xref: /dragonfly/lib/libc/stdtime/localtime.c (revision dcd37f7d)
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 **
5 ** @(#)localtime.c	8.13
6 ** $FreeBSD: src/lib/libc/stdtime/localtime.c,v 1.25.2.2 2002/08/13 16:08:07 bmilekic Exp $
7 */
8 
9 /*
10 ** Leap second handling from Bradley White.
11 ** POSIX-style TZ environment variable handling from Guy Harris.
12 */
13 
14 /*LINTLIBRARY*/
15 
16 #include "namespace.h"
17 #include <sys/types.h>
18 #include <sys/stat.h>
19 
20 #include <fcntl.h>
21 #include <float.h>	/* for FLT_MAX and DBL_MAX */
22 #include <time.h>
23 #include <pthread.h>
24 #include "private.h"
25 #include <un-namespace.h>
26 
27 #include "tzfile.h"
28 
29 #include "libc_private.h"
30 
31 #define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
32 #define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
33 
34 #define _RWLOCK_RDLOCK(x)						\
35 		do {							\
36 			if (__isthreaded) _pthread_rwlock_rdlock(x);	\
37 		} while (0)
38 
39 #define _RWLOCK_WRLOCK(x)						\
40 		do {							\
41 			if (__isthreaded) _pthread_rwlock_wrlock(x);	\
42 		} while (0)
43 
44 #define _RWLOCK_UNLOCK(x)						\
45 		do {							\
46 			if (__isthreaded) _pthread_rwlock_unlock(x);	\
47 		} while (0)
48 
49 #ifndef TZ_ABBR_MAX_LEN
50 #define TZ_ABBR_MAX_LEN	16
51 #endif /* !defined TZ_ABBR_MAX_LEN */
52 
53 #ifndef TZ_ABBR_CHAR_SET
54 #define TZ_ABBR_CHAR_SET \
55 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
56 #endif /* !defined TZ_ABBR_CHAR_SET */
57 
58 #ifndef TZ_ABBR_ERR_CHAR
59 #define TZ_ABBR_ERR_CHAR	'_'
60 #endif /* !defined TZ_ABBR_ERR_CHAR */
61 
62 /*
63 ** Someone might make incorrect use of a time zone abbreviation:
64 **	1.	They might reference tzname[0] before calling tzset (explicitly
65 **		or implicitly).
66 **	2.	They might reference tzname[1] before calling tzset (explicitly
67 **		or implicitly).
68 **	3.	They might reference tzname[1] after setting to a time zone
69 **		in which Daylight Saving Time is never observed.
70 **	4.	They might reference tzname[0] after setting to a time zone
71 **		in which Standard Time is never observed.
72 **	5.	They might reference tm.TM_ZONE after calling offtime.
73 ** What's best to do in the above cases is open to debate;
74 ** for now, we just set things up so that in any of the five cases
75 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
76 ** string "tzname[0] used before set", and similarly for the other cases.
77 ** And another: initialize tzname[0] to "ERA", with an explanation in the
78 ** manual page of what this "time zone abbreviation" means (doing this so
79 ** that tzname[0] has the "normal" length of three characters).
80 */
81 #define WILDABBR	"   "
82 
83 static char		wildabbr[] = WILDABBR;
84 
85 static const char	gmt[] = "UTC";
86 
87 /*
88 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
89 ** We default to US rules as of 1999-08-17.
90 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
91 ** implementation dependent; for historical reasons, US rules are a
92 ** common default.
93 */
94 #ifndef TZDEFRULESTRING
95 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
96 #endif /* !defined TZDEFDST */
97 
98 struct ttinfo {				/* time type information */
99 	long		tt_gmtoff;	/* UTC offset in seconds */
100 	int		tt_isdst;	/* used to set tm_isdst */
101 	int		tt_abbrind;	/* abbreviation list index */
102 	int		tt_ttisstd;	/* TRUE if transition is std time */
103 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
104 };
105 
106 struct lsinfo {				/* leap second information */
107 	time_t		ls_trans;	/* transition time */
108 	long		ls_corr;	/* correction to apply */
109 };
110 
111 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
112 
113 #ifdef TZNAME_MAX
114 #define MY_TZNAME_MAX	TZNAME_MAX
115 #endif /* defined TZNAME_MAX */
116 #ifndef TZNAME_MAX
117 #define MY_TZNAME_MAX	255
118 #endif /* !defined TZNAME_MAX */
119 
120 struct state {
121 	int		leapcnt;
122 	int		timecnt;
123 	int		typecnt;
124 	int		charcnt;
125 	int		goback;
126 	int		goahead;
127 	time_t		ats[TZ_MAX_TIMES];
128 	unsigned char	types[TZ_MAX_TIMES];
129 	struct ttinfo	ttis[TZ_MAX_TYPES];
130 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
131 				(2 * (MY_TZNAME_MAX + 1)))];
132 	struct lsinfo	lsis[TZ_MAX_LEAPS];
133 };
134 
135 struct rule {
136 	int		r_type;		/* type of rule--see below */
137 	int		r_day;		/* day number of rule */
138 	int		r_week;		/* week number of rule */
139 	int		r_mon;		/* month number of rule */
140 	long		r_time;		/* transition time of rule */
141 };
142 
143 #define JULIAN_DAY		0	/* Jn - Julian day */
144 #define DAY_OF_YEAR		1	/* n - day of year */
145 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
146 
147 /*
148 ** Prototypes for static functions.
149 */
150 
151 static long		detzcode(const char * codep);
152 static time_t		detzcode64(const char * codep);
153 static int		differ_by_repeat(time_t t1, time_t t0);
154 static const char *	getzname(const char * strp);
155 static const char *	getqzname(const char * strp, const int delim);
156 static const char *	getnum(const char * strp, int * nump, int min,
157 				int max);
158 static const char *	getsecs(const char * strp, long * secsp);
159 static const char *	getoffset(const char * strp, long * offsetp);
160 static const char *	getrule(const char * strp, struct rule * rulep);
161 static void		gmtload(struct state * sp);
162 static struct tm *	gmtsub(const time_t * timep, long offset,
163 				struct tm * tmp);
164 static struct tm *	localsub(const time_t * timep, long offset,
165 				struct tm * tmp);
166 static int		increment_overflow(int * number, int delta);
167 static int		leaps_thru_end_of(int y);
168 static int		long_increment_overflow(long * number, int delta);
169 static int		long_normalize_overflow(long * tensptr,
170 				int * unitsptr, int base);
171 static int		normalize_overflow(int * tensptr, int * unitsptr,
172 				int base);
173 static void		settzname(void);
174 static time_t		time1(struct tm * tmp,
175 				struct tm * (*funcp)(const time_t *,
176 				long, struct tm *),
177 				long offset);
178 static time_t		time2(struct tm *tmp,
179 				struct tm * (*funcp)(const time_t *,
180 				long, struct tm*),
181 				long offset, int * okayp);
182 static time_t		time2sub(struct tm *tmp,
183 				struct tm * (*funcp)(const time_t *,
184 				long, struct tm*),
185 				long offset, int * okayp, int do_norm_secs);
186 static struct tm *	timesub(const time_t * timep, long offset,
187 				const struct state * sp, struct tm * tmp);
188 static int		tmcomp(const struct tm * atmp,
189 				const struct tm * btmp);
190 static time_t		transtime(time_t janfirst, int year,
191 				const struct rule * rulep, long offset);
192 static int		typesequiv(const struct state * sp, int a, int b);
193 static int		tzload(const char * name, struct state * sp,
194 				int doextend);
195 static int		tzparse(const char * name, struct state * sp,
196 				int lastditch);
197 
198 static struct state	lclmem;
199 static struct state	gmtmem;
200 #define lclptr		(&lclmem)
201 #define gmtptr		(&gmtmem)
202 
203 #ifndef TZ_STRLEN_MAX
204 #define TZ_STRLEN_MAX 255
205 #endif /* !defined TZ_STRLEN_MAX */
206 
207 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
208 static int		lcl_is_set;
209 static int		gmt_is_set;
210 static pthread_rwlock_t	lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
211 static pthread_mutex_t	gmt_mutex = PTHREAD_MUTEX_INITIALIZER;
212 
213 char *			tzname[2] = {
214 	wildabbr,
215 	wildabbr
216 };
217 
218 /*
219 ** Section 4.12.3 of X3.159-1989 requires that
220 **	Except for the strftime function, these functions [asctime,
221 **	ctime, gmtime, localtime] return values in one of two static
222 **	objects: a broken-down time structure and an array of char.
223 ** Thanks to Paul Eggert for noting this.
224 */
225 
226 static struct tm	tm;
227 
228 time_t			timezone = 0;
229 int			daylight = 0;
230 
231 static long
232 detzcode(const char * const codep)
233 {
234 	long	result;
235 	int	i;
236 
237 	result = (codep[0] & 0x80) ? ~0L : 0;
238 	for (i = 0; i < 4; ++i)
239 		result = (result << 8) | (codep[i] & 0xff);
240 	return result;
241 }
242 
243 static time_t
244 detzcode64(const char * const codep)
245 {
246 	time_t	result;
247 	int	i;
248 
249 	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
250 	for (i = 0; i < 8; ++i)
251 		result = result * 256 + (codep[i] & 0xff);
252 	return result;
253 }
254 
255 static void
256 settzname(void)
257 {
258 	struct state * const	sp = lclptr;
259 	int			i;
260 
261 	tzname[0] = wildabbr;
262 	tzname[1] = wildabbr;
263 	daylight = 0;
264 	timezone = 0;
265 
266 	for (i = 0; i < sp->typecnt; ++i) {
267 		const struct ttinfo * const	ttisp = &sp->ttis[i];
268 
269 		tzname[ttisp->tt_isdst] =
270 			&sp->chars[ttisp->tt_abbrind];
271 		if (ttisp->tt_isdst)
272 			daylight = 1;
273 		if (i == 0 || !ttisp->tt_isdst)
274 			timezone = -(ttisp->tt_gmtoff);
275 	}
276 	/*
277 	** And to get the latest zone names into tzname. . .
278 	*/
279 	for (i = 0; i < sp->timecnt; ++i) {
280 		const struct ttinfo * const	ttisp =
281 							&sp->ttis[
282 								sp->types[i]];
283 
284 		tzname[ttisp->tt_isdst] =
285 			&sp->chars[ttisp->tt_abbrind];
286 	}
287 	/*
288 	** Finally, scrub the abbreviations.
289 	** First, replace bogus characters.
290 	*/
291 	for (i = 0; i < sp->charcnt; ++i)
292 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
293 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
294 	/*
295 	** Second, truncate long abbreviations.
296 	*/
297 	for (i = 0; i < sp->typecnt; ++i) {
298 		const struct ttinfo * const	ttisp = &sp->ttis[i];
299 		char *				cp = &sp->chars[ttisp->tt_abbrind];
300 
301 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
302 			strcmp(cp, GRANDPARENTED) != 0)
303 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
304 	}
305 }
306 
307 static int
308 differ_by_repeat(const time_t t1, const time_t t0)
309 {
310 	int_fast64_t _t0 = t0;
311 	int_fast64_t _t1 = t1;
312 
313 	if (TYPE_INTEGRAL(time_t) &&
314 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
315 			return 0;
316 	return _t1 - _t0 == SECSPERREPEAT;
317 }
318 
319 static int
320 tzload(const char *name, struct state * const sp, const int doextend)
321 {
322 	const char *		p;
323 	int			i;
324 	int			fid;
325 	int			stored;
326 	int			nread;
327 	union {
328 		struct tzhead	tzhead;
329 		char		buf[2 * sizeof(struct tzhead) +
330 					2 * sizeof *sp +
331 					4 * TZ_MAX_TIMES];
332 	} u;
333 
334 	sp->goback = sp->goahead = FALSE;
335 
336 	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
337 	if (name != NULL && issetugid() != 0)
338 		if ((name[0] == ':' && name[1] == '/') ||
339 		    name[0] == '/' || strchr(name, '.'))
340 			name = NULL;
341 	if (name == NULL && (name = TZDEFAULT) == NULL)
342 		return -1;
343 	{
344 		int	doaccess;
345 		struct stat	stab;
346 		/*
347 		** Section 4.9.1 of the C standard says that
348 		** "FILENAME_MAX expands to an integral constant expression
349 		** that is the size needed for an array of char large enough
350 		** to hold the longest file name string that the implementation
351 		** guarantees can be opened."
352 		*/
353 		char		fullname[FILENAME_MAX + 1];
354 
355 		if (name[0] == ':')
356 			++name;
357 		doaccess = name[0] == '/';
358 		if (!doaccess) {
359 			if ((p = TZDIR) == NULL)
360 				return -1;
361 			if ((strlen(p) + 1 + strlen(name) + 1) >= sizeof fullname)
362 				return -1;
363 			strcpy(fullname, p);
364 			strcat(fullname, "/");
365 			strcat(fullname, name);
366 			/*
367 			** Set doaccess if '.' (as in "../") shows up in name.
368 			*/
369 			if (strchr(name, '.') != NULL)
370 				doaccess = TRUE;
371 			name = fullname;
372 		}
373 		if (doaccess && access(name, R_OK) != 0)
374 			return -1;
375 		if ((fid = _open(name, O_RDONLY)) == -1)
376 			return -1;
377 		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
378 			_close(fid);
379 			return -1;
380 		}
381 	}
382 	nread = read(fid, u.buf, sizeof u.buf);
383 	if (close(fid) < 0 || nread <= 0)
384 		return -1;
385 	for (stored = 4; stored <= 8; stored *= 2) {
386 		int		ttisstdcnt;
387 		int		ttisgmtcnt;
388 
389 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
390 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
391 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
392 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
393 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
394 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
395 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
396 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
397 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
398 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
399 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
400 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
401 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
402 				return -1;
403 		if (nread - (p - u.buf) <
404 			sp->timecnt * stored +		/* ats */
405 			sp->timecnt +			/* types */
406 			sp->typecnt * 6 +		/* ttinfos */
407 			sp->charcnt +			/* chars */
408 			sp->leapcnt * (stored + 4) +	/* lsinfos */
409 			ttisstdcnt +			/* ttisstds */
410 			ttisgmtcnt)			/* ttisgmts */
411 				return -1;
412 		for (i = 0; i < sp->timecnt; ++i) {
413 			sp->ats[i] = (stored == 4) ?
414 				detzcode(p) : detzcode64(p);
415 			p += stored;
416 		}
417 		for (i = 0; i < sp->timecnt; ++i) {
418 			sp->types[i] = (unsigned char) *p++;
419 			if (sp->types[i] >= sp->typecnt)
420 				return -1;
421 		}
422 		for (i = 0; i < sp->typecnt; ++i) {
423 			struct ttinfo *	ttisp;
424 
425 			ttisp = &sp->ttis[i];
426 			ttisp->tt_gmtoff = detzcode(p);
427 			p += 4;
428 			ttisp->tt_isdst = (unsigned char) *p++;
429 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
430 				return -1;
431 			ttisp->tt_abbrind = (unsigned char) *p++;
432 			if (ttisp->tt_abbrind < 0 ||
433 				ttisp->tt_abbrind > sp->charcnt)
434 					return -1;
435 		}
436 		for (i = 0; i < sp->charcnt; ++i)
437 			sp->chars[i] = *p++;
438 		sp->chars[i] = '\0';	/* ensure '\0' at end */
439 		for (i = 0; i < sp->leapcnt; ++i) {
440 			struct lsinfo *	lsisp;
441 
442 			lsisp = &sp->lsis[i];
443 			lsisp->ls_trans = (stored == 4) ?
444 				detzcode(p) : detzcode64(p);
445 			p += stored;
446 			lsisp->ls_corr = detzcode(p);
447 			p += 4;
448 		}
449 		for (i = 0; i < sp->typecnt; ++i) {
450 			struct ttinfo *	ttisp;
451 
452 			ttisp = &sp->ttis[i];
453 			if (ttisstdcnt == 0)
454 				ttisp->tt_ttisstd = FALSE;
455 			else {
456 				ttisp->tt_ttisstd = *p++;
457 				if (ttisp->tt_ttisstd != TRUE &&
458 					ttisp->tt_ttisstd != FALSE)
459 						return -1;
460 			}
461 		}
462 		for (i = 0; i < sp->typecnt; ++i) {
463 			struct ttinfo *	ttisp;
464 
465 			ttisp = &sp->ttis[i];
466 			if (ttisgmtcnt == 0)
467 				ttisp->tt_ttisgmt = FALSE;
468 			else {
469 				ttisp->tt_ttisgmt = *p++;
470 				if (ttisp->tt_ttisgmt != TRUE &&
471 					ttisp->tt_ttisgmt != FALSE)
472 						return -1;
473 			}
474 		}
475 		/*
476 		** Out-of-sort ats should mean we're running on a
477 		** signed time_t system but using a data file with
478 		** unsigned values (or vice versa).
479 		*/
480 		for (i = 0; i < sp->timecnt - 2; ++i)
481 			if (sp->ats[i] > sp->ats[i + 1]) {
482 				++i;
483 				if (TYPE_SIGNED(time_t)) {
484 					/*
485 					** Ignore the end (easy).
486 					*/
487 					sp->timecnt = i;
488 				} else {
489 					/*
490 					** Ignore the beginning (harder).
491 					*/
492 					int	j;
493 
494 					for (j = 0; j + i < sp->timecnt; ++j) {
495 						sp->ats[j] = sp->ats[j + i];
496 						sp->types[j] = sp->types[j + i];
497 					}
498 					sp->timecnt = j;
499 				}
500 				break;
501 			}
502 		/*
503 		** If this is an old file, we're done.
504 		*/
505 		if (u.tzhead.tzh_version[0] == '\0')
506 			break;
507 		nread -= p - u.buf;
508 		for (i = 0; i < nread; ++i)
509 			u.buf[i] = p[i];
510 		/*
511 		** If this is a narrow integer time_t system, we're done.
512 		*/
513 		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
514 			break;
515 	}
516 	if (doextend && nread > 2 &&
517 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
518 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
519 			struct state	ts;
520 			int		result;
521 
522 			u.buf[nread - 1] = '\0';
523 			result = tzparse(&u.buf[1], &ts, FALSE);
524 			if (result == 0 && ts.typecnt == 2 &&
525 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
526 					for (i = 0; i < 2; ++i)
527 						ts.ttis[i].tt_abbrind +=
528 							sp->charcnt;
529 					for (i = 0; i < ts.charcnt; ++i)
530 						sp->chars[sp->charcnt++] =
531 							ts.chars[i];
532 					i = 0;
533 					while (i < ts.timecnt &&
534 						ts.ats[i] <=
535 						sp->ats[sp->timecnt - 1])
536 							++i;
537 					while (i < ts.timecnt &&
538 					    sp->timecnt < TZ_MAX_TIMES) {
539 						sp->ats[sp->timecnt] =
540 							ts.ats[i];
541 						sp->types[sp->timecnt] =
542 							sp->typecnt +
543 							ts.types[i];
544 						++sp->timecnt;
545 						++i;
546 					}
547 					sp->ttis[sp->typecnt++] = ts.ttis[0];
548 					sp->ttis[sp->typecnt++] = ts.ttis[1];
549 			}
550 	}
551 	if (sp->timecnt > 1) {
552 		for (i = 1; i < sp->timecnt; ++i)
553 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
554 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
555 					sp->goback = TRUE;
556 					break;
557 				}
558 		for (i = sp->timecnt - 2; i >= 0; --i)
559 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
560 				sp->types[i]) &&
561 				differ_by_repeat(sp->ats[sp->timecnt - 1],
562 				sp->ats[i])) {
563 					sp->goahead = TRUE;
564 					break;
565 		}
566 	}
567 	return 0;
568 }
569 
570 static int
571 typesequiv(const struct state * const sp, const int a, const int b)
572 {
573 	int	result;
574 
575 	if (sp == NULL ||
576 		a < 0 || a >= sp->typecnt ||
577 		b < 0 || b >= sp->typecnt)
578 			result = FALSE;
579 	else {
580 		const struct ttinfo *	ap = &sp->ttis[a];
581 		const struct ttinfo *	bp = &sp->ttis[b];
582 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
583 			ap->tt_isdst == bp->tt_isdst &&
584 			ap->tt_ttisstd == bp->tt_ttisstd &&
585 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
586 			strcmp(&sp->chars[ap->tt_abbrind],
587 			&sp->chars[bp->tt_abbrind]) == 0;
588 	}
589 	return result;
590 }
591 
592 static const int	mon_lengths[2][MONSPERYEAR] = {
593 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
594 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
595 };
596 
597 static const int	year_lengths[2] = {
598 	DAYSPERNYEAR, DAYSPERLYEAR
599 };
600 
601 /*
602 ** Given a pointer into a time zone string, scan until a character that is not
603 ** a valid character in a zone name is found. Return a pointer to that
604 ** character.
605 */
606 
607 static const char *
608 getzname(const char *strp)
609 {
610 	char	c;
611 
612 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
613 		c != '+')
614 			++strp;
615 	return strp;
616 }
617 
618 /*
619 ** Given a pointer into an extended time zone string, scan until the ending
620 ** delimiter of the zone name is located. Return a pointer to the delimiter.
621 **
622 ** As with getzname above, the legal character set is actually quite
623 ** restricted, with other characters producing undefined results.
624 ** We don't do any checking here; checking is done later in common-case code.
625 */
626 
627 static const char *
628 getqzname(const char *strp, const int delim)
629 {
630 	int	c;
631 
632 	while ((c = *strp) != '\0' && c != delim)
633 		++strp;
634 	return strp;
635 }
636 
637 /*
638 ** Given a pointer into a time zone string, extract a number from that string.
639 ** Check that the number is within a specified range; if it is not, return
640 ** NULL.
641 ** Otherwise, return a pointer to the first character not part of the number.
642 */
643 
644 static const char *
645 getnum(const char *strp, int * const nump, const int min, const int max)
646 {
647 	char	c;
648 	int	num;
649 
650 	if (strp == NULL || !is_digit(c = *strp))
651 		return NULL;
652 	num = 0;
653 	do {
654 		num = num * 10 + (c - '0');
655 		if (num > max)
656 			return NULL;	/* illegal value */
657 		c = *++strp;
658 	} while (is_digit(c));
659 	if (num < min)
660 		return NULL;		/* illegal value */
661 	*nump = num;
662 	return strp;
663 }
664 
665 /*
666 ** Given a pointer into a time zone string, extract a number of seconds,
667 ** in hh[:mm[:ss]] form, from the string.
668 ** If any error occurs, return NULL.
669 ** Otherwise, return a pointer to the first character not part of the number
670 ** of seconds.
671 */
672 
673 static const char *
674 getsecs(const char *strp, long * const secsp)
675 {
676 	int	num;
677 
678 	/*
679 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
680 	** "M10.4.6/26", which does not conform to Posix,
681 	** but which specifies the equivalent of
682 	** ``02:00 on the first Sunday on or after 23 Oct''.
683 	*/
684 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
685 	if (strp == NULL)
686 		return NULL;
687 	*secsp = num * (long) SECSPERHOUR;
688 	if (*strp == ':') {
689 		++strp;
690 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
691 		if (strp == NULL)
692 			return NULL;
693 		*secsp += num * SECSPERMIN;
694 		if (*strp == ':') {
695 			++strp;
696 			/* `SECSPERMIN' allows for leap seconds. */
697 			strp = getnum(strp, &num, 0, SECSPERMIN);
698 			if (strp == NULL)
699 				return NULL;
700 			*secsp += num;
701 		}
702 	}
703 	return strp;
704 }
705 
706 /*
707 ** Given a pointer into a time zone string, extract an offset, in
708 ** [+-]hh[:mm[:ss]] form, from the string.
709 ** If any error occurs, return NULL.
710 ** Otherwise, return a pointer to the first character not part of the time.
711 */
712 
713 static const char *
714 getoffset(const char *strp, long * const offsetp)
715 {
716 	int	neg = 0;
717 
718 	if (*strp == '-') {
719 		neg = 1;
720 		++strp;
721 	} else if (*strp == '+')
722 		++strp;
723 	strp = getsecs(strp, offsetp);
724 	if (strp == NULL)
725 		return NULL;		/* illegal time */
726 	if (neg)
727 		*offsetp = -*offsetp;
728 	return strp;
729 }
730 
731 /*
732 ** Given a pointer into a time zone string, extract a rule in the form
733 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
734 ** If a valid rule is not found, return NULL.
735 ** Otherwise, return a pointer to the first character not part of the rule.
736 */
737 
738 static const char *
739 getrule(const char *strp, struct rule * const rulep)
740 {
741 	if (*strp == 'J') {
742 		/*
743 		** Julian day.
744 		*/
745 		rulep->r_type = JULIAN_DAY;
746 		++strp;
747 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
748 	} else if (*strp == 'M') {
749 		/*
750 		** Month, week, day.
751 		*/
752 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
753 		++strp;
754 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
755 		if (strp == NULL)
756 			return NULL;
757 		if (*strp++ != '.')
758 			return NULL;
759 		strp = getnum(strp, &rulep->r_week, 1, 5);
760 		if (strp == NULL)
761 			return NULL;
762 		if (*strp++ != '.')
763 			return NULL;
764 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
765 	} else if (is_digit(*strp)) {
766 		/*
767 		** Day of year.
768 		*/
769 		rulep->r_type = DAY_OF_YEAR;
770 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
771 	} else	return NULL;		/* invalid format */
772 	if (strp == NULL)
773 		return NULL;
774 	if (*strp == '/') {
775 		/*
776 		** Time specified.
777 		*/
778 		++strp;
779 		strp = getsecs(strp, &rulep->r_time);
780 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
781 	return strp;
782 }
783 
784 /*
785 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
786 ** year, a rule, and the offset from UTC at the time that rule takes effect,
787 ** calculate the Epoch-relative time that rule takes effect.
788 */
789 
790 static time_t
791 transtime(const time_t janfirst, const int year,
792 	  const struct rule * const rulep, const long offset)
793 {
794 	int	leapyear;
795 	time_t	value;
796 	int	i;
797 	int		d, m1, yy0, yy1, yy2, dow;
798 
799 	INITIALIZE(value);
800 	leapyear = isleap(year);
801 	switch (rulep->r_type) {
802 
803 	case JULIAN_DAY:
804 		/*
805 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
806 		** years.
807 		** In non-leap years, or if the day number is 59 or less, just
808 		** add SECSPERDAY times the day number-1 to the time of
809 		** January 1, midnight, to get the day.
810 		*/
811 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
812 		if (leapyear && rulep->r_day >= 60)
813 			value += SECSPERDAY;
814 		break;
815 
816 	case DAY_OF_YEAR:
817 		/*
818 		** n - day of year.
819 		** Just add SECSPERDAY times the day number to the time of
820 		** January 1, midnight, to get the day.
821 		*/
822 		value = janfirst + rulep->r_day * SECSPERDAY;
823 		break;
824 
825 	case MONTH_NTH_DAY_OF_WEEK:
826 		/*
827 		** Mm.n.d - nth "dth day" of month m.
828 		*/
829 		value = janfirst;
830 		for (i = 0; i < rulep->r_mon - 1; ++i)
831 			value += mon_lengths[leapyear][i] * SECSPERDAY;
832 
833 		/*
834 		** Use Zeller's Congruence to get day-of-week of first day of
835 		** month.
836 		*/
837 		m1 = (rulep->r_mon + 9) % 12 + 1;
838 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
839 		yy1 = yy0 / 100;
840 		yy2 = yy0 % 100;
841 		dow = ((26 * m1 - 2) / 10 +
842 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
843 		if (dow < 0)
844 			dow += DAYSPERWEEK;
845 
846 		/*
847 		** "dow" is the day-of-week of the first day of the month. Get
848 		** the day-of-month (zero-origin) of the first "dow" day of the
849 		** month.
850 		*/
851 		d = rulep->r_day - dow;
852 		if (d < 0)
853 			d += DAYSPERWEEK;
854 		for (i = 1; i < rulep->r_week; ++i) {
855 			if (d + DAYSPERWEEK >=
856 				mon_lengths[leapyear][rulep->r_mon - 1])
857 					break;
858 			d += DAYSPERWEEK;
859 		}
860 
861 		/*
862 		** "d" is the day-of-month (zero-origin) of the day we want.
863 		*/
864 		value += d * SECSPERDAY;
865 		break;
866 	}
867 
868 	/*
869 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
870 	** question. To get the Epoch-relative time of the specified local
871 	** time on that day, add the transition time and the current offset
872 	** from UTC.
873 	*/
874 	return value + rulep->r_time + offset;
875 }
876 
877 /*
878 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
879 ** appropriate.
880 */
881 
882 static int
883 tzparse(const char *name, struct state * const sp, const int lastditch)
884 {
885 	const char *			stdname;
886 	const char *			dstname;
887 	size_t				stdlen;
888 	size_t				dstlen;
889 	long				stdoffset;
890 	long				dstoffset;
891 	time_t *		atp;
892 	unsigned char *	typep;
893 	char *			cp;
894 	int			load_result;
895 
896 	INITIALIZE(dstname);
897 	stdname = name;
898 	if (lastditch) {
899 		stdlen = strlen(name);	/* length of standard zone name */
900 		name += stdlen;
901 		if (stdlen >= sizeof sp->chars)
902 			stdlen = (sizeof sp->chars) - 1;
903 		stdoffset = 0;
904 	} else {
905 		if (*name == '<') {
906 			name++;
907 			stdname = name;
908 			name = getqzname(name, '>');
909 			if (*name != '>')
910 				return (-1);
911 			stdlen = name - stdname;
912 			name++;
913 		} else {
914 			name = getzname(name);
915 			stdlen = name - stdname;
916 		}
917 		if (*name == '\0')
918 			return -1;
919 		name = getoffset(name, &stdoffset);
920 		if (name == NULL)
921 			return -1;
922 	}
923 	load_result = tzload(TZDEFRULES, sp, FALSE);
924 	if (load_result != 0)
925 		sp->leapcnt = 0;		/* so, we're off a little */
926 	if (*name != '\0') {
927 		if (*name == '<') {
928 			dstname = ++name;
929 			name = getqzname(name, '>');
930 			if (*name != '>')
931 				return -1;
932 			dstlen = name - dstname;
933 			name++;
934 		} else {
935 			dstname = name;
936 			name = getzname(name);
937 			dstlen = name - dstname; /* length of DST zone name */
938 		}
939 		if (*name != '\0' && *name != ',' && *name != ';') {
940 			name = getoffset(name, &dstoffset);
941 			if (name == NULL)
942 				return -1;
943 		} else	dstoffset = stdoffset - SECSPERHOUR;
944 		if (*name == '\0' && load_result != 0)
945 			name = TZDEFRULESTRING;
946 		if (*name == ',' || *name == ';') {
947 			struct rule	start;
948 			struct rule	end;
949 			int	year;
950 			time_t	janfirst;
951 			time_t		starttime;
952 			time_t		endtime;
953 
954 			++name;
955 			if ((name = getrule(name, &start)) == NULL)
956 				return -1;
957 			if (*name++ != ',')
958 				return -1;
959 			if ((name = getrule(name, &end)) == NULL)
960 				return -1;
961 			if (*name != '\0')
962 				return -1;
963 			sp->typecnt = 2;	/* standard time and DST */
964 			/*
965 			** Two transitions per year, from EPOCH_YEAR forward.
966 			*/
967 			sp->ttis[0].tt_gmtoff = -dstoffset;
968 			sp->ttis[0].tt_isdst = 1;
969 			sp->ttis[0].tt_abbrind = stdlen + 1;
970 			sp->ttis[1].tt_gmtoff = -stdoffset;
971 			sp->ttis[1].tt_isdst = 0;
972 			sp->ttis[1].tt_abbrind = 0;
973 			atp = sp->ats;
974 			typep = sp->types;
975 			janfirst = 0;
976 			sp->timecnt = 0;
977 			for (year = EPOCH_YEAR;
978 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
979 			    ++year) {
980 			    	time_t	newfirst;
981 
982 				starttime = transtime(janfirst, year, &start,
983 					stdoffset);
984 				endtime = transtime(janfirst, year, &end,
985 					dstoffset);
986 				if (starttime > endtime) {
987 					*atp++ = endtime;
988 					*typep++ = 1;	/* DST ends */
989 					*atp++ = starttime;
990 					*typep++ = 0;	/* DST begins */
991 				} else {
992 					*atp++ = starttime;
993 					*typep++ = 0;	/* DST begins */
994 					*atp++ = endtime;
995 					*typep++ = 1;	/* DST ends */
996 				}
997 				sp->timecnt += 2;
998 				newfirst = janfirst;
999 				newfirst += year_lengths[isleap(year)] *
1000 					SECSPERDAY;
1001 				if (newfirst <= janfirst)
1002 					break;
1003 				janfirst = newfirst;
1004 			}
1005 		} else {
1006 			long	theirstdoffset;
1007 			long	theirdstoffset;
1008 			long	theiroffset;
1009 			int	isdst;
1010 			int	i;
1011 			int	j;
1012 
1013 			if (*name != '\0')
1014 				return -1;
1015 			/*
1016 			** Initial values of theirstdoffset and theirdstoffset.
1017 			*/
1018 			theirstdoffset = 0;
1019 			for (i = 0; i < sp->timecnt; ++i) {
1020 				j = sp->types[i];
1021 				if (!sp->ttis[j].tt_isdst) {
1022 					theirstdoffset =
1023 						-sp->ttis[j].tt_gmtoff;
1024 					break;
1025 				}
1026 			}
1027 			theirdstoffset = 0;
1028 			for (i = 0; i < sp->timecnt; ++i) {
1029 				j = sp->types[i];
1030 				if (sp->ttis[j].tt_isdst) {
1031 					theirdstoffset =
1032 						-sp->ttis[j].tt_gmtoff;
1033 					break;
1034 				}
1035 			}
1036 			/*
1037 			** Initially we're assumed to be in standard time.
1038 			*/
1039 			isdst = FALSE;
1040 			theiroffset = theirstdoffset;
1041 			/*
1042 			** Now juggle transition times and types
1043 			** tracking offsets as you do.
1044 			*/
1045 			for (i = 0; i < sp->timecnt; ++i) {
1046 				j = sp->types[i];
1047 				sp->types[i] = sp->ttis[j].tt_isdst;
1048 				if (sp->ttis[j].tt_ttisgmt) {
1049 					/* No adjustment to transition time */
1050 				} else {
1051 					/*
1052 					** If summer time is in effect, and the
1053 					** transition time was not specified as
1054 					** standard time, add the summer time
1055 					** offset to the transition time;
1056 					** otherwise, add the standard time
1057 					** offset to the transition time.
1058 					*/
1059 					/*
1060 					** Transitions from DST to DDST
1061 					** will effectively disappear since
1062 					** POSIX provides for only one DST
1063 					** offset.
1064 					*/
1065 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1066 						sp->ats[i] += dstoffset -
1067 							theirdstoffset;
1068 					} else {
1069 						sp->ats[i] += stdoffset -
1070 							theirstdoffset;
1071 					}
1072 				}
1073 				theiroffset = -sp->ttis[j].tt_gmtoff;
1074 				if (sp->ttis[j].tt_isdst)
1075 					theirdstoffset = theiroffset;
1076 				else	theirstdoffset = theiroffset;
1077 			}
1078 			/*
1079 			** Finally, fill in ttis.
1080 			** ttisstd and ttisgmt need not be handled.
1081 			*/
1082 			sp->ttis[0].tt_gmtoff = -stdoffset;
1083 			sp->ttis[0].tt_isdst = FALSE;
1084 			sp->ttis[0].tt_abbrind = 0;
1085 			sp->ttis[1].tt_gmtoff = -dstoffset;
1086 			sp->ttis[1].tt_isdst = TRUE;
1087 			sp->ttis[1].tt_abbrind = stdlen + 1;
1088 			sp->typecnt = 2;
1089 		}
1090 	} else {
1091 		dstlen = 0;
1092 		sp->typecnt = 1;		/* only standard time */
1093 		sp->timecnt = 0;
1094 		sp->ttis[0].tt_gmtoff = -stdoffset;
1095 		sp->ttis[0].tt_isdst = 0;
1096 		sp->ttis[0].tt_abbrind = 0;
1097 	}
1098 	sp->charcnt = stdlen + 1;
1099 	if (dstlen != 0)
1100 		sp->charcnt += dstlen + 1;
1101 	if ((size_t) sp->charcnt > sizeof sp->chars)
1102 		return -1;
1103 	cp = sp->chars;
1104 	strncpy(cp, stdname, stdlen);
1105 	cp += stdlen;
1106 	*cp++ = '\0';
1107 	if (dstlen != 0) {
1108 		strncpy(cp, dstname, dstlen);
1109 		*(cp + dstlen) = '\0';
1110 	}
1111 	return 0;
1112 }
1113 
1114 static void
1115 gmtload(struct state * const sp)
1116 {
1117 	if (tzload(gmt, sp, TRUE) != 0)
1118 		tzparse(gmt, sp, TRUE);
1119 }
1120 
1121 static void
1122 tzsetwall_basic(int rdlocked)
1123 {
1124 	if (!rdlocked)
1125 		_RWLOCK_RDLOCK(&lcl_rwlock);
1126 	if (lcl_is_set < 0) {
1127 		if (!rdlocked)
1128 			_RWLOCK_UNLOCK(&lcl_rwlock);
1129 		return;
1130 	}
1131 	_RWLOCK_UNLOCK(&lcl_rwlock);
1132 
1133 	_RWLOCK_WRLOCK(&lcl_rwlock);
1134 	lcl_is_set = -1;
1135 
1136 	if (tzload(NULL, lclptr, TRUE) != 0)
1137 		gmtload(lclptr);
1138 	settzname();
1139 	_RWLOCK_UNLOCK(&lcl_rwlock);
1140 
1141 	if (rdlocked)
1142 		_RWLOCK_RDLOCK(&lcl_rwlock);
1143 }
1144 
1145 void
1146 tzsetwall(void)
1147 {
1148 	tzsetwall_basic(0);
1149 }
1150 
1151 static void
1152 tzset_basic(int rdlocked)
1153 {
1154 	const char *	name;
1155 
1156 	name = getenv("TZ");
1157 	if (name == NULL) {
1158 		tzsetwall_basic(rdlocked);
1159 		return;
1160 	}
1161 
1162 	if (!rdlocked)
1163 		_RWLOCK_RDLOCK(&lcl_rwlock);
1164 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1165 		if (!rdlocked)
1166 			_RWLOCK_UNLOCK(&lcl_rwlock);
1167 		return;
1168 	}
1169 	_RWLOCK_UNLOCK(&lcl_rwlock);
1170 
1171 	_RWLOCK_WRLOCK(&lcl_rwlock);
1172 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1173 	if (lcl_is_set)
1174 		strcpy(lcl_TZname, name);
1175 
1176 	if (*name == '\0') {
1177 		/*
1178 		** User wants it fast rather than right.
1179 		*/
1180 		lclptr->leapcnt = 0;		/* so, we're off a little */
1181 		lclptr->timecnt = 0;
1182 		lclptr->typecnt = 0;
1183 		lclptr->ttis[0].tt_isdst = 0;
1184 		lclptr->ttis[0].tt_gmtoff = 0;
1185 		lclptr->ttis[0].tt_abbrind = 0;
1186 		strcpy(lclptr->chars, gmt);
1187 	} else if (tzload(name, lclptr, TRUE) != 0)
1188 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1189 			gmtload(lclptr);
1190 	settzname();
1191 	_RWLOCK_UNLOCK(&lcl_rwlock);
1192 
1193 	if (rdlocked)
1194 		_RWLOCK_RDLOCK(&lcl_rwlock);
1195 }
1196 
1197 void
1198 tzset(void)
1199 {
1200 	tzset_basic(0);
1201 }
1202 
1203 /*
1204 ** The easy way to behave "as if no library function calls" localtime
1205 ** is to not call it--so we drop its guts into "localsub", which can be
1206 ** freely called. (And no, the PANS doesn't require the above behavior--
1207 ** but it *is* desirable.)
1208 **
1209 ** The unused offset argument is for the benefit of mktime variants.
1210 */
1211 
1212 /*ARGSUSED*/
1213 static struct tm *
1214 localsub(const time_t * const timep, const long offset __unused,
1215 	 struct tm * const tmp)
1216 {
1217 	struct state *		sp;
1218 	const struct ttinfo *	ttisp;
1219 	int			i;
1220 	struct tm *		result;
1221 	const time_t		t = *timep;
1222 
1223 	sp = lclptr;
1224 
1225 	if ((sp->goback && t < sp->ats[0]) ||
1226 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1227 			time_t		newt = t;
1228 			time_t		seconds;
1229 			time_t		tcycles;
1230 			int_fast64_t	icycles;
1231 
1232 			if (t < sp->ats[0])
1233 				seconds = sp->ats[0] - t;
1234 			else	seconds = t - sp->ats[sp->timecnt - 1];
1235 			--seconds;
1236 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1237 			++tcycles;
1238 			icycles = tcycles;
1239 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1240 				return NULL;
1241 			seconds = icycles;
1242 			seconds *= YEARSPERREPEAT;
1243 			seconds *= AVGSECSPERYEAR;
1244 			if (t < sp->ats[0])
1245 				newt += seconds;
1246 			else	newt -= seconds;
1247 			if (newt < sp->ats[0] ||
1248 				newt > sp->ats[sp->timecnt - 1])
1249 					return NULL;	/* "cannot happen" */
1250 			result = localsub(&newt, offset, tmp);
1251 			if (result == tmp) {
1252 				time_t	newy;
1253 
1254 				newy = tmp->tm_year;
1255 				if (t < sp->ats[0])
1256 					newy -= icycles * YEARSPERREPEAT;
1257 				else	newy += icycles * YEARSPERREPEAT;
1258 				tmp->tm_year = newy;
1259 				if (tmp->tm_year != newy)
1260 					return NULL;
1261 			}
1262 			return result;
1263 	}
1264 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1265 		i = 0;
1266 		while (sp->ttis[i].tt_isdst)
1267 			if (++i >= sp->typecnt) {
1268 				i = 0;
1269 				break;
1270 			}
1271 	} else {
1272 		int	lo = 1;
1273 		int	hi = sp->timecnt;
1274 
1275 		while (lo < hi) {
1276 			int	mid = (lo + hi) >> 1;
1277 
1278 			if (t < sp->ats[mid])
1279 				hi = mid;
1280 			else	lo = mid + 1;
1281 		}
1282 		i = (int) sp->types[lo - 1];
1283 	}
1284 	ttisp = &sp->ttis[i];
1285 	/*
1286 	** To get (wrong) behavior that's compatible with System V Release 2.0
1287 	** you'd replace the statement below with
1288 	**	t += ttisp->tt_gmtoff;
1289 	**	timesub(&t, 0L, sp, tmp);
1290 	*/
1291 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1292 	tmp->tm_isdst = ttisp->tt_isdst;
1293 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1294 #ifdef TM_ZONE
1295 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1296 #endif /* defined TM_ZONE */
1297 	return result;
1298 }
1299 
1300 struct tm *
1301 localtime_r(const time_t * const timep, struct tm *p_tm)
1302 {
1303 	_RWLOCK_RDLOCK(&lcl_rwlock);
1304 	tzset_basic(1);
1305 	localsub(timep, 0L, p_tm);
1306 	_RWLOCK_UNLOCK(&lcl_rwlock);
1307 	return(p_tm);
1308 }
1309 
1310 struct tm *
1311 localtime(const time_t * const timep)
1312 {
1313 	static pthread_mutex_t localtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1314 	static pthread_key_t localtime_key = -1;
1315 	struct tm *p_tm;
1316 
1317 	if (__isthreaded != 0) {
1318 		if (localtime_key < 0) {
1319 			_pthread_mutex_lock(&localtime_mutex);
1320 			if (localtime_key < 0) {
1321 				if (_pthread_key_create(&localtime_key, free) < 0) {
1322 					_pthread_mutex_unlock(&localtime_mutex);
1323 					return(NULL);
1324 				}
1325 			}
1326 			_pthread_mutex_unlock(&localtime_mutex);
1327 		}
1328 		p_tm = _pthread_getspecific(localtime_key);
1329 		if (p_tm == NULL) {
1330 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1331 			    == NULL)
1332 				return(NULL);
1333 			_pthread_setspecific(localtime_key, p_tm);
1334 		}
1335 		_RWLOCK_RDLOCK(&lcl_rwlock);
1336 		tzset_basic(1);
1337 		localsub(timep, 0L, p_tm);
1338 		_RWLOCK_UNLOCK(&lcl_rwlock);
1339 		return(p_tm);
1340 	} else {
1341 		tzset_basic(0);
1342 		localsub(timep, 0L, &tm);
1343 		return(&tm);
1344 	}
1345 }
1346 
1347 /*
1348 ** gmtsub is to gmtime as localsub is to localtime.
1349 */
1350 
1351 static struct tm *
1352 gmtsub(const time_t * const timep, const long offset, struct tm * const tmp)
1353 {
1354 	struct tm *	result;
1355 
1356 	if (!gmt_is_set) {
1357 		_MUTEX_LOCK(&gmt_mutex);
1358 		if (!gmt_is_set) {
1359 			gmtload(gmtptr);
1360 			gmt_is_set = TRUE;
1361 		}
1362 		_MUTEX_UNLOCK(&gmt_mutex);
1363 	}
1364 	result = timesub(timep, offset, gmtptr, tmp);
1365 #ifdef TM_ZONE
1366 	/*
1367 	** Could get fancy here and deliver something such as
1368 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1369 	** but this is no time for a treasure hunt.
1370 	*/
1371 	if (offset != 0)
1372 		tmp->TM_ZONE = wildabbr;
1373 	else
1374 		tmp->TM_ZONE = gmtptr->chars;
1375 #endif /* defined TM_ZONE */
1376 	return result;
1377 }
1378 
1379 struct tm *
1380 gmtime(const time_t * const timep)
1381 {
1382 	static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1383 	static pthread_key_t gmtime_key = -1;
1384 	struct tm *p_tm;
1385 
1386 	if (__isthreaded != 0) {
1387 		if (gmtime_key < 0) {
1388 			_pthread_mutex_lock(&gmtime_mutex);
1389 			if (gmtime_key < 0) {
1390 				if (_pthread_key_create(&gmtime_key, free) < 0) {
1391 					_pthread_mutex_unlock(&gmtime_mutex);
1392 					return(NULL);
1393 				}
1394 			}
1395 			_pthread_mutex_unlock(&gmtime_mutex);
1396 		}
1397 		/*
1398 		 * Changed to follow POSIX.1 threads standard, which
1399 		 * is what BSD currently has.
1400 		 */
1401 		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1402 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1403 			    == NULL) {
1404 				return(NULL);
1405 			}
1406 			_pthread_setspecific(gmtime_key, p_tm);
1407 		}
1408 		return gmtsub(timep, 0L, p_tm);
1409 	} else {
1410 		return gmtsub(timep, 0L, &tm);
1411 	}
1412 }
1413 
1414 struct tm *
1415 gmtime_r(const time_t * timep, struct tm * tmp)
1416 {
1417 	return gmtsub(timep, 0L, tmp);
1418 }
1419 
1420 struct tm *
1421 offtime(const time_t * const timep, const long offset)
1422 {
1423 	return gmtsub(timep, offset, &tm);
1424 }
1425 
1426 /*
1427 ** Return the number of leap years through the end of the given year
1428 ** where, to make the math easy, the answer for year zero is defined as zero.
1429 */
1430 
1431 static int
1432 leaps_thru_end_of(const int y)
1433 {
1434 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1435 		-(leaps_thru_end_of(-(y + 1)) + 1);
1436 }
1437 
1438 static struct tm *
1439 timesub(const time_t * const timep, const long offset,
1440 	const struct state * const sp, struct tm * const tmp)
1441 {
1442 	const struct lsinfo *	lp;
1443 	time_t			tdays;
1444 	int			idays;	/* unsigned would be so 2003 */
1445 	long			rem;
1446 	int			y;
1447 	int			yleap;
1448 	const int *		ip;
1449 	long			corr;
1450 	int			hit;
1451 	int			i;
1452 
1453 	corr = 0;
1454 	hit = 0;
1455 	i = sp->leapcnt;
1456 
1457 	while (--i >= 0) {
1458 		lp = &sp->lsis[i];
1459 		if (*timep >= lp->ls_trans) {
1460 			if (*timep == lp->ls_trans) {
1461 				hit = ((i == 0 && lp->ls_corr > 0) ||
1462 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1463 				if (hit)
1464 					while (i > 0 &&
1465 						sp->lsis[i].ls_trans ==
1466 						sp->lsis[i - 1].ls_trans + 1 &&
1467 						sp->lsis[i].ls_corr ==
1468 						sp->lsis[i - 1].ls_corr + 1) {
1469 							++hit;
1470 							--i;
1471 					}
1472 			}
1473 			corr = lp->ls_corr;
1474 			break;
1475 		}
1476 	}
1477 	y = EPOCH_YEAR;
1478 	tdays = *timep / SECSPERDAY;
1479 	rem = *timep - tdays * SECSPERDAY;
1480 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1481 		int	newy;
1482 		time_t	tdelta;
1483 		int	idelta;
1484 		int	leapdays;
1485 
1486 		tdelta = tdays / DAYSPERLYEAR;
1487 		idelta = tdelta;
1488 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1489 			return NULL;
1490 		if (idelta == 0)
1491 			idelta = (tdays < 0) ? -1 : 1;
1492 		newy = y;
1493 		if (increment_overflow(&newy, idelta))
1494 			return NULL;
1495 		leapdays = leaps_thru_end_of(newy - 1) -
1496 			leaps_thru_end_of(y - 1);
1497 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1498 		tdays -= leapdays;
1499 		y = newy;
1500 	}
1501 	{
1502 		long	seconds;
1503 
1504 		seconds = tdays * SECSPERDAY + 0.5;
1505 		tdays = seconds / SECSPERDAY;
1506 		rem += seconds - tdays * SECSPERDAY;
1507 	}
1508 	/*
1509 	** Given the range, we can now fearlessly cast...
1510 	*/
1511 	idays = tdays;
1512 	rem += offset - corr;
1513 	while (rem < 0) {
1514 		rem += SECSPERDAY;
1515 		--idays;
1516 	}
1517 	while (rem >= SECSPERDAY) {
1518 		rem -= SECSPERDAY;
1519 		++idays;
1520 	}
1521 	while (idays < 0) {
1522 		if (increment_overflow(&y, -1))
1523 			return NULL;
1524 		idays += year_lengths[isleap(y)];
1525 	}
1526 	while (idays >= year_lengths[isleap(y)]) {
1527 		idays -= year_lengths[isleap(y)];
1528 		if (increment_overflow(&y, 1))
1529 			return NULL;
1530 	}
1531 	tmp->tm_year = y;
1532 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1533 		return NULL;
1534 	tmp->tm_yday = idays;
1535 	/*
1536 	** The "extra" mods below avoid overflow problems.
1537 	*/
1538 	tmp->tm_wday = EPOCH_WDAY +
1539 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1540 		(DAYSPERNYEAR % DAYSPERWEEK) +
1541 		leaps_thru_end_of(y - 1) -
1542 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1543 		idays;
1544 	tmp->tm_wday %= DAYSPERWEEK;
1545 	if (tmp->tm_wday < 0)
1546 		tmp->tm_wday += DAYSPERWEEK;
1547 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1548 	rem %= SECSPERHOUR;
1549 	tmp->tm_min = (int) (rem / SECSPERMIN);
1550 	/*
1551 	** A positive leap second requires a special
1552 	** representation. This uses "... ??:59:60" et seq.
1553 	*/
1554 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1555 	ip = mon_lengths[isleap(y)];
1556 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1557 		idays -= ip[tmp->tm_mon];
1558 	tmp->tm_mday = (int) (idays + 1);
1559 	tmp->tm_isdst = 0;
1560 #ifdef TM_GMTOFF
1561 	tmp->TM_GMTOFF = offset;
1562 #endif /* defined TM_GMTOFF */
1563 	return tmp;
1564 }
1565 
1566 char *
1567 ctime(const time_t * const timep)
1568 {
1569 /*
1570 ** Section 4.12.3.2 of X3.159-1989 requires that
1571 **	The ctime function converts the calendar time pointed to by timer
1572 **	to local time in the form of a string. It is equivalent to
1573 **		asctime(localtime(timer))
1574 */
1575 	return asctime(localtime(timep));
1576 }
1577 
1578 char *
1579 ctime_r(const time_t * const timep, char *buf)
1580 {
1581         struct tm	mytm;
1582 	return asctime_r(localtime_r(timep, &mytm), buf);
1583 }
1584 
1585 /*
1586 ** Adapted from code provided by Robert Elz, who writes:
1587 **	The "best" way to do mktime I think is based on an idea of Bob
1588 **	Kridle's (so its said...) from a long time ago.
1589 **	It does a binary search of the time_t space. Since time_t's are
1590 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1591 **	would still be very reasonable).
1592 */
1593 
1594 #ifndef WRONG
1595 #define WRONG	(-1)
1596 #endif /* !defined WRONG */
1597 
1598 /*
1599 ** Simplified normalize logic courtesy Paul Eggert.
1600 */
1601 
1602 static int
1603 increment_overflow(int *number, int delta)
1604 {
1605 	int	number0;
1606 
1607 	number0 = *number;
1608 	*number += delta;
1609 	return (*number < number0) != (delta < 0);
1610 }
1611 
1612 static int
1613 long_increment_overflow(long *number, int delta)
1614 {
1615 	long	number0;
1616 
1617 	number0 = *number;
1618 	*number += delta;
1619 	return (*number < number0) != (delta < 0);
1620 }
1621 
1622 static int
1623 normalize_overflow(int * const tensptr, int * const unitsptr, const int base)
1624 {
1625 	int	tensdelta;
1626 
1627 	tensdelta = (*unitsptr >= 0) ?
1628 		(*unitsptr / base) :
1629 		(-1 - (-1 - *unitsptr) / base);
1630 	*unitsptr -= tensdelta * base;
1631 	return increment_overflow(tensptr, tensdelta);
1632 }
1633 
1634 static int
1635 long_normalize_overflow(long * const tensptr, int * const unitsptr,
1636 			const int base)
1637 {
1638 	int	tensdelta;
1639 
1640 	tensdelta = (*unitsptr >= 0) ?
1641 		(*unitsptr / base) :
1642 		(-1 - (-1 - *unitsptr) / base);
1643 	*unitsptr -= tensdelta * base;
1644 	return long_increment_overflow(tensptr, tensdelta);
1645 }
1646 
1647 static int
1648 tmcomp(const struct tm * const atmp, const struct tm * const btmp)
1649 {
1650 	int	result;
1651 
1652 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1653 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1654 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1655 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1656 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1657 			result = atmp->tm_sec - btmp->tm_sec;
1658 	return result;
1659 }
1660 
1661 static time_t
1662 time2sub(struct tm * const tmp,
1663       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1664       const long offset, int * const okayp, const int do_norm_secs)
1665 {
1666 	const struct state *	sp;
1667 	int			dir;
1668 	int			i, j;
1669 	int			saved_seconds;
1670 	long			li;
1671 	time_t			lo;
1672 	time_t			hi;
1673 	long			y;
1674 	time_t			newt;
1675 	time_t			t;
1676 	struct tm		yourtm, mytm;
1677 
1678 	*okayp = FALSE;
1679 	yourtm = *tmp;
1680 	if (do_norm_secs) {
1681 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1682 			SECSPERMIN))
1683 				return WRONG;
1684 	}
1685 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1686 		return WRONG;
1687 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1688 		return WRONG;
1689 	y = yourtm.tm_year;
1690 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1691 		return WRONG;
1692 	/*
1693 	** Turn y into an actual year number for now.
1694 	** It is converted back to an offset from TM_YEAR_BASE later.
1695 	*/
1696 	if (long_increment_overflow(&y, TM_YEAR_BASE))
1697 		return WRONG;
1698 	while (yourtm.tm_mday <= 0) {
1699 		if (long_increment_overflow(&y, -1))
1700 			return WRONG;
1701 		li = y + (1 < yourtm.tm_mon);
1702 		yourtm.tm_mday += year_lengths[isleap(li)];
1703 	}
1704 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1705 		li = y + (1 < yourtm.tm_mon);
1706 		yourtm.tm_mday -= year_lengths[isleap(li)];
1707 		if (long_increment_overflow(&y, 1))
1708 			return WRONG;
1709 	}
1710 	for ( ; ; ) {
1711 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1712 		if (yourtm.tm_mday <= i)
1713 			break;
1714 		yourtm.tm_mday -= i;
1715 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1716 			yourtm.tm_mon = 0;
1717 			if (long_increment_overflow(&y, 1))
1718 				return WRONG;
1719 		}
1720 	}
1721 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1722 		return WRONG;
1723 	yourtm.tm_year = y;
1724 	if (yourtm.tm_year != y)
1725 		return WRONG;
1726 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1727 		saved_seconds = 0;
1728 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1729 		/*
1730 		** We can't set tm_sec to 0, because that might push the
1731 		** time below the minimum representable time.
1732 		** Set tm_sec to 59 instead.
1733 		** This assumes that the minimum representable time is
1734 		** not in the same minute that a leap second was deleted from,
1735 		** which is a safer assumption than using 58 would be.
1736 		*/
1737 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1738 			return WRONG;
1739 		saved_seconds = yourtm.tm_sec;
1740 		yourtm.tm_sec = SECSPERMIN - 1;
1741 	} else {
1742 		saved_seconds = yourtm.tm_sec;
1743 		yourtm.tm_sec = 0;
1744 	}
1745 	/*
1746 	** Do a binary search (this works whatever time_t's type is).
1747 	*/
1748 	if (!TYPE_SIGNED(time_t)) {
1749 		lo = 0;
1750 		hi = lo - 1;
1751 	} else if (!TYPE_INTEGRAL(time_t)) {
1752 		if (sizeof(time_t) > sizeof(float))
1753 			hi = (time_t) DBL_MAX;
1754 		else	hi = (time_t) FLT_MAX;
1755 		lo = -hi;
1756 	} else {
1757 		lo = 1;
1758 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1759 			lo *= 2;
1760 		hi = -(lo + 1);
1761 	}
1762 	for ( ; ; ) {
1763 		t = lo / 2 + hi / 2;
1764 		if (t < lo)
1765 			t = lo;
1766 		else if (t > hi)
1767 			t = hi;
1768 		if ((*funcp)(&t, offset, &mytm) == NULL) {
1769 			/*
1770 			** Assume that t is too extreme to be represented in
1771 			** a struct tm; arrange things so that it is less
1772 			** extreme on the next pass.
1773 			*/
1774 			dir = (t > 0) ? 1 : -1;
1775 		} else	dir = tmcomp(&mytm, &yourtm);
1776 		if (dir != 0) {
1777 			if (t == lo) {
1778 				++t;
1779 				if (t <= lo)
1780 					return WRONG;
1781 				++lo;
1782 			} else if (t == hi) {
1783 				--t;
1784 				if (t >= hi)
1785 					return WRONG;
1786 				--hi;
1787 			}
1788 			if (lo > hi)
1789 				return WRONG;
1790 			if (dir > 0)
1791 				hi = t;
1792 			else	lo = t;
1793 			continue;
1794 		}
1795 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1796 			break;
1797 		/*
1798 		** Right time, wrong type.
1799 		** Hunt for right time, right type.
1800 		** It's okay to guess wrong since the guess
1801 		** gets checked.
1802 		*/
1803 		sp = (const struct state *)
1804 			((funcp == localsub) ? lclptr : gmtptr);
1805 
1806 		for (i = sp->typecnt - 1; i >= 0; --i) {
1807 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1808 				continue;
1809 			for (j = sp->typecnt - 1; j >= 0; --j) {
1810 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1811 					continue;
1812 				newt = t + sp->ttis[j].tt_gmtoff -
1813 					sp->ttis[i].tt_gmtoff;
1814 				if ((*funcp)(&newt, offset, &mytm) == NULL)
1815 					continue;
1816 				if (tmcomp(&mytm, &yourtm) != 0)
1817 					continue;
1818 				if (mytm.tm_isdst != yourtm.tm_isdst)
1819 					continue;
1820 				/*
1821 				** We have a match.
1822 				*/
1823 				t = newt;
1824 				goto label;
1825 			}
1826 		}
1827 		return WRONG;
1828 	}
1829 label:
1830 	newt = t + saved_seconds;
1831 	if ((newt < t) != (saved_seconds < 0))
1832 		return WRONG;
1833 	t = newt;
1834 	if ((*funcp)(&t, offset, tmp))
1835 		*okayp = TRUE;
1836 	return t;
1837 }
1838 
1839 static time_t
1840 time2(struct tm * const tmp,
1841       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1842       const long offset, int * const okayp)
1843 {
1844 	time_t	t;
1845 
1846 	/*
1847 	** First try without normalization of seconds
1848 	** (in case tm_sec contains a value associated with a leap second).
1849 	** If that fails, try with normalization of seconds.
1850 	*/
1851 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1852 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1853 }
1854 
1855 static time_t
1856 time1(struct tm * const tmp,
1857       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1858       const long offset)
1859 {
1860 	time_t			t;
1861 	const struct state *	sp;
1862 	int			samei, otheri;
1863 	int			sameind, otherind;
1864 	int			i;
1865 	int			nseen;
1866 	int			seen[TZ_MAX_TYPES];
1867 	int			types[TZ_MAX_TYPES];
1868 	int			okay;
1869 
1870 	if (tmp == NULL) {
1871 		errno = EINVAL;
1872 		return WRONG;
1873 	}
1874 	if (tmp->tm_isdst > 1)
1875 		tmp->tm_isdst = 1;
1876 	t = time2(tmp, funcp, offset, &okay);
1877 
1878 	/*
1879 	** PCTS code courtesy Grant Sullivan.
1880 	*/
1881 	if (okay)
1882 		return t;
1883 	if (tmp->tm_isdst < 0)
1884 		tmp->tm_isdst = 0;	/* reset to std and try again */
1885 
1886 	/*
1887 	** We're supposed to assume that somebody took a time of one type
1888 	** and did some math on it that yielded a "struct tm" that's bad.
1889 	** We try to divine the type they started from and adjust to the
1890 	** type they need.
1891 	*/
1892 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
1893 
1894 	for (i = 0; i < sp->typecnt; ++i)
1895 		seen[i] = FALSE;
1896 	nseen = 0;
1897 	for (i = sp->timecnt - 1; i >= 0; --i)
1898 		if (!seen[sp->types[i]]) {
1899 			seen[sp->types[i]] = TRUE;
1900 			types[nseen++] = sp->types[i];
1901 		}
1902 	for (sameind = 0; sameind < nseen; ++sameind) {
1903 		samei = types[sameind];
1904 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1905 			continue;
1906 		for (otherind = 0; otherind < nseen; ++otherind) {
1907 			otheri = types[otherind];
1908 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1909 				continue;
1910 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1911 					sp->ttis[samei].tt_gmtoff;
1912 			tmp->tm_isdst = !tmp->tm_isdst;
1913 			t = time2(tmp, funcp, offset, &okay);
1914 			if (okay)
1915 				return t;
1916 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1917 					sp->ttis[samei].tt_gmtoff;
1918 			tmp->tm_isdst = !tmp->tm_isdst;
1919 		}
1920 	}
1921 	return WRONG;
1922 }
1923 
1924 time_t
1925 mktime(struct tm * const tmp)
1926 {
1927 	time_t mktime_return_value;
1928 	_RWLOCK_RDLOCK(&lcl_rwlock);
1929 	tzset_basic(1);
1930 	mktime_return_value = time1(tmp, localsub, 0L);
1931 	_RWLOCK_UNLOCK(&lcl_rwlock);
1932 	return(mktime_return_value);
1933 }
1934 
1935 time_t
1936 timelocal(struct tm * const tmp)
1937 {
1938 	if (tmp != NULL)
1939 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1940 	return mktime(tmp);
1941 }
1942 
1943 time_t
1944 timegm(struct tm * const tmp)
1945 {
1946 	if (tmp != NULL)
1947 		tmp->tm_isdst = 0;
1948 	return time1(tmp, gmtsub, 0L);
1949 }
1950 
1951 time_t
1952 timeoff(struct tm * const tmp, const long offset)
1953 {
1954 	if (tmp != NULL)
1955 		tmp->tm_isdst = 0;
1956 	return time1(tmp, gmtsub, offset);
1957 }
1958 
1959 #ifdef CMUCS
1960 
1961 /*
1962 ** The following is supplied for compatibility with
1963 ** previous versions of the CMUCS runtime library.
1964 */
1965 
1966 long
1967 gtime(struct tm * const tmp)
1968 {
1969 	const time_t	t = mktime(tmp);
1970 
1971 	if (t == WRONG)
1972 		return -1;
1973 	return t;
1974 }
1975 
1976 #endif /* defined CMUCS */
1977 
1978 /*
1979 ** XXX--is the below the right way to conditionalize??
1980 */
1981 
1982 /*
1983 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1984 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1985 ** is not the case if we are accounting for leap seconds.
1986 ** So, we provide the following conversion routines for use
1987 ** when exchanging timestamps with POSIX conforming systems.
1988 */
1989 
1990 static long
1991 leapcorr(time_t *timep)
1992 {
1993 	struct state *		sp;
1994 	struct lsinfo *	lp;
1995 	int			i;
1996 
1997 	sp = lclptr;
1998 	i = sp->leapcnt;
1999 	while (--i >= 0) {
2000 		lp = &sp->lsis[i];
2001 		if (*timep >= lp->ls_trans)
2002 			return lp->ls_corr;
2003 	}
2004 	return 0;
2005 }
2006 
2007 time_t
2008 time2posix(time_t t)
2009 {
2010 	tzset();
2011 	return t - leapcorr(&t);
2012 }
2013 
2014 time_t
2015 posix2time(time_t t)
2016 {
2017 	time_t	x;
2018 	time_t	y;
2019 
2020 	tzset();
2021 	/*
2022 	** For a positive leap second hit, the result
2023 	** is not unique. For a negative leap second
2024 	** hit, the corresponding time doesn't exist,
2025 	** so we return an adjacent second.
2026 	*/
2027 	x = t + leapcorr(&t);
2028 	y = x - leapcorr(&x);
2029 	if (y < t) {
2030 		do {
2031 			x++;
2032 			y = x - leapcorr(&x);
2033 		} while (y < t);
2034 		if (t != y)
2035 			return x - 1;
2036 	} else if (y > t) {
2037 		do {
2038 			--x;
2039 			y = x - leapcorr(&x);
2040 		} while (y > t);
2041 		if (t != y)
2042 			return x + 1;
2043 	}
2044 	return x;
2045 }
2046