xref: /dragonfly/lib/libdevstat/devstat.c (revision 3d33658b)
1 /*
2  * Copyright (c) 1997, 1998 Kenneth D. Merry.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/lib/libdevstat/devstat.c,v 1.6 1999/08/28 00:04:26 peter Exp $
29  * $DragonFly: src/lib/libdevstat/devstat.c,v 1.5 2005/01/08 19:19:26 joerg Exp $
30  */
31 
32 #include <sys/types.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 
36 #include <ctype.h>
37 #include <err.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 
42 #include "devstat.h"
43 
44 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
45 
46 /*
47  * Table to match descriptive strings with device types.  These are in
48  * order from most common to least common to speed search time.
49  */
50 struct devstat_match_table match_table[] = {
51 	{"da",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
52 	{"nvme",	DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
53 	{"xa",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
54 	{"cd",		DEVSTAT_TYPE_CDROM,	DEVSTAT_MATCH_TYPE},
55 	{"scsi",	DEVSTAT_TYPE_IF_SCSI,	DEVSTAT_MATCH_IF},
56 	{"ide",		DEVSTAT_TYPE_IF_IDE,	DEVSTAT_MATCH_IF},
57 	{"other",	DEVSTAT_TYPE_IF_OTHER,	DEVSTAT_MATCH_IF},
58 	{"worm",	DEVSTAT_TYPE_WORM,	DEVSTAT_MATCH_TYPE},
59 	{"sa",		DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
60 	{"pass",	DEVSTAT_TYPE_PASS,	DEVSTAT_MATCH_PASS},
61 	{"optical",	DEVSTAT_TYPE_OPTICAL,	DEVSTAT_MATCH_TYPE},
62 	{"array",	DEVSTAT_TYPE_STORARRAY,	DEVSTAT_MATCH_TYPE},
63 	{"changer",	DEVSTAT_TYPE_CHANGER,	DEVSTAT_MATCH_TYPE},
64 	{"scanner",	DEVSTAT_TYPE_SCANNER,	DEVSTAT_MATCH_TYPE},
65 	{"printer",	DEVSTAT_TYPE_PRINTER,	DEVSTAT_MATCH_TYPE},
66 	{"floppy",	DEVSTAT_TYPE_FLOPPY,	DEVSTAT_MATCH_TYPE},
67 	{"proc",	DEVSTAT_TYPE_PROCESSOR,	DEVSTAT_MATCH_TYPE},
68 	{"comm",	DEVSTAT_TYPE_COMM,	DEVSTAT_MATCH_TYPE},
69 	{"enclosure",	DEVSTAT_TYPE_ENCLOSURE,	DEVSTAT_MATCH_TYPE},
70 	{NULL,		0,			0}
71 };
72 
73 /*
74  * Local function declarations.
75  */
76 static int compare_select(const void *arg1, const void *arg2);
77 
78 int
79 getnumdevs(void)
80 {
81 	size_t numdevsize;
82 	int numdevs;
83 	const char *func_name = "getnumdevs";
84 
85 	numdevsize = sizeof(int);
86 
87 	/*
88 	 * Find out how many devices we have in the system.
89 	 */
90 	if (sysctlbyname("kern.devstat.numdevs", &numdevs,
91 			 &numdevsize, NULL, 0) == -1) {
92 		sprintf(devstat_errbuf, "%s: error getting number of devices\n"
93 			"%s: %s", func_name, func_name, strerror(errno));
94 		return(-1);
95 	} else
96 		return(numdevs);
97 }
98 
99 /*
100  * This is an easy way to get the generation number, but the generation is
101  * supplied in a more atmoic manner by the kern.devstat.all sysctl.
102  * Because this generation sysctl is separate from the statistics sysctl,
103  * the device list and the generation could change between the time that
104  * this function is called and the device list is retreived.
105  */
106 long
107 getgeneration(void)
108 {
109 	size_t gensize;
110 	long generation;
111 	const char *func_name = "getgeneration";
112 
113 	gensize = sizeof(long);
114 
115 	/*
116 	 * Get the current generation number.
117 	 */
118 	if (sysctlbyname("kern.devstat.generation", &generation,
119 			 &gensize, NULL, 0) == -1) {
120 		sprintf(devstat_errbuf,"%s: error getting devstat generation\n"
121 			"%s: %s", func_name, func_name, strerror(errno));
122 		return(-1);
123 	} else
124 		return(generation);
125 }
126 
127 /*
128  * Get the current devstat version.  The return value of this function
129  * should be compared with DEVSTAT_VERSION, which is defined in
130  * sys/devicestat.h.  This will enable userland programs to determine
131  * whether they are out of sync with the kernel.
132  */
133 int
134 getversion(void)
135 {
136 	size_t versize;
137 	int version;
138 	const char *func_name = "getversion";
139 
140 	versize = sizeof(int);
141 
142 	/*
143 	 * Get the current devstat version.
144 	 */
145 	if (sysctlbyname("kern.devstat.version", &version, &versize,
146 			 NULL, 0) == -1) {
147 		sprintf(devstat_errbuf, "%s: error getting devstat version\n"
148 			"%s: %s", func_name, func_name, strerror(errno));
149 		return(-1);
150 	} else
151 		return(version);
152 }
153 
154 /*
155  * Check the devstat version we know about against the devstat version the
156  * kernel knows about.  If they don't match, print an error into the
157  * devstat error buffer, and return -1.  If they match, return 0.
158  */
159 int
160 checkversion(void)
161 {
162 	int retval = 0;
163 	int errlen = 0;
164 	const char *func_name = "checkversion";
165 	int version;
166 
167 	version = getversion();
168 
169 	if (version != DEVSTAT_VERSION) {
170 		int buflen = 0;
171 		char tmpstr[256];
172 
173 		/*
174 		 * This is really pretty silly, but basically the idea is
175 		 * that if getversion() returns an error (i.e. -1), then it
176 		 * has printed an error message in the buffer.  Therefore,
177 		 * we need to add a \n to the end of that message before we
178 		 * print our own message in the buffer.
179 		 */
180 		if (version == -1) {
181 			buflen = strlen(devstat_errbuf);
182 			errlen = snprintf(tmpstr, sizeof(tmpstr), "\n");
183 			strncat(devstat_errbuf, tmpstr,
184 				DEVSTAT_ERRBUF_SIZE - buflen - 1);
185 			buflen += errlen;
186 		}
187 
188 		errlen = snprintf(tmpstr, sizeof(tmpstr),
189 				  "%s: userland devstat version %d is not "
190 				  "the same as the kernel\n%s: devstat "
191 				  "version %d\n", func_name, DEVSTAT_VERSION,
192 				  func_name, version);
193 
194 		if (version == -1) {
195 			strncat(devstat_errbuf, tmpstr,
196 				DEVSTAT_ERRBUF_SIZE - buflen - 1);
197 			buflen += errlen;
198 		} else {
199 			strncpy(devstat_errbuf, tmpstr, DEVSTAT_ERRBUF_SIZE);
200 			devstat_errbuf[DEVSTAT_ERRBUF_SIZE - 1] = '\0';
201 		}
202 
203                 if (version < DEVSTAT_VERSION)
204 			snprintf(tmpstr, sizeof(tmpstr),
205 				 "%s: libdevstat newer than kernel\n",
206 				 func_name);
207                 else
208 			snprintf(tmpstr, sizeof(tmpstr),
209 				 "%s: kernel newer than libdevstat\n",
210 				 func_name);
211 
212 		strncat(devstat_errbuf, tmpstr,
213 			DEVSTAT_ERRBUF_SIZE - buflen - 1);
214 
215 		retval = -1;
216 	}
217 
218 	return(retval);
219 }
220 
221 /*
222  * Get the current list of devices and statistics, and the current
223  * generation number.
224  *
225  * Return values:
226  * -1  -- error
227  *  0  -- device list is unchanged
228  *  1  -- device list has changed
229  */
230 int
231 getdevs(struct statinfo *stats)
232 {
233 	int error;
234 	size_t dssize;
235 	long oldgeneration;
236 	int retval = 0;
237 	struct devinfo *dinfo;
238 	const char *func_name = "getdevs";
239 
240 	dinfo = stats->dinfo;
241 
242 	if (dinfo == NULL) {
243 		sprintf(devstat_errbuf, "%s: stats->dinfo was NULL", func_name);
244 		return(-1);
245 	}
246 
247 	oldgeneration = dinfo->generation;
248 
249 	/*
250 	 * If this is our first time through, mem_ptr will be null.
251 	 */
252 	if (dinfo->mem_ptr == NULL) {
253 		/*
254 		 * Get the number of devices.  If it's negative, it's an
255 		 * error.  Don't bother setting the error string, since
256 		 * getnumdevs() has already done that for us.
257 		 */
258 		if ((dinfo->numdevs = getnumdevs()) < 0)
259 			return(-1);
260 
261 		/*
262 		 * The kern.devstat.all sysctl returns the current generation
263 		 * number, as well as all the devices.  So we need four
264 		 * bytes more.
265 		 */
266 		dssize =(dinfo->numdevs * sizeof(struct devstat)) +sizeof(long);
267 		dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
268 	} else
269 		dssize =(dinfo->numdevs * sizeof(struct devstat)) +sizeof(long);
270 
271 	/* Get the current time when we get the stats */
272 	gettimeofday(&stats->busy_time, NULL);
273 
274 	/*
275 	 * Request all of the devices.  We only really allow for one
276 	 * ENOMEM failure.  It would, of course, be possible to just go in
277 	 * a loop and keep reallocing the device structure until we don't
278 	 * get ENOMEM back.  I'm not sure it's worth it, though.  If
279 	 * devices are being added to the system that quickly, maybe the
280 	 * user can just wait until all devices are added.
281 	 */
282 	if ((error = sysctlbyname("kern.devstat.all", dinfo->mem_ptr,
283 	     &dssize, NULL, 0)) == -1) {
284 		/*
285 		 * If we get ENOMEM back, that means that there are
286 		 * more devices now, so we need to allocate more
287 		 * space for the device array.
288 		 */
289 		if (errno == ENOMEM) {
290 			/*
291 			 * No need to set the error string here, getnumdevs()
292 			 * will do that if it fails.
293 			 */
294 			if ((dinfo->numdevs = getnumdevs()) < 0)
295 				return(-1);
296 
297 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
298 				sizeof(long);
299 			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
300 							     dssize);
301 			if ((error = sysctlbyname("kern.devstat.all",
302 			    dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
303 				sprintf(devstat_errbuf,
304 					"%s: error getting device stats\n"
305 					"%s: %s", func_name, func_name,
306 					strerror(errno));
307 				return(-1);
308 			}
309 		} else {
310 			sprintf(devstat_errbuf,
311 				"%s: error getting device stats\n"
312 				"%s: %s", func_name, func_name,
313 				strerror(errno));
314 			return(-1);
315 		}
316 	}
317 
318 	/*
319 	 * The sysctl spits out the generation as the first four bytes,
320 	 * then all of the device statistics structures.
321 	 */
322 	dinfo->generation = *(long *)dinfo->mem_ptr;
323 
324 	/*
325 	 * If the generation has changed, and if the current number of
326 	 * devices is not the same as the number of devices recorded in the
327 	 * devinfo structure, it is likely that the device list has shrunk.
328 	 * The reason that it is likely that the device list has shrunk in
329 	 * this case is that if the device list has grown, the sysctl above
330 	 * will return an ENOMEM error, and we will reset the number of
331 	 * devices and reallocate the device array.  If the second sysctl
332 	 * fails, we will return an error and therefore never get to this
333 	 * point.  If the device list has shrunk, the sysctl will not
334 	 * return an error since we have more space allocated than is
335 	 * necessary.  So, in the shrinkage case, we catch it here and
336 	 * reallocate the array so that we don't use any more space than is
337 	 * necessary.
338 	 */
339 	if (oldgeneration != dinfo->generation) {
340 		if (getnumdevs() != dinfo->numdevs) {
341 			if ((dinfo->numdevs = getnumdevs()) < 0)
342 				return(-1);
343 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
344 				sizeof(long);
345 			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
346 							     dssize);
347 		}
348 		retval = 1;
349 	}
350 
351 	dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
352 
353 	return(retval);
354 }
355 
356 /*
357  * selectdevs():
358  *
359  * Devices are selected/deselected based upon the following criteria:
360  * - devices specified by the user on the command line
361  * - devices matching any device type expressions given on the command line
362  * - devices with the highest I/O, if 'top' mode is enabled
363  * - the first n unselected devices in the device list, if maxshowdevs
364  *   devices haven't already been selected and if the user has not
365  *   specified any devices on the command line and if we're in "add" mode.
366  *
367  * Input parameters:
368  * - device selection list (dev_select)
369  * - current number of devices selected (num_selected)
370  * - total number of devices in the selection list (num_selections)
371  * - devstat generation as of the last time selectdevs() was called
372  *   (select_generation)
373  * - current devstat generation (current_generation)
374  * - current list of devices and statistics (devices)
375  * - number of devices in the current device list (numdevs)
376  * - compiled version of the command line device type arguments (matches)
377  *   - This is optional.  If the number of devices is 0, this will be ignored.
378  *   - The matching code pays attention to the current selection mode.  So
379  *     if you pass in a matching expression, it will be evaluated based
380  *     upon the selection mode that is passed in.  See below for details.
381  * - number of device type matching expressions (num_matches)
382  *   - Set to 0 to disable the matching code.
383  * - list of devices specified on the command line by the user (dev_selections)
384  * - number of devices selected on the command line by the user
385  *   (num_dev_selections)
386  * - Our selection mode.  There are four different selection modes:
387  *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
388  *        selected by the user or devices matching a pattern given by the
389  *        user will be selected in addition to devices that are already
390  *        selected.  Additional devices will be selected, up to maxshowdevs
391  *        number of devices.
392  *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
393  *        explicitly given by the user or devices matching a pattern
394  *        given by the user will be selected.  No other devices will be
395  *        selected.
396  *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
397  *        only.  Basically, this will not de-select any devices that are
398  *        current selected, as only mode would, but it will also not
399  *        gratuitously select up to maxshowdevs devices as add mode would.
400  *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
401  *        explicitly selected by the user or devices matching a pattern
402  *        given by the user will be de-selected.
403  * - maximum number of devices we can select (maxshowdevs)
404  * - flag indicating whether or not we're in 'top' mode (perf_select)
405  *
406  * Output data:
407  * - the device selection list may be modified and passed back out
408  * - the number of devices selected and the total number of items in the
409  *   device selection list may be changed
410  * - the selection generation may be changed to match the current generation
411  *
412  * Return values:
413  * -1  -- error
414  *  0  -- selected devices are unchanged
415  *  1  -- selected devices changed
416  */
417 int
418 selectdevs(struct device_selection **dev_select, int *num_selected,
419 	   int *num_selections, long *select_generation,
420 	   long current_generation, struct devstat *devices, int numdevs,
421 	   struct devstat_match *matches, int num_matches,
422 	   char **dev_selections, int num_dev_selections,
423 	   devstat_select_mode select_mode, int maxshowdevs, int perf_select)
424 {
425 	int i, j, k;
426 	int init_selections = 0, init_selected_var = 0;
427 	struct device_selection *old_dev_select = NULL;
428 	int old_num_selections = 0, old_num_selected;
429 	int selection_number = 0;
430 	int changed = 0, found = 0;
431 
432 	if ((dev_select == NULL) || (devices == NULL) || (numdevs <= 0))
433 		return(-1);
434 
435 	/*
436 	 * We always want to make sure that we have as many dev_select
437 	 * entries as there are devices.
438 	 */
439 	/*
440 	 * In this case, we haven't selected devices before.
441 	 */
442 	if (*dev_select == NULL) {
443 		*dev_select = (struct device_selection *)malloc(numdevs *
444 			sizeof(struct device_selection));
445 		*select_generation = current_generation;
446 		init_selections = 1;
447 		changed = 1;
448 	/*
449 	 * In this case, we have selected devices before, but the device
450 	 * list has changed since we last selected devices, so we need to
451 	 * either enlarge or reduce the size of the device selection list.
452 	 */
453 	} else if (*num_selections != numdevs) {
454 		*dev_select = (struct device_selection *)realloc(*dev_select,
455 			numdevs * sizeof(struct device_selection));
456 		*select_generation = current_generation;
457 		init_selections = 1;
458 	/*
459 	 * In this case, we've selected devices before, and the selection
460 	 * list is the same size as it was the last time, but the device
461 	 * list has changed.
462 	 */
463 	} else if (*select_generation < current_generation) {
464 		*select_generation = current_generation;
465 		init_selections = 1;
466 	}
467 
468 	/*
469 	 * If we're in "only" mode, we want to clear out the selected
470 	 * variable since we're going to select exactly what the user wants
471 	 * this time through.
472 	 */
473 	if (select_mode == DS_SELECT_ONLY)
474 		init_selected_var = 1;
475 
476 	/*
477 	 * In all cases, we want to back up the number of selected devices.
478 	 * It is a quick and accurate way to determine whether the selected
479 	 * devices have changed.
480 	 */
481 	old_num_selected = *num_selected;
482 
483 	/*
484 	 * We want to make a backup of the current selection list if
485 	 * the list of devices has changed, or if we're in performance
486 	 * selection mode.  In both cases, we don't want to make a backup
487 	 * if we already know for sure that the list will be different.
488 	 * This is certainly the case if this is our first time through the
489 	 * selection code.
490 	 */
491 	if (((init_selected_var != 0) || (init_selections != 0)
492 	 || (perf_select != 0)) && (changed == 0)){
493 		old_dev_select = (struct device_selection *)malloc(
494 		    *num_selections * sizeof(struct device_selection));
495 		old_num_selections = *num_selections;
496 		bcopy(*dev_select, old_dev_select,
497 		    sizeof(struct device_selection) * *num_selections);
498 	}
499 
500 	if (init_selections != 0) {
501 		bzero(*dev_select, sizeof(struct device_selection) * numdevs);
502 
503 		for (i = 0; i < numdevs; i++) {
504 			(*dev_select)[i].device_number =
505 				devices[i].device_number;
506 			strncpy((*dev_select)[i].device_name,
507 				devices[i].device_name,
508 				DEVSTAT_NAME_LEN);
509 			(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
510 			(*dev_select)[i].unit_number = devices[i].unit_number;
511 			(*dev_select)[i].position = i;
512 		}
513 		*num_selections = numdevs;
514 	} else if (init_selected_var != 0) {
515 		for (i = 0; i < numdevs; i++)
516 			(*dev_select)[i].selected = 0;
517 	}
518 
519 	/* we haven't gotten around to selecting anything yet.. */
520 	if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
521 	 || (init_selected_var != 0))
522 		*num_selected = 0;
523 
524 	/*
525 	 * Look through any devices the user specified on the command line
526 	 * and see if they match known devices.  If so, select them.
527 	 */
528 	for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
529 		char tmpstr[80];
530 
531 		snprintf(tmpstr, sizeof(tmpstr), "%s%d",
532 			(*dev_select)[i].device_name,
533 			(*dev_select)[i].unit_number);
534 		for (j = 0; j < num_dev_selections; j++) {
535 			if (strcmp(tmpstr, dev_selections[j]) == 0) {
536 				/*
537 				 * Here we do different things based on the
538 				 * mode we're in.  If we're in add or
539 				 * addonly mode, we only select this device
540 				 * if it hasn't already been selected.
541 				 * Otherwise, we would be unnecessarily
542 				 * changing the selection order and
543 				 * incrementing the selection count.  If
544 				 * we're in only mode, we unconditionally
545 				 * select this device, since in only mode
546 				 * any previous selections are erased and
547 				 * manually specified devices are the first
548 				 * ones to be selected.  If we're in remove
549 				 * mode, we de-select the specified device and
550 				 * decrement the selection count.
551 				 */
552 				switch(select_mode) {
553 				case DS_SELECT_ADD:
554 				case DS_SELECT_ADDONLY:
555 					if ((*dev_select)[i].selected)
556 						break;
557 					/* FALLTHROUGH */
558 				case DS_SELECT_ONLY:
559 					(*dev_select)[i].selected =
560 						++selection_number;
561 					(*num_selected)++;
562 					break;
563 				case DS_SELECT_REMOVE:
564 					(*dev_select)[i].selected = 0;
565 					(*num_selected)--;
566 					break;
567 				}
568 				break;
569 			}
570 		}
571 	}
572 
573 	/*
574 	 * Go through the user's device type expressions and select devices
575 	 * accordingly.  We only do this if the number of devices already
576 	 * selected is less than the maximum number we can show.
577 	 */
578 	for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
579 		/* We should probably indicate some error here */
580 		if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
581 		 || (matches[i].num_match_categories <= 0))
582 			continue;
583 
584 		for (j = 0; j < numdevs; j++) {
585 			int num_match_categories;
586 
587 			num_match_categories = matches[i].num_match_categories;
588 
589 			/*
590 			 * Determine whether or not the current device
591 			 * matches the given matching expression.  This if
592 			 * statement consists of three components:
593 			 *   - the device type check
594 			 *   - the device interface check
595 			 *   - the passthrough check
596 			 * If a the matching test is successful, it
597 			 * decrements the number of matching categories,
598 			 * and if we've reached the last element that
599 			 * needed to be matched, the if statement succeeds.
600 			 *
601 			 */
602 			if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
603 			  && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
604 			        (matches[i].device_type & DEVSTAT_TYPE_MASK))
605 			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
606 			   || (((devices[j].device_type &
607 			        DEVSTAT_TYPE_PASS) == 0)))
608 			  && (--num_match_categories == 0))
609 			 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
610 			  && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
611 			        (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
612 			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
613 			   || (((devices[j].device_type &
614 				DEVSTAT_TYPE_PASS) == 0)))
615 			  && (--num_match_categories == 0))
616 			 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
617 			  && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
618 			  && (--num_match_categories == 0))) {
619 
620 				/*
621 				 * This is probably a non-optimal solution
622 				 * to the problem that the devices in the
623 				 * device list will not be in the same
624 				 * order as the devices in the selection
625 				 * array.
626 				 */
627 				for (k = 0; k < numdevs; k++) {
628 					if ((*dev_select)[k].position == j) {
629 						found = 1;
630 						break;
631 					}
632 				}
633 
634 				/*
635 				 * There shouldn't be a case where a device
636 				 * in the device list is not in the
637 				 * selection list...but it could happen.
638 				 */
639 				if (found != 1) {
640 					fprintf(stderr, "selectdevs: couldn't"
641 						" find %s%d in selection "
642 						"list\n",
643 						devices[j].device_name,
644 						devices[j].unit_number);
645 					break;
646 				}
647 
648 				/*
649 				 * We do different things based upon the
650 				 * mode we're in.  If we're in add or only
651 				 * mode, we go ahead and select this device
652 				 * if it hasn't already been selected.  If
653 				 * it has already been selected, we leave
654 				 * it alone so we don't mess up the
655 				 * selection ordering.  Manually specified
656 				 * devices have already been selected, and
657 				 * they have higher priority than pattern
658 				 * matched devices.  If we're in remove
659 				 * mode, we de-select the given device and
660 				 * decrement the selected count.
661 				 */
662 				switch(select_mode) {
663 				case DS_SELECT_ADD:
664 				case DS_SELECT_ADDONLY:
665 				case DS_SELECT_ONLY:
666 					if ((*dev_select)[k].selected != 0)
667 						break;
668 					(*dev_select)[k].selected =
669 						++selection_number;
670 					(*num_selected)++;
671 					break;
672 				case DS_SELECT_REMOVE:
673 					(*dev_select)[k].selected = 0;
674 					(*num_selected)--;
675 					break;
676 				}
677 			}
678 		}
679 	}
680 
681 	/*
682 	 * Here we implement "top" mode.  Devices are sorted in the
683 	 * selection array based on two criteria:  whether or not they are
684 	 * selected (not selection number, just the fact that they are
685 	 * selected!) and the number of bytes in the "bytes" field of the
686 	 * selection structure.  The bytes field generally must be kept up
687 	 * by the user.  In the future, it may be maintained by library
688 	 * functions, but for now the user has to do the work.
689 	 *
690 	 * At first glance, it may seem wrong that we don't go through and
691 	 * select every device in the case where the user hasn't specified
692 	 * any devices or patterns.  In fact, though, it won't make any
693 	 * difference in the device sorting.  In that particular case (i.e.
694 	 * when we're in "add" or "only" mode, and the user hasn't
695 	 * specified anything) the first time through no devices will be
696 	 * selected, so the only criterion used to sort them will be their
697 	 * performance.  The second time through, and every time thereafter,
698 	 * all devices will be selected, so again selection won't matter.
699 	 */
700 	if (perf_select != 0) {
701 
702 		/* Sort the device array by throughput  */
703 		qsort(*dev_select, *num_selections,
704 		      sizeof(struct device_selection),
705 		      compare_select);
706 
707 		if (*num_selected == 0) {
708 			/*
709 			 * Here we select every device in the array, if it
710 			 * isn't already selected.  Because the 'selected'
711 			 * variable in the selection array entries contains
712 			 * the selection order, the devstats routine can show
713 			 * the devices that were selected first.
714 			 */
715 			for (i = 0; i < *num_selections; i++) {
716 				if ((*dev_select)[i].selected == 0) {
717 					(*dev_select)[i].selected =
718 						++selection_number;
719 					(*num_selected)++;
720 				}
721 			}
722 		} else {
723 			selection_number = 0;
724 			for (i = 0; i < *num_selections; i++) {
725 				if ((*dev_select)[i].selected != 0) {
726 					(*dev_select)[i].selected =
727 						++selection_number;
728 				}
729 			}
730 		}
731 	}
732 
733 	/*
734 	 * If we're in the "add" selection mode and if we haven't already
735 	 * selected maxshowdevs number of devices, go through the array and
736 	 * select any unselected devices.  If we're in "only" mode, we
737 	 * obviously don't want to select anything other than what the user
738 	 * specifies.  If we're in "remove" mode, it probably isn't a good
739 	 * idea to go through and select any more devices, since we might
740 	 * end up selecting something that the user wants removed.  Through
741 	 * more complicated logic, we could actually figure this out, but
742 	 * that would probably require combining this loop with the various
743 	 * selections loops above.
744 	 */
745 	if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
746 		for (i = 0; i < *num_selections; i++)
747 			if ((*dev_select)[i].selected == 0) {
748 				(*dev_select)[i].selected = ++selection_number;
749 				(*num_selected)++;
750 			}
751 	}
752 
753 	/*
754 	 * Look at the number of devices that have been selected.  If it
755 	 * has changed, set the changed variable.  Otherwise, if we've
756 	 * made a backup of the selection list, compare it to the current
757 	 * selection list to see if the selected devices have changed.
758 	 */
759 	if ((changed == 0) && (old_num_selected != *num_selected))
760 		changed = 1;
761 	else if ((changed == 0) && (old_dev_select != NULL)) {
762 		/*
763 		 * Now we go through the selection list and we look at
764 		 * it three different ways.
765 		 */
766 		for (i = 0; (i < *num_selections) && (changed == 0) &&
767 		     (i < old_num_selections); i++) {
768 			/*
769 			 * If the device at index i in both the new and old
770 			 * selection arrays has the same device number and
771 			 * selection status, it hasn't changed.  We
772 			 * continue on to the next index.
773 			 */
774 			if (((*dev_select)[i].device_number ==
775 			     old_dev_select[i].device_number)
776 			 && ((*dev_select)[i].selected ==
777 			     old_dev_select[i].selected))
778 				continue;
779 
780 			/*
781 			 * Now, if we're still going through the if
782 			 * statement, the above test wasn't true.  So we
783 			 * check here to see if the device at index i in
784 			 * the current array is the same as the device at
785 			 * index i in the old array.  If it is, that means
786 			 * that its selection number has changed.  Set
787 			 * changed to 1 and exit the loop.
788 			 */
789 			else if ((*dev_select)[i].device_number ==
790 			          old_dev_select[i].device_number) {
791 				changed = 1;
792 				break;
793 			}
794 			/*
795 			 * If we get here, then the device at index i in
796 			 * the current array isn't the same device as the
797 			 * device at index i in the old array.
798 			 */
799 			else {
800 				found = 0;
801 
802 				/*
803 				 * Search through the old selection array
804 				 * looking for a device with the same
805 				 * device number as the device at index i
806 				 * in the current array.  If the selection
807 				 * status is the same, then we mark it as
808 				 * found.  If the selection status isn't
809 				 * the same, we break out of the loop.
810 				 * Since found isn't set, changed will be
811 				 * set to 1 below.
812 				 */
813 				for (j = 0; j < old_num_selections; j++) {
814 					if (((*dev_select)[i].device_number ==
815 					      old_dev_select[j].device_number)
816 					 && ((*dev_select)[i].selected ==
817 					      old_dev_select[j].selected)){
818 						found = 1;
819 						break;
820 					}
821 					else if ((*dev_select)[i].device_number
822 					    == old_dev_select[j].device_number)
823 						break;
824 				}
825 				if (found == 0)
826 					changed = 1;
827 			}
828 		}
829 	}
830 	if (old_dev_select != NULL)
831 		free(old_dev_select);
832 
833 	return(changed);
834 }
835 
836 /*
837  * Comparison routine for qsort() above.  Note that the comparison here is
838  * backwards -- generally, it should return a value to indicate whether
839  * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
840  * it returns the opposite is so that the selection array will be sorted in
841  * order of decreasing performance.  We sort on two parameters.  The first
842  * sort key is whether or not one or the other of the devices in question
843  * has been selected.  If one of them has, and the other one has not, the
844  * selected device is automatically more important than the unselected
845  * device.  If neither device is selected, we judge the devices based upon
846  * performance.
847  */
848 static int
849 compare_select(const void *arg1, const void *arg2)
850 {
851 	if ((((const struct device_selection *)arg1)->selected)
852 	 && (((const struct device_selection *)arg2)->selected == 0))
853 		return(-1);
854 	else if ((((const struct device_selection *)arg1)->selected == 0)
855 	      && (((const struct device_selection *)arg2)->selected))
856 		return(1);
857 	else if (((const struct device_selection *)arg2)->bytes <
858 	         ((const struct device_selection *)arg1)->bytes)
859 		return(-1);
860 	else if (((const struct device_selection *)arg2)->bytes >
861 		 ((const struct device_selection *)arg1)->bytes)
862 		return(1);
863 	else
864 		return(0);
865 }
866 
867 /*
868  * Take a string with the general format "arg1,arg2,arg3", and build a
869  * device matching expression from it.
870  */
871 int
872 buildmatch(const char *match_str, struct devstat_match **matches,
873 	   int *num_matches)
874 {
875 	char *tstr[5];
876 	char **tempstr;
877 	char *matchbuf_orig;	/* strdup of match_str */
878 	char *matchbuf;		/* allow strsep to clobber */
879 	int num_args;
880 	int i, j;
881 	int retval = -1;
882 
883 	/* We can't do much without a string to parse */
884 	if (match_str == NULL) {
885 		sprintf(devstat_errbuf, "%s: no match expression", __func__);
886 		return(-1);
887 	}
888 
889 	/*
890 	 * Break the (comma delimited) input string out into separate strings.
891 	 * strsep is destructive, so copy the string first.
892 	 */
893 	matchbuf = matchbuf_orig = strdup(match_str);
894 	if (matchbuf == NULL) {
895 		sprintf(devstat_errbuf, "%s: out of memory", __func__);
896 		return(-1);
897 	}
898 	for (tempstr = tstr, num_args  = 0;
899 	     (*tempstr = strsep(&matchbuf, ",")) != NULL && (num_args < 5);
900 	     num_args++)
901 		if (**tempstr != '\0')
902 			if (++tempstr >= &tstr[5])
903 				break;
904 
905 	/* The user gave us too many type arguments */
906 	if (num_args > 3) {
907 		sprintf(devstat_errbuf, "%s: too many type arguments",
908 			__func__);
909 		goto cleanup;
910 	}
911 
912 	/*
913 	 * Since you can't realloc a pointer that hasn't been malloced
914 	 * first, we malloc first and then realloc.
915 	 */
916 	if (*num_matches == 0)
917 		*matches = (struct devstat_match *)malloc(
918 			   sizeof(struct devstat_match));
919 	else
920 		*matches = (struct devstat_match *)realloc(*matches,
921 			  sizeof(struct devstat_match) * (*num_matches + 1));
922 
923 	/* Make sure the current entry is clear */
924 	bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
925 
926 	/*
927 	 * Step through the arguments the user gave us and build a device
928 	 * matching expression from them.
929 	 */
930 	for (i = 0; i < num_args; i++) {
931 		char *tempstr2, *tempstr3;
932 
933 		/*
934 		 * Get rid of leading white space.
935 		 */
936 		tempstr2 = tstr[i];
937 		while (isspace(*tempstr2) && (*tempstr2 != '\0'))
938 			tempstr2++;
939 
940 		/*
941 		 * Get rid of trailing white space.
942 		 */
943 		tempstr3 = &tempstr2[strlen(tempstr2) - 1];
944 
945 		while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
946 		    && (isspace(*tempstr3))) {
947 			*tempstr3 = '\0';
948 			tempstr3--;
949 		}
950 
951 		/*
952 		 * Go through the match table comparing the user's
953 		 * arguments to known device types, interfaces, etc.
954 		 */
955 		for (j = 0; match_table[j].match_str != NULL; j++) {
956 			/*
957 			 * We do case-insensitive matching, in case someone
958 			 * wants to enter "SCSI" instead of "scsi" or
959 			 * something like that.  Only compare as many
960 			 * characters as are in the string in the match
961 			 * table.  This should help if someone tries to use
962 			 * a super-long match expression.
963 			 */
964 			if (strncasecmp(tempstr2, match_table[j].match_str,
965 			    strlen(match_table[j].match_str)) == 0) {
966 				/*
967 				 * Make sure the user hasn't specified two
968 				 * items of the same type, like "da" and
969 				 * "cd".  One device cannot be both.
970 				 */
971 				if (((*matches)[*num_matches].match_fields &
972 				    match_table[j].match_field) != 0) {
973 					sprintf(devstat_errbuf,
974 						"%s: cannot have more than "
975 						"one match item in a single "
976 						"category", __func__);
977 					goto cleanup;
978 				}
979 				/*
980 				 * If we've gotten this far, we have a
981 				 * winner.  Set the appropriate fields in
982 				 * the match entry.
983 				 */
984 				(*matches)[*num_matches].match_fields |=
985 					match_table[j].match_field;
986 				(*matches)[*num_matches].device_type |=
987 					match_table[j].type;
988 				(*matches)[*num_matches].num_match_categories++;
989 				break;
990 			}
991 		}
992 		/*
993 		 * We should have found a match in the above for loop.  If
994 		 * not, that means the user entered an invalid device type
995 		 * or interface.
996 		 */
997 		if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
998 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
999 				"%s: unknown match item \"%s\"", __func__,
1000 				tstr[i]);
1001 			goto cleanup;
1002 		}
1003 	}
1004 
1005 	(*num_matches)++;
1006 	retval = 0;
1007 cleanup:
1008 	free(matchbuf_orig);
1009 	return(retval);
1010 }
1011 
1012 /*
1013  * Compute a number of device statistics.  Only one field is mandatory, and
1014  * that is "current".  Everything else is optional.  The caller passes in
1015  * pointers to variables to hold the various statistics he desires.  If he
1016  * doesn't want a particular staistic, he should pass in a NULL pointer.
1017  * Return values:
1018  * 0   -- success
1019  * -1  -- failure
1020  */
1021 int
1022 compute_stats(struct devstat *current, struct devstat *previous,
1023 	      long double etime, u_int64_t *total_bytes,
1024 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1025 	      long double *kb_per_transfer, long double *transfers_per_second,
1026 	      long double *mb_per_second, long double *blocks_per_second,
1027 	      long double *ms_per_transaction)
1028 {
1029 	u_int64_t totalbytes, totaltransfers, totalblocks;
1030 
1031 	/*
1032 	 * current is the only mandatory field.
1033 	 */
1034 	if (current == NULL) {
1035 		sprintf(devstat_errbuf, "%s: current stats structure was NULL",
1036 			__func__);
1037 		return(-1);
1038 	}
1039 
1040 	totalbytes = (current->bytes_written + current->bytes_read) -
1041 		     ((previous) ? (previous->bytes_written +
1042 				    previous->bytes_read) : 0);
1043 
1044 	if (total_bytes)
1045 		*total_bytes = totalbytes;
1046 
1047 	totaltransfers = (current->num_reads +
1048 			  current->num_writes +
1049 			  current->num_other) -
1050 			 ((previous) ?
1051 			  (previous->num_reads +
1052 			   previous->num_writes +
1053 			   previous->num_other) : 0);
1054 	if (total_transfers)
1055 		*total_transfers = totaltransfers;
1056 
1057 	if (transfers_per_second) {
1058 		if (etime > 0.0) {
1059 			*transfers_per_second = totaltransfers;
1060 			*transfers_per_second /= etime;
1061 		} else
1062 			*transfers_per_second = 0.0;
1063 	}
1064 
1065 	if (kb_per_transfer) {
1066 		*kb_per_transfer = totalbytes;
1067 		*kb_per_transfer /= 1024;
1068 		if (totaltransfers > 0)
1069 			*kb_per_transfer /= totaltransfers;
1070 		else
1071 			*kb_per_transfer = 0.0;
1072 	}
1073 
1074 	if (mb_per_second) {
1075 		*mb_per_second = totalbytes;
1076 		*mb_per_second /= 1024 * 1024;
1077 		if (etime > 0.0)
1078 			*mb_per_second /= etime;
1079 		else
1080 			*mb_per_second = 0.0;
1081 	}
1082 
1083 	totalblocks = totalbytes;
1084 	if (current->block_size > 0)
1085 		totalblocks /= current->block_size;
1086 	else
1087 		totalblocks /= 512;
1088 
1089 	if (total_blocks)
1090 		*total_blocks = totalblocks;
1091 
1092 	if (blocks_per_second) {
1093 		*blocks_per_second = totalblocks;
1094 		if (etime > 0.0)
1095 			*blocks_per_second /= etime;
1096 		else
1097 			*blocks_per_second = 0.0;
1098 	}
1099 
1100 	if (ms_per_transaction) {
1101 		if (totaltransfers > 0) {
1102 			*ms_per_transaction = etime;
1103 			*ms_per_transaction /= totaltransfers;
1104 			*ms_per_transaction *= 1000;
1105 		} else
1106 			*ms_per_transaction = 0.0;
1107 	}
1108 
1109 	return(0);
1110 }
1111 
1112 int
1113 compute_stats_read(struct devstat *current, struct devstat *previous,
1114 	      long double etime, u_int64_t *total_bytes,
1115 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1116 	      long double *kb_per_transfer, long double *transfers_per_second,
1117 	      long double *mb_per_second, long double *blocks_per_second,
1118 	      long double *ms_per_transaction)
1119 {
1120 	u_int64_t totalbytes, totaltransfers, totalblocks;
1121 
1122 	/*
1123 	 * current is the only mandatory field.
1124 	 */
1125 	if (current == NULL) {
1126 		sprintf(devstat_errbuf, "%s: current stats structure was NULL",
1127 			__func__);
1128 		return(-1);
1129 	}
1130 
1131 	totalbytes = current->bytes_read -
1132 		     (previous ? previous->bytes_read : 0);
1133 
1134 	if (total_bytes)
1135 		*total_bytes = totalbytes;
1136 
1137 	totaltransfers = current->num_reads -
1138 			 (previous ? previous->num_reads : 0);
1139 	if (total_transfers)
1140 		*total_transfers = totaltransfers;
1141 
1142 	if (transfers_per_second) {
1143 		if (etime > 0.0) {
1144 			*transfers_per_second = totaltransfers;
1145 			*transfers_per_second /= etime;
1146 		} else
1147 			*transfers_per_second = 0.0;
1148 	}
1149 
1150 	if (kb_per_transfer) {
1151 		*kb_per_transfer = totalbytes;
1152 		*kb_per_transfer /= 1024;
1153 		if (totaltransfers > 0)
1154 			*kb_per_transfer /= totaltransfers;
1155 		else
1156 			*kb_per_transfer = 0.0;
1157 	}
1158 
1159 	if (mb_per_second) {
1160 		*mb_per_second = totalbytes;
1161 		*mb_per_second /= 1024 * 1024;
1162 		if (etime > 0.0)
1163 			*mb_per_second /= etime;
1164 		else
1165 			*mb_per_second = 0.0;
1166 	}
1167 
1168 	totalblocks = totalbytes;
1169 	if (current->block_size > 0)
1170 		totalblocks /= current->block_size;
1171 	else
1172 		totalblocks /= 512;
1173 
1174 	if (total_blocks)
1175 		*total_blocks = totalblocks;
1176 
1177 	if (blocks_per_second) {
1178 		*blocks_per_second = totalblocks;
1179 		if (etime > 0.0)
1180 			*blocks_per_second /= etime;
1181 		else
1182 			*blocks_per_second = 0.0;
1183 	}
1184 
1185 	if (ms_per_transaction) {
1186 		if (totaltransfers > 0) {
1187 			*ms_per_transaction = etime;
1188 			*ms_per_transaction /= totaltransfers;
1189 			*ms_per_transaction *= 1000;
1190 		} else
1191 			*ms_per_transaction = 0.0;
1192 	}
1193 
1194 	return(0);
1195 }
1196 
1197 int
1198 compute_stats_write(struct devstat *current, struct devstat *previous,
1199 	      long double etime, u_int64_t *total_bytes,
1200 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1201 	      long double *kb_per_transfer, long double *transfers_per_second,
1202 	      long double *mb_per_second, long double *blocks_per_second,
1203 	      long double *ms_per_transaction)
1204 {
1205 	u_int64_t totalbytes, totaltransfers, totalblocks;
1206 
1207 	/*
1208 	 * current is the only mandatory field.
1209 	 */
1210 	if (current == NULL) {
1211 		sprintf(devstat_errbuf, "%s: current stats structure was NULL",
1212 			__func__);
1213 		return(-1);
1214 	}
1215 
1216 	totalbytes = current->bytes_written -
1217 		     (previous ? previous->bytes_written : 0);
1218 
1219 	if (total_bytes)
1220 		*total_bytes = totalbytes;
1221 
1222 	totaltransfers = current->num_writes -
1223 			 (previous ? previous->num_writes : 0);
1224 	if (total_transfers)
1225 		*total_transfers = totaltransfers;
1226 
1227 	if (transfers_per_second) {
1228 		if (etime > 0.0) {
1229 			*transfers_per_second = totaltransfers;
1230 			*transfers_per_second /= etime;
1231 		} else
1232 			*transfers_per_second = 0.0;
1233 	}
1234 
1235 	if (kb_per_transfer) {
1236 		*kb_per_transfer = totalbytes;
1237 		*kb_per_transfer /= 1024;
1238 		if (totaltransfers > 0)
1239 			*kb_per_transfer /= totaltransfers;
1240 		else
1241 			*kb_per_transfer = 0.0;
1242 	}
1243 
1244 	if (mb_per_second) {
1245 		*mb_per_second = totalbytes;
1246 		*mb_per_second /= 1024 * 1024;
1247 		if (etime > 0.0)
1248 			*mb_per_second /= etime;
1249 		else
1250 			*mb_per_second = 0.0;
1251 	}
1252 
1253 	totalblocks = totalbytes;
1254 	if (current->block_size > 0)
1255 		totalblocks /= current->block_size;
1256 	else
1257 		totalblocks /= 512;
1258 
1259 	if (total_blocks)
1260 		*total_blocks = totalblocks;
1261 
1262 	if (blocks_per_second) {
1263 		*blocks_per_second = totalblocks;
1264 		if (etime > 0.0)
1265 			*blocks_per_second /= etime;
1266 		else
1267 			*blocks_per_second = 0.0;
1268 	}
1269 
1270 	if (ms_per_transaction) {
1271 		if (totaltransfers > 0) {
1272 			*ms_per_transaction = etime;
1273 			*ms_per_transaction /= totaltransfers;
1274 			*ms_per_transaction *= 1000;
1275 		} else
1276 			*ms_per_transaction = 0.0;
1277 	}
1278 
1279 	return(0);
1280 }
1281 
1282 long double
1283 compute_etime(struct timeval cur_time, struct timeval prev_time)
1284 {
1285 	struct timeval busy_time;
1286 	u_int64_t busy_usec;
1287 	long double etime;
1288 
1289 	timersub(&cur_time, &prev_time, &busy_time);
1290 
1291         busy_usec = busy_time.tv_sec;
1292         busy_usec *= 1000000;
1293         busy_usec += busy_time.tv_usec;
1294         etime = busy_usec;
1295         etime /= 1000000;
1296 
1297 	return(etime);
1298 }
1299