xref: /dragonfly/lib/libc/stdtime/localtime.c (revision cecb9aae)
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 **
5 ** $FreeBSD: src/lib/libc/stdtime/localtime.c,v 1.25.2.2 2002/08/13 16:08:07 bmilekic Exp $
6 */
7 
8 /*
9 ** Leap second handling from Bradley White.
10 ** POSIX-style TZ environment variable handling from Guy Harris.
11 */
12 
13 /*LINTLIBRARY*/
14 
15 #include "namespace.h"
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 
19 #include <fcntl.h>
20 #include <float.h>	/* for FLT_MAX and DBL_MAX */
21 #include <time.h>
22 #include <pthread.h>
23 #include "private.h"
24 #include <un-namespace.h>
25 
26 #include "tzfile.h"
27 
28 #include "libc_private.h"
29 
30 #define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
31 #define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
32 
33 #define _RWLOCK_RDLOCK(x)						\
34 		do {							\
35 			if (__isthreaded) _pthread_rwlock_rdlock(x);	\
36 		} while (0)
37 
38 #define _RWLOCK_WRLOCK(x)						\
39 		do {							\
40 			if (__isthreaded) _pthread_rwlock_wrlock(x);	\
41 		} while (0)
42 
43 #define _RWLOCK_UNLOCK(x)						\
44 		do {							\
45 			if (__isthreaded) _pthread_rwlock_unlock(x);	\
46 		} while (0)
47 
48 #ifndef TZ_ABBR_MAX_LEN
49 #define TZ_ABBR_MAX_LEN	16
50 #endif /* !defined TZ_ABBR_MAX_LEN */
51 
52 #ifndef TZ_ABBR_CHAR_SET
53 #define TZ_ABBR_CHAR_SET \
54 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
55 #endif /* !defined TZ_ABBR_CHAR_SET */
56 
57 #ifndef TZ_ABBR_ERR_CHAR
58 #define TZ_ABBR_ERR_CHAR	'_'
59 #endif /* !defined TZ_ABBR_ERR_CHAR */
60 
61 /*
62 ** Someone might make incorrect use of a time zone abbreviation:
63 **	1.	They might reference tzname[0] before calling tzset (explicitly
64 **		or implicitly).
65 **	2.	They might reference tzname[1] before calling tzset (explicitly
66 **		or implicitly).
67 **	3.	They might reference tzname[1] after setting to a time zone
68 **		in which Daylight Saving Time is never observed.
69 **	4.	They might reference tzname[0] after setting to a time zone
70 **		in which Standard Time is never observed.
71 **	5.	They might reference tm.TM_ZONE after calling offtime.
72 ** What's best to do in the above cases is open to debate;
73 ** for now, we just set things up so that in any of the five cases
74 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
75 ** string "tzname[0] used before set", and similarly for the other cases.
76 ** And another: initialize tzname[0] to "ERA", with an explanation in the
77 ** manual page of what this "time zone abbreviation" means (doing this so
78 ** that tzname[0] has the "normal" length of three characters).
79 */
80 #define WILDABBR	"   "
81 
82 static char		wildabbr[] = WILDABBR;
83 
84 static const char	gmt[] = "UTC";
85 
86 /*
87 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
88 ** We default to US rules as of 1999-08-17.
89 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
90 ** implementation dependent; for historical reasons, US rules are a
91 ** common default.
92 */
93 #ifndef TZDEFRULESTRING
94 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
95 #endif /* !defined TZDEFDST */
96 
97 struct ttinfo {				/* time type information */
98 	long		tt_gmtoff;	/* UTC offset in seconds */
99 	int		tt_isdst;	/* used to set tm_isdst */
100 	int		tt_abbrind;	/* abbreviation list index */
101 	int		tt_ttisstd;	/* TRUE if transition is std time */
102 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
103 };
104 
105 struct lsinfo {				/* leap second information */
106 	time_t		ls_trans;	/* transition time */
107 	long		ls_corr;	/* correction to apply */
108 };
109 
110 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
111 
112 #ifdef TZNAME_MAX
113 #define MY_TZNAME_MAX	TZNAME_MAX
114 #endif /* defined TZNAME_MAX */
115 #ifndef TZNAME_MAX
116 #define MY_TZNAME_MAX	255
117 #endif /* !defined TZNAME_MAX */
118 
119 struct state {
120 	int		leapcnt;
121 	int		timecnt;
122 	int		typecnt;
123 	int		charcnt;
124 	int		goback;
125 	int		goahead;
126 	time_t		ats[TZ_MAX_TIMES];
127 	unsigned char	types[TZ_MAX_TIMES];
128 	struct ttinfo	ttis[TZ_MAX_TYPES];
129 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
130 				(2 * (MY_TZNAME_MAX + 1)))];
131 	struct lsinfo	lsis[TZ_MAX_LEAPS];
132 };
133 
134 struct rule {
135 	int		r_type;		/* type of rule--see below */
136 	int		r_day;		/* day number of rule */
137 	int		r_week;		/* week number of rule */
138 	int		r_mon;		/* month number of rule */
139 	long		r_time;		/* transition time of rule */
140 };
141 
142 #define JULIAN_DAY		0	/* Jn - Julian day */
143 #define DAY_OF_YEAR		1	/* n - day of year */
144 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
145 
146 /*
147 ** Prototypes for static functions.
148 */
149 
150 static long		detzcode(const char * codep);
151 static time_t		detzcode64(const char * codep);
152 static int		differ_by_repeat(time_t t1, time_t t0);
153 static const char *	getzname(const char * strp);
154 static const char *	getqzname(const char * strp, const int delim);
155 static const char *	getnum(const char * strp, int * nump, int min,
156 				int max);
157 static const char *	getsecs(const char * strp, long * secsp);
158 static const char *	getoffset(const char * strp, long * offsetp);
159 static const char *	getrule(const char * strp, struct rule * rulep);
160 static void		gmtload(struct state * sp);
161 static struct tm *	gmtsub(const time_t * timep, long offset,
162 				struct tm * tmp);
163 static struct tm *	localsub(const time_t * timep, long offset,
164 				struct tm * tmp);
165 static int		increment_overflow(int * number, int delta);
166 static int		leaps_thru_end_of(int y);
167 static int		long_increment_overflow(long * number, int delta);
168 static int		long_normalize_overflow(long * tensptr,
169 				int * unitsptr, int base);
170 static int		normalize_overflow(int * tensptr, int * unitsptr,
171 				int base);
172 static void		settzname(void);
173 static time_t		time1(struct tm * tmp,
174 				struct tm * (*funcp)(const time_t *,
175 				long, struct tm *),
176 				long offset);
177 static time_t		time2(struct tm *tmp,
178 				struct tm * (*funcp)(const time_t *,
179 				long, struct tm*),
180 				long offset, int * okayp);
181 static time_t		time2sub(struct tm *tmp,
182 				struct tm * (*funcp)(const time_t *,
183 				long, struct tm*),
184 				long offset, int * okayp, int do_norm_secs);
185 static struct tm *	timesub(const time_t * timep, long offset,
186 				const struct state * sp, struct tm * tmp);
187 static int		tmcomp(const struct tm * atmp,
188 				const struct tm * btmp);
189 static time_t		transtime(time_t janfirst, int year,
190 				const struct rule * rulep, long offset);
191 static int		typesequiv(const struct state * sp, int a, int b);
192 static int		tzload(const char * name, struct state * sp,
193 				int doextend);
194 static int		tzparse(const char * name, struct state * sp,
195 				int lastditch);
196 
197 static struct state	lclmem;
198 static struct state	gmtmem;
199 #define lclptr		(&lclmem)
200 #define gmtptr		(&gmtmem)
201 
202 #ifndef TZ_STRLEN_MAX
203 #define TZ_STRLEN_MAX 255
204 #endif /* !defined TZ_STRLEN_MAX */
205 
206 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
207 static int		lcl_is_set;
208 static int		gmt_is_set;
209 static pthread_rwlock_t	lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
210 static pthread_mutex_t	gmt_mutex = PTHREAD_MUTEX_INITIALIZER;
211 
212 char *			tzname[2] = {
213 	wildabbr,
214 	wildabbr
215 };
216 
217 /*
218 ** Section 4.12.3 of X3.159-1989 requires that
219 **	Except for the strftime function, these functions [asctime,
220 **	ctime, gmtime, localtime] return values in one of two static
221 **	objects: a broken-down time structure and an array of char.
222 ** Thanks to Paul Eggert for noting this.
223 */
224 
225 static struct tm	tm;
226 
227 time_t			timezone = 0;
228 int			daylight = 0;
229 
230 static long
231 detzcode(const char * const codep)
232 {
233 	long	result;
234 	int	i;
235 
236 	result = (codep[0] & 0x80) ? ~0L : 0;
237 	for (i = 0; i < 4; ++i)
238 		result = (result << 8) | (codep[i] & 0xff);
239 	return result;
240 }
241 
242 static time_t
243 detzcode64(const char * const codep)
244 {
245 	time_t	result;
246 	int	i;
247 
248 	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
249 	for (i = 0; i < 8; ++i)
250 		result = result * 256 + (codep[i] & 0xff);
251 	return result;
252 }
253 
254 static void
255 settzname(void)
256 {
257 	struct state * const	sp = lclptr;
258 	int			i;
259 
260 	tzname[0] = wildabbr;
261 	tzname[1] = wildabbr;
262 	daylight = 0;
263 	timezone = 0;
264 
265 	/*
266 	** And to get the latest zone names into tzname. . .
267 	*/
268 	for (i = 0; i < sp->timecnt; ++i) {
269 		const struct ttinfo * const	ttisp =
270 							&sp->ttis[
271 								sp->types[i]];
272 
273 		tzname[ttisp->tt_isdst] =
274 			&sp->chars[ttisp->tt_abbrind];
275 		if (ttisp->tt_isdst)
276 			daylight = 1;
277 		if (!ttisp->tt_isdst)
278 			timezone = -(ttisp->tt_gmtoff);
279 	}
280 	/*
281 	** Finally, scrub the abbreviations.
282 	** First, replace bogus characters.
283 	*/
284 	for (i = 0; i < sp->charcnt; ++i)
285 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
286 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
287 	/*
288 	** Second, truncate long abbreviations.
289 	*/
290 	for (i = 0; i < sp->typecnt; ++i) {
291 		const struct ttinfo * const	ttisp = &sp->ttis[i];
292 		char *				cp = &sp->chars[ttisp->tt_abbrind];
293 
294 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
295 			strcmp(cp, GRANDPARENTED) != 0)
296 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
297 	}
298 }
299 
300 static int
301 differ_by_repeat(const time_t t1, const time_t t0)
302 {
303 	int_fast64_t _t0 = t0;
304 	int_fast64_t _t1 = t1;
305 
306 	if (TYPE_INTEGRAL(time_t) &&
307 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
308 			return 0;
309 	return _t1 - _t0 == SECSPERREPEAT;
310 }
311 
312 static int
313 tzload(const char *name, struct state * const sp, const int doextend)
314 {
315 	const char *		p;
316 	int			i;
317 	int			fid;
318 	int			stored;
319 	int			nread;
320 	typedef union {
321 		struct tzhead	tzhead;
322 		char		buf[2 * sizeof(struct tzhead) +
323 					2 * sizeof *sp +
324 					4 * TZ_MAX_TIMES];
325 	} u_t;
326 	u_t				u;
327 	u_t * const			up = &u;
328 
329 	sp->goback = sp->goahead = FALSE;
330 
331 	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
332 	if (name != NULL && issetugid() != 0)
333 		if ((name[0] == ':' && name[1] == '/') ||
334 		    name[0] == '/' || strchr(name, '.'))
335 			name = NULL;
336 	if (name == NULL && (name = TZDEFAULT) == NULL)
337 		goto oops;
338 	{
339 		int	doaccess;
340 		struct stat	stab;
341 		/*
342 		** Section 4.9.1 of the C standard says that
343 		** "FILENAME_MAX expands to an integral constant expression
344 		** that is the size needed for an array of char large enough
345 		** to hold the longest file name string that the implementation
346 		** guarantees can be opened."
347 		*/
348 		char		fullname[FILENAME_MAX + 1];
349 
350 		if (name[0] == ':')
351 			++name;
352 		doaccess = name[0] == '/';
353 		if (!doaccess) {
354 			if ((p = TZDIR) == NULL)
355 				goto oops;
356 			if ((strlen(p) + 1 + strlen(name) + 1) >= sizeof fullname)
357 				goto oops;
358 			strcpy(fullname, p);
359 			strcat(fullname, "/");
360 			strcat(fullname, name);
361 			/*
362 			** Set doaccess if '.' (as in "../") shows up in name.
363 			*/
364 			if (strchr(name, '.') != NULL)
365 				doaccess = TRUE;
366 			name = fullname;
367 		}
368 		if (doaccess && access(name, R_OK) != 0)
369 			goto oops;
370 		if ((fid = _open(name, O_RDONLY)) == -1)
371 			goto oops;
372 		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
373 			_close(fid);
374 			return -1;
375 		}
376 	}
377 	nread = _read(fid, up->buf, sizeof up->buf);
378 	if (_close(fid) < 0 || nread <= 0)
379 		goto oops;
380 	for (stored = 4; stored <= 8; stored *= 2) {
381 		int		ttisstdcnt;
382 		int		ttisgmtcnt;
383 
384 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
385 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
386 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
387 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
388 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
389 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
390 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
391 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
392 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
393 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
394 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
395 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
396 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
397 				goto oops;
398 		if (nread - (p - up->buf) <
399 			sp->timecnt * stored +		/* ats */
400 			sp->timecnt +			/* types */
401 			sp->typecnt * 6 +		/* ttinfos */
402 			sp->charcnt +			/* chars */
403 			sp->leapcnt * (stored + 4) +	/* lsinfos */
404 			ttisstdcnt +			/* ttisstds */
405 			ttisgmtcnt)			/* ttisgmts */
406 				goto oops;
407 		for (i = 0; i < sp->timecnt; ++i) {
408 			sp->ats[i] = (stored == 4) ?
409 				detzcode(p) : detzcode64(p);
410 			p += stored;
411 		}
412 		for (i = 0; i < sp->timecnt; ++i) {
413 			sp->types[i] = (unsigned char) *p++;
414 			if (sp->types[i] >= sp->typecnt)
415 				goto oops;
416 		}
417 		for (i = 0; i < sp->typecnt; ++i) {
418 			struct ttinfo *	ttisp;
419 
420 			ttisp = &sp->ttis[i];
421 			ttisp->tt_gmtoff = detzcode(p);
422 			p += 4;
423 			ttisp->tt_isdst = (unsigned char) *p++;
424 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
425 				goto oops;
426 			ttisp->tt_abbrind = (unsigned char) *p++;
427 			if (ttisp->tt_abbrind < 0 ||
428 				ttisp->tt_abbrind > sp->charcnt)
429 					goto oops;
430 		}
431 		for (i = 0; i < sp->charcnt; ++i)
432 			sp->chars[i] = *p++;
433 		sp->chars[i] = '\0';	/* ensure '\0' at end */
434 		for (i = 0; i < sp->leapcnt; ++i) {
435 			struct lsinfo *	lsisp;
436 
437 			lsisp = &sp->lsis[i];
438 			lsisp->ls_trans = (stored == 4) ?
439 				detzcode(p) : detzcode64(p);
440 			p += stored;
441 			lsisp->ls_corr = detzcode(p);
442 			p += 4;
443 		}
444 		for (i = 0; i < sp->typecnt; ++i) {
445 			struct ttinfo *	ttisp;
446 
447 			ttisp = &sp->ttis[i];
448 			if (ttisstdcnt == 0)
449 				ttisp->tt_ttisstd = FALSE;
450 			else {
451 				ttisp->tt_ttisstd = *p++;
452 				if (ttisp->tt_ttisstd != TRUE &&
453 					ttisp->tt_ttisstd != FALSE)
454 						goto oops;
455 			}
456 		}
457 		for (i = 0; i < sp->typecnt; ++i) {
458 			struct ttinfo *	ttisp;
459 
460 			ttisp = &sp->ttis[i];
461 			if (ttisgmtcnt == 0)
462 				ttisp->tt_ttisgmt = FALSE;
463 			else {
464 				ttisp->tt_ttisgmt = *p++;
465 				if (ttisp->tt_ttisgmt != TRUE &&
466 					ttisp->tt_ttisgmt != FALSE)
467 						goto oops;
468 			}
469 		}
470 		/*
471 		** Out-of-sort ats should mean we're running on a
472 		** signed time_t system but using a data file with
473 		** unsigned values (or vice versa).
474 		*/
475 		for (i = 0; i < sp->timecnt - 2; ++i)
476 			if (sp->ats[i] > sp->ats[i + 1]) {
477 				++i;
478 				if (TYPE_SIGNED(time_t)) {
479 					/*
480 					** Ignore the end (easy).
481 					*/
482 					sp->timecnt = i;
483 				} else {
484 					/*
485 					** Ignore the beginning (harder).
486 					*/
487 					int	j;
488 
489 					for (j = 0; j + i < sp->timecnt; ++j) {
490 						sp->ats[j] = sp->ats[j + i];
491 						sp->types[j] = sp->types[j + i];
492 					}
493 					sp->timecnt = j;
494 				}
495 				break;
496 			}
497 		/*
498 		** If this is an old file, we're done.
499 		*/
500 		if (up->tzhead.tzh_version[0] == '\0')
501 			break;
502 		nread -= p - up->buf;
503 		for (i = 0; i < nread; ++i)
504 			up->buf[i] = p[i];
505 		/*
506 		** If this is a narrow integer time_t system, we're done.
507 		*/
508 		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
509 			break;
510 	}
511 	if (doextend && nread > 2 &&
512 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
513 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
514 			struct state	ts;
515 			int		result;
516 
517 			up->buf[nread - 1] = '\0';
518 			result = tzparse(&up->buf[1], &ts, FALSE);
519 			if (result == 0 && ts.typecnt == 2 &&
520 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
521 					for (i = 0; i < 2; ++i)
522 						ts.ttis[i].tt_abbrind +=
523 							sp->charcnt;
524 					for (i = 0; i < ts.charcnt; ++i)
525 						sp->chars[sp->charcnt++] =
526 							ts.chars[i];
527 					i = 0;
528 					while (i < ts.timecnt &&
529 						ts.ats[i] <=
530 						sp->ats[sp->timecnt - 1])
531 							++i;
532 					while (i < ts.timecnt &&
533 					    sp->timecnt < TZ_MAX_TIMES) {
534 						sp->ats[sp->timecnt] =
535 							ts.ats[i];
536 						sp->types[sp->timecnt] =
537 							sp->typecnt +
538 							ts.types[i];
539 						++sp->timecnt;
540 						++i;
541 					}
542 					sp->ttis[sp->typecnt++] = ts.ttis[0];
543 					sp->ttis[sp->typecnt++] = ts.ttis[1];
544 			}
545 	}
546 	if (sp->timecnt > 1) {
547 		for (i = 1; i < sp->timecnt; ++i)
548 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
549 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
550 					sp->goback = TRUE;
551 					break;
552 				}
553 		for (i = sp->timecnt - 2; i >= 0; --i)
554 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
555 				sp->types[i]) &&
556 				differ_by_repeat(sp->ats[sp->timecnt - 1],
557 				sp->ats[i])) {
558 					sp->goahead = TRUE;
559 					break;
560 		}
561 	}
562 	return 0;
563 oops:
564 	return -1;
565 }
566 
567 static int
568 typesequiv(const struct state * const sp, const int a, const int b)
569 {
570 	int	result;
571 
572 	if (sp == NULL ||
573 		a < 0 || a >= sp->typecnt ||
574 		b < 0 || b >= sp->typecnt)
575 			result = FALSE;
576 	else {
577 		const struct ttinfo *	ap = &sp->ttis[a];
578 		const struct ttinfo *	bp = &sp->ttis[b];
579 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
580 			ap->tt_isdst == bp->tt_isdst &&
581 			ap->tt_ttisstd == bp->tt_ttisstd &&
582 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
583 			strcmp(&sp->chars[ap->tt_abbrind],
584 			&sp->chars[bp->tt_abbrind]) == 0;
585 	}
586 	return result;
587 }
588 
589 static const int	mon_lengths[2][MONSPERYEAR] = {
590 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
591 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
592 };
593 
594 static const int	year_lengths[2] = {
595 	DAYSPERNYEAR, DAYSPERLYEAR
596 };
597 
598 /*
599 ** Given a pointer into a time zone string, scan until a character that is not
600 ** a valid character in a zone name is found. Return a pointer to that
601 ** character.
602 */
603 
604 static const char *
605 getzname(const char *strp)
606 {
607 	char	c;
608 
609 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
610 		c != '+')
611 			++strp;
612 	return strp;
613 }
614 
615 /*
616 ** Given a pointer into an extended time zone string, scan until the ending
617 ** delimiter of the zone name is located. Return a pointer to the delimiter.
618 **
619 ** As with getzname above, the legal character set is actually quite
620 ** restricted, with other characters producing undefined results.
621 ** We don't do any checking here; checking is done later in common-case code.
622 */
623 
624 static const char *
625 getqzname(const char *strp, const int delim)
626 {
627 	int	c;
628 
629 	while ((c = *strp) != '\0' && c != delim)
630 		++strp;
631 	return strp;
632 }
633 
634 /*
635 ** Given a pointer into a time zone string, extract a number from that string.
636 ** Check that the number is within a specified range; if it is not, return
637 ** NULL.
638 ** Otherwise, return a pointer to the first character not part of the number.
639 */
640 
641 static const char *
642 getnum(const char *strp, int * const nump, const int min, const int max)
643 {
644 	char	c;
645 	int	num;
646 
647 	if (strp == NULL || !is_digit(c = *strp))
648 		return NULL;
649 	num = 0;
650 	do {
651 		num = num * 10 + (c - '0');
652 		if (num > max)
653 			return NULL;	/* illegal value */
654 		c = *++strp;
655 	} while (is_digit(c));
656 	if (num < min)
657 		return NULL;		/* illegal value */
658 	*nump = num;
659 	return strp;
660 }
661 
662 /*
663 ** Given a pointer into a time zone string, extract a number of seconds,
664 ** in hh[:mm[:ss]] form, from the string.
665 ** If any error occurs, return NULL.
666 ** Otherwise, return a pointer to the first character not part of the number
667 ** of seconds.
668 */
669 
670 static const char *
671 getsecs(const char *strp, long * const secsp)
672 {
673 	int	num;
674 
675 	/*
676 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
677 	** "M10.4.6/26", which does not conform to Posix,
678 	** but which specifies the equivalent of
679 	** ``02:00 on the first Sunday on or after 23 Oct''.
680 	*/
681 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
682 	if (strp == NULL)
683 		return NULL;
684 	*secsp = num * (long) SECSPERHOUR;
685 	if (*strp == ':') {
686 		++strp;
687 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
688 		if (strp == NULL)
689 			return NULL;
690 		*secsp += num * SECSPERMIN;
691 		if (*strp == ':') {
692 			++strp;
693 			/* `SECSPERMIN' allows for leap seconds. */
694 			strp = getnum(strp, &num, 0, SECSPERMIN);
695 			if (strp == NULL)
696 				return NULL;
697 			*secsp += num;
698 		}
699 	}
700 	return strp;
701 }
702 
703 /*
704 ** Given a pointer into a time zone string, extract an offset, in
705 ** [+-]hh[:mm[:ss]] form, from the string.
706 ** If any error occurs, return NULL.
707 ** Otherwise, return a pointer to the first character not part of the time.
708 */
709 
710 static const char *
711 getoffset(const char *strp, long * const offsetp)
712 {
713 	int	neg = 0;
714 
715 	if (*strp == '-') {
716 		neg = 1;
717 		++strp;
718 	} else if (*strp == '+')
719 		++strp;
720 	strp = getsecs(strp, offsetp);
721 	if (strp == NULL)
722 		return NULL;		/* illegal time */
723 	if (neg)
724 		*offsetp = -*offsetp;
725 	return strp;
726 }
727 
728 /*
729 ** Given a pointer into a time zone string, extract a rule in the form
730 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
731 ** If a valid rule is not found, return NULL.
732 ** Otherwise, return a pointer to the first character not part of the rule.
733 */
734 
735 static const char *
736 getrule(const char *strp, struct rule * const rulep)
737 {
738 	if (*strp == 'J') {
739 		/*
740 		** Julian day.
741 		*/
742 		rulep->r_type = JULIAN_DAY;
743 		++strp;
744 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
745 	} else if (*strp == 'M') {
746 		/*
747 		** Month, week, day.
748 		*/
749 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
750 		++strp;
751 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
752 		if (strp == NULL)
753 			return NULL;
754 		if (*strp++ != '.')
755 			return NULL;
756 		strp = getnum(strp, &rulep->r_week, 1, 5);
757 		if (strp == NULL)
758 			return NULL;
759 		if (*strp++ != '.')
760 			return NULL;
761 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
762 	} else if (is_digit(*strp)) {
763 		/*
764 		** Day of year.
765 		*/
766 		rulep->r_type = DAY_OF_YEAR;
767 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
768 	} else	return NULL;		/* invalid format */
769 	if (strp == NULL)
770 		return NULL;
771 	if (*strp == '/') {
772 		/*
773 		** Time specified.
774 		*/
775 		++strp;
776 		strp = getsecs(strp, &rulep->r_time);
777 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
778 	return strp;
779 }
780 
781 /*
782 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
783 ** year, a rule, and the offset from UTC at the time that rule takes effect,
784 ** calculate the Epoch-relative time that rule takes effect.
785 */
786 
787 static time_t
788 transtime(const time_t janfirst, const int year,
789 	  const struct rule * const rulep, const long offset)
790 {
791 	int	leapyear;
792 	time_t	value;
793 	int	i;
794 	int		d, m1, yy0, yy1, yy2, dow;
795 
796 	INITIALIZE(value);
797 	leapyear = isleap(year);
798 	switch (rulep->r_type) {
799 
800 	case JULIAN_DAY:
801 		/*
802 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
803 		** years.
804 		** In non-leap years, or if the day number is 59 or less, just
805 		** add SECSPERDAY times the day number-1 to the time of
806 		** January 1, midnight, to get the day.
807 		*/
808 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
809 		if (leapyear && rulep->r_day >= 60)
810 			value += SECSPERDAY;
811 		break;
812 
813 	case DAY_OF_YEAR:
814 		/*
815 		** n - day of year.
816 		** Just add SECSPERDAY times the day number to the time of
817 		** January 1, midnight, to get the day.
818 		*/
819 		value = janfirst + rulep->r_day * SECSPERDAY;
820 		break;
821 
822 	case MONTH_NTH_DAY_OF_WEEK:
823 		/*
824 		** Mm.n.d - nth "dth day" of month m.
825 		*/
826 		value = janfirst;
827 		for (i = 0; i < rulep->r_mon - 1; ++i)
828 			value += mon_lengths[leapyear][i] * SECSPERDAY;
829 
830 		/*
831 		** Use Zeller's Congruence to get day-of-week of first day of
832 		** month.
833 		*/
834 		m1 = (rulep->r_mon + 9) % 12 + 1;
835 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
836 		yy1 = yy0 / 100;
837 		yy2 = yy0 % 100;
838 		dow = ((26 * m1 - 2) / 10 +
839 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
840 		if (dow < 0)
841 			dow += DAYSPERWEEK;
842 
843 		/*
844 		** "dow" is the day-of-week of the first day of the month. Get
845 		** the day-of-month (zero-origin) of the first "dow" day of the
846 		** month.
847 		*/
848 		d = rulep->r_day - dow;
849 		if (d < 0)
850 			d += DAYSPERWEEK;
851 		for (i = 1; i < rulep->r_week; ++i) {
852 			if (d + DAYSPERWEEK >=
853 				mon_lengths[leapyear][rulep->r_mon - 1])
854 					break;
855 			d += DAYSPERWEEK;
856 		}
857 
858 		/*
859 		** "d" is the day-of-month (zero-origin) of the day we want.
860 		*/
861 		value += d * SECSPERDAY;
862 		break;
863 	}
864 
865 	/*
866 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
867 	** question. To get the Epoch-relative time of the specified local
868 	** time on that day, add the transition time and the current offset
869 	** from UTC.
870 	*/
871 	return value + rulep->r_time + offset;
872 }
873 
874 /*
875 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
876 ** appropriate.
877 */
878 
879 static int
880 tzparse(const char *name, struct state * const sp, const int lastditch)
881 {
882 	const char *			stdname;
883 	const char *			dstname;
884 	size_t				stdlen;
885 	size_t				dstlen;
886 	long				stdoffset;
887 	long				dstoffset;
888 	time_t *			atp;
889 	unsigned char *			typep;
890 	char *				cp;
891 	int				load_result;
892 	static struct ttinfo		zttinfo;
893 
894 	INITIALIZE(dstname);
895 	stdname = name;
896 	if (lastditch) {
897 		stdlen = strlen(name);	/* length of standard zone name */
898 		name += stdlen;
899 		if (stdlen >= sizeof sp->chars)
900 			stdlen = (sizeof sp->chars) - 1;
901 		stdoffset = 0;
902 	} else {
903 		if (*name == '<') {
904 			name++;
905 			stdname = name;
906 			name = getqzname(name, '>');
907 			if (*name != '>')
908 				return (-1);
909 			stdlen = name - stdname;
910 			name++;
911 		} else {
912 			name = getzname(name);
913 			stdlen = name - stdname;
914 		}
915 		if (*name == '\0')
916 			return -1;
917 		name = getoffset(name, &stdoffset);
918 		if (name == NULL)
919 			return -1;
920 	}
921 	load_result = tzload(TZDEFRULES, sp, FALSE);
922 	if (load_result != 0)
923 		sp->leapcnt = 0;		/* so, we're off a little */
924 	if (*name != '\0') {
925 		if (*name == '<') {
926 			dstname = ++name;
927 			name = getqzname(name, '>');
928 			if (*name != '>')
929 				return -1;
930 			dstlen = name - dstname;
931 			name++;
932 		} else {
933 			dstname = name;
934 			name = getzname(name);
935 			dstlen = name - dstname; /* length of DST zone name */
936 		}
937 		if (*name != '\0' && *name != ',' && *name != ';') {
938 			name = getoffset(name, &dstoffset);
939 			if (name == NULL)
940 				return -1;
941 		} else	dstoffset = stdoffset - SECSPERHOUR;
942 		if (*name == '\0' && load_result != 0)
943 			name = TZDEFRULESTRING;
944 		if (*name == ',' || *name == ';') {
945 			struct rule	start;
946 			struct rule	end;
947 			int	year;
948 			time_t	janfirst;
949 			time_t		starttime;
950 			time_t		endtime;
951 
952 			++name;
953 			if ((name = getrule(name, &start)) == NULL)
954 				return -1;
955 			if (*name++ != ',')
956 				return -1;
957 			if ((name = getrule(name, &end)) == NULL)
958 				return -1;
959 			if (*name != '\0')
960 				return -1;
961 			sp->typecnt = 2;	/* standard time and DST */
962 			/*
963 			** Two transitions per year, from EPOCH_YEAR forward.
964 			*/
965 			sp->ttis[0] = sp->ttis[1] = zttinfo;
966 			sp->ttis[0].tt_gmtoff = -dstoffset;
967 			sp->ttis[0].tt_isdst = 1;
968 			sp->ttis[0].tt_abbrind = stdlen + 1;
969 			sp->ttis[1].tt_gmtoff = -stdoffset;
970 			sp->ttis[1].tt_isdst = 0;
971 			sp->ttis[1].tt_abbrind = 0;
972 			atp = sp->ats;
973 			typep = sp->types;
974 			janfirst = 0;
975 			sp->timecnt = 0;
976 			for (year = EPOCH_YEAR;
977 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
978 			    ++year) {
979 			    	time_t	newfirst;
980 
981 				starttime = transtime(janfirst, year, &start,
982 					stdoffset);
983 				endtime = transtime(janfirst, year, &end,
984 					dstoffset);
985 				if (starttime > endtime) {
986 					*atp++ = endtime;
987 					*typep++ = 1;	/* DST ends */
988 					*atp++ = starttime;
989 					*typep++ = 0;	/* DST begins */
990 				} else {
991 					*atp++ = starttime;
992 					*typep++ = 0;	/* DST begins */
993 					*atp++ = endtime;
994 					*typep++ = 1;	/* DST ends */
995 				}
996 				sp->timecnt += 2;
997 				newfirst = janfirst;
998 				newfirst += year_lengths[isleap(year)] *
999 					SECSPERDAY;
1000 				if (newfirst <= janfirst)
1001 					break;
1002 				janfirst = newfirst;
1003 			}
1004 		} else {
1005 			long	theirstdoffset;
1006 			long	theirdstoffset;
1007 			long	theiroffset;
1008 			int	isdst;
1009 			int	i;
1010 			int	j;
1011 
1012 			if (*name != '\0')
1013 				return -1;
1014 			/*
1015 			** Initial values of theirstdoffset and theirdstoffset.
1016 			*/
1017 			theirstdoffset = 0;
1018 			for (i = 0; i < sp->timecnt; ++i) {
1019 				j = sp->types[i];
1020 				if (!sp->ttis[j].tt_isdst) {
1021 					theirstdoffset =
1022 						-sp->ttis[j].tt_gmtoff;
1023 					break;
1024 				}
1025 			}
1026 			theirdstoffset = 0;
1027 			for (i = 0; i < sp->timecnt; ++i) {
1028 				j = sp->types[i];
1029 				if (sp->ttis[j].tt_isdst) {
1030 					theirdstoffset =
1031 						-sp->ttis[j].tt_gmtoff;
1032 					break;
1033 				}
1034 			}
1035 			/*
1036 			** Initially we're assumed to be in standard time.
1037 			*/
1038 			isdst = FALSE;
1039 			theiroffset = theirstdoffset;
1040 			/*
1041 			** Now juggle transition times and types
1042 			** tracking offsets as you do.
1043 			*/
1044 			for (i = 0; i < sp->timecnt; ++i) {
1045 				j = sp->types[i];
1046 				sp->types[i] = sp->ttis[j].tt_isdst;
1047 				if (sp->ttis[j].tt_ttisgmt) {
1048 					/* No adjustment to transition time */
1049 				} else {
1050 					/*
1051 					** If summer time is in effect, and the
1052 					** transition time was not specified as
1053 					** standard time, add the summer time
1054 					** offset to the transition time;
1055 					** otherwise, add the standard time
1056 					** offset to the transition time.
1057 					*/
1058 					/*
1059 					** Transitions from DST to DDST
1060 					** will effectively disappear since
1061 					** POSIX provides for only one DST
1062 					** offset.
1063 					*/
1064 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1065 						sp->ats[i] += dstoffset -
1066 							theirdstoffset;
1067 					} else {
1068 						sp->ats[i] += stdoffset -
1069 							theirstdoffset;
1070 					}
1071 				}
1072 				theiroffset = -sp->ttis[j].tt_gmtoff;
1073 				if (sp->ttis[j].tt_isdst)
1074 					theirdstoffset = theiroffset;
1075 				else	theirstdoffset = theiroffset;
1076 			}
1077 			/*
1078 			** Finally, fill in ttis.
1079 			*/
1080 			sp->ttis[0] = sp->ttis[1] = zttinfo;
1081 			sp->ttis[0].tt_gmtoff = -stdoffset;
1082 			sp->ttis[0].tt_isdst = FALSE;
1083 			sp->ttis[0].tt_abbrind = 0;
1084 			sp->ttis[1].tt_gmtoff = -dstoffset;
1085 			sp->ttis[1].tt_isdst = TRUE;
1086 			sp->ttis[1].tt_abbrind = stdlen + 1;
1087 			sp->typecnt = 2;
1088 		}
1089 	} else {
1090 		dstlen = 0;
1091 		sp->typecnt = 1;		/* only standard time */
1092 		sp->timecnt = 0;
1093 		sp->ttis[0] = zttinfo;
1094 		sp->ttis[0].tt_gmtoff = -stdoffset;
1095 		sp->ttis[0].tt_isdst = 0;
1096 		sp->ttis[0].tt_abbrind = 0;
1097 	}
1098 	sp->charcnt = stdlen + 1;
1099 	if (dstlen != 0)
1100 		sp->charcnt += dstlen + 1;
1101 	if ((size_t) sp->charcnt > sizeof sp->chars)
1102 		return -1;
1103 	cp = sp->chars;
1104 	strncpy(cp, stdname, stdlen);
1105 	cp += stdlen;
1106 	*cp++ = '\0';
1107 	if (dstlen != 0) {
1108 		strncpy(cp, dstname, dstlen);
1109 		*(cp + dstlen) = '\0';
1110 	}
1111 	return 0;
1112 }
1113 
1114 static void
1115 gmtload(struct state * const sp)
1116 {
1117 	if (tzload(gmt, sp, TRUE) != 0)
1118 		tzparse(gmt, sp, TRUE);
1119 }
1120 
1121 static void
1122 tzsetwall_basic(int rdlocked)
1123 {
1124 	if (!rdlocked)
1125 		_RWLOCK_RDLOCK(&lcl_rwlock);
1126 	if (lcl_is_set < 0) {
1127 		if (!rdlocked)
1128 			_RWLOCK_UNLOCK(&lcl_rwlock);
1129 		return;
1130 	}
1131 	_RWLOCK_UNLOCK(&lcl_rwlock);
1132 
1133 	_RWLOCK_WRLOCK(&lcl_rwlock);
1134 	lcl_is_set = -1;
1135 
1136 	if (tzload(NULL, lclptr, TRUE) != 0)
1137 		gmtload(lclptr);
1138 	settzname();
1139 	_RWLOCK_UNLOCK(&lcl_rwlock);
1140 
1141 	if (rdlocked)
1142 		_RWLOCK_RDLOCK(&lcl_rwlock);
1143 }
1144 
1145 void
1146 tzsetwall(void)
1147 {
1148 	tzsetwall_basic(0);
1149 }
1150 
1151 static void
1152 tzset_basic(int rdlocked)
1153 {
1154 	const char *	name;
1155 
1156 	name = getenv("TZ");
1157 	if (name == NULL) {
1158 		tzsetwall_basic(rdlocked);
1159 		return;
1160 	}
1161 
1162 	if (!rdlocked)
1163 		_RWLOCK_RDLOCK(&lcl_rwlock);
1164 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1165 		if (!rdlocked)
1166 			_RWLOCK_UNLOCK(&lcl_rwlock);
1167 		return;
1168 	}
1169 	_RWLOCK_UNLOCK(&lcl_rwlock);
1170 
1171 	_RWLOCK_WRLOCK(&lcl_rwlock);
1172 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1173 	if (lcl_is_set)
1174 		strcpy(lcl_TZname, name);
1175 
1176 	if (*name == '\0') {
1177 		/*
1178 		** User wants it fast rather than right.
1179 		*/
1180 		lclptr->leapcnt = 0;		/* so, we're off a little */
1181 		lclptr->timecnt = 0;
1182 		lclptr->typecnt = 0;
1183 		lclptr->ttis[0].tt_isdst = 0;
1184 		lclptr->ttis[0].tt_gmtoff = 0;
1185 		lclptr->ttis[0].tt_abbrind = 0;
1186 		strcpy(lclptr->chars, gmt);
1187 	} else if (tzload(name, lclptr, TRUE) != 0)
1188 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1189 			gmtload(lclptr);
1190 	settzname();
1191 	_RWLOCK_UNLOCK(&lcl_rwlock);
1192 
1193 	if (rdlocked)
1194 		_RWLOCK_RDLOCK(&lcl_rwlock);
1195 }
1196 
1197 void
1198 tzset(void)
1199 {
1200 	tzset_basic(0);
1201 }
1202 
1203 /*
1204 ** The easy way to behave "as if no library function calls" localtime
1205 ** is to not call it--so we drop its guts into "localsub", which can be
1206 ** freely called. (And no, the PANS doesn't require the above behavior--
1207 ** but it *is* desirable.)
1208 **
1209 ** The unused offset argument is for the benefit of mktime variants.
1210 */
1211 
1212 /*ARGSUSED*/
1213 static struct tm *
1214 localsub(const time_t * const timep, const long offset __unused,
1215 	 struct tm * const tmp)
1216 {
1217 	struct state *		sp;
1218 	const struct ttinfo *	ttisp;
1219 	int			i;
1220 	struct tm *		result;
1221 	const time_t		t = *timep;
1222 
1223 	sp = lclptr;
1224 
1225 	if ((sp->goback && t < sp->ats[0]) ||
1226 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1227 			time_t		newt = t;
1228 			time_t		seconds;
1229 			time_t		tcycles;
1230 			int_fast64_t	icycles;
1231 
1232 			if (t < sp->ats[0])
1233 				seconds = sp->ats[0] - t;
1234 			else	seconds = t - sp->ats[sp->timecnt - 1];
1235 			--seconds;
1236 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1237 			++tcycles;
1238 			icycles = tcycles;
1239 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1240 				return NULL;
1241 			seconds = icycles;
1242 			seconds *= YEARSPERREPEAT;
1243 			seconds *= AVGSECSPERYEAR;
1244 			if (t < sp->ats[0])
1245 				newt += seconds;
1246 			else	newt -= seconds;
1247 			if (newt < sp->ats[0] ||
1248 				newt > sp->ats[sp->timecnt - 1])
1249 					return NULL;	/* "cannot happen" */
1250 			result = localsub(&newt, offset, tmp);
1251 			if (result == tmp) {
1252 				time_t	newy;
1253 
1254 				newy = tmp->tm_year;
1255 				if (t < sp->ats[0])
1256 					newy -= icycles * YEARSPERREPEAT;
1257 				else	newy += icycles * YEARSPERREPEAT;
1258 				tmp->tm_year = newy;
1259 				if (tmp->tm_year != newy)
1260 					return NULL;
1261 			}
1262 			return result;
1263 	}
1264 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1265 		i = 0;
1266 		while (sp->ttis[i].tt_isdst)
1267 			if (++i >= sp->typecnt) {
1268 				i = 0;
1269 				break;
1270 			}
1271 	} else {
1272 		int	lo = 1;
1273 		int	hi = sp->timecnt;
1274 
1275 		while (lo < hi) {
1276 			int	mid = (lo + hi) >> 1;
1277 
1278 			if (t < sp->ats[mid])
1279 				hi = mid;
1280 			else	lo = mid + 1;
1281 		}
1282 		i = (int) sp->types[lo - 1];
1283 	}
1284 	ttisp = &sp->ttis[i];
1285 	/*
1286 	** To get (wrong) behavior that's compatible with System V Release 2.0
1287 	** you'd replace the statement below with
1288 	**	t += ttisp->tt_gmtoff;
1289 	**	timesub(&t, 0L, sp, tmp);
1290 	*/
1291 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1292 	tmp->tm_isdst = ttisp->tt_isdst;
1293 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1294 #ifdef TM_ZONE
1295 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1296 #endif /* defined TM_ZONE */
1297 	return result;
1298 }
1299 
1300 struct tm *
1301 localtime_r(const time_t * const timep, struct tm *p_tm)
1302 {
1303 	_RWLOCK_RDLOCK(&lcl_rwlock);
1304 	tzset_basic(1);
1305 	localsub(timep, 0L, p_tm);
1306 	_RWLOCK_UNLOCK(&lcl_rwlock);
1307 	return(p_tm);
1308 }
1309 
1310 struct tm *
1311 localtime(const time_t * const timep)
1312 {
1313 	static pthread_mutex_t localtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1314 	static pthread_key_t localtime_key = -1;
1315 	struct tm *p_tm;
1316 
1317 	if (__isthreaded != 0) {
1318 		if (localtime_key < 0) {
1319 			_pthread_mutex_lock(&localtime_mutex);
1320 			if (localtime_key < 0) {
1321 				if (_pthread_key_create(&localtime_key, free) < 0) {
1322 					_pthread_mutex_unlock(&localtime_mutex);
1323 					return(NULL);
1324 				}
1325 			}
1326 			_pthread_mutex_unlock(&localtime_mutex);
1327 		}
1328 		p_tm = _pthread_getspecific(localtime_key);
1329 		if (p_tm == NULL) {
1330 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1331 			    == NULL)
1332 				return(NULL);
1333 			_pthread_setspecific(localtime_key, p_tm);
1334 		}
1335 		_RWLOCK_RDLOCK(&lcl_rwlock);
1336 		tzset_basic(1);
1337 		localsub(timep, 0L, p_tm);
1338 		_RWLOCK_UNLOCK(&lcl_rwlock);
1339 		return(p_tm);
1340 	} else {
1341 		tzset_basic(0);
1342 		localsub(timep, 0L, &tm);
1343 		return(&tm);
1344 	}
1345 }
1346 
1347 /*
1348 ** gmtsub is to gmtime as localsub is to localtime.
1349 */
1350 
1351 static struct tm *
1352 gmtsub(const time_t * const timep, const long offset, struct tm * const tmp)
1353 {
1354 	struct tm *	result;
1355 
1356 	if (!gmt_is_set) {
1357 		_MUTEX_LOCK(&gmt_mutex);
1358 		if (!gmt_is_set) {
1359 			gmtload(gmtptr);
1360 			gmt_is_set = TRUE;
1361 		}
1362 		_MUTEX_UNLOCK(&gmt_mutex);
1363 	}
1364 	result = timesub(timep, offset, gmtptr, tmp);
1365 #ifdef TM_ZONE
1366 	/*
1367 	** Could get fancy here and deliver something such as
1368 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1369 	** but this is no time for a treasure hunt.
1370 	*/
1371 	if (offset != 0)
1372 		tmp->TM_ZONE = wildabbr;
1373 	else
1374 		tmp->TM_ZONE = gmtptr->chars;
1375 #endif /* defined TM_ZONE */
1376 	return result;
1377 }
1378 
1379 struct tm *
1380 gmtime(const time_t * const timep)
1381 {
1382 	static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1383 	static pthread_key_t gmtime_key = -1;
1384 	struct tm *p_tm;
1385 
1386 	if (__isthreaded != 0) {
1387 		if (gmtime_key < 0) {
1388 			_pthread_mutex_lock(&gmtime_mutex);
1389 			if (gmtime_key < 0) {
1390 				if (_pthread_key_create(&gmtime_key, free) < 0) {
1391 					_pthread_mutex_unlock(&gmtime_mutex);
1392 					return(NULL);
1393 				}
1394 			}
1395 			_pthread_mutex_unlock(&gmtime_mutex);
1396 		}
1397 		/*
1398 		 * Changed to follow POSIX.1 threads standard, which
1399 		 * is what BSD currently has.
1400 		 */
1401 		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1402 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1403 			    == NULL) {
1404 				return(NULL);
1405 			}
1406 			_pthread_setspecific(gmtime_key, p_tm);
1407 		}
1408 		return gmtsub(timep, 0L, p_tm);
1409 	} else {
1410 		return gmtsub(timep, 0L, &tm);
1411 	}
1412 }
1413 
1414 struct tm *
1415 gmtime_r(const time_t * timep, struct tm * tmp)
1416 {
1417 	return gmtsub(timep, 0L, tmp);
1418 }
1419 
1420 struct tm *
1421 offtime(const time_t * const timep, const long offset)
1422 {
1423 	return gmtsub(timep, offset, &tm);
1424 }
1425 
1426 /*
1427 ** Return the number of leap years through the end of the given year
1428 ** where, to make the math easy, the answer for year zero is defined as zero.
1429 */
1430 
1431 static int
1432 leaps_thru_end_of(const int y)
1433 {
1434 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1435 		-(leaps_thru_end_of(-(y + 1)) + 1);
1436 }
1437 
1438 static struct tm *
1439 timesub(const time_t * const timep, const long offset,
1440 	const struct state * const sp, struct tm * const tmp)
1441 {
1442 	const struct lsinfo *	lp;
1443 	time_t			tdays;
1444 	int			idays;	/* unsigned would be so 2003 */
1445 	long			rem;
1446 	int			y;
1447 	const int *		ip;
1448 	long			corr;
1449 	int			hit;
1450 	int			i;
1451 
1452 	corr = 0;
1453 	hit = 0;
1454 	i = sp->leapcnt;
1455 
1456 	while (--i >= 0) {
1457 		lp = &sp->lsis[i];
1458 		if (*timep >= lp->ls_trans) {
1459 			if (*timep == lp->ls_trans) {
1460 				hit = ((i == 0 && lp->ls_corr > 0) ||
1461 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1462 				if (hit)
1463 					while (i > 0 &&
1464 						sp->lsis[i].ls_trans ==
1465 						sp->lsis[i - 1].ls_trans + 1 &&
1466 						sp->lsis[i].ls_corr ==
1467 						sp->lsis[i - 1].ls_corr + 1) {
1468 							++hit;
1469 							--i;
1470 					}
1471 			}
1472 			corr = lp->ls_corr;
1473 			break;
1474 		}
1475 	}
1476 	y = EPOCH_YEAR;
1477 	tdays = *timep / SECSPERDAY;
1478 	rem = *timep - tdays * SECSPERDAY;
1479 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1480 		int	newy;
1481 		time_t	tdelta;
1482 		int	idelta;
1483 		int	leapdays;
1484 
1485 		tdelta = tdays / DAYSPERLYEAR;
1486 		idelta = tdelta;
1487 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1488 			return NULL;
1489 		if (idelta == 0)
1490 			idelta = (tdays < 0) ? -1 : 1;
1491 		newy = y;
1492 		if (increment_overflow(&newy, idelta))
1493 			return NULL;
1494 		leapdays = leaps_thru_end_of(newy - 1) -
1495 			leaps_thru_end_of(y - 1);
1496 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1497 		tdays -= leapdays;
1498 		y = newy;
1499 	}
1500 	{
1501 		long	seconds;
1502 
1503 		seconds = tdays * SECSPERDAY + 0.5;
1504 		tdays = seconds / SECSPERDAY;
1505 		rem += seconds - tdays * SECSPERDAY;
1506 	}
1507 	/*
1508 	** Given the range, we can now fearlessly cast...
1509 	*/
1510 	idays = tdays;
1511 	rem += offset - corr;
1512 	while (rem < 0) {
1513 		rem += SECSPERDAY;
1514 		--idays;
1515 	}
1516 	while (rem >= SECSPERDAY) {
1517 		rem -= SECSPERDAY;
1518 		++idays;
1519 	}
1520 	while (idays < 0) {
1521 		if (increment_overflow(&y, -1))
1522 			return NULL;
1523 		idays += year_lengths[isleap(y)];
1524 	}
1525 	while (idays >= year_lengths[isleap(y)]) {
1526 		idays -= year_lengths[isleap(y)];
1527 		if (increment_overflow(&y, 1))
1528 			return NULL;
1529 	}
1530 	tmp->tm_year = y;
1531 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1532 		return NULL;
1533 	tmp->tm_yday = idays;
1534 	/*
1535 	** The "extra" mods below avoid overflow problems.
1536 	*/
1537 	tmp->tm_wday = EPOCH_WDAY +
1538 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1539 		(DAYSPERNYEAR % DAYSPERWEEK) +
1540 		leaps_thru_end_of(y - 1) -
1541 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1542 		idays;
1543 	tmp->tm_wday %= DAYSPERWEEK;
1544 	if (tmp->tm_wday < 0)
1545 		tmp->tm_wday += DAYSPERWEEK;
1546 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1547 	rem %= SECSPERHOUR;
1548 	tmp->tm_min = (int) (rem / SECSPERMIN);
1549 	/*
1550 	** A positive leap second requires a special
1551 	** representation. This uses "... ??:59:60" et seq.
1552 	*/
1553 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1554 	ip = mon_lengths[isleap(y)];
1555 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1556 		idays -= ip[tmp->tm_mon];
1557 	tmp->tm_mday = (int) (idays + 1);
1558 	tmp->tm_isdst = 0;
1559 #ifdef TM_GMTOFF
1560 	tmp->TM_GMTOFF = offset;
1561 #endif /* defined TM_GMTOFF */
1562 	return tmp;
1563 }
1564 
1565 char *
1566 ctime(const time_t * const timep)
1567 {
1568 /*
1569 ** Section 4.12.3.2 of X3.159-1989 requires that
1570 **	The ctime function converts the calendar time pointed to by timer
1571 **	to local time in the form of a string. It is equivalent to
1572 **		asctime(localtime(timer))
1573 */
1574 	return asctime(localtime(timep));
1575 }
1576 
1577 char *
1578 ctime_r(const time_t * const timep, char *buf)
1579 {
1580         struct tm	mytm;
1581 	return asctime_r(localtime_r(timep, &mytm), buf);
1582 }
1583 
1584 /*
1585 ** Adapted from code provided by Robert Elz, who writes:
1586 **	The "best" way to do mktime I think is based on an idea of Bob
1587 **	Kridle's (so its said...) from a long time ago.
1588 **	It does a binary search of the time_t space. Since time_t's are
1589 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1590 **	would still be very reasonable).
1591 */
1592 
1593 #ifndef WRONG
1594 #define WRONG	(-1)
1595 #endif /* !defined WRONG */
1596 
1597 /*
1598 ** Normalize logic courtesy Paul Eggert.
1599 */
1600 
1601 static int
1602 increment_overflow(int * const ip, int j)
1603 {
1604 	int const	i = *ip;
1605 
1606 	/*
1607 	** If i >= 0 there can only be overflow if i + j > INT_MAX
1608 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1609 	** If i < 0 there can only be overflow if i + j < INT_MIN
1610 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1611 	*/
1612 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1613 		return TRUE;
1614 	*ip += j;
1615 	return FALSE;
1616 }
1617 
1618 static int
1619 long_increment_overflow(long * const lp, int const m)
1620 {
1621 	long const	l = *lp;
1622 
1623 	if ((l >= 0) ? (m > LONG_MAX - l) : (m < LONG_MIN - l))
1624 		return TRUE;
1625 	*lp += m;
1626 	return FALSE;
1627 }
1628 
1629 static int
1630 normalize_overflow(int * const tensptr, int * const unitsptr, const int base)
1631 {
1632 	int	tensdelta;
1633 
1634 	tensdelta = (*unitsptr >= 0) ?
1635 		(*unitsptr / base) :
1636 		(-1 - (-1 - *unitsptr) / base);
1637 	*unitsptr -= tensdelta * base;
1638 	return increment_overflow(tensptr, tensdelta);
1639 }
1640 
1641 static int
1642 long_normalize_overflow(long * const tensptr, int * const unitsptr,
1643 			const int base)
1644 {
1645 	int	tensdelta;
1646 
1647 	tensdelta = (*unitsptr >= 0) ?
1648 		(*unitsptr / base) :
1649 		(-1 - (-1 - *unitsptr) / base);
1650 	*unitsptr -= tensdelta * base;
1651 	return long_increment_overflow(tensptr, tensdelta);
1652 }
1653 
1654 static int
1655 tmcomp(const struct tm * const atmp, const struct tm * const btmp)
1656 {
1657 	int	result;
1658 
1659 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1660 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1661 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1662 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1663 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1664 			result = atmp->tm_sec - btmp->tm_sec;
1665 	return result;
1666 }
1667 
1668 static time_t
1669 time2sub(struct tm * const tmp,
1670       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1671       const long offset, int * const okayp, const int do_norm_secs)
1672 {
1673 	const struct state *	sp;
1674 	int			dir;
1675 	int			i, j;
1676 	int			saved_seconds;
1677 	long			li;
1678 	time_t			lo;
1679 	time_t			hi;
1680 	long			y;
1681 	time_t			newt;
1682 	time_t			t;
1683 	struct tm		yourtm, mytm;
1684 
1685 	*okayp = FALSE;
1686 	yourtm = *tmp;
1687 	if (do_norm_secs) {
1688 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1689 			SECSPERMIN))
1690 				return WRONG;
1691 	}
1692 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1693 		return WRONG;
1694 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1695 		return WRONG;
1696 	y = yourtm.tm_year;
1697 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1698 		return WRONG;
1699 	/*
1700 	** Turn y into an actual year number for now.
1701 	** It is converted back to an offset from TM_YEAR_BASE later.
1702 	*/
1703 	if (long_increment_overflow(&y, TM_YEAR_BASE))
1704 		return WRONG;
1705 	while (yourtm.tm_mday <= 0) {
1706 		if (long_increment_overflow(&y, -1))
1707 			return WRONG;
1708 		li = y + (1 < yourtm.tm_mon);
1709 		yourtm.tm_mday += year_lengths[isleap(li)];
1710 	}
1711 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1712 		li = y + (1 < yourtm.tm_mon);
1713 		yourtm.tm_mday -= year_lengths[isleap(li)];
1714 		if (long_increment_overflow(&y, 1))
1715 			return WRONG;
1716 	}
1717 	for ( ; ; ) {
1718 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1719 		if (yourtm.tm_mday <= i)
1720 			break;
1721 		yourtm.tm_mday -= i;
1722 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1723 			yourtm.tm_mon = 0;
1724 			if (long_increment_overflow(&y, 1))
1725 				return WRONG;
1726 		}
1727 	}
1728 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1729 		return WRONG;
1730 	yourtm.tm_year = y;
1731 	if (yourtm.tm_year != y)
1732 		return WRONG;
1733 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1734 		saved_seconds = 0;
1735 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1736 		/*
1737 		** We can't set tm_sec to 0, because that might push the
1738 		** time below the minimum representable time.
1739 		** Set tm_sec to 59 instead.
1740 		** This assumes that the minimum representable time is
1741 		** not in the same minute that a leap second was deleted from,
1742 		** which is a safer assumption than using 58 would be.
1743 		*/
1744 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1745 			return WRONG;
1746 		saved_seconds = yourtm.tm_sec;
1747 		yourtm.tm_sec = SECSPERMIN - 1;
1748 	} else {
1749 		saved_seconds = yourtm.tm_sec;
1750 		yourtm.tm_sec = 0;
1751 	}
1752 	/*
1753 	** Do a binary search (this works whatever time_t's type is).
1754 	*/
1755 	if (!TYPE_SIGNED(time_t)) {
1756 		lo = 0;
1757 		hi = lo - 1;
1758 	} else if (!TYPE_INTEGRAL(time_t)) {
1759 		if (sizeof(time_t) > sizeof(float))
1760 			hi = (time_t) DBL_MAX;
1761 		else	hi = (time_t) FLT_MAX;
1762 		lo = -hi;
1763 	} else {
1764 		lo = 1;
1765 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1766 			lo *= 2;
1767 		hi = -(lo + 1);
1768 	}
1769 	for ( ; ; ) {
1770 		t = lo / 2 + hi / 2;
1771 		if (t < lo)
1772 			t = lo;
1773 		else if (t > hi)
1774 			t = hi;
1775 		if ((*funcp)(&t, offset, &mytm) == NULL) {
1776 			/*
1777 			** Assume that t is too extreme to be represented in
1778 			** a struct tm; arrange things so that it is less
1779 			** extreme on the next pass.
1780 			*/
1781 			dir = (t > 0) ? 1 : -1;
1782 		} else	dir = tmcomp(&mytm, &yourtm);
1783 		if (dir != 0) {
1784 			if (t == lo) {
1785 				++t;
1786 				if (t <= lo)
1787 					return WRONG;
1788 				++lo;
1789 			} else if (t == hi) {
1790 				--t;
1791 				if (t >= hi)
1792 					return WRONG;
1793 				--hi;
1794 			}
1795 			if (lo > hi)
1796 				return WRONG;
1797 			if (dir > 0)
1798 				hi = t;
1799 			else	lo = t;
1800 			continue;
1801 		}
1802 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1803 			break;
1804 		/*
1805 		** Right time, wrong type.
1806 		** Hunt for right time, right type.
1807 		** It's okay to guess wrong since the guess
1808 		** gets checked.
1809 		*/
1810 		sp = (const struct state *)
1811 			((funcp == localsub) ? lclptr : gmtptr);
1812 
1813 		for (i = sp->typecnt - 1; i >= 0; --i) {
1814 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1815 				continue;
1816 			for (j = sp->typecnt - 1; j >= 0; --j) {
1817 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1818 					continue;
1819 				newt = t + sp->ttis[j].tt_gmtoff -
1820 					sp->ttis[i].tt_gmtoff;
1821 				if ((*funcp)(&newt, offset, &mytm) == NULL)
1822 					continue;
1823 				if (tmcomp(&mytm, &yourtm) != 0)
1824 					continue;
1825 				if (mytm.tm_isdst != yourtm.tm_isdst)
1826 					continue;
1827 				/*
1828 				** We have a match.
1829 				*/
1830 				t = newt;
1831 				goto label;
1832 			}
1833 		}
1834 		return WRONG;
1835 	}
1836 label:
1837 	newt = t + saved_seconds;
1838 	if ((newt < t) != (saved_seconds < 0))
1839 		return WRONG;
1840 	t = newt;
1841 	if ((*funcp)(&t, offset, tmp))
1842 		*okayp = TRUE;
1843 	return t;
1844 }
1845 
1846 static time_t
1847 time2(struct tm * const tmp,
1848       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1849       const long offset, int * const okayp)
1850 {
1851 	time_t	t;
1852 
1853 	/*
1854 	** First try without normalization of seconds
1855 	** (in case tm_sec contains a value associated with a leap second).
1856 	** If that fails, try with normalization of seconds.
1857 	*/
1858 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1859 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1860 }
1861 
1862 static time_t
1863 time1(struct tm * const tmp,
1864       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1865       const long offset)
1866 {
1867 	time_t			t;
1868 	const struct state *	sp;
1869 	int			samei, otheri;
1870 	int			sameind, otherind;
1871 	int			i;
1872 	int			nseen;
1873 	int			seen[TZ_MAX_TYPES];
1874 	int			types[TZ_MAX_TYPES];
1875 	int			okay;
1876 
1877 	if (tmp == NULL) {
1878 		errno = EINVAL;
1879 		return WRONG;
1880 	}
1881 	if (tmp->tm_isdst > 1)
1882 		tmp->tm_isdst = 1;
1883 	t = time2(tmp, funcp, offset, &okay);
1884 
1885 	/*
1886 	** PCTS code courtesy Grant Sullivan.
1887 	*/
1888 	if (okay)
1889 		return t;
1890 	if (tmp->tm_isdst < 0)
1891 		tmp->tm_isdst = 0;	/* reset to std and try again */
1892 
1893 	/*
1894 	** We're supposed to assume that somebody took a time of one type
1895 	** and did some math on it that yielded a "struct tm" that's bad.
1896 	** We try to divine the type they started from and adjust to the
1897 	** type they need.
1898 	*/
1899 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
1900 
1901 	for (i = 0; i < sp->typecnt; ++i)
1902 		seen[i] = FALSE;
1903 	nseen = 0;
1904 	for (i = sp->timecnt - 1; i >= 0; --i)
1905 		if (!seen[sp->types[i]]) {
1906 			seen[sp->types[i]] = TRUE;
1907 			types[nseen++] = sp->types[i];
1908 		}
1909 	for (sameind = 0; sameind < nseen; ++sameind) {
1910 		samei = types[sameind];
1911 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1912 			continue;
1913 		for (otherind = 0; otherind < nseen; ++otherind) {
1914 			otheri = types[otherind];
1915 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1916 				continue;
1917 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1918 					sp->ttis[samei].tt_gmtoff;
1919 			tmp->tm_isdst = !tmp->tm_isdst;
1920 			t = time2(tmp, funcp, offset, &okay);
1921 			if (okay)
1922 				return t;
1923 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1924 					sp->ttis[samei].tt_gmtoff;
1925 			tmp->tm_isdst = !tmp->tm_isdst;
1926 		}
1927 	}
1928 	return WRONG;
1929 }
1930 
1931 time_t
1932 mktime(struct tm * const tmp)
1933 {
1934 	time_t mktime_return_value;
1935 	_RWLOCK_RDLOCK(&lcl_rwlock);
1936 	tzset_basic(1);
1937 	mktime_return_value = time1(tmp, localsub, 0L);
1938 	_RWLOCK_UNLOCK(&lcl_rwlock);
1939 	return(mktime_return_value);
1940 }
1941 
1942 time_t
1943 timelocal(struct tm * const tmp)
1944 {
1945 	if (tmp != NULL)
1946 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1947 	return mktime(tmp);
1948 }
1949 
1950 time_t
1951 timegm(struct tm * const tmp)
1952 {
1953 	if (tmp != NULL)
1954 		tmp->tm_isdst = 0;
1955 	return time1(tmp, gmtsub, 0L);
1956 }
1957 
1958 time_t
1959 timeoff(struct tm * const tmp, const long offset)
1960 {
1961 	if (tmp != NULL)
1962 		tmp->tm_isdst = 0;
1963 	return time1(tmp, gmtsub, offset);
1964 }
1965 
1966 #ifdef CMUCS
1967 
1968 /*
1969 ** The following is supplied for compatibility with
1970 ** previous versions of the CMUCS runtime library.
1971 */
1972 
1973 long
1974 gtime(struct tm * const tmp)
1975 {
1976 	const time_t	t = mktime(tmp);
1977 
1978 	if (t == WRONG)
1979 		return -1;
1980 	return t;
1981 }
1982 
1983 #endif /* defined CMUCS */
1984 
1985 /*
1986 ** XXX--is the below the right way to conditionalize??
1987 */
1988 
1989 /*
1990 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1991 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1992 ** is not the case if we are accounting for leap seconds.
1993 ** So, we provide the following conversion routines for use
1994 ** when exchanging timestamps with POSIX conforming systems.
1995 */
1996 
1997 static long
1998 leapcorr(time_t *timep)
1999 {
2000 	struct state *		sp;
2001 	struct lsinfo *	lp;
2002 	int			i;
2003 
2004 	sp = lclptr;
2005 	i = sp->leapcnt;
2006 	while (--i >= 0) {
2007 		lp = &sp->lsis[i];
2008 		if (*timep >= lp->ls_trans)
2009 			return lp->ls_corr;
2010 	}
2011 	return 0;
2012 }
2013 
2014 time_t
2015 time2posix(time_t t)
2016 {
2017 	tzset();
2018 	return t - leapcorr(&t);
2019 }
2020 
2021 time_t
2022 posix2time(time_t t)
2023 {
2024 	time_t	x;
2025 	time_t	y;
2026 
2027 	tzset();
2028 	/*
2029 	** For a positive leap second hit, the result
2030 	** is not unique. For a negative leap second
2031 	** hit, the corresponding time doesn't exist,
2032 	** so we return an adjacent second.
2033 	*/
2034 	x = t + leapcorr(&t);
2035 	y = x - leapcorr(&x);
2036 	if (y < t) {
2037 		do {
2038 			x++;
2039 			y = x - leapcorr(&x);
2040 		} while (y < t);
2041 		if (t != y)
2042 			return x - 1;
2043 	} else if (y > t) {
2044 		do {
2045 			--x;
2046 			y = x - leapcorr(&x);
2047 		} while (y > t);
2048 		if (t != y)
2049 			return x + 1;
2050 	}
2051 	return x;
2052 }
2053