_type = JULIAN_DAY;
728 		++strp;
729 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
730 	} else if (*strp == 'M') {
731 		/*
732 		** Month, week, day.
733 		*/
734 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
735 		++strp;
736 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
737 		if (strp == NULL)
738 			return NULL;
739 		if (*strp++ != '.')
740 			return NULL;
741 		strp = getnum(strp, &rulep->r_week, 1, 5);
742 		if (strp == NULL)
743 			return NULL;
744 		if (*strp++ != '.')
745 			return NULL;
746 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
747 	} else if (is_digit(*strp)) {
748 		/*
749 		** Day of year.
750 		*/
751 		rulep->r_type = DAY_OF_YEAR;
752 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
753 	} else	return NULL;		/* invalid format */
754 	if (strp == NULL)
755 		return NULL;
756 	if (*strp == '/') {
757 		/*
758 		** Time specified.
759 		*/
760 		++strp;
761 		strp = getsecs(strp, &rulep->r_time);
762 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
763 	return strp;
764 }
765 
766 /*
767 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
768 ** year, a rule, and the offset from UTC at the time that rule takes effect,
769 ** calculate the Epoch-relative time that rule takes effect.
770 */
771 
772 static time_t
773 transtime(const time_t janfirst, const int year,
774 	  const struct rule * const rulep, const long offset)
775 {
776 	int	leapyear;
777 	time_t	value;
778 	int	i;
779 	int		d, m1, yy0, yy1, yy2, dow;
780 
781 	INITIALIZE(value);
782 	leapyear = isleap(year);
783 	switch (rulep->r_type) {
784 
785 	case JULIAN_DAY:
786 		/*
787 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
788 		** years.
789 		** In non-leap years, or if the day number is 59 or less, just
790 		** add SECSPERDAY times the day number-1 to the time of
791 		** January 1, midnight, to get the day.
792 		*/
793 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
794 		if (leapyear && rulep->r_day >= 60)
795 			value += SECSPERDAY;
796 		break;
797 
798 	case DAY_OF_YEAR:
799 		/*
800 		** n - day of year.
801 		** Just add SECSPERDAY times the day number to the time of
802 		** January 1, midnight, to get the day.
803 		*/
804 		value = janfirst + rulep->r_day * SECSPERDAY;
805 		break;
806 
807 	case MONTH_NTH_DAY_OF_WEEK:
808 		/*
809 		** Mm.n.d - nth "dth day" of month m.
810 		*/
811 		value = janfirst;
812 		for (i = 0; i < rulep->r_mon - 1; ++i)
813 			value += mon_lengths[leapyear][i] * SECSPERDAY;
814 
815 		/*
816 		** Use Zeller's Congruence to get day-of-week of first day of
817 		** month.
818 		*/
819 		m1 = (rulep->r_mon + 9) % 12 + 1;
820 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
821 		yy1 = yy0 / 100;
822 		yy2 = yy0 % 100;
823 		dow = ((26 * m1 - 2) / 10 +
824 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
825 		if (dow < 0)
826 			dow += DAYSPERWEEK;
827 
828 		/*
829 		** "dow" is the day-of-week of the first day of the month. Get
830 		** the day-of-month (zero-origin) of the first "dow" day of the
831 		** month.
832 		*/
833 		d = rulep->r_day - dow;
834 		if (d < 0)
835 			d += DAYSPERWEEK;
836 		for (i = 1; i < rulep->r_week; ++i) {
837 			if (d + DAYSPERWEEK >=
838 				mon_lengths[leapyear][rulep->r_mon - 1])
839 					break;
840 			d += DAYSPERWEEK;
841 		}
842 
843 		/*
844 		** "d" is the day-of-month (zero-origin) of the day we want.
845 		*/
846 		value += d * SECSPERDAY;
847 		break;
848 	}
849 
850 	/*
851 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
852 	** question. To get the Epoch-relative time of the specified local
853 	** time on that day, add the transition time and the current offset
854 	** from UTC.
855 	*/
856 	return value + rulep->r_time + offset;
857 }
858 
859 /*
860 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
861 ** appropriate.
862 */
863 
864 static int
865 tzparse(const char *name, struct state * const sp, const int lastditch)
866 {
867 	const char *			stdname;
868 	const char *			dstname;
869 	size_t				stdlen;
870 	size_t				dstlen;
871 	long				stdoffset;
872 	long				dstoffset;
873 	time_t *		atp;
874 	unsigned char *	typep;
875 	char *			cp;
876 	int			load_result;
877 
878 	INITIALIZE(dstname);
879 	stdname = name;
880 	if (lastditch) {
881 		stdlen = strlen(name);	/* length of standard zone name */
882 		name += stdlen;
883 		if (stdlen >= sizeof sp->chars)
884 			stdlen = (sizeof sp->chars) - 1;
885 		stdoffset = 0;
886 	} else {
887 		if (*name == '<') {
888 			name++;
889 			stdname = name;
890 			name = getqzname(name, '>');
891 			if (*name != '>')
892 				return (-1);
893 			stdlen = name - stdname;
894 			name++;
895 		} else {
896 			name = getzname(name);
897 			stdlen = name - stdname;
898 		}
899 		if (*name == '\0')
900 			return -1;
901 		name = getoffset(name, &stdoffset);
902 		if (name == NULL)
903 			return -1;
904 	}
905 	load_result = tzload(TZDEFRULES, sp, FALSE);
906 	if (load_result != 0)
907 		sp->leapcnt = 0;		/* so, we're off a little */
908 	if (*name != '\0') {
909 		if (*name == '<') {
910 			dstname = ++name;
911 			name = getqzname(name, '>');
912 			if (*name != '>')
913 				return -1;
914 			dstlen = name - dstname;
915 			name++;
916 		} else {
917 			dstname = name;
918 			name = getzname(name);
919 			dstlen = name - dstname; /* length of DST zone name */
920 		}
921 		if (*name != '\0' && *name != ',' && *name != ';') {
922 			name = getoffset(name, &dstoffset);
923 			if (name == NULL)
924 				return -1;
925 		} else	dstoffset = stdoffset - SECSPERHOUR;
926 		if (*name == '\0' && load_result != 0)
927 			name = TZDEFRULESTRING;
928 		if (*name == ',' || *name == ';') {
929 			struct rule	start;
930 			struct rule	end;
931 			int	year;
932 			time_t	janfirst;
933 			time_t		starttime;
934 			time_t		endtime;
935 
936 			++name;
937 			if ((name = getrule(name, &start)) == NULL)
938 				return -1;
939 			if (*name++ != ',')
940 				return -1;
941 			if ((name = getrule(name, &end)) == NULL)
942 				return -1;
943 			if (*name != '\0')
944 				return -1;
945 			sp->typecnt = 2;	/* standard time and DST */
946 			/*
947 			** Two transitions per year, from EPOCH_YEAR forward.
948 			*/
949 			sp->ttis[0].tt_gmtoff = -dstoffset;
950 			sp->ttis[0].tt_isdst = 1;
951 			sp->ttis[0].tt_abbrind = stdlen + 1;
952 			sp->ttis[1].tt_gmtoff = -stdoffset;
953 			sp->ttis[1].tt_isdst = 0;
954 			sp->ttis[1].tt_abbrind = 0;
955 			atp = sp->ats;
956 			typep = sp->types;
957 			janfirst = 0;
958 			sp->timecnt = 0;
959 			for (year = EPOCH_YEAR;
960 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
961 			    ++year) {
962 			    	time_t	newfirst;
963 
964 				starttime = transtime(janfirst, year, &start,
965 					stdoffset);
966 				endtime = transtime(janfirst, year, &end,
967 					dstoffset);
968 				if (starttime > endtime) {
969 					*atp++ = endtime;
970 					*typep++ = 1;	/* DST ends */
971 					*atp++ = starttime;
972 					*typep++ = 0;	/* DST begins */
973 				} else {
974 					*atp++ = starttime;
975 					*typep++ = 0;	/* DST begins */
976 					*atp++ = endtime;
977 					*typep++ = 1;	/* DST ends */
978 				}
979 				sp->timecnt += 2;
980 				newfirst = janfirst;
981 				newfirst += year_lengths[isleap(year)] *
982 					SECSPERDAY;
983 				if (newfirst <= janfirst)
984 					break;
985 				janfirst = newfirst;
986 			}
987 		} else {
988 			long	theirstdoffset;
989 			long	theirdstoffset;
990 			long	theiroffset;
991 			int	isdst;
992 			int	i;
993 			int	j;
994 
995 			if (*name != '\0')
996 				return -1;
997 			/*
998 			** Initial values of theirstdoffset and theirdstoffset.
999 			*/
1000 			theirstdoffset = 0;
1001 			for (i = 0; i < sp->timecnt; ++i) {
1002 				j = sp->types[i];
1003 				if (!sp->ttis[j].tt_isdst) {
1004 					theirstdoffset =
1005 						-sp->ttis[j].tt_gmtoff;
1006 					break;
1007 				}
1008 			}
1009 			theirdstoffset = 0;
1010 			for (i = 0; i < sp->timecnt; ++i) {
1011 				j = sp->types[i];
1012 				if (sp->ttis[j].tt_isdst) {
1013 					theirdstoffset =
1014 						-sp->ttis[j].tt_gmtoff;
1015 					break;
1016 				}
1017 			}
1018 			/*
1019 			** Initially we're assumed to be in standard time.
1020 			*/
1021 			isdst = FALSE;
1022 			theiroffset = theirstdoffset;
1023 			/*
1024 			** Now juggle transition times and types
1025 			** tracking offsets as you do.
1026 			*/
1027 			for (i = 0; i < sp->timecnt; ++i) {
1028 				j = sp->types[i];
1029 				sp->types[i] = sp->ttis[j].tt_isdst;
1030 				if (sp->ttis[j].tt_ttisgmt) {
1031 					/* No adjustment to transition time */
1032 				} else {
1033 					/*
1034 					** If summer time is in effect, and the
1035 					** transition time was not specified as
1036 					** standard time, add the summer time
1037 					** offset to the transition time;
1038 					** otherwise, add the standard time
1039 					** offset to the transition time.
1040 					*/
1041 					/*
1042 					** Transitions from DST to DDST
1043 					** will effectively disappear since
1044 					** POSIX provides for only one DST
1045 					** offset.
1046 					*/
1047 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1048 						sp->ats[i] += dstoffset -
1049 							theirdstoffset;
1050 					} else {
1051 						sp->ats[i] += stdoffset -
1052 							theirstdoffset;
1053 					}
1054 				}
1055 				theiroffset = -sp->ttis[j].tt_gmtoff;
1056 				if (sp->ttis[j].tt_isdst)
1057 					theirdstoffset = theiroffset;
1058 				else	theirstdoffset = theiroffset;
1059 			}
1060 			/*
1061 			** Finally, fill in ttis.
1062 			** ttisstd and ttisgmt need not be handled.
1063 			*/
1064 			sp->ttis[0].tt_gmtoff = -stdoffset;
1065 			sp->ttis[0].tt_isdst = FALSE;
1066 			sp->ttis[0].tt_abbrind = 0;
1067 			sp->ttis[1].tt_gmtoff = -dstoffset;
1068 			sp->ttis[1].tt_isdst = TRUE;
1069 			sp->ttis[1].tt_abbrind = stdlen + 1;
1070 			sp->typecnt = 2;
1071 		}
1072 	} else {
1073 		dstlen = 0;
1074 		sp->typecnt = 1;		/* only standard time */
1075 		sp->timecnt = 0;
1076 		sp->ttis[0].tt_gmtoff = -stdoffset;
1077 		sp->ttis[0].tt_isdst = 0;
1078 		sp->ttis[0].tt_abbrind = 0;
1079 	}
1080 	sp->charcnt = stdlen + 1;
1081 	if (dstlen != 0)
1082 		sp->charcnt += dstlen + 1;
1083 	if ((size_t) sp->charcnt > sizeof sp->chars)
1084 		return -1;
1085 	cp = sp->chars;
1086 	strncpy(cp, stdname, stdlen);
1087 	cp += stdlen;
1088 	*cp++ = '\0';
1089 	if (dstlen != 0) {
1090 		strncpy(cp, dstname, dstlen);
1091 		*(cp + dstlen) = '\0';
1092 	}
1093 	return 0;
1094 }
1095 
1096 static void
1097 gmtload(struct state * const sp)
1098 {
1099 	if (tzload(gmt, sp, TRUE) != 0)
1100 		tzparse(gmt, sp, TRUE);
1101 }
1102 
1103 static void
1104 tzsetwall_basic(void)
1105 {
1106 	if (lcl_is_set < 0)
1107 		return;
1108 	lcl_is_set = -1;
1109 
1110 	if (tzload((char *) NULL, lclptr, TRUE) != 0)
1111 		gmtload(lclptr);
1112 	settzname();
1113 }
1114 
1115 void
1116 tzsetwall(void)
1117 {
1118 	_MUTEX_LOCK(&lcl_mutex);
1119 	tzsetwall_basic();
1120 	_MUTEX_UNLOCK(&lcl_mutex);
1121 }
1122 
1123 static void
1124 tzset_basic(void)
1125 {
1126 	const char *	name;
1127 
1128 	name = getenv("TZ");
1129 	if (name == NULL) {
1130 		tzsetwall_basic();
1131 		return;
1132 	}
1133 
1134 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1135 		return;
1136 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1137 	if (lcl_is_set)
1138 		strcpy(lcl_TZname, name);
1139 
1140 	if (*name == '\0') {
1141 		/*
1142 		** User wants it fast rather than right.
1143 		*/
1144 		lclptr->leapcnt = 0;		/* so, we're off a little */
1145 		lclptr->timecnt = 0;
1146 		lclptr->typecnt = 0;
1147 		lclptr->ttis[0].tt_isdst = 0;
1148 		lclptr->ttis[0].tt_gmtoff = 0;
1149 		lclptr->ttis[0].tt_abbrind = 0;
1150 		strcpy(lclptr->chars, gmt);
1151 	} else if (tzload(name, lclptr, TRUE) != 0)
1152 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1153 			gmtload(lclptr);
1154 	settzname();
1155 }
1156 
1157 void
1158 tzset(void)
1159 {
1160 	_MUTEX_LOCK(&lcl_mutex);
1161 	tzset_basic();
1162 	_MUTEX_UNLOCK(&lcl_mutex);
1163 }
1164 
1165 /*
1166 ** The easy way to behave "as if no library function calls" localtime
1167 ** is to not call it--so we drop its guts into "localsub", which can be
1168 ** freely called. (And no, the PANS doesn't require the above behavior--
1169 ** but it *is* desirable.)
1170 **
1171 ** The unused offset argument is for the benefit of mktime variants.
1172 */
1173 
1174 /*ARGSUSED*/
1175 static struct tm *
1176 localsub(const time_t * const timep, const long offset __unused,
1177 	 struct tm * const tmp)
1178 {
1179 	struct state *		sp;
1180 	const struct ttinfo *	ttisp;
1181 	int			i;
1182 	struct tm *		result;
1183 	const time_t		t = *timep;
1184 
1185 	sp = lclptr;
1186 
1187 	if ((sp->goback && t < sp->ats[0]) ||
1188 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1189 			time_t		newt = t;
1190 			time_t		seconds;
1191 			time_t		tcycles;
1192 			int_fast64_t	icycles;
1193 
1194 			if (t < sp->ats[0])
1195 				seconds = sp->ats[0] - t;
1196 			else	seconds = t - sp->ats[sp->timecnt - 1];
1197 			--seconds;
1198 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1199 			++tcycles;
1200 			icycles = tcycles;
1201 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1202 				return NULL;
1203 			seconds = icycles;
1204 			seconds *= YEARSPERREPEAT;
1205 			seconds *= AVGSECSPERYEAR;
1206 			if (t < sp->ats[0])
1207 				newt += seconds;
1208 			else	newt -= seconds;
1209 			if (newt < sp->ats[0] ||
1210 				newt > sp->ats[sp->timecnt - 1])
1211 					return NULL;	/* "cannot happen" */
1212 			result = localsub(&newt, offset, tmp);
1213 			if (result == tmp) {
1214 				time_t	newy;
1215 
1216 				newy = tmp->tm_year;
1217 				if (t < sp->ats[0])
1218 					newy -= icycles * YEARSPERREPEAT;
1219 				else	newy += icycles * YEARSPERREPEAT;
1220 				tmp->tm_year = newy;
1221 				if (tmp->tm_year != newy)
1222 					return NULL;
1223 			}
1224 			return result;
1225 	}
1226 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1227 		i = 0;
1228 		while (sp->ttis[i].tt_isdst)
1229 			if (++i >= sp->typecnt) {
1230 				i = 0;
1231 				break;
1232 			}
1233 	} else {
1234 		int	lo = 1;
1235 		int	hi = sp->timecnt;
1236 
1237 		while (lo < hi) {
1238 			int	mid = (lo + hi) >> 1;
1239 
1240 			if (t < sp->ats[mid])
1241 				hi = mid;
1242 			else	lo = mid + 1;
1243 		}
1244 		i = (int) sp->types[lo - 1];
1245 	}
1246 	ttisp = &sp->ttis[i];
1247 	/*
1248 	** To get (wrong) behavior that's compatible with System V Release 2.0
1249 	** you'd replace the statement below with
1250 	**	t += ttisp->tt_gmtoff;
1251 	**	timesub(&t, 0L, sp, tmp);
1252 	*/
1253 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1254 	tmp->tm_isdst = ttisp->tt_isdst;
1255 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1256 #ifdef TM_ZONE
1257 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1258 #endif /* defined TM_ZONE */
1259 	return result;
1260 }
1261 
1262 struct tm *
1263 localtime_r(const time_t * const timep, struct tm *p_tm)
1264 {
1265 	_MUTEX_LOCK(&lcl_mutex);
1266 	tzset_basic();
1267 	localsub(timep, 0L, p_tm);
1268 	_MUTEX_UNLOCK(&lcl_mutex);
1269 	return(p_tm);
1270 }
1271 
1272 struct tm *
1273 localtime(const time_t * const timep)
1274 {
1275 	static pthread_mutex_t localtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1276 	static pthread_key_t localtime_key = -1;
1277 	struct tm *p_tm;
1278 
1279 	if (__isthreaded != 0) {
1280 		_pthread_mutex_lock(&localtime_mutex);
1281 		if (localtime_key < 0) {
1282 			if (_pthread_key_create(&localtime_key, free) < 0) {
1283 				_pthread_mutex_unlock(&localtime_mutex);
1284 				return(NULL);
1285 			}
1286 		}
1287 		_pthread_mutex_unlock(&localtime_mutex);
1288 		p_tm = _pthread_getspecific(localtime_key);
1289 		if (p_tm == NULL) {
1290 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1291 			    == NULL)
1292 				return(NULL);
1293 			_pthread_setspecific(localtime_key, p_tm);
1294 		}
1295 		_pthread_mutex_lock(&lcl_mutex);
1296 		tzset_basic();
1297 		localsub(timep, 0L, p_tm);
1298 		_pthread_mutex_unlock(&lcl_mutex);
1299 		return(p_tm);
1300 	} else {
1301 		tzset_basic();
1302 		localsub(timep, 0L, &tm);
1303 		return(&tm);
1304 	}
1305 }
1306 
1307 /*
1308 ** gmtsub is to gmtime as localsub is to localtime.
1309 */
1310 
1311 static struct tm *
1312 gmtsub(const time_t * const timep, const long offset, struct tm * const tmp)
1313 {
1314 	struct tm *	result;
1315 
1316 	_MUTEX_LOCK(&gmt_mutex);
1317 	if (!gmt_is_set) {
1318 		gmt_is_set = TRUE;
1319 		gmtload(gmtptr);
1320 	}
1321 	_MUTEX_UNLOCK(&gmt_mutex);
1322 	result = timesub(timep, offset, gmtptr, tmp);
1323 #ifdef TM_ZONE
1324 	/*
1325 	** Could get fancy here and deliver something such as
1326 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1327 	** but this is no time for a treasure hunt.
1328 	*/
1329 	if (offset != 0)
1330 		tmp->TM_ZONE = wildabbr;
1331 	else
1332 		tmp->TM_ZONE = gmtptr->chars;
1333 #endif /* defined TM_ZONE */
1334 	return result;
1335 }
1336 
1337 struct tm *
1338 gmtime(const time_t * const timep)
1339 {
1340 	static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1341 	static pthread_key_t gmtime_key = -1;
1342 	struct tm *p_tm;
1343 
1344 	if (__isthreaded != 0) {
1345 		_pthread_mutex_lock(&gmtime_mutex);
1346 		if (gmtime_key < 0) {
1347 			if (_pthread_key_create(&gmtime_key, free) < 0) {
1348 				_pthread_mutex_unlock(&gmtime_mutex);
1349 				return(NULL);
1350 			}
1351 		}
1352 		_pthread_mutex_unlock(&gmtime_mutex);
1353 		/*
1354 		 * Changed to follow POSIX.1 threads standard, which
1355 		 * is what BSD currently has.
1356 		 */
1357 		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1358 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1359 			    == NULL) {
1360 				return(NULL);
1361 			}
1362 			_pthread_setspecific(gmtime_key, p_tm);
1363 		}
1364 		return gmtsub(timep, 0L, p_tm);
1365 	} else {
1366 		return gmtsub(timep, 0L, &tm);
1367 	}
1368 }
1369 
1370 struct tm *
1371 gmtime_r(const time_t * timep, struct tm * tmp)
1372 {
1373 	return gmtsub(timep, 0L, tmp);
1374 }
1375 
1376 struct tm *
1377 offtime(const time_t * const timep, const long offset)
1378 {
1379 	return gmtsub(timep, offset, &tm);
1380 }
1381 
1382 /*
1383 ** Return the number of leap years through the end of the given year
1384 ** where, to make the math easy, the answer for year zero is defined as zero.
1385 */
1386 
1387 static int
1388 leaps_thru_end_of(const int y)
1389 {
1390 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1391 		-(leaps_thru_end_of(-(y + 1)) + 1);
1392 }
1393 
1394 static struct tm *
1395 timesub(const time_t * const timep, const long offset,
1396 	const struct state * const sp, struct tm * const tmp)
1397 {
1398 	const struct lsinfo *	lp;
1399 	time_t			tdays;
1400 	int			idays;	/* unsigned would be so 2003 */
1401 	long			rem;
1402 	int			y;
1403 	int			yleap;
1404 	const int *		ip;
1405 	long			corr;
1406 	int			hit;
1407 	int			i;
1408 
1409 	corr = 0;
1410 	hit = 0;
1411 	i = sp->leapcnt;
1412 
1413 	while (--i >= 0) {
1414 		lp = &sp->lsis[i];
1415 		if (*timep >= lp->ls_trans) {
1416 			if (*timep == lp->ls_trans) {
1417 				hit = ((i == 0 && lp->ls_corr > 0) ||
1418 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1419 				if (hit)
1420 					while (i > 0 &&
1421 						sp->lsis[i].ls_trans ==
1422 						sp->lsis[i - 1].ls_trans + 1 &&
1423 						sp->lsis[i].ls_corr ==
1424 						sp->lsis[i - 1].ls_corr + 1) {
1425 							++hit;
1426 							--i;
1427 					}
1428 			}
1429 			corr = lp->ls_corr;
1430 			break;
1431 		}
1432 	}
1433 	y = EPOCH_YEAR;
1434 	tdays = *timep / SECSPERDAY;
1435 	rem = *timep - tdays * SECSPERDAY;
1436 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1437 		int	newy;
1438 		time_t	tdelta;
1439 		int	idelta;
1440 		int	leapdays;
1441 
1442 		tdelta = tdays / DAYSPERLYEAR;
1443 		idelta = tdelta;
1444 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1445 			return NULL;
1446 		if (idelta == 0)
1447 			idelta = (tdays < 0) ? -1 : 1;
1448 		newy = y;
1449 		if (increment_overflow(&newy, idelta))
1450 			return NULL;
1451 		leapdays = leaps_thru_end_of(newy - 1) -
1452 			leaps_thru_end_of(y - 1);
1453 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1454 		tdays -= leapdays;
1455 		y = newy;
1456 	}
1457 	{
1458 		long	seconds;
1459 
1460 		seconds = tdays * SECSPERDAY + 0.5;
1461 		tdays = seconds / SECSPERDAY;
1462 		rem += seconds - tdays * SECSPERDAY;
1463 	}
1464 	/*
1465 	** Given the range, we can now fearlessly cast...
1466 	*/
1467 	idays = tdays;
1468 	rem += offset - corr;
1469 	while (rem < 0) {
1470 		rem += SECSPERDAY;
1471 		--idays;
1472 	}
1473 	while (rem >= SECSPERDAY) {
1474 		rem -= SECSPERDAY;
1475 		++idays;
1476 	}
1477 	while (idays < 0) {
1478 		if (increment_overflow(&y, -1))
1479 			return NULL;
1480 		idays += year_lengths[isleap(y)];
1481 	}
1482 	while (idays >= year_lengths[isleap(y)]) {
1483 		idays -= year_lengths[isleap(y)];
1484 		if (increment_overflow(&y, 1))
1485 			return NULL;
1486 	}
1487 	tmp->tm_year = y;
1488 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1489 		return NULL;
1490 	tmp->tm_yday = idays;
1491 	/*
1492 	** The "extra" mods below avoid overflow problems.
1493 	*/
1494 	tmp->tm_wday = EPOCH_WDAY +
1495 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1496 		(DAYSPERNYEAR % DAYSPERWEEK) +
1497 		leaps_thru_end_of(y - 1) -
1498 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1499 		idays;
1500 	tmp->tm_wday %= DAYSPERWEEK;
1501 	if (tmp->tm_wday < 0)
1502 		tmp->tm_wday += DAYSPERWEEK;
1503 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1504 	rem %= SECSPERHOUR;
1505 	tmp->tm_min = (int) (rem / SECSPERMIN);
1506 	/*
1507 	** A positive leap second requires a special
1508 	** representation. This uses "... ??:59:60" et seq.
1509 	*/
1510 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1511 	ip = mon_lengths[isleap(y)];
1512 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1513 		idays -= ip[tmp->tm_mon];
1514 	tmp->tm_mday = (int) (idays + 1);
1515 	tmp->tm_isdst = 0;
1516 #ifdef TM_GMTOFF
1517 	tmp->TM_GMTOFF = offset;
1518 #endif /* defined TM_GMTOFF */
1519 	return tmp;
1520 }
1521 
1522 char *
1523 ctime(const time_t * const timep)
1524 {
1525 /*
1526 ** Section 4.12.3.2 of X3.159-1989 requires that
1527 **	The ctime function converts the calendar time pointed to by timer
1528 **	to local time in the form of a string. It is equivalent to
1529 **		asctime(localtime(timer))
1530 */
1531 	return asctime(localtime(timep));
1532 }
1533 
1534 char *
1535 ctime_r(const time_t * const timep, char *buf)
1536 {
1537         struct tm	mytm;
1538 	return asctime_r(localtime_r(timep, &mytm), buf);
1539 }
1540 
1541 /*
1542 ** Adapted from code provided by Robert Elz, who writes:
1543 **	The "best" way to do mktime I think is based on an idea of Bob
1544 **	Kridle's (so its said...) from a long time ago.
1545 **	It does a binary search of the time_t space. Since time_t's are
1546 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1547 **	would still be very reasonable).
1548 */
1549 
1550 #ifndef WRONG
1551 #define WRONG	(-1)
1552 #endif /* !defined WRONG */
1553 
1554 /*
1555 ** Simplified normalize logic courtesy Paul Eggert.
1556 */
1557 
1558 static int
1559 increment_overflow(int *number, int delta)
1560 {
1561 	int	number0;
1562 
1563 	number0 = *number;
1564 	*number += delta;
1565 	return (*number < number0) != (delta < 0);
1566 }
1567 
1568 static int
1569 long_increment_overflow(long *number, int delta)
1570 {
1571 	long	number0;
1572 
1573 	number0 = *number;
1574 	*number += delta;
1575 	return (*number < number0) != (delta < 0);
1576 }
1577 
1578 static int
1579 normalize_overflow(int * const tensptr, int * const unitsptr, const int base)
1580 {
1581 	int	tensdelta;
1582 
1583 	tensdelta = (*unitsptr >= 0) ?
1584 		(*unitsptr / base) :
1585 		(-1 - (-1 - *unitsptr) / base);
1586 	*unitsptr -= tensdelta * base;
1587 	return increment_overflow(tensptr, tensdelta);
1588 }
1589 
1590 static int
1591 long_normalize_overflow(long * const tensptr, int * const unitsptr,
1592 			const int base)
1593 {
1594 	int	tensdelta;
1595 
1596 	tensdelta = (*unitsptr >= 0) ?
1597 		(*unitsptr / base) :
1598 		(-1 - (-1 - *unitsptr) / base);
1599 	*unitsptr -= tensdelta * base;
1600 	return long_increment_overflow(tensptr, tensdelta);
1601 }
1602 
1603 static int
1604 tmcomp(const struct tm * const atmp, const struct tm * const btmp)
1605 {
1606 	int	result;
1607 
1608 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1609 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1610 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1611 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1612 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1613 			result = atmp->tm_sec - btmp->tm_sec;
1614 	return result;
1615 }
1616 
1617 static time_t
1618 time2sub(struct tm * const tmp,
1619       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1620       const long offset, int * const okayp, const int do_norm_secs)
1621 {
1622 	const struct state *	sp;
1623 	int			dir;
1624 	int			i, j;
1625 	int			saved_seconds;
1626 	long			li;
1627 	time_t			lo;
1628 	time_t			hi;
1629 	long			y;
1630 	time_t			newt;
1631 	time_t			t;
1632 	struct tm		yourtm, mytm;
1633 
1634 	*okayp = FALSE;
1635 	yourtm = *tmp;
1636 	if (do_norm_secs) {
1637 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1638 			SECSPERMIN))
1639 				return WRONG;
1640 	}
1641 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1642 		return WRONG;
1643 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1644 		return WRONG;
1645 	y = yourtm.tm_year;
1646 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1647 		return WRONG;
1648 	/*
1649 	** Turn y into an actual year number for now.
1650 	** It is converted back to an offset from TM_YEAR_BASE later.
1651 	*/
1652 	if (long_increment_overflow(&y, TM_YEAR_BASE))
1653 		return WRONG;
1654 	while (yourtm.tm_mday <= 0) {
1655 		if (long_increment_overflow(&y, -1))
1656 			return WRONG;
1657 		li = y + (1 < yourtm.tm_mon);
1658 		yourtm.tm_mday += year_lengths[isleap(li)];
1659 	}
1660 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1661 		li = y + (1 < yourtm.tm_mon);
1662 		yourtm.tm_mday -= year_lengths[isleap(li)];
1663 		if (long_increment_overflow(&y, 1))
1664 			return WRONG;
1665 	}
1666 	for ( ; ; ) {
1667 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1668 		if (yourtm.tm_mday <= i)
1669 			break;
1670 		yourtm.tm_mday -= i;
1671 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1672 			yourtm.tm_mon = 0;
1673 			if (long_increment_overflow(&y, 1))
1674 				return WRONG;
1675 		}
1676 	}
1677 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1678 		return WRONG;
1679 	yourtm.tm_year = y;
1680 	if (yourtm.tm_year != y)
1681 		return WRONG;
1682 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1683 		saved_seconds = 0;
1684 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1685 		/*
1686 		** We can't set tm_sec to 0, because that might push the
1687 		** time below the minimum representable time.
1688 		** Set tm_sec to 59 instead.
1689 		** This assumes that the minimum representable time is
1690 		** not in the same minute that a leap second was deleted from,
1691 		** which is a safer assumption than using 58 would be.
1692 		*/
1693 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1694 			return WRONG;
1695 		saved_seconds = yourtm.tm_sec;
1696 		yourtm.tm_sec = SECSPERMIN - 1;
1697 	} else {
1698 		saved_seconds = yourtm.tm_sec;
1699 		yourtm.tm_sec = 0;
1700 	}
1701 	/*
1702 	** Do a binary search (this works whatever time_t's type is).
1703 	*/
1704 	if (!TYPE_SIGNED(time_t)) {
1705 		lo = 0;
1706 		hi = lo - 1;
1707 	} else if (!TYPE_INTEGRAL(time_t)) {
1708 		if (sizeof(time_t) > sizeof(float))
1709 			hi = (time_t) DBL_MAX;
1710 		else	hi = (time_t) FLT_MAX;
1711 		lo = -hi;
1712 	} else {
1713 		lo = 1;
1714 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1715 			lo *= 2;
1716 		hi = -(lo + 1);
1717 	}
1718 	for ( ; ; ) {
1719 		t = lo / 2 + hi / 2;
1720 		if (t < lo)
1721 			t = lo;
1722 		else if (t > hi)
1723 			t = hi;
1724 		if ((*funcp)(&t, offset, &mytm) == NULL) {
1725 			/*
1726 			** Assume that t is too extreme to be represented in
1727 			** a struct tm; arrange things so that it is less
1728 			** extreme on the next pass.
1729 			*/
1730 			dir = (t > 0) ? 1 : -1;
1731 		} else	dir = tmcomp(&mytm, &yourtm);
1732 		if (dir != 0) {
1733 			if (t == lo) {
1734 				++t;
1735 				if (t <= lo)
1736 					return WRONG;
1737 				++lo;
1738 			} else if (t == hi) {
1739 				--t;
1740 				if (t >= hi)
1741 					return WRONG;
1742 				--hi;
1743 			}
1744 			if (lo > hi)
1745 				return WRONG;
1746 			if (dir > 0)
1747 				hi = t;
1748 			else	lo = t;
1749 			continue;
1750 		}
1751 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1752 			break;
1753 		/*
1754 		** Right time, wrong type.
1755 		** Hunt for right time, right type.
1756 		** It's okay to guess wrong since the guess
1757 		** gets checked.
1758 		*/
1759 		sp = (const struct state *)
1760 			((funcp == localsub) ? lclptr : gmtptr);
1761 
1762 		for (i = sp->typecnt - 1; i >= 0; --i) {
1763 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1764 				continue;
1765 			for (j = sp->typecnt - 1; j >= 0; --j) {
1766 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1767 					continue;
1768 				newt = t + sp->ttis[j].tt_gmtoff -
1769 					sp->ttis[i].tt_gmtoff;
1770 				if ((*funcp)(&newt, offset, &mytm) == NULL)
1771 					continue;
1772 				if (tmcomp(&mytm, &yourtm) != 0)
1773 					continue;
1774 				if (mytm.tm_isdst != yourtm.tm_isdst)
1775 					continue;
1776 				/*
1777 				** We have a match.
1778 				*/
1779 				t = newt;
1780 				goto label;
1781 			}
1782 		}
1783 		return WRONG;
1784 	}
1785 label:
1786 	newt = t + saved_seconds;
1787 	if ((newt < t) != (saved_seconds < 0))
1788 		return WRONG;
1789 	t = newt;
1790 	if ((*funcp)(&t, offset, tmp))
1791 		*okayp = TRUE;
1792 	return t;
1793 }
1794 
1795 static time_t
1796 time2(struct tm * const tmp,
1797       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1798       const long offset, int * const okayp)
1799 {
1800 	time_t	t;
1801 
1802 	/*
1803 	** First try without normalization of seconds
1804 	** (in case tm_sec contains a value associated with a leap second).
1805 	** If that fails, try with normalization of seconds.
1806 	*/
1807 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1808 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1809 }
1810 
1811 static time_t
1812 time1(struct tm * const tmp,
1813       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1814       const long offset)
1815 {
1816 	time_t			t;
1817 	const struct state *	sp;
1818 	int			samei, otheri;
1819 	int			sameind, otherind;
1820 	int			i;
1821 	int			nseen;
1822 	int			seen[TZ_MAX_TYPES];
1823 	int			types[TZ_MAX_TYPES];
1824 	int			okay;
1825 
1826 	if (tmp->tm_isdst > 1)
1827 		tmp->tm_isdst = 1;
1828 	t = time2(tmp, funcp, offset, &okay);
1829 
1830 	/*
1831 	** PCTS code courtesy Grant Sullivan.
1832 	*/
1833 	if (okay)
1834 		return t;
1835 	if (tmp->tm_isdst < 0)
1836 		tmp->tm_isdst = 0;	/* reset to std and try again */
1837 
1838 	/*
1839 	** We're supposed to assume that somebody took a time of one type
1840 	** and did some math on it that yielded a "struct tm" that's bad.
1841 	** We try to divine the type they started from and adjust to the
1842 	** type they need.
1843 	*/
1844 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
1845 
1846 	for (i = 0; i < sp->typecnt; ++i)
1847 		seen[i] = FALSE;
1848 	nseen = 0;
1849 	for (i = sp->timecnt - 1; i >= 0; --i)
1850 		if (!seen[sp->types[i]]) {
1851 			seen[sp->types[i]] = TRUE;
1852 			types[nseen++] = sp->types[i];
1853 		}
1854 	for (sameind = 0; sameind < nseen; ++sameind) {
1855 		samei = types[sameind];
1856 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1857 			continue;
1858 		for (otherind = 0; otherind < nseen; ++otherind) {
1859 			otheri = types[otherind];
1860 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1861 				continue;
1862 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1863 					sp->ttis[samei].tt_gmtoff;
1864 			tmp->tm_isdst = !tmp->tm_isdst;
1865 			t = time2(tmp, funcp, offset, &okay);
1866 			if (okay)
1867 				return t;
1868 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1869 					sp->ttis[samei].tt_gmtoff;
1870 			tmp->tm_isdst = !tmp->tm_isdst;
1871 		}
1872 	}
1873 	return WRONG;
1874 }
1875 
1876 time_t
1877 mktime(struct tm * const tmp)
1878 {
1879 	time_t mktime_return_value;
1880 	_MUTEX_LOCK(&lcl_mutex);
1881 	tzset_basic();
1882 	mktime_return_value = time1(tmp, localsub, 0L);
1883 	_MUTEX_UNLOCK(&lcl_mutex);
1884 	return(mktime_return_value);
1885 }
1886 
1887 time_t
1888 timelocal(struct tm * const tmp)
1889 {
1890 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1891 	return mktime(tmp);
1892 }
1893 
1894 time_t
1895 timegm(struct tm * const tmp)
1896 {
1897 	tmp->tm_isdst = 0;
1898 	return time1(tmp, gmtsub, 0L);
1899 }
1900 
1901 time_t
1902 timeoff(struct tm * const tmp, const long offset)
1903 {
1904 	tmp->tm_isdst = 0;
1905 	return time1(tmp, gmtsub, offset);
1906 }
1907 
1908 #ifdef CMUCS
1909 
1910 /*
1911 ** The following is supplied for compatibility with
1912 ** previous versions of the CMUCS runtime library.
1913 */
1914 
1915 long
1916 gtime(struct tm * const tmp)
1917 {
1918 	const time_t	t = mktime(tmp);
1919 
1920 	if (t == WRONG)
1921 		return -1;
1922 	return t;
1923 }
1924 
1925 #endif /* defined CMUCS */
1926 
1927 /*
1928 ** XXX--is the below the right way to conditionalize??
1929 */
1930 
1931 /*
1932 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1933 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1934 ** is not the case if we are accounting for leap seconds.
1935 ** So, we provide the following conversion routines for use
1936 ** when exchanging timestamps with POSIX conforming systems.
1937 */
1938 
1939 static long
1940 leapcorr(time_t *timep)
1941 {
1942 	struct state *		sp;
1943 	struct lsinfo *	lp;
1944 	int			i;
1945 
1946 	sp = lclptr;
1947 	i = sp->leapcnt;
1948 	while (--i >= 0) {
1949 		lp = &sp->lsis[i];
1950 		if (*timep >= lp->ls_trans)
1951 			return lp->ls_corr;
1952 	}
1953 	return 0;
1954 }
1955 
1956 time_t
1957 time2posix(time_t t)
1958 {
1959 	tzset();
1960 	return t - leapcorr(&t);
1961 }
1962 
1963 time_t
1964 posix2time(time_t t)
1965 {
1966 	time_t	x;
1967 	time_t	y;
1968 
1969 	tzset();
1970 	/*
1971 	** For a positive leap second hit, the result
1972 	** is not unique. For a negative leap second
1973 	** hit, the corresponding time doesn't exist,
1974 	** so we return an adjacent second.
1975 	*/
1976 	x = t + leapcorr(&t);
1977 	y = x - leapcorr(&x);
1978 	if (y < t) {
1979 		do {
1980 			x++;
1981 			y = x - leapcorr(&x);
1982 		} while (y < t);
1983 		if (t != y)
1984 			return x - 1;
1985 	} else if (y > t) {
1986 		do {
1987 			--x;
1988 			y = x - leapcorr(&x);
1989 		} while (y > t);
1990 		if (t != y)
1991 			return x + 1;
1992 	}
1993 	return x;
1994 }
1995