xref: /dragonfly/lib/libc/stdtime/localtime.c (revision f8f04fe3)
1 /*
2 ** This file is in the public domain, so clarified as of
3 ** June 5, 1996 by Arthur David Olson (arthur_david_olson@nih.gov).
4 **
5 ** $FreeBSD: src/lib/libc/stdtime/localtime.c,v 1.25.2.2 2002/08/13 16:08:07 bmilekic Exp $
6 ** $DragonFly: src/lib/libc/stdtime/localtime.c,v 1.6 2005/12/04 23:41:06 swildner Exp $
7 */
8 
9 /*
10  * @(#)localtime.c	7.57
11  */
12 /*
13 ** Leap second handling from Bradley White (bww@k.gp.cs.cmu.edu).
14 ** POSIX-style TZ environment variable handling from Guy Harris
15 ** (guy@auspex.com).
16 */
17 
18 /*LINTLIBRARY*/
19 
20 #include "namespace.h"
21 #include <sys/types.h>
22 #include <sys/stat.h>
23 
24 #include <fcntl.h>
25 #include <time.h>
26 #include <pthread.h>
27 #include "private.h"
28 #include <un-namespace.h>
29 
30 #include "tzfile.h"
31 
32 #include "libc_private.h"
33 
34 #define	_MUTEX_LOCK(x)		if (__isthreaded) _pthread_mutex_lock(x)
35 #define	_MUTEX_UNLOCK(x)	if (__isthreaded) _pthread_mutex_unlock(x)
36 
37 /*
38 ** SunOS 4.1.1 headers lack O_BINARY.
39 */
40 
41 #ifdef O_BINARY
42 #define OPEN_MODE	(O_RDONLY | O_BINARY)
43 #endif /* defined O_BINARY */
44 #ifndef O_BINARY
45 #define OPEN_MODE	O_RDONLY
46 #endif /* !defined O_BINARY */
47 
48 #ifndef WILDABBR
49 /*
50 ** Someone might make incorrect use of a time zone abbreviation:
51 **	1.	They might reference tzname[0] before calling tzset (explicitly
52 **		or implicitly).
53 **	2.	They might reference tzname[1] before calling tzset (explicitly
54 **		or implicitly).
55 **	3.	They might reference tzname[1] after setting to a time zone
56 **		in which Daylight Saving Time is never observed.
57 **	4.	They might reference tzname[0] after setting to a time zone
58 **		in which Standard Time is never observed.
59 **	5.	They might reference tm.TM_ZONE after calling offtime.
60 ** What's best to do in the above cases is open to debate;
61 ** for now, we just set things up so that in any of the five cases
62 ** WILDABBR is used.  Another possibility:  initialize tzname[0] to the
63 ** string "tzname[0] used before set", and similarly for the other cases.
64 ** And another:  initialize tzname[0] to "ERA", with an explanation in the
65 ** manual page of what this "time zone abbreviation" means (doing this so
66 ** that tzname[0] has the "normal" length of three characters).
67 */
68 #define WILDABBR	"   "
69 #endif /* !defined WILDABBR */
70 
71 static char		wildabbr[] = "WILDABBR";
72 
73 static const char	gmt[] = "GMT";
74 
75 struct ttinfo {				/* time type information */
76 	long		tt_gmtoff;	/* GMT offset in seconds */
77 	int		tt_isdst;	/* used to set tm_isdst */
78 	int		tt_abbrind;	/* abbreviation list index */
79 	int		tt_ttisstd;	/* TRUE if transition is std time */
80 	int		tt_ttisgmt;	/* TRUE if transition is GMT */
81 };
82 
83 struct lsinfo {				/* leap second information */
84 	time_t		ls_trans;	/* transition time */
85 	long		ls_corr;	/* correction to apply */
86 };
87 
88 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
89 
90 #ifdef TZNAME_MAX
91 #define MY_TZNAME_MAX	TZNAME_MAX
92 #endif /* defined TZNAME_MAX */
93 #ifndef TZNAME_MAX
94 #define MY_TZNAME_MAX	255
95 #endif /* !defined TZNAME_MAX */
96 
97 struct state {
98 	int		leapcnt;
99 	int		timecnt;
100 	int		typecnt;
101 	int		charcnt;
102 	time_t		ats[TZ_MAX_TIMES];
103 	unsigned char	types[TZ_MAX_TIMES];
104 	struct ttinfo	ttis[TZ_MAX_TYPES];
105 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
106 				(2 * (MY_TZNAME_MAX + 1)))];
107 	struct lsinfo	lsis[TZ_MAX_LEAPS];
108 };
109 
110 struct rule {
111 	int		r_type;		/* type of rule--see below */
112 	int		r_day;		/* day number of rule */
113 	int		r_week;		/* week number of rule */
114 	int		r_mon;		/* month number of rule */
115 	long		r_time;		/* transition time of rule */
116 };
117 
118 #define JULIAN_DAY		0	/* Jn - Julian day */
119 #define DAY_OF_YEAR		1	/* n - day of year */
120 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
121 
122 /*
123 ** Prototypes for static functions.
124 */
125 
126 static long		detzcode(const char * codep);
127 static const char *	getzname(const char * strp);
128 static const char *	getnum(const char * strp, int * nump, int min, int max);
129 static const char *	getsecs(const char * strp, long * secsp);
130 static const char *	getoffset(const char * strp, long * offsetp);
131 static const char *	getrule(const char * strp, struct rule * rulep);
132 static void		gmtload(struct state * sp);
133 static void		gmtsub(const time_t * timep, long offset,
134 				struct tm * tmp);
135 static void		localsub(const time_t * timep, long offset,
136 				struct tm * tmp);
137 static int		increment_overflow(int * number, int delta);
138 static int		normalize_overflow(int * tensptr, int * unitsptr,
139 				int base);
140 static void		settzname(void);
141 static time_t		time1(struct tm * tmp,
142 				void(*funcp)(const time_t *, long, struct tm *),
143 				long offset);
144 static time_t		time2(struct tm *tmp,
145 				void(*funcp)(const time_t *, long, struct tm *),
146 				long offset, int * okayp);
147 static void		timesub(const time_t * timep, long offset,
148 				const struct state * sp, struct tm * tmp);
149 static int		tmcomp(const struct tm * atmp,
150 				const struct tm * btmp);
151 static time_t		transtime(time_t janfirst, int year,
152 				const struct rule * rulep, long offset);
153 static int		tzload(const char * name, struct state * sp);
154 static int		tzparse(const char * name, struct state * sp,
155 				int lastditch);
156 
157 #ifdef ALL_STATE
158 static struct state *	lclptr;
159 static struct state *	gmtptr;
160 #endif /* defined ALL_STATE */
161 
162 #ifndef ALL_STATE
163 static struct state	lclmem;
164 static struct state	gmtmem;
165 #define lclptr		(&lclmem)
166 #define gmtptr		(&gmtmem)
167 #endif /* State Farm */
168 
169 #ifndef TZ_STRLEN_MAX
170 #define TZ_STRLEN_MAX 255
171 #endif /* !defined TZ_STRLEN_MAX */
172 
173 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
174 static int		lcl_is_set;
175 static int		gmt_is_set;
176 static pthread_mutex_t	lcl_mutex = PTHREAD_MUTEX_INITIALIZER;
177 static pthread_mutex_t	gmt_mutex = PTHREAD_MUTEX_INITIALIZER;
178 
179 char *			tzname[2] = {
180 	wildabbr,
181 	wildabbr
182 };
183 
184 /*
185 ** Section 4.12.3 of X3.159-1989 requires that
186 **	Except for the strftime function, these functions [asctime,
187 **	ctime, gmtime, localtime] return values in one of two static
188 **	objects: a broken-down time structure and an array of char.
189 ** Thanks to Paul Eggert (eggert@twinsun.com) for noting this.
190 */
191 
192 static struct tm	tm;
193 
194 #ifdef USG_COMPAT
195 time_t			timezone = 0;
196 int			daylight = 0;
197 #endif /* defined USG_COMPAT */
198 
199 #ifdef ALTZONE
200 time_t			altzone = 0;
201 #endif /* defined ALTZONE */
202 
203 static long
204 detzcode(const char * const codep)
205 {
206 	long	result;
207 	int	i;
208 
209 	result = (codep[0] & 0x80) ? ~0L : 0L;
210 	for (i = 0; i < 4; ++i)
211 		result = (result << 8) | (codep[i] & 0xff);
212 	return result;
213 }
214 
215 static void
216 settzname(void)
217 {
218 	struct state * 	sp = lclptr;
219 	int			i;
220 
221 	tzname[0] = wildabbr;
222 	tzname[1] = wildabbr;
223 #ifdef USG_COMPAT
224 	daylight = 0;
225 	timezone = 0;
226 #endif /* defined USG_COMPAT */
227 #ifdef ALTZONE
228 	altzone = 0;
229 #endif /* defined ALTZONE */
230 #ifdef ALL_STATE
231 	if (sp == NULL) {
232 		tzname[0] = tzname[1] = gmt;
233 		return;
234 	}
235 #endif /* defined ALL_STATE */
236 	for (i = 0; i < sp->typecnt; ++i) {
237 		const struct ttinfo * const	ttisp = &sp->ttis[i];
238 
239 		tzname[ttisp->tt_isdst] =
240 			&sp->chars[ttisp->tt_abbrind];
241 #ifdef USG_COMPAT
242 		if (ttisp->tt_isdst)
243 			daylight = 1;
244 		if (i == 0 || !ttisp->tt_isdst)
245 			timezone = -(ttisp->tt_gmtoff);
246 #endif /* defined USG_COMPAT */
247 #ifdef ALTZONE
248 		if (i == 0 || ttisp->tt_isdst)
249 			altzone = -(ttisp->tt_gmtoff);
250 #endif /* defined ALTZONE */
251 	}
252 	/*
253 	** And to get the latest zone names into tzname. . .
254 	*/
255 	for (i = 0; i < sp->timecnt; ++i) {
256 		const struct ttinfo * const	ttisp =
257 							&sp->ttis[
258 								sp->types[i]];
259 
260 		tzname[ttisp->tt_isdst] =
261 			&sp->chars[ttisp->tt_abbrind];
262 	}
263 }
264 
265 static int
266 tzload(const char *name, struct state * const sp)
267 {
268 	const char *	p;
269 	int		i;
270 	int		fid;
271 
272 	/* XXX The following is from OpenBSD, and I'm not sure it is correct */
273 	if (name != NULL && issetugid() != 0)
274 		if ((name[0] == ':' && name[1] == '/') ||
275 		    name[0] == '/' || strchr(name, '.'))
276 			name = NULL;
277 	if (name == NULL && (name = TZDEFAULT) == NULL)
278 		return -1;
279 	{
280 		int	doaccess;
281 		struct stat	stab;
282 		/*
283 		** Section 4.9.1 of the C standard says that
284 		** "FILENAME_MAX expands to an integral constant expression
285 		** that is the size needed for an array of char large enough
286 		** to hold the longest file name string that the implementation
287 		** guarantees can be opened."
288 		*/
289 		char		fullname[FILENAME_MAX + 1];
290 
291 		if (name[0] == ':')
292 			++name;
293 		doaccess = name[0] == '/';
294 		if (!doaccess) {
295 			if ((p = TZDIR) == NULL)
296 				return -1;
297 			if ((strlen(p) + 1 + strlen(name) + 1) >= sizeof fullname)
298 				return -1;
299 			strcpy(fullname, p);
300 			strcat(fullname, "/");
301 			strcat(fullname, name);
302 			/*
303 			** Set doaccess if '.' (as in "../") shows up in name.
304 			*/
305 			if (strchr(name, '.') != NULL)
306 				doaccess = TRUE;
307 			name = fullname;
308 		}
309 		if (doaccess && access(name, R_OK) != 0)
310 		     	return -1;
311 		if ((fid = _open(name, OPEN_MODE)) == -1)
312 			return -1;
313 		if ((_fstat(fid, &stab) < 0) || !S_ISREG(stab.st_mode)) {
314 			_close(fid);
315 			return -1;
316 		}
317 	}
318 	{
319 		struct tzhead *	tzhp;
320 		char		buf[sizeof *sp + sizeof *tzhp];
321 		int		ttisstdcnt;
322 		int		ttisgmtcnt;
323 
324 		i = _read(fid, buf, sizeof buf);
325 		if (_close(fid) != 0)
326 			return -1;
327 		p = buf;
328 		p += (sizeof tzhp->tzh_magic) + (sizeof tzhp->tzh_reserved);
329 		ttisstdcnt = (int) detzcode(p);
330 		p += 4;
331 		ttisgmtcnt = (int) detzcode(p);
332 		p += 4;
333 		sp->leapcnt = (int) detzcode(p);
334 		p += 4;
335 		sp->timecnt = (int) detzcode(p);
336 		p += 4;
337 		sp->typecnt = (int) detzcode(p);
338 		p += 4;
339 		sp->charcnt = (int) detzcode(p);
340 		p += 4;
341 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
342 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
343 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
344 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
345 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
346 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
347 				return -1;
348 		if (i - (p - buf) < sp->timecnt * 4 +	/* ats */
349 			sp->timecnt +			/* types */
350 			sp->typecnt * (4 + 2) +		/* ttinfos */
351 			sp->charcnt +			/* chars */
352 			sp->leapcnt * (4 + 4) +		/* lsinfos */
353 			ttisstdcnt +			/* ttisstds */
354 			ttisgmtcnt)			/* ttisgmts */
355 				return -1;
356 		for (i = 0; i < sp->timecnt; ++i) {
357 			sp->ats[i] = detzcode(p);
358 			p += 4;
359 		}
360 		for (i = 0; i < sp->timecnt; ++i) {
361 			sp->types[i] = (unsigned char) *p++;
362 			if (sp->types[i] >= sp->typecnt)
363 				return -1;
364 		}
365 		for (i = 0; i < sp->typecnt; ++i) {
366 			struct ttinfo *	ttisp;
367 
368 			ttisp = &sp->ttis[i];
369 			ttisp->tt_gmtoff = detzcode(p);
370 			p += 4;
371 			ttisp->tt_isdst = (unsigned char) *p++;
372 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
373 				return -1;
374 			ttisp->tt_abbrind = (unsigned char) *p++;
375 			if (ttisp->tt_abbrind < 0 ||
376 				ttisp->tt_abbrind > sp->charcnt)
377 					return -1;
378 		}
379 		for (i = 0; i < sp->charcnt; ++i)
380 			sp->chars[i] = *p++;
381 		sp->chars[i] = '\0';	/* ensure '\0' at end */
382 		for (i = 0; i < sp->leapcnt; ++i) {
383 			struct lsinfo *	lsisp;
384 
385 			lsisp = &sp->lsis[i];
386 			lsisp->ls_trans = detzcode(p);
387 			p += 4;
388 			lsisp->ls_corr = detzcode(p);
389 			p += 4;
390 		}
391 		for (i = 0; i < sp->typecnt; ++i) {
392 			struct ttinfo *	ttisp;
393 
394 			ttisp = &sp->ttis[i];
395 			if (ttisstdcnt == 0)
396 				ttisp->tt_ttisstd = FALSE;
397 			else {
398 				ttisp->tt_ttisstd = *p++;
399 				if (ttisp->tt_ttisstd != TRUE &&
400 					ttisp->tt_ttisstd != FALSE)
401 						return -1;
402 			}
403 		}
404 		for (i = 0; i < sp->typecnt; ++i) {
405 			struct ttinfo *	ttisp;
406 
407 			ttisp = &sp->ttis[i];
408 			if (ttisgmtcnt == 0)
409 				ttisp->tt_ttisgmt = FALSE;
410 			else {
411 				ttisp->tt_ttisgmt = *p++;
412 				if (ttisp->tt_ttisgmt != TRUE &&
413 					ttisp->tt_ttisgmt != FALSE)
414 						return -1;
415 			}
416 		}
417 	}
418 	return 0;
419 }
420 
421 static const int	mon_lengths[2][MONSPERYEAR] = {
422 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
423 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
424 };
425 
426 static const int	year_lengths[2] = {
427 	DAYSPERNYEAR, DAYSPERLYEAR
428 };
429 
430 /*
431 ** Given a pointer into a time zone string, scan until a character that is not
432 ** a valid character in a zone name is found.  Return a pointer to that
433 ** character.
434 */
435 
436 static const char *
437 getzname(const char *strp)
438 {
439 	char	c;
440 
441 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
442 		c != '+')
443 			++strp;
444 	return strp;
445 }
446 
447 /*
448 ** Given a pointer into a time zone string, extract a number from that string.
449 ** Check that the number is within a specified range; if it is not, return
450 ** NULL.
451 ** Otherwise, return a pointer to the first character not part of the number.
452 */
453 
454 static const char *
455 getnum(const char *strp, int * const nump, const int min, const int max)
456 {
457 	char	c;
458 	int	num;
459 
460 	if (strp == NULL || !is_digit(c = *strp))
461 		return NULL;
462 	num = 0;
463 	do {
464 		num = num * 10 + (c - '0');
465 		if (num > max)
466 			return NULL;	/* illegal value */
467 		c = *++strp;
468 	} while (is_digit(c));
469 	if (num < min)
470 		return NULL;		/* illegal value */
471 	*nump = num;
472 	return strp;
473 }
474 
475 /*
476 ** Given a pointer into a time zone string, extract a number of seconds,
477 ** in hh[:mm[:ss]] form, from the string.
478 ** If any error occurs, return NULL.
479 ** Otherwise, return a pointer to the first character not part of the number
480 ** of seconds.
481 */
482 
483 static const char *
484 getsecs(const char *strp, long * const secsp)
485 {
486 	int	num;
487 
488 	/*
489 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
490 	** "M10.4.6/26", which does not conform to Posix,
491 	** but which specifies the equivalent of
492 	** ``02:00 on the first Sunday on or after 23 Oct''.
493 	*/
494 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
495 	if (strp == NULL)
496 		return NULL;
497 	*secsp = num * (long) SECSPERHOUR;
498 	if (*strp == ':') {
499 		++strp;
500 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
501 		if (strp == NULL)
502 			return NULL;
503 		*secsp += num * SECSPERMIN;
504 		if (*strp == ':') {
505 			++strp;
506 			/* `SECSPERMIN' allows for leap seconds.  */
507 			strp = getnum(strp, &num, 0, SECSPERMIN);
508 			if (strp == NULL)
509 				return NULL;
510 			*secsp += num;
511 		}
512 	}
513 	return strp;
514 }
515 
516 /*
517 ** Given a pointer into a time zone string, extract an offset, in
518 ** [+-]hh[:mm[:ss]] form, from the string.
519 ** If any error occurs, return NULL.
520 ** Otherwise, return a pointer to the first character not part of the time.
521 */
522 
523 static const char *
524 getoffset(const char *strp, long * const offsetp)
525 {
526 	int	neg = 0;
527 
528 	if (*strp == '-') {
529 		neg = 1;
530 		++strp;
531 	} else if (*strp == '+')
532 		++strp;
533 	strp = getsecs(strp, offsetp);
534 	if (strp == NULL)
535 		return NULL;		/* illegal time */
536 	if (neg)
537 		*offsetp = -*offsetp;
538 	return strp;
539 }
540 
541 /*
542 ** Given a pointer into a time zone string, extract a rule in the form
543 ** date[/time].  See POSIX section 8 for the format of "date" and "time".
544 ** If a valid rule is not found, return NULL.
545 ** Otherwise, return a pointer to the first character not part of the rule.
546 */
547 
548 static const char *
549 getrule(const char *strp, struct rule * const rulep)
550 {
551 	if (*strp == 'J') {
552 		/*
553 		** Julian day.
554 		*/
555 		rulep->r_type = JULIAN_DAY;
556 		++strp;
557 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
558 	} else if (*strp == 'M') {
559 		/*
560 		** Month, week, day.
561 		*/
562 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
563 		++strp;
564 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
565 		if (strp == NULL)
566 			return NULL;
567 		if (*strp++ != '.')
568 			return NULL;
569 		strp = getnum(strp, &rulep->r_week, 1, 5);
570 		if (strp == NULL)
571 			return NULL;
572 		if (*strp++ != '.')
573 			return NULL;
574 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
575 	} else if (is_digit(*strp)) {
576 		/*
577 		** Day of year.
578 		*/
579 		rulep->r_type = DAY_OF_YEAR;
580 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
581 	} else	return NULL;		/* invalid format */
582 	if (strp == NULL)
583 		return NULL;
584 	if (*strp == '/') {
585 		/*
586 		** Time specified.
587 		*/
588 		++strp;
589 		strp = getsecs(strp, &rulep->r_time);
590 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
591 	return strp;
592 }
593 
594 /*
595 ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
596 ** year, a rule, and the offset from GMT at the time that rule takes effect,
597 ** calculate the Epoch-relative time that rule takes effect.
598 */
599 
600 static time_t
601 transtime(const time_t janfirst, const int year,
602 	  const struct rule * const rulep, const long offset)
603 {
604 	int	leapyear;
605 	time_t	value;
606 	int	i;
607 	int		d, m1, yy0, yy1, yy2, dow;
608 
609 	INITIALIZE(value);
610 	leapyear = isleap(year);
611 	switch (rulep->r_type) {
612 
613 	case JULIAN_DAY:
614 		/*
615 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
616 		** years.
617 		** In non-leap years, or if the day number is 59 or less, just
618 		** add SECSPERDAY times the day number-1 to the time of
619 		** January 1, midnight, to get the day.
620 		*/
621 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
622 		if (leapyear && rulep->r_day >= 60)
623 			value += SECSPERDAY;
624 		break;
625 
626 	case DAY_OF_YEAR:
627 		/*
628 		** n - day of year.
629 		** Just add SECSPERDAY times the day number to the time of
630 		** January 1, midnight, to get the day.
631 		*/
632 		value = janfirst + rulep->r_day * SECSPERDAY;
633 		break;
634 
635 	case MONTH_NTH_DAY_OF_WEEK:
636 		/*
637 		** Mm.n.d - nth "dth day" of month m.
638 		*/
639 		value = janfirst;
640 		for (i = 0; i < rulep->r_mon - 1; ++i)
641 			value += mon_lengths[leapyear][i] * SECSPERDAY;
642 
643 		/*
644 		** Use Zeller's Congruence to get day-of-week of first day of
645 		** month.
646 		*/
647 		m1 = (rulep->r_mon + 9) % 12 + 1;
648 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
649 		yy1 = yy0 / 100;
650 		yy2 = yy0 % 100;
651 		dow = ((26 * m1 - 2) / 10 +
652 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
653 		if (dow < 0)
654 			dow += DAYSPERWEEK;
655 
656 		/*
657 		** "dow" is the day-of-week of the first day of the month.  Get
658 		** the day-of-month (zero-origin) of the first "dow" day of the
659 		** month.
660 		*/
661 		d = rulep->r_day - dow;
662 		if (d < 0)
663 			d += DAYSPERWEEK;
664 		for (i = 1; i < rulep->r_week; ++i) {
665 			if (d + DAYSPERWEEK >=
666 				mon_lengths[leapyear][rulep->r_mon - 1])
667 					break;
668 			d += DAYSPERWEEK;
669 		}
670 
671 		/*
672 		** "d" is the day-of-month (zero-origin) of the day we want.
673 		*/
674 		value += d * SECSPERDAY;
675 		break;
676 	}
677 
678 	/*
679 	** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
680 	** question.  To get the Epoch-relative time of the specified local
681 	** time on that day, add the transition time and the current offset
682 	** from GMT.
683 	*/
684 	return value + rulep->r_time + offset;
685 }
686 
687 /*
688 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
689 ** appropriate.
690 */
691 
692 static int
693 tzparse(const char *name, struct state * const sp, const int lastditch)
694 {
695 	const char *			stdname;
696 	const char *			dstname;
697 	size_t				stdlen;
698 	size_t				dstlen;
699 	long				stdoffset;
700 	long				dstoffset;
701 	time_t *		atp;
702 	unsigned char *	typep;
703 	char *			cp;
704 	int			load_result;
705 
706 	INITIALIZE(dstname);
707 	stdname = name;
708 	if (lastditch) {
709 		stdlen = strlen(name);	/* length of standard zone name */
710 		name += stdlen;
711 		if (stdlen >= sizeof sp->chars)
712 			stdlen = (sizeof sp->chars) - 1;
713 		stdoffset = 0;
714 	} else {
715 		name = getzname(name);
716 		stdlen = name - stdname;
717 		if (stdlen < 3)
718 			return -1;
719 		if (*name == '\0')
720 			return -1;	/* was "stdoffset = 0;" */
721 		else {
722 			name = getoffset(name, &stdoffset);
723 			if (name == NULL)
724 				return -1;
725 		}
726 	}
727 	load_result = tzload(TZDEFRULES, sp);
728 	if (load_result != 0)
729 		sp->leapcnt = 0;		/* so, we're off a little */
730 	if (*name != '\0') {
731 		dstname = name;
732 		name = getzname(name);
733 		dstlen = name - dstname;	/* length of DST zone name */
734 		if (dstlen < 3)
735 			return -1;
736 		if (*name != '\0' && *name != ',' && *name != ';') {
737 			name = getoffset(name, &dstoffset);
738 			if (name == NULL)
739 				return -1;
740 		} else	dstoffset = stdoffset - SECSPERHOUR;
741 		if (*name == ',' || *name == ';') {
742 			struct rule	start;
743 			struct rule	end;
744 			int	year;
745 			time_t	janfirst;
746 			time_t		starttime;
747 			time_t		endtime;
748 
749 			++name;
750 			if ((name = getrule(name, &start)) == NULL)
751 				return -1;
752 			if (*name++ != ',')
753 				return -1;
754 			if ((name = getrule(name, &end)) == NULL)
755 				return -1;
756 			if (*name != '\0')
757 				return -1;
758 			sp->typecnt = 2;	/* standard time and DST */
759 			/*
760 			** Two transitions per year, from EPOCH_YEAR to 2037.
761 			*/
762 			sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
763 			if (sp->timecnt > TZ_MAX_TIMES)
764 				return -1;
765 			sp->ttis[0].tt_gmtoff = -dstoffset;
766 			sp->ttis[0].tt_isdst = 1;
767 			sp->ttis[0].tt_abbrind = stdlen + 1;
768 			sp->ttis[1].tt_gmtoff = -stdoffset;
769 			sp->ttis[1].tt_isdst = 0;
770 			sp->ttis[1].tt_abbrind = 0;
771 			atp = sp->ats;
772 			typep = sp->types;
773 			janfirst = 0;
774 			for (year = EPOCH_YEAR; year <= 2037; ++year) {
775 				starttime = transtime(janfirst, year, &start,
776 					stdoffset);
777 				endtime = transtime(janfirst, year, &end,
778 					dstoffset);
779 				if (starttime > endtime) {
780 					*atp++ = endtime;
781 					*typep++ = 1;	/* DST ends */
782 					*atp++ = starttime;
783 					*typep++ = 0;	/* DST begins */
784 				} else {
785 					*atp++ = starttime;
786 					*typep++ = 0;	/* DST begins */
787 					*atp++ = endtime;
788 					*typep++ = 1;	/* DST ends */
789 				}
790 				janfirst += year_lengths[isleap(year)] *
791 					SECSPERDAY;
792 			}
793 		} else {
794 			long	theirstdoffset;
795 			long	theirdstoffset;
796 			long	theiroffset;
797 			int	isdst;
798 			int	i;
799 			int	j;
800 
801 			if (*name != '\0')
802 				return -1;
803 			if (load_result != 0)
804 				return -1;
805 			/*
806 			** Initial values of theirstdoffset and theirdstoffset.
807 			*/
808 			theirstdoffset = 0;
809 			for (i = 0; i < sp->timecnt; ++i) {
810 				j = sp->types[i];
811 				if (!sp->ttis[j].tt_isdst) {
812 					theirstdoffset =
813 						-sp->ttis[j].tt_gmtoff;
814 					break;
815 				}
816 			}
817 			theirdstoffset = 0;
818 			for (i = 0; i < sp->timecnt; ++i) {
819 				j = sp->types[i];
820 				if (sp->ttis[j].tt_isdst) {
821 					theirdstoffset =
822 						-sp->ttis[j].tt_gmtoff;
823 					break;
824 				}
825 			}
826 			/*
827 			** Initially we're assumed to be in standard time.
828 			*/
829 			isdst = FALSE;
830 			theiroffset = theirstdoffset;
831 			/*
832 			** Now juggle transition times and types
833 			** tracking offsets as you do.
834 			*/
835 			for (i = 0; i < sp->timecnt; ++i) {
836 				j = sp->types[i];
837 				sp->types[i] = sp->ttis[j].tt_isdst;
838 				if (sp->ttis[j].tt_ttisgmt) {
839 					/* No adjustment to transition time */
840 				} else {
841 					/*
842 					** If summer time is in effect, and the
843 					** transition time was not specified as
844 					** standard time, add the summer time
845 					** offset to the transition time;
846 					** otherwise, add the standard time
847 					** offset to the transition time.
848 					*/
849 					/*
850 					** Transitions from DST to DDST
851 					** will effectively disappear since
852 					** POSIX provides for only one DST
853 					** offset.
854 					*/
855 					if (isdst && !sp->ttis[j].tt_ttisstd) {
856 						sp->ats[i] += dstoffset -
857 							theirdstoffset;
858 					} else {
859 						sp->ats[i] += stdoffset -
860 							theirstdoffset;
861 					}
862 				}
863 				theiroffset = -sp->ttis[j].tt_gmtoff;
864 				if (sp->ttis[j].tt_isdst)
865 					theirdstoffset = theiroffset;
866 				else	theirstdoffset = theiroffset;
867 			}
868 			/*
869 			** Finally, fill in ttis.
870 			** ttisstd and ttisgmt need not be handled.
871 			*/
872 			sp->ttis[0].tt_gmtoff = -stdoffset;
873 			sp->ttis[0].tt_isdst = FALSE;
874 			sp->ttis[0].tt_abbrind = 0;
875 			sp->ttis[1].tt_gmtoff = -dstoffset;
876 			sp->ttis[1].tt_isdst = TRUE;
877 			sp->ttis[1].tt_abbrind = stdlen + 1;
878 		}
879 	} else {
880 		dstlen = 0;
881 		sp->typecnt = 1;		/* only standard time */
882 		sp->timecnt = 0;
883 		sp->ttis[0].tt_gmtoff = -stdoffset;
884 		sp->ttis[0].tt_isdst = 0;
885 		sp->ttis[0].tt_abbrind = 0;
886 	}
887 	sp->charcnt = stdlen + 1;
888 	if (dstlen != 0)
889 		sp->charcnt += dstlen + 1;
890 	if (sp->charcnt > sizeof sp->chars)
891 		return -1;
892 	cp = sp->chars;
893 	strncpy(cp, stdname, stdlen);
894 	cp += stdlen;
895 	*cp++ = '\0';
896 	if (dstlen != 0) {
897 		strncpy(cp, dstname, dstlen);
898 		*(cp + dstlen) = '\0';
899 	}
900 	return 0;
901 }
902 
903 static void
904 gmtload(struct state * const sp)
905 {
906 	if (tzload(gmt, sp) != 0)
907 		tzparse(gmt, sp, TRUE);
908 }
909 
910 static void
911 tzsetwall_basic(void)
912 {
913 	if (lcl_is_set < 0)
914 		return;
915 	lcl_is_set = -1;
916 
917 #ifdef ALL_STATE
918 	if (lclptr == NULL) {
919 		lclptr = (struct state *) malloc(sizeof *lclptr);
920 		if (lclptr == NULL) {
921 			settzname();	/* all we can do */
922 			return;
923 		}
924 	}
925 #endif /* defined ALL_STATE */
926 	if (tzload((char *) NULL, lclptr) != 0)
927 		gmtload(lclptr);
928 	settzname();
929 }
930 
931 void
932 tzsetwall(void)
933 {
934 	_MUTEX_LOCK(&lcl_mutex);
935 	tzsetwall_basic();
936 	_MUTEX_UNLOCK(&lcl_mutex);
937 }
938 
939 static void
940 tzset_basic(void)
941 {
942 	const char *	name;
943 
944 	name = getenv("TZ");
945 	if (name == NULL) {
946 		tzsetwall();
947 		return;
948 	}
949 
950 	if (lcl_is_set > 0  &&  strcmp(lcl_TZname, name) == 0)
951 		return;
952 	lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
953 	if (lcl_is_set)
954 		strcpy(lcl_TZname, name);
955 
956 #ifdef ALL_STATE
957 	if (lclptr == NULL) {
958 		lclptr = (struct state *) malloc(sizeof *lclptr);
959 		if (lclptr == NULL) {
960 			settzname();	/* all we can do */
961 			return;
962 		}
963 	}
964 #endif /* defined ALL_STATE */
965 	if (*name == '\0') {
966 		/*
967 		** User wants it fast rather than right.
968 		*/
969 		lclptr->leapcnt = 0;		/* so, we're off a little */
970 		lclptr->timecnt = 0;
971 		lclptr->ttis[0].tt_gmtoff = 0;
972 		lclptr->ttis[0].tt_abbrind = 0;
973 		strcpy(lclptr->chars, gmt);
974 	} else if (tzload(name, lclptr) != 0)
975 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
976 			gmtload(lclptr);
977 	settzname();
978 }
979 
980 void
981 tzset(void)
982 {
983 	_MUTEX_LOCK(&lcl_mutex);
984 	tzset_basic();
985 	_MUTEX_UNLOCK(&lcl_mutex);
986 }
987 
988 /*
989 ** The easy way to behave "as if no library function calls" localtime
990 ** is to not call it--so we drop its guts into "localsub", which can be
991 ** freely called.  (And no, the PANS doesn't require the above behavior--
992 ** but it *is* desirable.)
993 **
994 ** The unused offset argument is for the benefit of mktime variants.
995 */
996 
997 /*ARGSUSED*/
998 static void
999 localsub(const time_t * const timep, const long offset __unused,
1000 	 struct tm * const tmp)
1001 {
1002 	struct state *		sp;
1003 	const struct ttinfo *	ttisp;
1004 	int			i;
1005 	const time_t			t = *timep;
1006 
1007 	sp = lclptr;
1008 #ifdef ALL_STATE
1009 	if (sp == NULL) {
1010 		gmtsub(timep, offset, tmp);
1011 		return;
1012 	}
1013 #endif /* defined ALL_STATE */
1014 	if (sp->timecnt == 0 || t < sp->ats[0]) {
1015 		i = 0;
1016 		while (sp->ttis[i].tt_isdst)
1017 			if (++i >= sp->typecnt) {
1018 				i = 0;
1019 				break;
1020 			}
1021 	} else {
1022 		for (i = 1; i < sp->timecnt; ++i)
1023 			if (t < sp->ats[i])
1024 				break;
1025 		i = sp->types[i - 1];
1026 	}
1027 	ttisp = &sp->ttis[i];
1028 	/*
1029 	** To get (wrong) behavior that's compatible with System V Release 2.0
1030 	** you'd replace the statement below with
1031 	**	t += ttisp->tt_gmtoff;
1032 	**	timesub(&t, 0L, sp, tmp);
1033 	*/
1034 	timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1035 	tmp->tm_isdst = ttisp->tt_isdst;
1036 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1037 #ifdef TM_ZONE
1038 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1039 #endif /* defined TM_ZONE */
1040 }
1041 
1042 struct tm *
1043 localtime_r(const time_t * const timep, struct tm *p_tm)
1044 {
1045 	_MUTEX_LOCK(&lcl_mutex);
1046 	tzset();
1047 	localsub(timep, 0L, p_tm);
1048 	_MUTEX_UNLOCK(&lcl_mutex);
1049 	return(p_tm);
1050 }
1051 
1052 struct tm *
1053 localtime(const time_t * const timep)
1054 {
1055 	static pthread_mutex_t localtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1056 	static pthread_key_t localtime_key = -1;
1057 	struct tm *p_tm;
1058 
1059 	if (__isthreaded != 0) {
1060 		_pthread_mutex_lock(&localtime_mutex);
1061 		if (localtime_key < 0) {
1062 			if (_pthread_key_create(&localtime_key, free) < 0) {
1063 				_pthread_mutex_unlock(&localtime_mutex);
1064 				return(NULL);
1065 			}
1066 		}
1067 		_pthread_mutex_unlock(&localtime_mutex);
1068 		p_tm = _pthread_getspecific(localtime_key);
1069 		if (p_tm == NULL) {
1070 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1071 			    == NULL)
1072 				return(NULL);
1073 			_pthread_setspecific(localtime_key, p_tm);
1074 		}
1075 		_pthread_mutex_lock(&lcl_mutex);
1076 		tzset();
1077 		localsub(timep, 0L, p_tm);
1078 		_pthread_mutex_unlock(&lcl_mutex);
1079 		return(p_tm);
1080 	} else {
1081 		tzset();
1082 		localsub(timep, 0L, &tm);
1083 		return(&tm);
1084 	}
1085 }
1086 
1087 /*
1088 ** gmtsub is to gmtime as localsub is to localtime.
1089 */
1090 
1091 static void
1092 gmtsub(const time_t * const timep, const long offset, struct tm * const tmp)
1093 {
1094 	_MUTEX_LOCK(&gmt_mutex);
1095 	if (!gmt_is_set) {
1096 		gmt_is_set = TRUE;
1097 #ifdef ALL_STATE
1098 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
1099 		if (gmtptr != NULL)
1100 #endif /* defined ALL_STATE */
1101 			gmtload(gmtptr);
1102 	}
1103 	_MUTEX_UNLOCK(&gmt_mutex);
1104 	timesub(timep, offset, gmtptr, tmp);
1105 #ifdef TM_ZONE
1106 	/*
1107 	** Could get fancy here and deliver something such as
1108 	** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1109 	** but this is no time for a treasure hunt.
1110 	*/
1111 	if (offset != 0)
1112 		tmp->TM_ZONE = wildabbr;
1113 	else {
1114 #ifdef ALL_STATE
1115 		if (gmtptr == NULL)
1116 			tmp->TM_ZONE = gmt;
1117 		else	tmp->TM_ZONE = gmtptr->chars;
1118 #endif /* defined ALL_STATE */
1119 #ifndef ALL_STATE
1120 		tmp->TM_ZONE = gmtptr->chars;
1121 #endif /* State Farm */
1122 	}
1123 #endif /* defined TM_ZONE */
1124 }
1125 
1126 struct tm *
1127 gmtime(const time_t * const timep)
1128 {
1129 	static pthread_mutex_t gmtime_mutex = PTHREAD_MUTEX_INITIALIZER;
1130 	static pthread_key_t gmtime_key = -1;
1131 	struct tm *p_tm;
1132 
1133 	if (__isthreaded != 0) {
1134 		_pthread_mutex_lock(&gmtime_mutex);
1135 		if (gmtime_key < 0) {
1136 			if (_pthread_key_create(&gmtime_key, free) < 0) {
1137 				_pthread_mutex_unlock(&gmtime_mutex);
1138 				return(NULL);
1139 		}
1140 	}
1141 	_pthread_mutex_unlock(&gmtime_mutex);
1142 		/*
1143 		 * Changed to follow POSIX.1 threads standard, which
1144 		 * is what BSD currently has.
1145 		 */
1146 		if ((p_tm = _pthread_getspecific(gmtime_key)) == NULL) {
1147 			if ((p_tm = (struct tm *)malloc(sizeof(struct tm)))
1148 			    == NULL) {
1149 				return(NULL);
1150 			}
1151 			_pthread_setspecific(gmtime_key, p_tm);
1152 		}
1153 		gmtsub(timep, 0L, p_tm);
1154 		return(p_tm);
1155 	}
1156 	else {
1157 		gmtsub(timep, 0L, &tm);
1158 		return(&tm);
1159 	}
1160 }
1161 
1162 struct tm *
1163 gmtime_r(const time_t * timep, struct tm * tm_p)
1164 {
1165 	gmtsub(timep, 0L, tm_p);
1166 	return(tm_p);
1167 }
1168 
1169 #ifdef STD_INSPIRED
1170 
1171 struct tm *
1172 offtime(const time_t * const timep, const long offset)
1173 {
1174 	gmtsub(timep, offset, &tm);
1175 	return &tm;
1176 }
1177 
1178 #endif /* defined STD_INSPIRED */
1179 
1180 static void
1181 timesub(const time_t * const timep, const long offset,
1182 	const struct state * const sp, struct tm * const tmp)
1183 {
1184 	const struct lsinfo *	lp;
1185 	long			days;
1186 	long			rem;
1187 	int			y;
1188 	int			yleap;
1189 	const int *		ip;
1190 	long			corr;
1191 	int			hit;
1192 	int			i;
1193 
1194 	corr = 0;
1195 	hit = 0;
1196 #ifdef ALL_STATE
1197 	i = (sp == NULL) ? 0 : sp->leapcnt;
1198 #endif /* defined ALL_STATE */
1199 #ifndef ALL_STATE
1200 	i = sp->leapcnt;
1201 #endif /* State Farm */
1202 	while (--i >= 0) {
1203 		lp = &sp->lsis[i];
1204 		if (*timep >= lp->ls_trans) {
1205 			if (*timep == lp->ls_trans) {
1206 				hit = ((i == 0 && lp->ls_corr > 0) ||
1207 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
1208 				if (hit)
1209 					while (i > 0 &&
1210 						sp->lsis[i].ls_trans ==
1211 						sp->lsis[i - 1].ls_trans + 1 &&
1212 						sp->lsis[i].ls_corr ==
1213 						sp->lsis[i - 1].ls_corr + 1) {
1214 							++hit;
1215 							--i;
1216 					}
1217 			}
1218 			corr = lp->ls_corr;
1219 			break;
1220 		}
1221 	}
1222 	days = *timep / SECSPERDAY;
1223 	rem = *timep % SECSPERDAY;
1224 #ifdef mc68k
1225 	if (*timep == 0x80000000) {
1226 		/*
1227 		** A 3B1 muffs the division on the most negative number.
1228 		*/
1229 		days = -24855;
1230 		rem = -11648;
1231 	}
1232 #endif /* defined mc68k */
1233 	rem += (offset - corr);
1234 	while (rem < 0) {
1235 		rem += SECSPERDAY;
1236 		--days;
1237 	}
1238 	while (rem >= SECSPERDAY) {
1239 		rem -= SECSPERDAY;
1240 		++days;
1241 	}
1242 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
1243 	rem = rem % SECSPERHOUR;
1244 	tmp->tm_min = (int) (rem / SECSPERMIN);
1245 	/*
1246 	** A positive leap second requires a special
1247 	** representation.  This uses "... ??:59:60" et seq.
1248 	*/
1249 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1250 	tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1251 	if (tmp->tm_wday < 0)
1252 		tmp->tm_wday += DAYSPERWEEK;
1253 	y = EPOCH_YEAR;
1254 #define LEAPS_THRU_END_OF(y)	((y) / 4 - (y) / 100 + (y) / 400)
1255 	while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1256 		int	newy;
1257 
1258 		newy = y + days / DAYSPERNYEAR;
1259 		if (days < 0)
1260 			--newy;
1261 		days -= (newy - y) * DAYSPERNYEAR +
1262 			LEAPS_THRU_END_OF(newy - 1) -
1263 			LEAPS_THRU_END_OF(y - 1);
1264 		y = newy;
1265 	}
1266 	tmp->tm_year = y - TM_YEAR_BASE;
1267 	tmp->tm_yday = (int) days;
1268 	ip = mon_lengths[yleap];
1269 	for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1270 		days = days - (long) ip[tmp->tm_mon];
1271 	tmp->tm_mday = (int) (days + 1);
1272 	tmp->tm_isdst = 0;
1273 #ifdef TM_GMTOFF
1274 	tmp->TM_GMTOFF = offset;
1275 #endif /* defined TM_GMTOFF */
1276 }
1277 
1278 char *
1279 ctime(const time_t * const timep)
1280 {
1281 /*
1282 ** Section 4.12.3.2 of X3.159-1989 requires that
1283 **	The ctime funciton converts the calendar time pointed to by timer
1284 **	to local time in the form of a string.  It is equivalent to
1285 **		asctime(localtime(timer))
1286 */
1287 	return asctime(localtime(timep));
1288 }
1289 
1290 char *
1291 ctime_r(const time_t * const timep, char *buf)
1292 {
1293         struct tm tm1;
1294 	return asctime_r(localtime_r(timep, &tm1), buf);
1295 }
1296 
1297 /*
1298 ** Adapted from code provided by Robert Elz, who writes:
1299 **	The "best" way to do mktime I think is based on an idea of Bob
1300 **	Kridle's (so its said...) from a long time ago.
1301 **	[kridle@xinet.com as of 1996-01-16.]
1302 **	It does a binary search of the time_t space.  Since time_t's are
1303 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
1304 **	would still be very reasonable).
1305 */
1306 
1307 #ifndef WRONG
1308 #define WRONG	(-1)
1309 #endif /* !defined WRONG */
1310 
1311 /*
1312 ** Simplified normalize logic courtesy Paul Eggert (eggert@twinsun.com).
1313 */
1314 
1315 static int
1316 increment_overflow(int *number, int delta)
1317 {
1318 	int	number0;
1319 
1320 	number0 = *number;
1321 	*number += delta;
1322 	return (*number < number0) != (delta < 0);
1323 }
1324 
1325 static int
1326 normalize_overflow(int * const tensptr, int * const unitsptr, const int base)
1327 {
1328 	int	tensdelta;
1329 
1330 	tensdelta = (*unitsptr >= 0) ?
1331 		(*unitsptr / base) :
1332 		(-1 - (-1 - *unitsptr) / base);
1333 	*unitsptr -= tensdelta * base;
1334 	return increment_overflow(tensptr, tensdelta);
1335 }
1336 
1337 static int
1338 tmcomp(const struct tm * const atmp, const struct tm * const btmp)
1339 {
1340 	int	result;
1341 
1342 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1343 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1344 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1345 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1346 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
1347 			result = atmp->tm_sec - btmp->tm_sec;
1348 	return result;
1349 }
1350 
1351 static time_t
1352 time2(struct tm * const tmp,
1353       void (* const funcp)(const time_t *, long, struct tm *),
1354       const long offset, int * const okayp)
1355 {
1356 	const struct state *	sp;
1357 	int			dir;
1358 	int			bits;
1359 	int			i, j ;
1360 	int			saved_seconds;
1361 	time_t				newt;
1362 	time_t				t;
1363 	struct tm			yourtm, mytm;
1364 
1365 	*okayp = FALSE;
1366 	yourtm = *tmp;
1367 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1368 		return WRONG;
1369 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1370 		return WRONG;
1371 	if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1372 		return WRONG;
1373 	/*
1374 	** Turn yourtm.tm_year into an actual year number for now.
1375 	** It is converted back to an offset from TM_YEAR_BASE later.
1376 	*/
1377 	if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1378 		return WRONG;
1379 	while (yourtm.tm_mday <= 0) {
1380 		if (increment_overflow(&yourtm.tm_year, -1))
1381 			return WRONG;
1382 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
1383 		yourtm.tm_mday += year_lengths[isleap(i)];
1384 	}
1385 	while (yourtm.tm_mday > DAYSPERLYEAR) {
1386 		i = yourtm.tm_year + (1 < yourtm.tm_mon);
1387 		yourtm.tm_mday -= year_lengths[isleap(i)];
1388 		if (increment_overflow(&yourtm.tm_year, 1))
1389 			return WRONG;
1390 	}
1391 	for ( ; ; ) {
1392 		i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1393 		if (yourtm.tm_mday <= i)
1394 			break;
1395 		yourtm.tm_mday -= i;
1396 		if (++yourtm.tm_mon >= MONSPERYEAR) {
1397 			yourtm.tm_mon = 0;
1398 			if (increment_overflow(&yourtm.tm_year, 1))
1399 				return WRONG;
1400 		}
1401 	}
1402 	if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1403 		return WRONG;
1404 	if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1405 		/*
1406 		** We can't set tm_sec to 0, because that might push the
1407 		** time below the minimum representable time.
1408 		** Set tm_sec to 59 instead.
1409 		** This assumes that the minimum representable time is
1410 		** not in the same minute that a leap second was deleted from,
1411 		** which is a safer assumption than using 58 would be.
1412 		*/
1413 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1414 			return WRONG;
1415 		saved_seconds = yourtm.tm_sec;
1416 		yourtm.tm_sec = SECSPERMIN - 1;
1417 	} else {
1418 		saved_seconds = yourtm.tm_sec;
1419 		yourtm.tm_sec = 0;
1420 	}
1421 	/*
1422 	** Divide the search space in half
1423 	** (this works whether time_t is signed or unsigned).
1424 	*/
1425 	bits = TYPE_BIT(time_t) - 1;
1426 	/*
1427 	** If time_t is signed, then 0 is just above the median,
1428 	** assuming two's complement arithmetic.
1429 	** If time_t is unsigned, then (1 << bits) is just above the median.
1430 	*/
1431 	t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1432 	for ( ; ; ) {
1433 		(*funcp)(&t, offset, &mytm);
1434 		dir = tmcomp(&mytm, &yourtm);
1435 		if (dir != 0) {
1436 			if (bits-- < 0)
1437 				return WRONG;
1438 			if (bits < 0)
1439 				--t; /* may be needed if new t is minimal */
1440 			else if (dir > 0)
1441 				t -= ((time_t) 1) << bits;
1442 			else	t += ((time_t) 1) << bits;
1443 			continue;
1444 		}
1445 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1446 			break;
1447 		/*
1448 		** Right time, wrong type.
1449 		** Hunt for right time, right type.
1450 		** It's okay to guess wrong since the guess
1451 		** gets checked.
1452 		*/
1453 		/*
1454 		** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1455 		*/
1456 		sp = (const struct state *)
1457 			(((void *) funcp == (void *) localsub) ?
1458 			lclptr : gmtptr);
1459 #ifdef ALL_STATE
1460 		if (sp == NULL)
1461 			return WRONG;
1462 #endif /* defined ALL_STATE */
1463 		for (i = sp->typecnt - 1; i >= 0; --i) {
1464 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1465 				continue;
1466 			for (j = sp->typecnt - 1; j >= 0; --j) {
1467 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1468 					continue;
1469 				newt = t + sp->ttis[j].tt_gmtoff -
1470 					sp->ttis[i].tt_gmtoff;
1471 				(*funcp)(&newt, offset, &mytm);
1472 				if (tmcomp(&mytm, &yourtm) != 0)
1473 					continue;
1474 				if (mytm.tm_isdst != yourtm.tm_isdst)
1475 					continue;
1476 				/*
1477 				** We have a match.
1478 				*/
1479 				t = newt;
1480 				goto label;
1481 			}
1482 		}
1483 		return WRONG;
1484 	}
1485 label:
1486 	newt = t + saved_seconds;
1487 	if ((newt < t) != (saved_seconds < 0))
1488 		return WRONG;
1489 	t = newt;
1490 	(*funcp)(&t, offset, tmp);
1491 	*okayp = TRUE;
1492 	return t;
1493 }
1494 
1495 static time_t
1496 time1(struct tm * const tmp,
1497       void (* const funcp)(const time_t *, long, struct tm *),
1498       const long offset)
1499 {
1500 	time_t			t;
1501 	const struct state *	sp;
1502 	int			samei, otheri;
1503 	int				okay;
1504 
1505 	if (tmp->tm_isdst > 1)
1506 		tmp->tm_isdst = 1;
1507 	t = time2(tmp, funcp, offset, &okay);
1508 #ifdef PCTS
1509 	/*
1510 	** PCTS code courtesy Grant Sullivan (grant@osf.org).
1511 	*/
1512 	if (okay)
1513 		return t;
1514 	if (tmp->tm_isdst < 0)
1515 		tmp->tm_isdst = 0;	/* reset to std and try again */
1516 #endif /* defined PCTS */
1517 #ifndef PCTS
1518 	if (okay || tmp->tm_isdst < 0)
1519 		return t;
1520 #endif /* !defined PCTS */
1521 	/*
1522 	** We're supposed to assume that somebody took a time of one type
1523 	** and did some math on it that yielded a "struct tm" that's bad.
1524 	** We try to divine the type they started from and adjust to the
1525 	** type they need.
1526 	*/
1527 	/*
1528 	** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1529 	*/
1530 	sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1531 		lclptr : gmtptr);
1532 #ifdef ALL_STATE
1533 	if (sp == NULL)
1534 		return WRONG;
1535 #endif /* defined ALL_STATE */
1536 	for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1537 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1538 			continue;
1539 		for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1540 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1541 				continue;
1542 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1543 					sp->ttis[samei].tt_gmtoff;
1544 			tmp->tm_isdst = !tmp->tm_isdst;
1545 			t = time2(tmp, funcp, offset, &okay);
1546 			if (okay)
1547 				return t;
1548 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1549 					sp->ttis[samei].tt_gmtoff;
1550 			tmp->tm_isdst = !tmp->tm_isdst;
1551 		}
1552 	}
1553 	return WRONG;
1554 }
1555 
1556 time_t
1557 mktime(struct tm * const tmp)
1558 {
1559 	time_t mktime_return_value;
1560 	_MUTEX_LOCK(&lcl_mutex);
1561 	tzset();
1562 	mktime_return_value = time1(tmp, localsub, 0L);
1563 	_MUTEX_UNLOCK(&lcl_mutex);
1564 	return(mktime_return_value);
1565 }
1566 
1567 #ifdef STD_INSPIRED
1568 
1569 time_t
1570 timelocal(struct tm * const tmp)
1571 {
1572 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
1573 	return mktime(tmp);
1574 }
1575 
1576 time_t
1577 timegm(struct tm * const tmp)
1578 {
1579 	tmp->tm_isdst = 0;
1580 	return time1(tmp, gmtsub, 0L);
1581 }
1582 
1583 time_t
1584 timeoff(struct tm * const tmp, const long offset)
1585 {
1586 	tmp->tm_isdst = 0;
1587 	return time1(tmp, gmtsub, offset);
1588 }
1589 
1590 #endif /* defined STD_INSPIRED */
1591 
1592 #ifdef CMUCS
1593 
1594 /*
1595 ** The following is supplied for compatibility with
1596 ** previous versions of the CMUCS runtime library.
1597 */
1598 
1599 long
1600 gtime(struct tm * const tmp)
1601 {
1602 	const time_t	t = mktime(tmp);
1603 
1604 	if (t == WRONG)
1605 		return -1;
1606 	return t;
1607 }
1608 
1609 #endif /* defined CMUCS */
1610 
1611 /*
1612 ** XXX--is the below the right way to conditionalize??
1613 */
1614 
1615 #ifdef STD_INSPIRED
1616 
1617 /*
1618 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1619 ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1620 ** is not the case if we are accounting for leap seconds.
1621 ** So, we provide the following conversion routines for use
1622 ** when exchanging timestamps with POSIX conforming systems.
1623 */
1624 
1625 static long
1626 leapcorr(time_t *timep)
1627 {
1628 	struct state *		sp;
1629 	struct lsinfo *	lp;
1630 	int			i;
1631 
1632 	sp = lclptr;
1633 	i = sp->leapcnt;
1634 	while (--i >= 0) {
1635 		lp = &sp->lsis[i];
1636 		if (*timep >= lp->ls_trans)
1637 			return lp->ls_corr;
1638 	}
1639 	return 0;
1640 }
1641 
1642 time_t
1643 time2posix(time_t t)
1644 {
1645 	tzset();
1646 	return t - leapcorr(&t);
1647 }
1648 
1649 time_t
1650 posix2time(time_t t)
1651 {
1652 	time_t	x;
1653 	time_t	y;
1654 
1655 	tzset();
1656 	/*
1657 	** For a positive leap second hit, the result
1658 	** is not unique.  For a negative leap second
1659 	** hit, the corresponding time doesn't exist,
1660 	** so we return an adjacent second.
1661 	*/
1662 	x = t + leapcorr(&t);
1663 	y = x - leapcorr(&x);
1664 	if (y < t) {
1665 		do {
1666 			x++;
1667 			y = x - leapcorr(&x);
1668 		} while (y < t);
1669 		if (t != y)
1670 			return x - 1;
1671 	} else if (y > t) {
1672 		do {
1673 			--x;
1674 			y = x - leapcorr(&x);
1675 		} while (y > t);
1676 		if (t != y)
1677 			return x + 1;
1678 	}
1679 	return x;
1680 }
1681 
1682 #endif /* defined STD_INSPIRED */
1683