xref: /dragonfly/lib/libc/stdtime/localtime.c (revision f746689a)
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** 1996-06-05 by Arthur David Olson.
4 **
5 ** @(#)localtime.c	8.9
6 ** $FreeBSD: src/lib/libc/stdtime/localtime.c,v 1.25.2.2 2002/08/13 16:08:07 bmilekic Exp $
7 ** $DragonFly: src/lib/libc/stdtime/localtime.c,v 1.7 2008/10/19 20:15:58 swildner Exp $
8 */
9 
10 /*
11 ** Leap second handling from Bradley White.
12 ** POSIX-style TZ environment variable handling from Guy Harris.
13 */
14 
15 /*LINTLIBRARY*/
16 
17 #include "namespace.h"
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 
21 #include <fcntl.h>
22 #include <float.h>	/* for FLT_MAX and DBL_MAX */
23 #include <time.h>
24 #include <pthread.h>
25 #include "private.h"
26 #include <un-namespace.h>
27 
28 #include "tzfile.h"
29 
30 #include "libc_private.h"
31 
32 #define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
33 #define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
34 
35 #define _RWLOCK_RDLOCK(x)						\
36 		do {							\
37 			if (__isthreaded) _pthread_rwlock_rdlock(x);	\
38 		} while (0)
39 
40 #define _RWLOCK_WRLOCK(x)						\
41 		do {							\
42 			if (__isthreaded) _pthread_rwlock_wrlock(x);	\
43 		} while (0)
44 
45 #define _RWLOCK_UNLOCK(x)						\
46 		do {							\
47 			if (__isthreaded) _pthread_rwlock_unlock(x);	\
48 		} while (0)
49 
50 #ifndef TZ_ABBR_MAX_LEN
51 #define TZ_ABBR_MAX_LEN	16
52 #endif /* !defined TZ_ABBR_MAX_LEN */
53 
54 #ifndef TZ_ABBR_CHAR_SET
55 #define TZ_ABBR_CHAR_SET \
56 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
57 #endif /* !defined TZ_ABBR_CHAR_SET */
58 
59 #ifndef TZ_ABBR_ERR_CHAR
60 #define TZ_ABBR_ERR_CHAR	'_'
61 #endif /* !defined TZ_ABBR_ERR_CHAR */
62 
63 /*
64 ** Someone might make incorrect use of a time zone abbreviation:
65 **	1.	They might reference tzname[0] before calling tzset (explicitly
66 **		or implicitly).
67 **	2.	They might reference tzname[1] before calling tzset (explicitly
68 **		or implicitly).
69 **	3.	They might reference tzname[1] after setting to a time zone
70 **		in which Daylight Saving Time is never observed.
71 **	4.	They might reference tzname[0] after setting to a time zone
72 **		in which Standard Time is never observed.
73 **	5.	They might reference tm.TM_ZONE after calling offtime.
74 ** What's best to do in the above cases is open to debate;
75 ** for now, we just set things up so that in any of the five cases
76 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
77 ** string "tzname[0] used before set", and similarly for the other cases.
78 ** And another: initialize tzname[0] to "ERA", with an explanation in the
79 ** manual page of what this "time zone abbreviation" means (doing this so
80 ** that tzname[0] has the "normal" length of three characters).
81 */
82 #define WILDABBR	"   "
83 
84 static char		wildabbr[] = WILDABBR;
85 
86 static const char	gmt[] = "UTC";
87 
88 /*
89 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
90 ** We default to US rules as of 1999-08-17.
91 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
92 ** implementation dependent; for historical reasons, US rules are a
93 ** common default.
94 */
95 #ifndef TZDEFRULESTRING
96 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
97 #endif /* !defined TZDEFDST */
98 
99 struct ttinfo {				/* time type information */
100 	long		tt_gmtoff;	/* UTC offset in seconds */
101 	int		tt_isdst;	/* used to set tm_isdst */
102 	int		tt_abbrind;	/* abbreviation list index */
103 	int		tt_ttisstd;	/* TRUE if transition is std time */
104 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
105 };
106 
107 struct lsinfo {				/* leap second information */
108 	time_t		ls_trans;	/* transition time */
109 	long		ls_corr;	/* correction to apply */
110 };
111 
112 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
113 
114 #ifdef TZNAME_MAX
115 #define MY_TZNAME_MAX	TZNAME_MAX
116 #endif /* defined TZNAME_MAX */
117 #ifndef TZNAME_MAX
118 #define MY_TZNAME_MAX	255
119 #endif /* !defined TZNAME_MAX */
120 
121 struct state {
122 	int		leapcnt;
123 	int		timecnt;
124 	int		typecnt;
125 	int		charcnt;
126 	int		goback;
127 	int		goahead;
128 	time_t		ats[TZ_MAX_TIMES];
129 	unsigned char	types[TZ_MAX_TIMES];
130 	struct ttinfo	ttis[TZ_MAX_TYPES];
131 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
132 				(2 * (MY_TZNAME_MAX + 1)))];
133 	struct lsinfo	lsis[TZ_MAX_LEAPS];
134 };
135 
136 struct rule {
137 	int		r_type;		/* type of rule--see below */
138 	int		r_day;		/* day number of rule */
139 	int		r_week;		/* week number of rule */
140 	int		r_mon;		/* month number of rule */
141 	long		r_time;		/* transition time of rule */
142 };
143 
144 #define JULIAN_DAY		0	/* Jn - Julian day */
145 #define DAY_OF_YEAR		1	/* n - day of year */
146 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
147 
148 /*
149 ** Prototypes for static functions.
150 */
151 
152 static long		detzcode(const char * codep);
153 static time_t		detzcode64(const char * codep);
154 static int		differ_by_repeat(time_t t1, time_t t0);
155 static const char *	getzname(const char * strp);
156 static const char *	getqzname(const char * strp, const int delim);
157 static const char *	getnum(const char * strp, int * nump, int min,
158 				int max);
159 static const char *	getsecs(const char * strp, long * secsp);
160 static const char *	getoffset(const char * strp, long * offsetp);
161 static const char *	getrule(const char * strp, struct rule * rulep);
162 static void		gmtload(struct state * sp);
163 static struct tm *	gmtsub(const time_t * timep, long offset,
164 				struct tm * tmp);
165 static struct tm *	localsub(const time_t * timep, long offset,
166 				struct tm * tmp);
167 static int		increment_overflow(int * number, int delta);
168 static int		leaps_thru_end_of(int y);
169 static int		long_increment_overflow(long * number, int delta);
170 static int		long_normalize_overflow(long * tensptr,
171 				int * unitsptr, int base);
172 static int		normalize_overflow(int * tensptr, int * unitsptr,
173 				int base);
174 static void		settzname(void);
175 static time_t		time1(struct tm * tmp,
176 				struct tm * (*funcp)(const time_t *,
177 				long, struct tm *),
178 				long offset);
179 static time_t		time2(struct tm *tmp,
180 				struct tm * (*funcp)(const time_t *,
181 				long, struct tm*),
182 				long offset, int * okayp);
183 static time_t		time2sub(struct tm *tmp,
184 				struct tm * (*funcp)(const time_t *,
185 				long, struct tm*),
186 				long offset, int * okayp, int do_norm_secs);
187 static struct tm *	timesub(const time_t * timep, long offset,
188 				const struct state * sp, struct tm * tmp);
189 static int		tmcomp(const struct tm * atmp,
190 				const struct tm * btmp);
191 static time_t		transtime(time_t janfirst, int year,
192 				const struct rule * rulep, long offset);
193 static int		typesequiv(const struct state * sp, int a, int b);
194 static int		tzload(const char * name, struct state * sp,
195 				int doextend);
196 static int		tzparse(const char * name, struct state * sp,
197 				int lastditch);
198 
199 static struct state	lclmem;
200 static struct state	gmtmem;
201 #define lclptr		(&lclmem)
202 #define gmtptr		(&gmtmem)
203 
204 #ifndef TZ_STRLEN_MAX
205 #define TZ_STRLEN_MAX 255
206 #endif /* !defined TZ_STRLEN_MAX */
207 
208 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
209 static int		lcl_is_set;
210 static int		gmt_is_set;
211 static pthread_rwlock_t	lcl_rwlock = PTHREAD_RWLOCK_INITIALIZER;
212 static pthread_mutex_t	gmt_mutex = PTHREAD_MUTEX_INITIALIZER;
213 
214 char *			tzname[2] = {
215 	wildabbr,
216 	wildabbr
217 };
218 
219 /*
220 ** Section 4.12.3 of X3.159-1989 requires that
221 **	Except for the strftime function, these functions [asctime,
222 **	ctime, gmtime, localtime] return values in one of two static
223 **	objects: a broken-down time structure and an array of char.
224 ** Thanks to Paul Eggert for noting this.
225 */
226 
227 static struct tm	tm;
228 
229 time_t			timezone = 0;
230 int			daylight = 0;
231 
232 static long
233 detzcode(const char * const codep)
234 {
235 	long	result;
236 	int	i;
237 
238 	result = (codep[0] & 0x80) ? ~0L : 0;
239 	for (i = 0; i < 4; ++i)
240 		result = (result << 8) | (codep[i] & 0xff);
241 	return result;
242 }
243 
244 static time_t
245 detzcode64(const char * const codep)
246 {
247 	time_t	result;
248 	int	i;
249 
250 	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
251 	for (i = 0; i < 8; ++i)
252 		result = result * 256 + (codep[i] & 0xff);
253 	return result;
254 }
255 
256 static void
257 settzname(void)
258 {
259 	struct state * const	sp = lclptr;
260 	int			i;
261 
262 	tzname[0] = wildabbr;
263 	tzname[1] = wildabbr;
264 	daylight = 0;
265 	timezone = 0;
266 
267 	for (i = 0; i < sp->typecnt; ++i) {
268 		const struct ttinfo * const	ttisp = &sp->ttis[i];
269 
270 		tzname[ttisp->tt_isdst] =
271 			&sp->chars[ttisp->tt_abbrind];
272 		if (ttisp->tt_isdst)
273 			daylight = 1;
274 		if (i == 0 || !ttisp->tt_isdst)
275 			timezone = -(ttisp->tt_gmtoff);
276 	}
277 	/*
278 	** And to get the latest zone names into tzname. . .
279 	*/
280 	for (i = 0; i < sp->timecnt; ++i) {
281 		const struct ttinfo * const	ttisp =
282 							&sp->ttis[
283 								sp->types[i]];
284 
285 		tzname[ttisp->tt_isdst] =
286 			&sp->chars[ttisp->tt_abbrind];
287 	}
288 	/*
289 	** Finally, scrub the abbreviations.
290 	** First, replace bogus characters.
291 	*/
292 	for (i = 0; i < sp->charcnt; ++i)
293 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
294 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
295 	/*
296 	** Second, truncate long abbreviations.
297 	*/
298 	for (i = 0; i < sp->typecnt; ++i) {
299 		const struct ttinfo * const	ttisp = &sp->ttis[i];
300 		char *				cp = &sp->chars[ttisp->tt_abbrind];
301 
302 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
303 			strcmp(cp, GRANDPARENTED) != 0)
304 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
305 	}
306 }
307 
308 static int
309 differ_by_repeat(const time_t t1, const time_t t0)
310 {
311 	if (TYPE_INTEGRAL(time_t) &&
312 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
313 			return 0;
314 	return t1 - t0 == SECSPERREPEAT;
315 }
316 
317 static int
318 tzload(const char *name, struct state * const sp, const int doextend)
319 {
320 	const char *		p;
321 	int			i;
322 	int			fid;
323 	int			stored;
324 	int			nread;
325 	union {
326 		struct tzhead	tzhead;
327 		char		buf[2 * sizeof(struct tzhead) +
328 					2 * sizeof *sp +
329 					4 * TZ_MAX_TIMES];
330 	} u;
331 
332 	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
333 	if (name != NULL && issetugid() != 0)
334 		if ((name[0] == ':' && name[1] == '/') ||
335 		    name[0] == '/' || strchr(name, '.'))
336 			name = NULL;
337 	if (name == NULL && (name = TZDEFAULT) == NULL)
338 		return -1;
339 	{
340 		int	doaccess;
341 		struct stat	stab;
342 		/*
343 		** Section 4.9.1 of the C standard says that
344 		** "FILENAME_MAX expands to an integral constant expression
345 		** that is the size needed for an array of char large enough
346 		** to hold the longest file name string that the implementation
347 		** guarantees can be opened."
348 		*/
349 		char		fullname[FILENAME_MAX + 1];
350 
351 		if (name[0] == ':')
352 			++name;
353 		doaccess = name[0] == '/';
354 		if (!doaccess) {
355 			if ((p = TZDIR) == NULL)
356 				return -1;
357 			if ((strlen(p) + 1 + strlen(name) + 1) >= sizeof fullname)
358 				return -1;
359 			strcpy(fullname, p);
360 			strcat(fullname, "/");
361 			strcat(fullname, name);
362 			/*
363 			** Set doaccess if '.' (as in "../") shows up in name.
364 			*/
365 			if (strchr(name, '.') != NULL)
366 				doaccess = TRUE;
367 			name = fullname;
368 		}
369 		if (doaccess && access(name, R_OK) != 0)
370 			return -1;
371 		if ((fid = _open(name, O_RDONLY)) == -1)
372 			return -1;
373 		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
374 			_close(fid);
375 			return -1;
376 		}
377 	}
378 	nread = read(fid, u.buf, sizeof u.buf);
379 	if (close(fid) < 0 || nread <= 0)
380 		return -1;
381 	for (stored = 4; stored <= 8; stored *= 2) {
382 		int		ttisstdcnt;
383 		int		ttisgmtcnt;
384 
385 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
386 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
387 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
388 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
389 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
390 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
391 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
392 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
393 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
394 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
395 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
396 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
397 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
398 				return -1;
399 		if (nread - (p - u.buf) <
400 			sp->timecnt * stored +		/* ats */
401 			sp->timecnt +			/* types */
402 			sp->typecnt * 6 +		/* ttinfos */
403 			sp->charcnt +			/* chars */
404 			sp->leapcnt * (stored + 4) +	/* lsinfos */
405 			ttisstdcnt +			/* ttisstds */
406 			ttisgmtcnt)			/* ttisgmts */
407 				return -1;
408 		for (i = 0; i < sp->timecnt; ++i) {
409 			sp->ats[i] = (stored == 4) ?
410 				detzcode(p) : detzcode64(p);
411 			p += stored;
412 		}
413 		for (i = 0; i < sp->timecnt; ++i) {
414 			sp->types[i] = (unsigned char) *p++;
415 			if (sp->types[i] >= sp->typecnt)
416 				return -1;
417 		}
418 		for (i = 0; i < sp->typecnt; ++i) {
419 			struct ttinfo *	ttisp;
420 
421 			ttisp = &sp->ttis[i];
422 			ttisp->tt_gmtoff = detzcode(p);
423 			p += 4;
424 			ttisp->tt_isdst = (unsigned char) *p++;
425 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
426 				return -1;
427 			ttisp->tt_abbrind = (unsigned char) *p++;
428 			if (ttisp->tt_abbrind < 0 ||
429 				ttisp->tt_abbrind > sp->charcnt)
430 					return -1;
431 		}
432 		for (i = 0; i < sp->charcnt; ++i)
433 			sp->chars[i] = *p++;
434 		sp->chars[i] = '\0';	/* ensure '\0' at end */
435 		for (i = 0; i < sp->leapcnt; ++i) {
436 			struct lsinfo *	lsisp;
437 
438 			lsisp = &sp->lsis[i];
439 			lsisp->ls_trans = (stored == 4) ?
440 				detzcode(p) : detzcode64(p);
441 			p += stored;
442 			lsisp->ls_corr = detzcode(p);
443 			p += 4;
444 		}
445 		for (i = 0; i < sp->typecnt; ++i) {
446 			struct ttinfo *	ttisp;
447 
448 			ttisp = &sp->ttis[i];
449 			if (ttisstdcnt == 0)
450 				ttisp->tt_ttisstd = FALSE;
451 			else {
452 				ttisp->tt_ttisstd = *p++;
453 				if (ttisp->tt_ttisstd != TRUE &&
454 					ttisp->tt_ttisstd != FALSE)
455 						return -1;
456 			}
457 		}
458 		for (i = 0; i < sp->typecnt; ++i) {
459 			struct ttinfo *	ttisp;
460 
461 			ttisp = &sp->ttis[i];
462 			if (ttisgmtcnt == 0)
463 				ttisp->tt_ttisgmt = FALSE;
464 			else {
465 				ttisp->tt_ttisgmt = *p++;
466 				if (ttisp->tt_ttisgmt != TRUE &&
467 					ttisp->tt_ttisgmt != FALSE)
468 						return -1;
469 			}
470 		}
471 		/*
472 		** Out-of-sort ats should mean we're running on a
473 		** signed time_t system but using a data file with
474 		** unsigned values (or vice versa).
475 		*/
476 		for (i = 0; i < sp->timecnt - 2; ++i)
477 			if (sp->ats[i] > sp->ats[i + 1]) {
478 				++i;
479 				if (TYPE_SIGNED(time_t)) {
480 					/*
481 					** Ignore the end (easy).
482 					*/
483 					sp->timecnt = i;
484 				} else {
485 					/*
486 					** Ignore the beginning (harder).
487 					*/
488 					int	j;
489 
490 					for (j = 0; j + i < sp->timecnt; ++j) {
491 						sp->ats[j] = sp->ats[j + i];
492 						sp->types[j] = sp->types[j + i];
493 					}
494 					sp->timecnt = j;
495 				}
496 				break;
497 			}
498 		/*
499 		** If this is an old file, we're done.
500 		*/
501 		if (u.tzhead.tzh_version[0] == '\0')
502 			break;
503 		nread -= p - u.buf;
504 		for (i = 0; i < nread; ++i)
505 			u.buf[i] = p[i];
506 		/*
507 		** If this is a narrow integer time_t system, we're done.
508 		*/
509 		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
510 			break;
511 	}
512 	if (doextend && nread > 2 &&
513 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
514 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
515 			struct state	ts;
516 			int		result;
517 
518 			u.buf[nread - 1] = '\0';
519 			result = tzparse(&u.buf[1], &ts, FALSE);
520 			if (result == 0 && ts.typecnt == 2 &&
521 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
522 					for (i = 0; i < 2; ++i)
523 						ts.ttis[i].tt_abbrind +=
524 							sp->charcnt;
525 					for (i = 0; i < ts.charcnt; ++i)
526 						sp->chars[sp->charcnt++] =
527 							ts.chars[i];
528 					i = 0;
529 					while (i < ts.timecnt &&
530 						ts.ats[i] <=
531 						sp->ats[sp->timecnt - 1])
532 							++i;
533 					while (i < ts.timecnt &&
534 					    sp->timecnt < TZ_MAX_TIMES) {
535 						sp->ats[sp->timecnt] =
536 							ts.ats[i];
537 						sp->types[sp->timecnt] =
538 							sp->typecnt +
539 							ts.types[i];
540 						++sp->timecnt;
541 						++i;
542 					}
543 					sp->ttis[sp->typecnt++] = ts.ttis[0];
544 					sp->ttis[sp->typecnt++] = ts.ttis[1];
545 			}
546 	}
547 	sp->goback = sp->goahead = FALSE;
548 	if (sp->timecnt > 1) {
549 		for (i = 1; i < sp->timecnt; ++i)
550 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
551 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
552 					sp->goback = TRUE;
553 					break;
554 				}
555 		for (i = sp->timecnt - 2; i >= 0; --i)
556 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
557 				sp->types[i]) &&
558 				differ_by_repeat(sp->ats[sp->timecnt - 1],
559 				sp->ats[i])) {
560 					sp->goahead = TRUE;
561 					break;
562 		}
563 	}
564 	return 0;
565 }
566 
567 static int
568 typesequiv(const struct state * const sp, const int a, const int b)
569 {
570 	int	result;
571 
572 	if (sp == NULL ||
573 		a < 0 || a >= sp->typecnt ||
574 		b < 0 || b >= sp->typecnt)
575 			result = FALSE;
576 	else {
577 		const struct ttinfo *	ap = &sp->ttis[a];
578 		const struct ttinfo *	bp = &sp->ttis[b];
579 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
580 			ap->tt_isdst == bp->tt_isdst &&
581 			ap->tt_ttisstd == bp->tt_ttisstd &&
582 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
583 			strcmp(&sp->chars[ap->tt_abbrind],
584 			&sp->chars[bp->tt_abbrind]) == 0;
585 	}
586 	return result;
587 }
588 
589 static const int	mon_lengths[2][MONSPERYEAR] = {
590 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
591 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
592 };
593 
594 static const int	year_lengths[2] = {
595 	DAYSPERNYEAR, DAYSPERLYEAR
596 };
597 
598 /*
599 ** Given a pointer into a time zone string, scan until a character that is not
600 ** a valid character in a zone name is found. Return a pointer to that
601 ** character.
602 */
603 
604 static const char *
605 getzname(const char *strp)
606 {
607 	char	c;
608 
609 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
610 		c != '+')
611 			++strp;
612 	return strp;
613 }
614 
615 /*
616 ** Given a pointer into an extended time zone string, scan until the ending
617 ** delimiter of the zone name is located. Return a pointer to the delimiter.
618 **
619 ** As with getzname above, the legal character set is actually quite
620 ** restricted, with other characters producing undefined results.
621 ** We don't do any checking here; checking is done later in common-case code.
622 */
623 
624 static const char *
625 getqzname(const char *strp, const int delim)
626 {
627 	int	c;
628 
629 	while ((c = *strp) != '\0' && c != delim)
630 		++strp;
631 	return strp;
632 }
633 
634 /*
635 ** Given a pointer into a time zone string, extract a number from that string.
636 ** Check that the number is within a specified range; if it is not, return
637 ** NULL.
638 ** Otherwise, return a pointer to the first character not part of the number.
639 */
640 
641 static const char *
642 getnum(const char *strp, int * const nump, const int min, const int max)
643 {
644 	char	c;
645 	int	num;
646 
647 	if (strp == NULL || !is_digit(c = *strp))
648 		return NULL;
649 	num = 0;
650 	do {
651 		num = num * 10 + (c - '0');
652 		if (num > max)
653 			return NULL;	/* illegal value */
654 		c = *++strp;
655 	} while (is_digit(c));
656 	if (num < min)
657 		return NULL;		/* illegal value */
658 	*nump = num;
659 	return strp;
660 }
661 
662 /*
663 ** Given a pointer into a time zone string, extract a number of seconds,
664 ** in hh[:mm[:ss]] form, from the string.
665 ** If any error occurs, return NULL.
666 ** Otherwise, return a pointer to the first character not part of the number
667 ** of seconds.
668 */
669 
670 static const char *
671 getsecs(const char *strp, long * const secsp)
672 {
673 	int	num;
674 
675 	/*
676 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
677 	** "M10.4.6/26", which does not conform to Posix,
678 	** but which specifies the equivalent of
679 	** ``02:00 on the first Sunday on or after 23 Oct''.
680 	*/
681 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
682 	if (strp == NULL)
683 		return NULL;
684 	*secsp = num * (long) SECSPERHOUR;
685 	if (*strp == ':') {
686 		++strp;
687 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
688 		if (strp == NULL)
689 			return NULL;
690 		*secsp += num * SECSPERMIN;
691 		if (*strp == ':') {
692 			++strp;
693 			/* `SECSPERMIN' allows for leap seconds. */
694 			strp = getnum(strp, &num, 0, SECSPERMIN);
695 			if (strp == NULL)
696 				return NULL;
697 			*secsp += num;
698 		}
699 	}
700 	return strp;
701 }
702 
703 /*
704 ** Given a pointer into a time zone string, extract an offset, in
705 ** [+-]hh[:mm[:ss]] form, from the string.
706 ** If any error occurs, return NULL.
707 ** Otherwise, return a pointer to the first character not part of the time.
708 */
709 
710 static const char *
711 getoffset(const char *strp, long * const offsetp)
712 {
713 	int	neg = 0;
714 
715 	if (*strp == '-') {
716 		neg = 1;
717 		++strp;
718 	} else if (*strp == '+')
719 		++strp;
720 	strp = getsecs(strp, offsetp);
721 	if (strp == NULL)
722 		return NULL;		/* illegal time */
723 	if (neg)
724 		*offsetp = -*offsetp;
725 	return strp;
726 }
727 
728 /*
729 ** Given a pointer into a time zone string, extract a rule in the form
730 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
731 ** If a valid rule is not found, return NULL.
732 ** Otherwise, return a pointer to the first character not part of the rule.
733 */
734 
735 static const char *
736 getrule(const char *strp, struct rule * const rulep)
737 {
738 	if (*strp == 'J') {
739 		/*
740 		** Julian day.
741 		*/
742 		rulep->r_type = JULIAN_DAY;
743 		++strp;
744 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
745 	} else if (*strp == 'M') {
746 		/*
747 		** Month, week, day.
748 		*/
749 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
750 		++strp;
751 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
752 		if (strp == NULL)
753 			return NULL;
754 		if (*strp++ != '.')
755 			return NULL;
756 		strp = getnum(strp, &rulep->r_week, 1, 5);
757 		if (strp == NULL)
758 			return NULL;
759 		if (*strp++ != '.')
760 			return NULL;
761 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
762 	} else if (is_digit(*strp)) {
763 		/*
764 		** Day of year.
765 		*/
766 		rulep->r_type = DAY_OF_YEAR;
767 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
768 	} else	return NULL;		/* invalid format */
769 	if (strp == NULL)
770 		return NULL;
771 	if (*strp == '/') {
772 		/*
773 		** Time specified.
774 		*/
775 		++strp;
776 		strp = getsecs(strp, &rulep->r_time);
777 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
778 	return strp;
779 }
780 
781 /*
782 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
783 ** year, a rule, and the offset from UTC at the time that rule takes effect,
784 ** calculate the Epoch-relative time that rule takes effect.
785 */
786 
787 static time_t
788 transtime(const time_t janfirst, const int year,
789 	  const struct rule * const rulep, const long offset)
790 {
791 	int	leapyear;
792 	time_t	value;
793 	int	i;
794 	int		d, m1, yy0, yy1, yy2, dow;
795 
796 	INITIALIZE(value);
797 	leapyear = isleap(year);
798 	switch (rulep->r_type) {
799 
800 	case JULIAN_DAY:
801 		/*
802 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
803 		** years.
804 		** In non-leap years, or if the day number is 59 or less, just
805 		** add SECSPERDAY times the day number-1 to the time of
806 		** January 1, midnight, to get the day.
807 		*/
808 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
809 		if (leapyear && rulep->r_day >= 60)
810 			value += SECSPERDAY;
811 		break;
812 
813 	case DAY_OF_YEAR:
814 		/*
815 		** n - day of year.
816 		** Just add SECSPERDAY times the day number to the time of
817 		** January 1, midnight, to get the day.
818 		*/
819 		value = janfirst + rulep->r_day * SECSPERDAY;
820 		break;
821 
822 	case MONTH_NTH_DAY_OF_WEEK:
823 		/*
824 		** Mm.n.d - nth "dth day" of month m.
825 		*/
826 		value = janfirst;
827 		for (i = 0; i < rulep->r_mon - 1; ++i)
828 			value += mon_lengths[leapyear][i] * SECSPERDAY;
829 
830 		/*
831 		** Use Zeller's Congruence to get day-of-week of first day of
832 		** month.
833 		*/
834 		m1 = (rulep->r_mon + 9) % 12 + 1;
835 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
836 		yy1 = yy0 / 100;
837 		yy2 = yy0 % 100;
838 		dow = ((26 * m1 - 2) / 10 +
839 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
840 		if (dow < 0)
841 			dow += DAYSPERWEEK;
842 
843 		/*
844 		** "dow" is the day-of-week of the first day of the month. Get
845 		** the day-of-month (zero-origin) of the first "dow" day of the
846 		** month.
847 		*/
848 		d = rulep->r_day - dow;
849 		if (d < 0)
850 			d += DAYSPERWEEK;
851 		for (i = 1; i < rulep->r_week; ++i) {
852 			if (d + DAYSPERWEEK >=
853 				mon_lengths[leapyear][rulep->r_mon - 1])
854 					break;
855 			d += DAYSPERWEEK;
856 		}
857 
858 		/*
859 		** "d" is the day-of-month (zero-origin) of the day we want.
860 		*/
861 		value += d * SECSPERDAY;
862 		break;
863 	}
864 
865 	/*
866 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
867 	** question. To get the Epoch-relative time of the specified local
868 	** time on that day, add the transition time and the current offset
869 	** from UTC.
870 	*/
871 	return value + rulep->r_time + offset;
872 }
873 
874 /*
875 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
876 ** appropriate.
877 */
878 
879 static int
880 tzparse(const char *name, struct state * const sp, const int lastditch)
881 {
882 	const char *			stdname;
883 	const char *			dstname;
884 	size_t				stdlen;
885 	size_t				dstlen;
886 	long				stdoffset;
887 	long				dstoffset;
888 	time_t *		atp;
889 	unsigned char *	typep;
890 	char *			cp;
891 	int			load_result;
892 
893 	INITIALIZE(dstname);
894 	stdname = name;
895 	if (lastditch) {
896 		stdlen = strlen(name);	/* length of standard zone name */
897 		name += stdlen;
898 		if (stdlen >= sizeof sp->chars)
899 			stdlen = (sizeof sp->chars) - 1;
900 		stdoffset = 0;
901 	} else {
902 		if (*name == '<') {
903 			name++;
904 			stdname = name;
905 			name = getqzname(name, '>');
906 			if (*name != '>')
907 				return (-1);
908 			stdlen = name - stdname;
909 			name++;
910 		} else {
911 			name = getzname(name);
912 			stdlen = name - stdname;
913 		}
914 		if (*name == '\0')
915 			return -1;
916 		name = getoffset(name, &stdoffset);
917 		if (name == NULL)
918 			return -1;
919 	}
920 	load_result = tzload(TZDEFRULES, sp, FALSE);
921 	if (load_result != 0)
922 		sp->leapcnt = 0;		/* so, we're off a little */
923 	if (*name != '\0') {
924 		if (*name == '<') {
925 			dstname = ++name;
926 			name = getqzname(name, '>');
927 			if (*name != '>')
928 				return -1;
929 			dstlen = name - dstname;
930 			name++;
931 		} else {
932 			dstname = name;
933 			name = getzname(name);
934 			dstlen = name - dstname; /* length of DST zone name */
935 		}
936 		if (*name != '\0' && *name != ',' && *name != ';') {
937 			name = getoffset(name, &dstoffset);
938 			if (name == NULL)
939 				return -1;
940 		} else	dstoffset = stdoffset - SECSPERHOUR;
941 		if (*name == '\0' && load_result != 0)
942 			name = TZDEFRULESTRING;
943 		if (*name == ',' || *name == ';') {
944 			struct rule	start;
945 			struct rule	end;
946 			int	year;
947 			time_t	janfirst;
948 			time_t		starttime;
949 			time_t		endtime;
950 
951 			++name;
952 			if ((name = getrule(name, &start)) == NULL)
953 				return -1;
954 			if (*name++ != ',')
955 				return -1;
956 			if ((name = getrule(name, &end)) == NULL)
957 				return -1;
958 			if (*name != '\0')
959 				return -1;
960 			sp->typecnt = 2;	/* standard time and DST */
961 			/*
962 			** Two transitions per year, from EPOCH_YEAR forward.
963 			*/
964 			sp->ttis[0].tt_gmtoff = -dstoffset;
965 			sp->ttis[0].tt_isdst = 1;
966 			sp->ttis[0].tt_abbrind = stdlen + 1;
967 			sp->ttis[1].tt_gmtoff = -stdoffset;
968 			sp->ttis[1].tt_isdst = 0;
969 			sp->ttis[1].tt_abbrind = 0;
970 			atp = sp->ats;
971 			typep = sp->types;
972 			janfirst = 0;
973 			sp->timecnt = 0;
974 			for (year = EPOCH_YEAR;
975 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
976 			    ++year) {
977 			    	time_t	newfirst;
978 
979 				starttime = transtime(janfirst, year, &start,
980 					stdoffset);
981 				endtime = transtime(janfirst, year, &end,
982 					dstoffset);
983 				if (starttime > endtime) {
984 					*atp++ = endtime;
985 					*typep++ = 1;	/* DST ends */
986 					*atp++ = starttime;
987 					*typep++ = 0;	/* DST begins */
988 				} else {
989 					*atp++ = starttime;
990 					*typep++ = 0;	/* DST begins */
991 					*atp++ = endtime;
992 					*typep++ = 1;	/* DST ends */
993 				}
994 				sp->timecnt += 2;
995 				newfirst = janfirst;
996 				newfirst += year_lengths[isleap(year)] *
997 					SECSPERDAY;
998 				if (newfirst <= janfirst)
999 					break;
1000 				janfirst = newfirst;
1001 			}
1002 		} else {
1003 			long	theirstdoffset;
1004 			long	theirdstoffset;
1005 			long	theiroffset;
1006 			int	isdst;
1007 			int	i;
1008 			int	j;
1009 
1010 			if (*name != '\0')
1011 				return -1;
1012 			/*
1013 			** Initial values of theirstdoffset and theirdstoffset.
1014 			*/
1015 			theirstdoffset = 0;
1016 			for (i = 0; i < sp->timecnt; ++i) {
1017 				j = sp->types[i];
1018 				if (!sp->ttis[j].tt_isdst) {
1019 					theirstdoffset =
1020 						-sp->ttis[j].tt_gmtoff;
1021 					break;
1022 				}
1023 			}
1024 			theirdstoffset = 0;
1025 			for (i = 0; i < sp->timecnt; ++i) {
1026 				j = sp->types[i];
1027 				if (sp->ttis[j].tt_isdst) {
1028 					theirdstoffset =
1029 						-sp->ttis[j].tt_gmtoff;
1030 					break;
1031 				}
1032 			}
1033 			/*
1034 			** Initially we're assumed to be in standard time.
1035 			*/
1036 			isdst = FALSE;
1037 			theiroffset = theirstdoffset;
1038 			/*
1039 			** Now juggle transition times and types
1040 			** tracking offsets as you do.
1041 			*/
1042 			for (i = 0; i < sp->timecnt; ++i) {
1043 				j = sp->types[i];
1044 				sp->types[i] = sp->ttis[j].tt_isdst;
1045 				if (sp->ttis[j].tt_ttisgmt) {
1046 					/* No adjustment to transition time */
1047 				} else {
1048 					/*
1049 					** If summer time is in effect, and the
1050 					** transition time was not specified as
1051 					** standard time, add the summer time
1052 					** offset to the transition time;
1053 					** otherwise, add the standard time
1054 					** offset to the transition time.
1055 					*/
1056 					/*
1057 					** Transitions from DST to DDST
1058 					** will effectively disappear since
1059 					** POSIX provides for only one DST
1060 					** offset.
1061 					*/
1062 					if (isdst && !sp->ttis[j].tt_ttisstd) {
1063 						sp->ats[i] += dstoffset -
1064 							theirdstoffset;
1065 					} else {
1066 						sp->ats[i] += stdoffset -
1067 							theirstdoffset;
1068 					}
1069 				}
1070 				theiroffset = -sp->ttis[j].tt_gmtoff;
1071 				if (sp->ttis[j].tt_isdst)
1072 					theirdstoffset = theiroffset;
1073 				else	theirstdoffset = theiroffset;
1074 			}
1075 			/*
1076 			** Finally, fill in ttis.
1077 			** ttisstd and ttisgmt need not be handled.
1078 			*/
1079 			sp->ttis[0].tt_gmtoff = -stdoffset;
1080 			sp->ttis[0].tt_isdst = FALSE;
1081 			sp->ttis[0].tt_abbrind = 0;
1082 			sp->ttis[1].tt_gmtoff = -dstoffset;
1083 			sp->ttis[1].tt_isdst = TRUE;
1084 			sp->ttis[1].tt_abbrind = stdlen + 1;
1085 			sp->typecnt = 2;
1086 		}
1087 	} else {
1088 		dstlen = 0;
1089 		sp->typecnt = 1;		/* only standard time */
1090 		sp->timecnt = 0;
1091 		sp->ttis[0].tt_gmtoff = -stdoffset;
1092 		sp->ttis[0].tt_isdst = 0;
1093 		sp->ttis[0].tt_abbrind = 0;
1094 	}
1095 	sp->charcnt = stdlen + 1;
1096 	if (dstlen != 0)
1097 		sp->charcnt += dstlen + 1;
1098 	if ((size_t) sp->charcnt > sizeof sp->chars)
1099 		return -1;
1100 	cp = sp->chars;
1101 	strncpy(cp, stdname, stdlen);
1102 	cp += stdlen;
1103 	*cp++ = '\0';
1104 	if (dstlen != 0) {
1105 		strncpy(cp, dstname, dstlen);
1106 		*(cp + dstlen) = '\0';
1107 	}
1108 	return 0;
1109 }
1110 
1111 static void
1112 gmtload(struct state * const sp)
1113 {
1114 	if (tzload(gmt, sp, TRUE) != 0)
1115 		tzparse(gmt, sp, TRUE);
1116 }
1117 
1118 static void
1119 tzsetwall_basic(int rdlocked)
1120 {
1121 	if (!rdlocked)
1122 		_RWLOCK_RDLOCK(&lcl_rwlock);
1123 	if (lcl_is_set < 0) {
1124 		if (!rdlocked)
1125 			_RWLOCK_UNLOCK(&lcl_rwlock);
1126 		return;
1127 	}
1128 	_RWLOCK_UNLOCK(&lcl_rwlock);
1129 
1130 	_RWLOCK_WRLOCK(&lcl_rwlock);
1131 	lcl_is_set = -1;
1132 
1133 	if (tzload(NULL, lclptr, TRUE) != 0)
1134 		gmtload(lclptr);
1135 	settzname();
1136 	_RWLOCK_UNLOCK(&lcl_rwlock);
1137 
1138 	if (rdlocked)
1139 		_RWLOCK_RDLOCK(&lcl_rwlock);
1140 }
1141 
1142 void
1143 tzsetwall(void)
1144 {
1145 	tzsetwall_basic(0);
1146 }
1147 
1148 static void
1149 tzset_basic(int rdlocked)
1150 {
1151 	const char *	name;
1152 
1153 	name = getenv("TZ");
1154 	if (name == NULL) {
1155 		tzsetwall_basic(rdlocked);
1156 		return;
1157 	}
1158 
1159 	if (!rdlocked)
1160 		_RWLOCK_RDLOCK(&lcl_rwlock);
1161 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) {
1162 		if (!rdlocked)
1163 			_RWLOCK_UNLOCK(&lcl_rwlock);
1164 		return;
1165 	}
1166 	_RWLOCK_UNLOCK(&lcl_rwlock);
1167 
1168 	_RWLOCK_WRLOCK(&lcl_rwlock);
1169 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
1170 	if (lcl_is_set)
1171 		strcpy(lcl_TZname, name);
1172 
1173 	if (*name == '\0') {
1174 		/*
1175 		** User wants it fast rather than right.
1176 		*/
1177 		lclptr->leapcnt = 0;		/* so, we're off a little */
1178 		lclptr->timecnt = 0;
1179 		lclptr->typecnt = 0;
1180 		lclptr->ttis[0].tt_isdst = 0;
1181 		lclptr->ttis[0].tt_gmtoff = 0;
1182 		lclptr->ttis[0].tt_abbrind = 0;
1183 		strcpy(lclptr->chars, gmt);
1184 	} else if (tzload(name, lclptr, TRUE) != 0)
1185 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1186 			gmtload(lclptr);
1187 	settzname();
1188 	_RWLOCK_UNLOCK(&lcl_rwlock);
1189 
1190 	if (rdlocked)
1191 		_RWLOCK_RDLOCK(&lcl_rwlock);
1192 }
1193 
1194 void
1195 tzset(void)
1196 {
1197 	tzset_basic(0);
1198 }
1199 
1200 /*
1201 ** The easy way to behave "as if no library function calls" localtime
1202 ** is to not call it--so we drop its guts into "localsub", which can be
1203 ** freely called. (And no, the PANS doesn't require the above behavior--
1204 ** but it *is* desirable.)
1205 **
1206 ** The unused offset argument is for the benefit of mktime variants.
1207 */
1208 
1209 /*ARGSUSED*/
1210 static struct tm *
1211 localsub(const time_t * const timep, const long offset __unused,
1212 	 struct tm * const tmp)
1213 {
1214 	struct state *		sp;
1215 	const struct ttinfo *	ttisp;
1216 	int			i;
1217 	struct tm *		result;
1218 	const time_t		t = *timep;
1219 
1220 	sp = lclptr;
1221 
1222 	if ((sp->goback && t < sp->ats[0]) ||
1223 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1224 			time_t		newt = t;
1225 			time_t		seconds;
1226 			time_t		tcycles;
1227 			int_fast64_t	icycles;
1228 
1229 			if (t < sp->ats[0])
1230 				seconds = sp->ats[0] - t;
1231 			else	seconds = t - sp->ats[sp->timecnt - 1];
1232 			--seconds;
1233 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
1234 			++tcycles;
1235 			icycles = tcycles;
1236 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
1237 				return NULL;
1238 			seconds = icycles;
1239 			seconds *= YEARSPERREPEAT;
1240 			seconds *= AVGSECSPERYEAR;
1241 			if (t < sp->ats[0])
1242 				newt += seconds;
1243 			else	newt -= seconds;
1244 			if (newt < sp->ats[0] ||
1245 				newt > sp->ats[sp->timecnt - 1])
1246 					return NULL;	/* "cannot happen" */
1247 			result = localsub(&newt, offset, tmp);
1248 			if (result == tmp) {
1249 				time_t	newy;
1250 
1251 				newy = tmp->tm_year;
1252 				if (t < sp->ats[0])
1253 					newy -= icycles * YEARSPERREPEAT;
1254 				else	newy += icycles * YEARSPERREPEAT;
1255 				tmp->tm_year = newy;
1256 				if (tmp->tm_year != newy)
1257 					return NULL;
1258 			}
1259 			return result;
1260 	}
1261 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1262 		i = 0;
1263 		while (sp->ttis[i].tt_isdst)
1264 			if (++i >= sp->typecnt) {
1265 				i = 0;
1266 				break;
1267 			}
1268 	} else {
1269 		int	lo = 1;
1270 		int	hi = sp->timecnt;
1271 
1272 		while (lo < hi) {
1273 			int	mid = (lo + hi) >> 1;
1274 
1275 			if (t < sp->ats[mid])
1276 				hi = mid;
1277 			else	lo = mid + 1;
1278 		}
1279 		i = (int) sp->types[lo - 1];
1280 	}
1281 	ttisp = &sp->ttis[i];
1282 	/*
1283 	** To get (wrong) behavior that's compatible with System V Release 2.0
1284 	** you'd replace the statement below with
1285 	**	t += ttisp->tt_gmtoff;
1286 	**	timesub(&t, 0L, sp, tmp);
1287 	*/
1288 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1289 	tmp->tm_isdst = ttisp->tt_isdst;
1290 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1291 #ifdef TM_ZONE
1292 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1293 #endif /* defined TM_ZONE */
1294 	return result;
1295 }
1296 
1297 struct tm *
1298 localtime_r(const time_t * const timep, struct tm *p_tm)
1299 {
1300 	_RWLOCK_RDLOCK(&lcl_rwlock);
1301 	tzset_basic(1);
1302 	localsub(timep, 0L, p_tm);
1303 	_RWLOCK_UNLOCK(&lcl_rwlock);
1304 	return(p_tm);
1305 }
1306 
1307 struct tm *
1308 localtime(const time_t * const timep)
1309 {
1310 	static pthread_mutex_t localtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1311 	static pthread_key_t localtime_key = -1;
1312 	struct tm *p_tm;
1313 
1314 	if (__isthreaded != 0) {
1315 		if (localtime_key < 0) {
1316 			_pthread_mutex_lock(&localtime_mutex);
1317 			if (localtime_key < 0) {
1318 				if (_pthread_key_create(&localtime_key, free) < 0) {
1319 					_pthread_mutex_unlock(&localtime_mutex);
1320 					return(NULL);
1321 				}
1322 			}
1323 			_pthread_mutex_unlock(&localtime_mutex);
1324 		}
1325 		p_tm = _pthread_getspecific(localtime_key);
1326 		if (p_tm == NULL) {
1327 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1328 			    == NULL)
1329 				return(NULL);
1330 			_pthread_setspecific(localtime_key, p_tm);
1331 		}
1332 		_RWLOCK_RDLOCK(&lcl_rwlock);
1333 		tzset_basic(1);
1334 		localsub(timep, 0L, p_tm);
1335 		_RWLOCK_UNLOCK(&lcl_rwlock);
1336 		return(p_tm);
1337 	} else {
1338 		tzset_basic(0);
1339 		localsub(timep, 0L, &tm);
1340 		return(&tm);
1341 	}
1342 }
1343 
1344 /*
1345 ** gmtsub is to gmtime as localsub is to localtime.
1346 */
1347 
1348 static struct tm *
1349 gmtsub(const time_t * const timep, const long offset, struct tm * const tmp)
1350 {
1351 	struct tm *	result;
1352 
1353 	if (!gmt_is_set) {
1354 		_MUTEX_LOCK(&gmt_mutex);
1355 		if (!gmt_is_set) {
1356 			gmtload(gmtptr);
1357 			gmt_is_set = TRUE;
1358 		}
1359 		_MUTEX_UNLOCK(&gmt_mutex);
1360 	}
1361 	result = timesub(timep, offset, gmtptr, tmp);
1362 #ifdef TM_ZONE
1363 	/*
1364 	** Could get fancy here and deliver something such as
1365 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1366 	** but this is no time for a treasure hunt.
1367 	*/
1368 	if (offset != 0)
1369 		tmp->TM_ZONE = wildabbr;
1370 	else
1371 		tmp->TM_ZONE = gmtptr->chars;
1372 #endif /* defined TM_ZONE */
1373 	return result;
1374 }
1375 
1376 struct tm *
1377 gmtime(const time_t * const timep)
1378 {
1379 	static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1380 	static pthread_key_t gmtime_key = -1;
1381 	struct tm *p_tm;
1382 
1383 	if (__isthreaded != 0) {
1384 		if (gmtime_key < 0) {
1385 			_pthread_mutex_lock(&gmtime_mutex);
1386 			if (gmtime_key < 0) {
1387 				if (_pthread_key_create(&gmtime_key, free) < 0) {
1388 					_pthread_mutex_unlock(&gmtime_mutex);
1389 					return(NULL);
1390 				}
1391 			}
1392 			_pthread_mutex_unlock(&gmtime_mutex);
1393 		}
1394 		/*
1395 		 * Changed to follow POSIX.1 threads standard, which
1396 		 * is what BSD currently has.
1397 		 */
1398 		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1399 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1400 			    == NULL) {
1401 				return(NULL);
1402 			}
1403 			_pthread_setspecific(gmtime_key, p_tm);
1404 		}
1405 		return gmtsub(timep, 0L, p_tm);
1406 	} else {
1407 		return gmtsub(timep, 0L, &tm);
1408 	}
1409 }
1410 
1411 struct tm *
1412 gmtime_r(const time_t * timep, struct tm * tmp)
1413 {
1414 	return gmtsub(timep, 0L, tmp);
1415 }
1416 
1417 struct tm *
1418 offtime(const time_t * const timep, const long offset)
1419 {
1420 	return gmtsub(timep, offset, &tm);
1421 }
1422 
1423 /*
1424 ** Return the number of leap years through the end of the given year
1425 ** where, to make the math easy, the answer for year zero is defined as zero.
1426 */
1427 
1428 static int
1429 leaps_thru_end_of(const int y)
1430 {
1431 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
1432 		-(leaps_thru_end_of(-(y + 1)) + 1);
1433 }
1434 
1435 static struct tm *
1436 timesub(const time_t * const timep, const long offset,
1437 	const struct state * const sp, struct tm * const tmp)
1438 {
1439 	const struct lsinfo *	lp;
1440 	time_t			tdays;
1441 	int			idays;	/* unsigned would be so 2003 */
1442 	long			rem;
1443 	int			y;
1444 	int			yleap;
1445 	const int *		ip;
1446 	long			corr;
1447 	int			hit;
1448 	int			i;
1449 
1450 	corr = 0;
1451 	hit = 0;
1452 	i = sp->leapcnt;
1453 
1454 	while (--i >= 0) {
1455 		lp = &sp->lsis[i];
1456 		if (*timep >= lp->ls_trans) {
1457 			if (*timep == lp->ls_trans) {
1458 				hit = ((i == 0 && lp->ls_corr > 0) ||
1459 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1460 				if (hit)
1461 					while (i > 0 &&
1462 						sp->lsis[i].ls_trans ==
1463 						sp->lsis[i - 1].ls_trans + 1 &&
1464 						sp->lsis[i].ls_corr ==
1465 						sp->lsis[i - 1].ls_corr + 1) {
1466 							++hit;
1467 							--i;
1468 					}
1469 			}
1470 			corr = lp->ls_corr;
1471 			break;
1472 		}
1473 	}
1474 	y = EPOCH_YEAR;
1475 	tdays = *timep / SECSPERDAY;
1476 	rem = *timep - tdays * SECSPERDAY;
1477 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
1478 		int	newy;
1479 		time_t	tdelta;
1480 		int	idelta;
1481 		int	leapdays;
1482 
1483 		tdelta = tdays / DAYSPERLYEAR;
1484 		idelta = tdelta;
1485 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
1486 			return NULL;
1487 		if (idelta == 0)
1488 			idelta = (tdays < 0) ? -1 : 1;
1489 		newy = y;
1490 		if (increment_overflow(&newy, idelta))
1491 			return NULL;
1492 		leapdays = leaps_thru_end_of(newy - 1) -
1493 			leaps_thru_end_of(y - 1);
1494 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
1495 		tdays -= leapdays;
1496 		y = newy;
1497 	}
1498 	{
1499 		long	seconds;
1500 
1501 		seconds = tdays * SECSPERDAY + 0.5;
1502 		tdays = seconds / SECSPERDAY;
1503 		rem += seconds - tdays * SECSPERDAY;
1504 	}
1505 	/*
1506 	** Given the range, we can now fearlessly cast...
1507 	*/
1508 	idays = tdays;
1509 	rem += offset - corr;
1510 	while (rem < 0) {
1511 		rem += SECSPERDAY;
1512 		--idays;
1513 	}
1514 	while (rem >= SECSPERDAY) {
1515 		rem -= SECSPERDAY;
1516 		++idays;
1517 	}
1518 	while (idays < 0) {
1519 		if (increment_overflow(&y, -1))
1520 			return NULL;
1521 		idays += year_lengths[isleap(y)];
1522 	}
1523 	while (idays >= year_lengths[isleap(y)]) {
1524 		idays -= year_lengths[isleap(y)];
1525 		if (increment_overflow(&y, 1))
1526 			return NULL;
1527 	}
1528 	tmp->tm_year = y;
1529 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
1530 		return NULL;
1531 	tmp->tm_yday = idays;
1532 	/*
1533 	** The "extra" mods below avoid overflow problems.
1534 	*/
1535 	tmp->tm_wday = EPOCH_WDAY +
1536 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
1537 		(DAYSPERNYEAR % DAYSPERWEEK) +
1538 		leaps_thru_end_of(y - 1) -
1539 		leaps_thru_end_of(EPOCH_YEAR - 1) +
1540 		idays;
1541 	tmp->tm_wday %= DAYSPERWEEK;
1542 	if (tmp->tm_wday < 0)
1543 		tmp->tm_wday += DAYSPERWEEK;
1544 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1545 	rem %= SECSPERHOUR;
1546 	tmp->tm_min = (int) (rem / SECSPERMIN);
1547 	/*
1548 	** A positive leap second requires a special
1549 	** representation. This uses "... ??:59:60" et seq.
1550 	*/
1551 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1552 	ip = mon_lengths[isleap(y)];
1553 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1554 		idays -= ip[tmp->tm_mon];
1555 	tmp->tm_mday = (int) (idays + 1);
1556 	tmp->tm_isdst = 0;
1557 #ifdef TM_GMTOFF
1558 	tmp->TM_GMTOFF = offset;
1559 #endif /* defined TM_GMTOFF */
1560 	return tmp;
1561 }
1562 
1563 char *
1564 ctime(const time_t * const timep)
1565 {
1566 /*
1567 ** Section 4.12.3.2 of X3.159-1989 requires that
1568 **	The ctime function converts the calendar time pointed to by timer
1569 **	to local time in the form of a string. It is equivalent to
1570 **		asctime(localtime(timer))
1571 */
1572 	return asctime(localtime(timep));
1573 }
1574 
1575 char *
1576 ctime_r(const time_t * const timep, char *buf)
1577 {
1578         struct tm	mytm;
1579 	return asctime_r(localtime_r(timep, &mytm), buf);
1580 }
1581 
1582 /*
1583 ** Adapted from code provided by Robert Elz, who writes:
1584 **	The "best" way to do mktime I think is based on an idea of Bob
1585 **	Kridle's (so its said...) from a long time ago.
1586 **	It does a binary search of the time_t space. Since time_t's are
1587 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1588 **	would still be very reasonable).
1589 */
1590 
1591 #ifndef WRONG
1592 #define WRONG	(-1)
1593 #endif /* !defined WRONG */
1594 
1595 /*
1596 ** Simplified normalize logic courtesy Paul Eggert.
1597 */
1598 
1599 static int
1600 increment_overflow(int *number, int delta)
1601 {
1602 	int	number0;
1603 
1604 	number0 = *number;
1605 	*number += delta;
1606 	return (*number < number0) != (delta < 0);
1607 }
1608 
1609 static int
1610 long_increment_overflow(long *number, int delta)
1611 {
1612 	long	number0;
1613 
1614 	number0 = *number;
1615 	*number += delta;
1616 	return (*number < number0) != (delta < 0);
1617 }
1618 
1619 static int
1620 normalize_overflow(int * const tensptr, int * const unitsptr, const int base)
1621 {
1622 	int	tensdelta;
1623 
1624 	tensdelta = (*unitsptr >= 0) ?
1625 		(*unitsptr / base) :
1626 		(-1 - (-1 - *unitsptr) / base);
1627 	*unitsptr -= tensdelta * base;
1628 	return increment_overflow(tensptr, tensdelta);
1629 }
1630 
1631 static int
1632 long_normalize_overflow(long * const tensptr, int * const unitsptr,
1633 			const int base)
1634 {
1635 	int	tensdelta;
1636 
1637 	tensdelta = (*unitsptr >= 0) ?
1638 		(*unitsptr / base) :
1639 		(-1 - (-1 - *unitsptr) / base);
1640 	*unitsptr -= tensdelta * base;
1641 	return long_increment_overflow(tensptr, tensdelta);
1642 }
1643 
1644 static int
1645 tmcomp(const struct tm * const atmp, const struct tm * const btmp)
1646 {
1647 	int	result;
1648 
1649 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1650 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1651 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1652 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1653 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1654 			result = atmp->tm_sec - btmp->tm_sec;
1655 	return result;
1656 }
1657 
1658 static time_t
1659 time2sub(struct tm * const tmp,
1660       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1661       const long offset, int * const okayp, const int do_norm_secs)
1662 {
1663 	const struct state *	sp;
1664 	int			dir;
1665 	int			i, j;
1666 	int			saved_seconds;
1667 	long			li;
1668 	time_t			lo;
1669 	time_t			hi;
1670 	long			y;
1671 	time_t			newt;
1672 	time_t			t;
1673 	struct tm		yourtm, mytm;
1674 
1675 	*okayp = FALSE;
1676 	yourtm = *tmp;
1677 	if (do_norm_secs) {
1678 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1679 			SECSPERMIN))
1680 				return WRONG;
1681 	}
1682 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1683 		return WRONG;
1684 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1685 		return WRONG;
1686 	y = yourtm.tm_year;
1687 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
1688 		return WRONG;
1689 	/*
1690 	** Turn y into an actual year number for now.
1691 	** It is converted back to an offset from TM_YEAR_BASE later.
1692 	*/
1693 	if (long_increment_overflow(&y, TM_YEAR_BASE))
1694 		return WRONG;
1695 	while (yourtm.tm_mday <= 0) {
1696 		if (long_increment_overflow(&y, -1))
1697 			return WRONG;
1698 		li = y + (1 < yourtm.tm_mon);
1699 		yourtm.tm_mday += year_lengths[isleap(li)];
1700 	}
1701 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1702 		li = y + (1 < yourtm.tm_mon);
1703 		yourtm.tm_mday -= year_lengths[isleap(li)];
1704 		if (long_increment_overflow(&y, 1))
1705 			return WRONG;
1706 	}
1707 	for ( ; ; ) {
1708 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
1709 		if (yourtm.tm_mday <= i)
1710 			break;
1711 		yourtm.tm_mday -= i;
1712 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1713 			yourtm.tm_mon = 0;
1714 			if (long_increment_overflow(&y, 1))
1715 				return WRONG;
1716 		}
1717 	}
1718 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
1719 		return WRONG;
1720 	yourtm.tm_year = y;
1721 	if (yourtm.tm_year != y)
1722 		return WRONG;
1723 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1724 		saved_seconds = 0;
1725 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
1726 		/*
1727 		** We can't set tm_sec to 0, because that might push the
1728 		** time below the minimum representable time.
1729 		** Set tm_sec to 59 instead.
1730 		** This assumes that the minimum representable time is
1731 		** not in the same minute that a leap second was deleted from,
1732 		** which is a safer assumption than using 58 would be.
1733 		*/
1734 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1735 			return WRONG;
1736 		saved_seconds = yourtm.tm_sec;
1737 		yourtm.tm_sec = SECSPERMIN - 1;
1738 	} else {
1739 		saved_seconds = yourtm.tm_sec;
1740 		yourtm.tm_sec = 0;
1741 	}
1742 	/*
1743 	** Do a binary search (this works whatever time_t's type is).
1744 	*/
1745 	if (!TYPE_SIGNED(time_t)) {
1746 		lo = 0;
1747 		hi = lo - 1;
1748 	} else if (!TYPE_INTEGRAL(time_t)) {
1749 		if (sizeof(time_t) > sizeof(float))
1750 			hi = (time_t) DBL_MAX;
1751 		else	hi = (time_t) FLT_MAX;
1752 		lo = -hi;
1753 	} else {
1754 		lo = 1;
1755 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
1756 			lo *= 2;
1757 		hi = -(lo + 1);
1758 	}
1759 	for ( ; ; ) {
1760 		t = lo / 2 + hi / 2;
1761 		if (t < lo)
1762 			t = lo;
1763 		else if (t > hi)
1764 			t = hi;
1765 		if ((*funcp)(&t, offset, &mytm) == NULL) {
1766 			/*
1767 			** Assume that t is too extreme to be represented in
1768 			** a struct tm; arrange things so that it is less
1769 			** extreme on the next pass.
1770 			*/
1771 			dir = (t > 0) ? 1 : -1;
1772 		} else	dir = tmcomp(&mytm, &yourtm);
1773 		if (dir != 0) {
1774 			if (t == lo) {
1775 				++t;
1776 				if (t <= lo)
1777 					return WRONG;
1778 				++lo;
1779 			} else if (t == hi) {
1780 				--t;
1781 				if (t >= hi)
1782 					return WRONG;
1783 				--hi;
1784 			}
1785 			if (lo > hi)
1786 				return WRONG;
1787 			if (dir > 0)
1788 				hi = t;
1789 			else	lo = t;
1790 			continue;
1791 		}
1792 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1793 			break;
1794 		/*
1795 		** Right time, wrong type.
1796 		** Hunt for right time, right type.
1797 		** It's okay to guess wrong since the guess
1798 		** gets checked.
1799 		*/
1800 		sp = (const struct state *)
1801 			((funcp == localsub) ? lclptr : gmtptr);
1802 
1803 		for (i = sp->typecnt - 1; i >= 0; --i) {
1804 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1805 				continue;
1806 			for (j = sp->typecnt - 1; j >= 0; --j) {
1807 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1808 					continue;
1809 				newt = t + sp->ttis[j].tt_gmtoff -
1810 					sp->ttis[i].tt_gmtoff;
1811 				if ((*funcp)(&newt, offset, &mytm) == NULL)
1812 					continue;
1813 				if (tmcomp(&mytm, &yourtm) != 0)
1814 					continue;
1815 				if (mytm.tm_isdst != yourtm.tm_isdst)
1816 					continue;
1817 				/*
1818 				** We have a match.
1819 				*/
1820 				t = newt;
1821 				goto label;
1822 			}
1823 		}
1824 		return WRONG;
1825 	}
1826 label:
1827 	newt = t + saved_seconds;
1828 	if ((newt < t) != (saved_seconds < 0))
1829 		return WRONG;
1830 	t = newt;
1831 	if ((*funcp)(&t, offset, tmp))
1832 		*okayp = TRUE;
1833 	return t;
1834 }
1835 
1836 static time_t
1837 time2(struct tm * const tmp,
1838       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1839       const long offset, int * const okayp)
1840 {
1841 	time_t	t;
1842 
1843 	/*
1844 	** First try without normalization of seconds
1845 	** (in case tm_sec contains a value associated with a leap second).
1846 	** If that fails, try with normalization of seconds.
1847 	*/
1848 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
1849 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1850 }
1851 
1852 static time_t
1853 time1(struct tm * const tmp,
1854       struct tm * (* const funcp)(const time_t *, long, struct tm *),
1855       const long offset)
1856 {
1857 	time_t			t;
1858 	const struct state *	sp;
1859 	int			samei, otheri;
1860 	int			sameind, otherind;
1861 	int			i;
1862 	int			nseen;
1863 	int			seen[TZ_MAX_TYPES];
1864 	int			types[TZ_MAX_TYPES];
1865 	int			okay;
1866 
1867 	if (tmp->tm_isdst > 1)
1868 		tmp->tm_isdst = 1;
1869 	t = time2(tmp, funcp, offset, &okay);
1870 
1871 	/*
1872 	** PCTS code courtesy Grant Sullivan.
1873 	*/
1874 	if (okay)
1875 		return t;
1876 	if (tmp->tm_isdst < 0)
1877 		tmp->tm_isdst = 0;	/* reset to std and try again */
1878 
1879 	/*
1880 	** We're supposed to assume that somebody took a time of one type
1881 	** and did some math on it that yielded a "struct tm" that's bad.
1882 	** We try to divine the type they started from and adjust to the
1883 	** type they need.
1884 	*/
1885 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
1886 
1887 	for (i = 0; i < sp->typecnt; ++i)
1888 		seen[i] = FALSE;
1889 	nseen = 0;
1890 	for (i = sp->timecnt - 1; i >= 0; --i)
1891 		if (!seen[sp->types[i]]) {
1892 			seen[sp->types[i]] = TRUE;
1893 			types[nseen++] = sp->types[i];
1894 		}
1895 	for (sameind = 0; sameind < nseen; ++sameind) {
1896 		samei = types[sameind];
1897 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1898 			continue;
1899 		for (otherind = 0; otherind < nseen; ++otherind) {
1900 			otheri = types[otherind];
1901 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1902 				continue;
1903 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1904 					sp->ttis[samei].tt_gmtoff;
1905 			tmp->tm_isdst = !tmp->tm_isdst;
1906 			t = time2(tmp, funcp, offset, &okay);
1907 			if (okay)
1908 				return t;
1909 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1910 					sp->ttis[samei].tt_gmtoff;
1911 			tmp->tm_isdst = !tmp->tm_isdst;
1912 		}
1913 	}
1914 	return WRONG;
1915 }
1916 
1917 time_t
1918 mktime(struct tm * const tmp)
1919 {
1920 	time_t mktime_return_value;
1921 	_RWLOCK_RDLOCK(&lcl_rwlock);
1922 	tzset_basic(1);
1923 	mktime_return_value = time1(tmp, localsub, 0L);
1924 	_RWLOCK_UNLOCK(&lcl_rwlock);
1925 	return(mktime_return_value);
1926 }
1927 
1928 time_t
1929 timelocal(struct tm * const tmp)
1930 {
1931 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1932 	return mktime(tmp);
1933 }
1934 
1935 time_t
1936 timegm(struct tm * const tmp)
1937 {
1938 	tmp->tm_isdst = 0;
1939 	return time1(tmp, gmtsub, 0L);
1940 }
1941 
1942 time_t
1943 timeoff(struct tm * const tmp, const long offset)
1944 {
1945 	tmp->tm_isdst = 0;
1946 	return time1(tmp, gmtsub, offset);
1947 }
1948 
1949 #ifdef CMUCS
1950 
1951 /*
1952 ** The following is supplied for compatibility with
1953 ** previous versions of the CMUCS runtime library.
1954 */
1955 
1956 long
1957 gtime(struct tm * const tmp)
1958 {
1959 	const time_t	t = mktime(tmp);
1960 
1961 	if (t == WRONG)
1962 		return -1;
1963 	return t;
1964 }
1965 
1966 #endif /* defined CMUCS */
1967 
1968 /*
1969 ** XXX--is the below the right way to conditionalize??
1970 */
1971 
1972 /*
1973 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1974 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1975 ** is not the case if we are accounting for leap seconds.
1976 ** So, we provide the following conversion routines for use
1977 ** when exchanging timestamps with POSIX conforming systems.
1978 */
1979 
1980 static long
1981 leapcorr(time_t *timep)
1982 {
1983 	struct state *		sp;
1984 	struct lsinfo *	lp;
1985 	int			i;
1986 
1987 	sp = lclptr;
1988 	i = sp->leapcnt;
1989 	while (--i >= 0) {
1990 		lp = &sp->lsis[i];
1991 		if (*timep >= lp->ls_trans)
1992 			return lp->ls_corr;
1993 	}
1994 	return 0;
1995 }
1996 
1997 time_t
1998 time2posix(time_t t)
1999 {
2000 	tzset();
2001 	return t - leapcorr(&t);
2002 }
2003 
2004 time_t
2005 posix2time(time_t t)
2006 {
2007 	time_t	x;
2008 	time_t	y;
2009 
2010 	tzset();
2011 	/*
2012 	** For a positive leap second hit, the result
2013 	** is not unique. For a negative leap second
2014 	** hit, the corresponding time doesn't exist,
2015 	** so we return an adjacent second.
2016 	*/
2017 	x = t + leapcorr(&t);
2018 	y = x - leapcorr(&x);
2019 	if (y < t) {
2020 		do {
2021 			x++;
2022 			y = x - leapcorr(&x);
2023 		} while (y < t);
2024 		if (t != y)
2025 			return x - 1;
2026 	} else if (y > t) {
2027 		do {
2028 			--x;
2029 			y = x - leapcorr(&x);
2030 		} while (y > t);
2031 		if (t != y)
2032 			return x + 1;
2033 	}
2034 	return x;
2035 }
2036