xref: /dragonfly/lib/libdevstat/devstat.c (revision ef3ac1d1)
1 /*
2  * Copyright (c) 1997, 1998 Kenneth D. Merry.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/lib/libdevstat/devstat.c,v 1.6 1999/08/28 00:04:26 peter Exp $
29  * $DragonFly: src/lib/libdevstat/devstat.c,v 1.5 2005/01/08 19:19:26 joerg Exp $
30  */
31 
32 #include <sys/types.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 
36 #include <ctype.h>
37 #include <err.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 
42 #include "devstat.h"
43 
44 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
45 
46 /*
47  * Table to match descriptive strings with device types.  These are in
48  * order from most common to least common to speed search time.
49  */
50 struct devstat_match_table match_table[] = {
51 	{"da",		DEVSTAT_TYPE_DIRECT,	DEVSTAT_MATCH_TYPE},
52 	{"cd",		DEVSTAT_TYPE_CDROM,	DEVSTAT_MATCH_TYPE},
53 	{"scsi",	DEVSTAT_TYPE_IF_SCSI,	DEVSTAT_MATCH_IF},
54 	{"ide",		DEVSTAT_TYPE_IF_IDE,	DEVSTAT_MATCH_IF},
55 	{"other",	DEVSTAT_TYPE_IF_OTHER,	DEVSTAT_MATCH_IF},
56 	{"worm",	DEVSTAT_TYPE_WORM,	DEVSTAT_MATCH_TYPE},
57 	{"sa",		DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
58 	{"pass",	DEVSTAT_TYPE_PASS,	DEVSTAT_MATCH_PASS},
59 	{"optical",	DEVSTAT_TYPE_OPTICAL,	DEVSTAT_MATCH_TYPE},
60 	{"array",	DEVSTAT_TYPE_STORARRAY,	DEVSTAT_MATCH_TYPE},
61 	{"changer",	DEVSTAT_TYPE_CHANGER,	DEVSTAT_MATCH_TYPE},
62 	{"scanner",	DEVSTAT_TYPE_SCANNER,	DEVSTAT_MATCH_TYPE},
63 	{"printer",	DEVSTAT_TYPE_PRINTER,	DEVSTAT_MATCH_TYPE},
64 	{"floppy",	DEVSTAT_TYPE_FLOPPY,	DEVSTAT_MATCH_TYPE},
65 	{"proc",	DEVSTAT_TYPE_PROCESSOR,	DEVSTAT_MATCH_TYPE},
66 	{"comm",	DEVSTAT_TYPE_COMM,	DEVSTAT_MATCH_TYPE},
67 	{"enclosure",	DEVSTAT_TYPE_ENCLOSURE,	DEVSTAT_MATCH_TYPE},
68 	{NULL,		0,			0}
69 };
70 
71 /*
72  * Local function declarations.
73  */
74 static int compare_select(const void *arg1, const void *arg2);
75 
76 int
77 getnumdevs(void)
78 {
79 	size_t numdevsize;
80 	int numdevs;
81 	const char *func_name = "getnumdevs";
82 
83 	numdevsize = sizeof(int);
84 
85 	/*
86 	 * Find out how many devices we have in the system.
87 	 */
88 	if (sysctlbyname("kern.devstat.numdevs", &numdevs,
89 			 &numdevsize, NULL, 0) == -1) {
90 		sprintf(devstat_errbuf, "%s: error getting number of devices\n"
91 			"%s: %s", func_name, func_name, strerror(errno));
92 		return(-1);
93 	} else
94 		return(numdevs);
95 }
96 
97 /*
98  * This is an easy way to get the generation number, but the generation is
99  * supplied in a more atmoic manner by the kern.devstat.all sysctl.
100  * Because this generation sysctl is separate from the statistics sysctl,
101  * the device list and the generation could change between the time that
102  * this function is called and the device list is retreived.
103  */
104 long
105 getgeneration(void)
106 {
107 	size_t gensize;
108 	long generation;
109 	const char *func_name = "getgeneration";
110 
111 	gensize = sizeof(long);
112 
113 	/*
114 	 * Get the current generation number.
115 	 */
116 	if (sysctlbyname("kern.devstat.generation", &generation,
117 			 &gensize, NULL, 0) == -1) {
118 		sprintf(devstat_errbuf,"%s: error getting devstat generation\n"
119 			"%s: %s", func_name, func_name, strerror(errno));
120 		return(-1);
121 	} else
122 		return(generation);
123 }
124 
125 /*
126  * Get the current devstat version.  The return value of this function
127  * should be compared with DEVSTAT_VERSION, which is defined in
128  * sys/devicestat.h.  This will enable userland programs to determine
129  * whether they are out of sync with the kernel.
130  */
131 int
132 getversion(void)
133 {
134 	size_t versize;
135 	int version;
136 	const char *func_name = "getversion";
137 
138 	versize = sizeof(int);
139 
140 	/*
141 	 * Get the current devstat version.
142 	 */
143 	if (sysctlbyname("kern.devstat.version", &version, &versize,
144 			 NULL, 0) == -1) {
145 		sprintf(devstat_errbuf, "%s: error getting devstat version\n"
146 			"%s: %s", func_name, func_name, strerror(errno));
147 		return(-1);
148 	} else
149 		return(version);
150 }
151 
152 /*
153  * Check the devstat version we know about against the devstat version the
154  * kernel knows about.  If they don't match, print an error into the
155  * devstat error buffer, and return -1.  If they match, return 0.
156  */
157 int
158 checkversion(void)
159 {
160 	int retval = 0;
161 	int errlen = 0;
162 	const char *func_name = "checkversion";
163 	int version;
164 
165 	version = getversion();
166 
167 	if (version != DEVSTAT_VERSION) {
168 		int buflen = 0;
169 		char tmpstr[256];
170 
171 		/*
172 		 * This is really pretty silly, but basically the idea is
173 		 * that if getversion() returns an error (i.e. -1), then it
174 		 * has printed an error message in the buffer.  Therefore,
175 		 * we need to add a \n to the end of that message before we
176 		 * print our own message in the buffer.
177 		 */
178 		if (version == -1) {
179 			buflen = strlen(devstat_errbuf);
180 			errlen = snprintf(tmpstr, sizeof(tmpstr), "\n");
181 			strncat(devstat_errbuf, tmpstr,
182 				DEVSTAT_ERRBUF_SIZE - buflen - 1);
183 			buflen += errlen;
184 		}
185 
186 		errlen = snprintf(tmpstr, sizeof(tmpstr),
187 				  "%s: userland devstat version %d is not "
188 				  "the same as the kernel\n%s: devstat "
189 				  "version %d\n", func_name, DEVSTAT_VERSION,
190 				  func_name, version);
191 
192 		if (version == -1) {
193 			strncat(devstat_errbuf, tmpstr,
194 				DEVSTAT_ERRBUF_SIZE - buflen - 1);
195 			buflen += errlen;
196 		} else {
197 			strncpy(devstat_errbuf, tmpstr, DEVSTAT_ERRBUF_SIZE);
198 			devstat_errbuf[DEVSTAT_ERRBUF_SIZE - 1] = '\0';
199 		}
200 
201                 if (version < DEVSTAT_VERSION)
202 			snprintf(tmpstr, sizeof(tmpstr),
203 				 "%s: libdevstat newer than kernel\n",
204 				 func_name);
205                 else
206 			snprintf(tmpstr, sizeof(tmpstr),
207 				 "%s: kernel newer than libdevstat\n",
208 				 func_name);
209 
210 		strncat(devstat_errbuf, tmpstr,
211 			DEVSTAT_ERRBUF_SIZE - buflen - 1);
212 
213 		retval = -1;
214 	}
215 
216 	return(retval);
217 }
218 
219 /*
220  * Get the current list of devices and statistics, and the current
221  * generation number.
222  *
223  * Return values:
224  * -1  -- error
225  *  0  -- device list is unchanged
226  *  1  -- device list has changed
227  */
228 int
229 getdevs(struct statinfo *stats)
230 {
231 	int error;
232 	size_t dssize;
233 	long oldgeneration;
234 	int retval = 0;
235 	struct devinfo *dinfo;
236 	const char *func_name = "getdevs";
237 
238 	dinfo = stats->dinfo;
239 
240 	if (dinfo == NULL) {
241 		sprintf(devstat_errbuf, "%s: stats->dinfo was NULL", func_name);
242 		return(-1);
243 	}
244 
245 	oldgeneration = dinfo->generation;
246 
247 	/*
248 	 * If this is our first time through, mem_ptr will be null.
249 	 */
250 	if (dinfo->mem_ptr == NULL) {
251 		/*
252 		 * Get the number of devices.  If it's negative, it's an
253 		 * error.  Don't bother setting the error string, since
254 		 * getnumdevs() has already done that for us.
255 		 */
256 		if ((dinfo->numdevs = getnumdevs()) < 0)
257 			return(-1);
258 
259 		/*
260 		 * The kern.devstat.all sysctl returns the current generation
261 		 * number, as well as all the devices.  So we need four
262 		 * bytes more.
263 		 */
264 		dssize =(dinfo->numdevs * sizeof(struct devstat)) +sizeof(long);
265 		dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
266 	} else
267 		dssize =(dinfo->numdevs * sizeof(struct devstat)) +sizeof(long);
268 
269 	/* Get the current time when we get the stats */
270 	gettimeofday(&stats->busy_time, NULL);
271 
272 	/*
273 	 * Request all of the devices.  We only really allow for one
274 	 * ENOMEM failure.  It would, of course, be possible to just go in
275 	 * a loop and keep reallocing the device structure until we don't
276 	 * get ENOMEM back.  I'm not sure it's worth it, though.  If
277 	 * devices are being added to the system that quickly, maybe the
278 	 * user can just wait until all devices are added.
279 	 */
280 	if ((error = sysctlbyname("kern.devstat.all", dinfo->mem_ptr,
281 	     &dssize, NULL, 0)) == -1) {
282 		/*
283 		 * If we get ENOMEM back, that means that there are
284 		 * more devices now, so we need to allocate more
285 		 * space for the device array.
286 		 */
287 		if (errno == ENOMEM) {
288 			/*
289 			 * No need to set the error string here, getnumdevs()
290 			 * will do that if it fails.
291 			 */
292 			if ((dinfo->numdevs = getnumdevs()) < 0)
293 				return(-1);
294 
295 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
296 				sizeof(long);
297 			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
298 							     dssize);
299 			if ((error = sysctlbyname("kern.devstat.all",
300 			    dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
301 				sprintf(devstat_errbuf,
302 					"%s: error getting device stats\n"
303 					"%s: %s", func_name, func_name,
304 					strerror(errno));
305 				return(-1);
306 			}
307 		} else {
308 			sprintf(devstat_errbuf,
309 				"%s: error getting device stats\n"
310 				"%s: %s", func_name, func_name,
311 				strerror(errno));
312 			return(-1);
313 		}
314 	}
315 
316 	/*
317 	 * The sysctl spits out the generation as the first four bytes,
318 	 * then all of the device statistics structures.
319 	 */
320 	dinfo->generation = *(long *)dinfo->mem_ptr;
321 
322 	/*
323 	 * If the generation has changed, and if the current number of
324 	 * devices is not the same as the number of devices recorded in the
325 	 * devinfo structure, it is likely that the device list has shrunk.
326 	 * The reason that it is likely that the device list has shrunk in
327 	 * this case is that if the device list has grown, the sysctl above
328 	 * will return an ENOMEM error, and we will reset the number of
329 	 * devices and reallocate the device array.  If the second sysctl
330 	 * fails, we will return an error and therefore never get to this
331 	 * point.  If the device list has shrunk, the sysctl will not
332 	 * return an error since we have more space allocated than is
333 	 * necessary.  So, in the shrinkage case, we catch it here and
334 	 * reallocate the array so that we don't use any more space than is
335 	 * necessary.
336 	 */
337 	if (oldgeneration != dinfo->generation) {
338 		if (getnumdevs() != dinfo->numdevs) {
339 			if ((dinfo->numdevs = getnumdevs()) < 0)
340 				return(-1);
341 			dssize = (dinfo->numdevs * sizeof(struct devstat)) +
342 				sizeof(long);
343 			dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
344 							     dssize);
345 		}
346 		retval = 1;
347 	}
348 
349 	dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
350 
351 	return(retval);
352 }
353 
354 /*
355  * selectdevs():
356  *
357  * Devices are selected/deselected based upon the following criteria:
358  * - devices specified by the user on the command line
359  * - devices matching any device type expressions given on the command line
360  * - devices with the highest I/O, if 'top' mode is enabled
361  * - the first n unselected devices in the device list, if maxshowdevs
362  *   devices haven't already been selected and if the user has not
363  *   specified any devices on the command line and if we're in "add" mode.
364  *
365  * Input parameters:
366  * - device selection list (dev_select)
367  * - current number of devices selected (num_selected)
368  * - total number of devices in the selection list (num_selections)
369  * - devstat generation as of the last time selectdevs() was called
370  *   (select_generation)
371  * - current devstat generation (current_generation)
372  * - current list of devices and statistics (devices)
373  * - number of devices in the current device list (numdevs)
374  * - compiled version of the command line device type arguments (matches)
375  *   - This is optional.  If the number of devices is 0, this will be ignored.
376  *   - The matching code pays attention to the current selection mode.  So
377  *     if you pass in a matching expression, it will be evaluated based
378  *     upon the selection mode that is passed in.  See below for details.
379  * - number of device type matching expressions (num_matches)
380  *   - Set to 0 to disable the matching code.
381  * - list of devices specified on the command line by the user (dev_selections)
382  * - number of devices selected on the command line by the user
383  *   (num_dev_selections)
384  * - Our selection mode.  There are four different selection modes:
385  *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
386  *        selected by the user or devices matching a pattern given by the
387  *        user will be selected in addition to devices that are already
388  *        selected.  Additional devices will be selected, up to maxshowdevs
389  *        number of devices.
390  *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
391  *        explicitly given by the user or devices matching a pattern
392  *        given by the user will be selected.  No other devices will be
393  *        selected.
394  *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
395  *        only.  Basically, this will not de-select any devices that are
396  *        current selected, as only mode would, but it will also not
397  *        gratuitously select up to maxshowdevs devices as add mode would.
398  *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
399  *        explicitly selected by the user or devices matching a pattern
400  *        given by the user will be de-selected.
401  * - maximum number of devices we can select (maxshowdevs)
402  * - flag indicating whether or not we're in 'top' mode (perf_select)
403  *
404  * Output data:
405  * - the device selection list may be modified and passed back out
406  * - the number of devices selected and the total number of items in the
407  *   device selection list may be changed
408  * - the selection generation may be changed to match the current generation
409  *
410  * Return values:
411  * -1  -- error
412  *  0  -- selected devices are unchanged
413  *  1  -- selected devices changed
414  */
415 int
416 selectdevs(struct device_selection **dev_select, int *num_selected,
417 	   int *num_selections, long *select_generation,
418 	   long current_generation, struct devstat *devices, int numdevs,
419 	   struct devstat_match *matches, int num_matches,
420 	   char **dev_selections, int num_dev_selections,
421 	   devstat_select_mode select_mode, int maxshowdevs, int perf_select)
422 {
423 	int i, j, k;
424 	int init_selections = 0, init_selected_var = 0;
425 	struct device_selection *old_dev_select = NULL;
426 	int old_num_selections = 0, old_num_selected;
427 	int selection_number = 0;
428 	int changed = 0, found = 0;
429 
430 	if ((dev_select == NULL) || (devices == NULL) || (numdevs <= 0))
431 		return(-1);
432 
433 	/*
434 	 * We always want to make sure that we have as many dev_select
435 	 * entries as there are devices.
436 	 */
437 	/*
438 	 * In this case, we haven't selected devices before.
439 	 */
440 	if (*dev_select == NULL) {
441 		*dev_select = (struct device_selection *)malloc(numdevs *
442 			sizeof(struct device_selection));
443 		*select_generation = current_generation;
444 		init_selections = 1;
445 		changed = 1;
446 	/*
447 	 * In this case, we have selected devices before, but the device
448 	 * list has changed since we last selected devices, so we need to
449 	 * either enlarge or reduce the size of the device selection list.
450 	 */
451 	} else if (*num_selections != numdevs) {
452 		*dev_select = (struct device_selection *)realloc(*dev_select,
453 			numdevs * sizeof(struct device_selection));
454 		*select_generation = current_generation;
455 		init_selections = 1;
456 	/*
457 	 * In this case, we've selected devices before, and the selection
458 	 * list is the same size as it was the last time, but the device
459 	 * list has changed.
460 	 */
461 	} else if (*select_generation < current_generation) {
462 		*select_generation = current_generation;
463 		init_selections = 1;
464 	}
465 
466 	/*
467 	 * If we're in "only" mode, we want to clear out the selected
468 	 * variable since we're going to select exactly what the user wants
469 	 * this time through.
470 	 */
471 	if (select_mode == DS_SELECT_ONLY)
472 		init_selected_var = 1;
473 
474 	/*
475 	 * In all cases, we want to back up the number of selected devices.
476 	 * It is a quick and accurate way to determine whether the selected
477 	 * devices have changed.
478 	 */
479 	old_num_selected = *num_selected;
480 
481 	/*
482 	 * We want to make a backup of the current selection list if
483 	 * the list of devices has changed, or if we're in performance
484 	 * selection mode.  In both cases, we don't want to make a backup
485 	 * if we already know for sure that the list will be different.
486 	 * This is certainly the case if this is our first time through the
487 	 * selection code.
488 	 */
489 	if (((init_selected_var != 0) || (init_selections != 0)
490 	 || (perf_select != 0)) && (changed == 0)){
491 		old_dev_select = (struct device_selection *)malloc(
492 		    *num_selections * sizeof(struct device_selection));
493 		old_num_selections = *num_selections;
494 		bcopy(*dev_select, old_dev_select,
495 		    sizeof(struct device_selection) * *num_selections);
496 	}
497 
498 	if (init_selections != 0) {
499 		bzero(*dev_select, sizeof(struct device_selection) * numdevs);
500 
501 		for (i = 0; i < numdevs; i++) {
502 			(*dev_select)[i].device_number =
503 				devices[i].device_number;
504 			strncpy((*dev_select)[i].device_name,
505 				devices[i].device_name,
506 				DEVSTAT_NAME_LEN);
507 			(*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
508 			(*dev_select)[i].unit_number = devices[i].unit_number;
509 			(*dev_select)[i].position = i;
510 		}
511 		*num_selections = numdevs;
512 	} else if (init_selected_var != 0) {
513 		for (i = 0; i < numdevs; i++)
514 			(*dev_select)[i].selected = 0;
515 	}
516 
517 	/* we haven't gotten around to selecting anything yet.. */
518 	if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
519 	 || (init_selected_var != 0))
520 		*num_selected = 0;
521 
522 	/*
523 	 * Look through any devices the user specified on the command line
524 	 * and see if they match known devices.  If so, select them.
525 	 */
526 	for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
527 		char tmpstr[80];
528 
529 		snprintf(tmpstr, sizeof(tmpstr), "%s%d",
530 			(*dev_select)[i].device_name,
531 			(*dev_select)[i].unit_number);
532 		for (j = 0; j < num_dev_selections; j++) {
533 			if (strcmp(tmpstr, dev_selections[j]) == 0) {
534 				/*
535 				 * Here we do different things based on the
536 				 * mode we're in.  If we're in add or
537 				 * addonly mode, we only select this device
538 				 * if it hasn't already been selected.
539 				 * Otherwise, we would be unnecessarily
540 				 * changing the selection order and
541 				 * incrementing the selection count.  If
542 				 * we're in only mode, we unconditionally
543 				 * select this device, since in only mode
544 				 * any previous selections are erased and
545 				 * manually specified devices are the first
546 				 * ones to be selected.  If we're in remove
547 				 * mode, we de-select the specified device and
548 				 * decrement the selection count.
549 				 */
550 				switch(select_mode) {
551 				case DS_SELECT_ADD:
552 				case DS_SELECT_ADDONLY:
553 					if ((*dev_select)[i].selected)
554 						break;
555 					/* FALLTHROUGH */
556 				case DS_SELECT_ONLY:
557 					(*dev_select)[i].selected =
558 						++selection_number;
559 					(*num_selected)++;
560 					break;
561 				case DS_SELECT_REMOVE:
562 					(*dev_select)[i].selected = 0;
563 					(*num_selected)--;
564 					/*
565 					 * This isn't passed back out, we
566 					 * just use it to keep track of
567 					 * how many devices we've removed.
568 					 */
569 					num_dev_selections--;
570 					break;
571 				}
572 				break;
573 			}
574 		}
575 	}
576 
577 	/*
578 	 * Go through the user's device type expressions and select devices
579 	 * accordingly.  We only do this if the number of devices already
580 	 * selected is less than the maximum number we can show.
581 	 */
582 	for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
583 		/* We should probably indicate some error here */
584 		if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
585 		 || (matches[i].num_match_categories <= 0))
586 			continue;
587 
588 		for (j = 0; j < numdevs; j++) {
589 			int num_match_categories;
590 
591 			num_match_categories = matches[i].num_match_categories;
592 
593 			/*
594 			 * Determine whether or not the current device
595 			 * matches the given matching expression.  This if
596 			 * statement consists of three components:
597 			 *   - the device type check
598 			 *   - the device interface check
599 			 *   - the passthrough check
600 			 * If a the matching test is successful, it
601 			 * decrements the number of matching categories,
602 			 * and if we've reached the last element that
603 			 * needed to be matched, the if statement succeeds.
604 			 *
605 			 */
606 			if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
607 			  && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
608 			        (matches[i].device_type & DEVSTAT_TYPE_MASK))
609 			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
610 			   || (((matches[i].match_fields &
611 				DEVSTAT_MATCH_PASS) == 0)
612 			    && ((devices[j].device_type &
613 			        DEVSTAT_TYPE_PASS) == 0)))
614 			  && (--num_match_categories == 0))
615 			 || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
616 			  && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
617 			        (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
618 			  &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
619 			   || (((matches[i].match_fields &
620 				DEVSTAT_MATCH_PASS) == 0)
621 			    && ((devices[j].device_type &
622 				DEVSTAT_TYPE_PASS) == 0)))
623 			  && (--num_match_categories == 0))
624 			 || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
625 			  && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
626 			  && (--num_match_categories == 0))) {
627 
628 				/*
629 				 * This is probably a non-optimal solution
630 				 * to the problem that the devices in the
631 				 * device list will not be in the same
632 				 * order as the devices in the selection
633 				 * array.
634 				 */
635 				for (k = 0; k < numdevs; k++) {
636 					if ((*dev_select)[k].position == j) {
637 						found = 1;
638 						break;
639 					}
640 				}
641 
642 				/*
643 				 * There shouldn't be a case where a device
644 				 * in the device list is not in the
645 				 * selection list...but it could happen.
646 				 */
647 				if (found != 1) {
648 					fprintf(stderr, "selectdevs: couldn't"
649 						" find %s%d in selection "
650 						"list\n",
651 						devices[j].device_name,
652 						devices[j].unit_number);
653 					break;
654 				}
655 
656 				/*
657 				 * We do different things based upon the
658 				 * mode we're in.  If we're in add or only
659 				 * mode, we go ahead and select this device
660 				 * if it hasn't already been selected.  If
661 				 * it has already been selected, we leave
662 				 * it alone so we don't mess up the
663 				 * selection ordering.  Manually specified
664 				 * devices have already been selected, and
665 				 * they have higher priority than pattern
666 				 * matched devices.  If we're in remove
667 				 * mode, we de-select the given device and
668 				 * decrement the selected count.
669 				 */
670 				switch(select_mode) {
671 				case DS_SELECT_ADD:
672 				case DS_SELECT_ADDONLY:
673 				case DS_SELECT_ONLY:
674 					if ((*dev_select)[k].selected != 0)
675 						break;
676 					(*dev_select)[k].selected =
677 						++selection_number;
678 					(*num_selected)++;
679 					break;
680 				case DS_SELECT_REMOVE:
681 					(*dev_select)[k].selected = 0;
682 					(*num_selected)--;
683 					break;
684 				}
685 			}
686 		}
687 	}
688 
689 	/*
690 	 * Here we implement "top" mode.  Devices are sorted in the
691 	 * selection array based on two criteria:  whether or not they are
692 	 * selected (not selection number, just the fact that they are
693 	 * selected!) and the number of bytes in the "bytes" field of the
694 	 * selection structure.  The bytes field generally must be kept up
695 	 * by the user.  In the future, it may be maintained by library
696 	 * functions, but for now the user has to do the work.
697 	 *
698 	 * At first glance, it may seem wrong that we don't go through and
699 	 * select every device in the case where the user hasn't specified
700 	 * any devices or patterns.  In fact, though, it won't make any
701 	 * difference in the device sorting.  In that particular case (i.e.
702 	 * when we're in "add" or "only" mode, and the user hasn't
703 	 * specified anything) the first time through no devices will be
704 	 * selected, so the only criterion used to sort them will be their
705 	 * performance.  The second time through, and every time thereafter,
706 	 * all devices will be selected, so again selection won't matter.
707 	 */
708 	if (perf_select != 0) {
709 
710 		/* Sort the device array by throughput  */
711 		qsort(*dev_select, *num_selections,
712 		      sizeof(struct device_selection),
713 		      compare_select);
714 
715 		if (*num_selected == 0) {
716 			/*
717 			 * Here we select every device in the array, if it
718 			 * isn't already selected.  Because the 'selected'
719 			 * variable in the selection array entries contains
720 			 * the selection order, the devstats routine can show
721 			 * the devices that were selected first.
722 			 */
723 			for (i = 0; i < *num_selections; i++) {
724 				if ((*dev_select)[i].selected == 0) {
725 					(*dev_select)[i].selected =
726 						++selection_number;
727 					(*num_selected)++;
728 				}
729 			}
730 		} else {
731 			selection_number = 0;
732 			for (i = 0; i < *num_selections; i++) {
733 				if ((*dev_select)[i].selected != 0) {
734 					(*dev_select)[i].selected =
735 						++selection_number;
736 				}
737 			}
738 		}
739 	}
740 
741 	/*
742 	 * If we're in the "add" selection mode and if we haven't already
743 	 * selected maxshowdevs number of devices, go through the array and
744 	 * select any unselected devices.  If we're in "only" mode, we
745 	 * obviously don't want to select anything other than what the user
746 	 * specifies.  If we're in "remove" mode, it probably isn't a good
747 	 * idea to go through and select any more devices, since we might
748 	 * end up selecting something that the user wants removed.  Through
749 	 * more complicated logic, we could actually figure this out, but
750 	 * that would probably require combining this loop with the various
751 	 * selections loops above.
752 	 */
753 	if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
754 		for (i = 0; i < *num_selections; i++)
755 			if ((*dev_select)[i].selected == 0) {
756 				(*dev_select)[i].selected = ++selection_number;
757 				(*num_selected)++;
758 			}
759 	}
760 
761 	/*
762 	 * Look at the number of devices that have been selected.  If it
763 	 * has changed, set the changed variable.  Otherwise, if we've
764 	 * made a backup of the selection list, compare it to the current
765 	 * selection list to see if the selected devices have changed.
766 	 */
767 	if ((changed == 0) && (old_num_selected != *num_selected))
768 		changed = 1;
769 	else if ((changed == 0) && (old_dev_select != NULL)) {
770 		/*
771 		 * Now we go through the selection list and we look at
772 		 * it three different ways.
773 		 */
774 		for (i = 0; (i < *num_selections) && (changed == 0) &&
775 		     (i < old_num_selections); i++) {
776 			/*
777 			 * If the device at index i in both the new and old
778 			 * selection arrays has the same device number and
779 			 * selection status, it hasn't changed.  We
780 			 * continue on to the next index.
781 			 */
782 			if (((*dev_select)[i].device_number ==
783 			     old_dev_select[i].device_number)
784 			 && ((*dev_select)[i].selected ==
785 			     old_dev_select[i].selected))
786 				continue;
787 
788 			/*
789 			 * Now, if we're still going through the if
790 			 * statement, the above test wasn't true.  So we
791 			 * check here to see if the device at index i in
792 			 * the current array is the same as the device at
793 			 * index i in the old array.  If it is, that means
794 			 * that its selection number has changed.  Set
795 			 * changed to 1 and exit the loop.
796 			 */
797 			else if ((*dev_select)[i].device_number ==
798 			          old_dev_select[i].device_number) {
799 				changed = 1;
800 				break;
801 			}
802 			/*
803 			 * If we get here, then the device at index i in
804 			 * the current array isn't the same device as the
805 			 * device at index i in the old array.
806 			 */
807 			else {
808 				found = 0;
809 
810 				/*
811 				 * Search through the old selection array
812 				 * looking for a device with the same
813 				 * device number as the device at index i
814 				 * in the current array.  If the selection
815 				 * status is the same, then we mark it as
816 				 * found.  If the selection status isn't
817 				 * the same, we break out of the loop.
818 				 * Since found isn't set, changed will be
819 				 * set to 1 below.
820 				 */
821 				for (j = 0; j < old_num_selections; j++) {
822 					if (((*dev_select)[i].device_number ==
823 					      old_dev_select[j].device_number)
824 					 && ((*dev_select)[i].selected ==
825 					      old_dev_select[j].selected)){
826 						found = 1;
827 						break;
828 					}
829 					else if ((*dev_select)[i].device_number
830 					    == old_dev_select[j].device_number)
831 						break;
832 				}
833 				if (found == 0)
834 					changed = 1;
835 			}
836 		}
837 	}
838 	if (old_dev_select != NULL)
839 		free(old_dev_select);
840 
841 	return(changed);
842 }
843 
844 /*
845  * Comparison routine for qsort() above.  Note that the comparison here is
846  * backwards -- generally, it should return a value to indicate whether
847  * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
848  * it returns the opposite is so that the selection array will be sorted in
849  * order of decreasing performance.  We sort on two parameters.  The first
850  * sort key is whether or not one or the other of the devices in question
851  * has been selected.  If one of them has, and the other one has not, the
852  * selected device is automatically more important than the unselected
853  * device.  If neither device is selected, we judge the devices based upon
854  * performance.
855  */
856 static int
857 compare_select(const void *arg1, const void *arg2)
858 {
859 	if ((((const struct device_selection *)arg1)->selected)
860 	 && (((const struct device_selection *)arg2)->selected == 0))
861 		return(-1);
862 	else if ((((const struct device_selection *)arg1)->selected == 0)
863 	      && (((const struct device_selection *)arg2)->selected))
864 		return(1);
865 	else if (((const struct device_selection *)arg2)->bytes <
866 	         ((const struct device_selection *)arg1)->bytes)
867 		return(-1);
868 	else if (((const struct device_selection *)arg2)->bytes >
869 		 ((const struct device_selection *)arg1)->bytes)
870 		return(1);
871 	else
872 		return(0);
873 }
874 
875 /*
876  * Take a string with the general format "arg1,arg2,arg3", and build a
877  * device matching expression from it.
878  */
879 int
880 buildmatch(const char *match_str, struct devstat_match **matches,
881 	   int *num_matches)
882 {
883 	char *tstr[5];
884 	char **tempstr;
885 	char *matchbuf_orig;	/* strdup of match_str */
886 	char *matchbuf;		/* allow strsep to clobber */
887 	int num_args;
888 	int i, j;
889 	int retval = -1;
890 
891 	/* We can't do much without a string to parse */
892 	if (match_str == NULL) {
893 		sprintf(devstat_errbuf, "%s: no match expression", __func__);
894 		return(-1);
895 	}
896 
897 	/*
898 	 * Break the (comma delimited) input string out into separate strings.
899 	 * strsep is destructive, so copy the string first.
900 	 */
901 	matchbuf = matchbuf_orig = strdup(match_str);
902 	if (matchbuf == NULL) {
903 		sprintf(devstat_errbuf, "%s: out of memory", __func__);
904 		return(-1);
905 	}
906 	for (tempstr = tstr, num_args  = 0;
907 	     (*tempstr = strsep(&matchbuf, ",")) != NULL && (num_args < 5);
908 	     num_args++)
909 		if (**tempstr != '\0')
910 			if (++tempstr >= &tstr[5])
911 				break;
912 
913 	/* The user gave us too many type arguments */
914 	if (num_args > 3) {
915 		sprintf(devstat_errbuf, "%s: too many type arguments",
916 			__func__);
917 		goto cleanup;
918 	}
919 
920 	/*
921 	 * Since you can't realloc a pointer that hasn't been malloced
922 	 * first, we malloc first and then realloc.
923 	 */
924 	if (*num_matches == 0)
925 		*matches = (struct devstat_match *)malloc(
926 			   sizeof(struct devstat_match));
927 	else
928 		*matches = (struct devstat_match *)realloc(*matches,
929 			  sizeof(struct devstat_match) * (*num_matches + 1));
930 
931 	/* Make sure the current entry is clear */
932 	bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
933 
934 	/*
935 	 * Step through the arguments the user gave us and build a device
936 	 * matching expression from them.
937 	 */
938 	for (i = 0; i < num_args; i++) {
939 		char *tempstr2, *tempstr3;
940 
941 		/*
942 		 * Get rid of leading white space.
943 		 */
944 		tempstr2 = tstr[i];
945 		while (isspace(*tempstr2) && (*tempstr2 != '\0'))
946 			tempstr2++;
947 
948 		/*
949 		 * Get rid of trailing white space.
950 		 */
951 		tempstr3 = &tempstr2[strlen(tempstr2) - 1];
952 
953 		while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
954 		    && (isspace(*tempstr3))) {
955 			*tempstr3 = '\0';
956 			tempstr3--;
957 		}
958 
959 		/*
960 		 * Go through the match table comparing the user's
961 		 * arguments to known device types, interfaces, etc.
962 		 */
963 		for (j = 0; match_table[j].match_str != NULL; j++) {
964 			/*
965 			 * We do case-insensitive matching, in case someone
966 			 * wants to enter "SCSI" instead of "scsi" or
967 			 * something like that.  Only compare as many
968 			 * characters as are in the string in the match
969 			 * table.  This should help if someone tries to use
970 			 * a super-long match expression.
971 			 */
972 			if (strncasecmp(tempstr2, match_table[j].match_str,
973 			    strlen(match_table[j].match_str)) == 0) {
974 				/*
975 				 * Make sure the user hasn't specified two
976 				 * items of the same type, like "da" and
977 				 * "cd".  One device cannot be both.
978 				 */
979 				if (((*matches)[*num_matches].match_fields &
980 				    match_table[j].match_field) != 0) {
981 					sprintf(devstat_errbuf,
982 						"%s: cannot have more than "
983 						"one match item in a single "
984 						"category", __func__);
985 					goto cleanup;
986 				}
987 				/*
988 				 * If we've gotten this far, we have a
989 				 * winner.  Set the appropriate fields in
990 				 * the match entry.
991 				 */
992 				(*matches)[*num_matches].match_fields |=
993 					match_table[j].match_field;
994 				(*matches)[*num_matches].device_type |=
995 					match_table[j].type;
996 				(*matches)[*num_matches].num_match_categories++;
997 				break;
998 			}
999 		}
1000 		/*
1001 		 * We should have found a match in the above for loop.  If
1002 		 * not, that means the user entered an invalid device type
1003 		 * or interface.
1004 		 */
1005 		if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1006 			snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1007 				"%s: unknown match item \"%s\"", __func__,
1008 				tstr[i]);
1009 			goto cleanup;
1010 		}
1011 	}
1012 
1013 	(*num_matches)++;
1014 	retval = 0;
1015 cleanup:
1016 	free(matchbuf_orig);
1017 	return(retval);
1018 }
1019 
1020 /*
1021  * Compute a number of device statistics.  Only one field is mandatory, and
1022  * that is "current".  Everything else is optional.  The caller passes in
1023  * pointers to variables to hold the various statistics he desires.  If he
1024  * doesn't want a particular staistic, he should pass in a NULL pointer.
1025  * Return values:
1026  * 0   -- success
1027  * -1  -- failure
1028  */
1029 int
1030 compute_stats(struct devstat *current, struct devstat *previous,
1031 	      long double etime, u_int64_t *total_bytes,
1032 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1033 	      long double *kb_per_transfer, long double *transfers_per_second,
1034 	      long double *mb_per_second, long double *blocks_per_second,
1035 	      long double *ms_per_transaction)
1036 {
1037 	u_int64_t totalbytes, totaltransfers, totalblocks;
1038 
1039 	/*
1040 	 * current is the only mandatory field.
1041 	 */
1042 	if (current == NULL) {
1043 		sprintf(devstat_errbuf, "%s: current stats structure was NULL",
1044 			__func__);
1045 		return(-1);
1046 	}
1047 
1048 	totalbytes = (current->bytes_written + current->bytes_read) -
1049 		     ((previous) ? (previous->bytes_written +
1050 				    previous->bytes_read) : 0);
1051 
1052 	if (total_bytes)
1053 		*total_bytes = totalbytes;
1054 
1055 	totaltransfers = (current->num_reads +
1056 			  current->num_writes +
1057 			  current->num_other) -
1058 			 ((previous) ?
1059 			  (previous->num_reads +
1060 			   previous->num_writes +
1061 			   previous->num_other) : 0);
1062 	if (total_transfers)
1063 		*total_transfers = totaltransfers;
1064 
1065 	if (transfers_per_second) {
1066 		if (etime > 0.0) {
1067 			*transfers_per_second = totaltransfers;
1068 			*transfers_per_second /= etime;
1069 		} else
1070 			*transfers_per_second = 0.0;
1071 	}
1072 
1073 	if (kb_per_transfer) {
1074 		*kb_per_transfer = totalbytes;
1075 		*kb_per_transfer /= 1024;
1076 		if (totaltransfers > 0)
1077 			*kb_per_transfer /= totaltransfers;
1078 		else
1079 			*kb_per_transfer = 0.0;
1080 	}
1081 
1082 	if (mb_per_second) {
1083 		*mb_per_second = totalbytes;
1084 		*mb_per_second /= 1024 * 1024;
1085 		if (etime > 0.0)
1086 			*mb_per_second /= etime;
1087 		else
1088 			*mb_per_second = 0.0;
1089 	}
1090 
1091 	totalblocks = totalbytes;
1092 	if (current->block_size > 0)
1093 		totalblocks /= current->block_size;
1094 	else
1095 		totalblocks /= 512;
1096 
1097 	if (total_blocks)
1098 		*total_blocks = totalblocks;
1099 
1100 	if (blocks_per_second) {
1101 		*blocks_per_second = totalblocks;
1102 		if (etime > 0.0)
1103 			*blocks_per_second /= etime;
1104 		else
1105 			*blocks_per_second = 0.0;
1106 	}
1107 
1108 	if (ms_per_transaction) {
1109 		if (totaltransfers > 0) {
1110 			*ms_per_transaction = etime;
1111 			*ms_per_transaction /= totaltransfers;
1112 			*ms_per_transaction *= 1000;
1113 		} else
1114 			*ms_per_transaction = 0.0;
1115 	}
1116 
1117 	return(0);
1118 }
1119 
1120 int
1121 compute_stats_read(struct devstat *current, struct devstat *previous,
1122 	      long double etime, u_int64_t *total_bytes,
1123 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1124 	      long double *kb_per_transfer, long double *transfers_per_second,
1125 	      long double *mb_per_second, long double *blocks_per_second,
1126 	      long double *ms_per_transaction)
1127 {
1128 	u_int64_t totalbytes, totaltransfers, totalblocks;
1129 
1130 	/*
1131 	 * current is the only mandatory field.
1132 	 */
1133 	if (current == NULL) {
1134 		sprintf(devstat_errbuf, "%s: current stats structure was NULL",
1135 			__func__);
1136 		return(-1);
1137 	}
1138 
1139 	totalbytes = current->bytes_read -
1140 		     (previous ? previous->bytes_read : 0);
1141 
1142 	if (total_bytes)
1143 		*total_bytes = totalbytes;
1144 
1145 	totaltransfers = current->num_reads -
1146 			 (previous ? previous->num_reads : 0);
1147 	if (total_transfers)
1148 		*total_transfers = totaltransfers;
1149 
1150 	if (transfers_per_second) {
1151 		if (etime > 0.0) {
1152 			*transfers_per_second = totaltransfers;
1153 			*transfers_per_second /= etime;
1154 		} else
1155 			*transfers_per_second = 0.0;
1156 	}
1157 
1158 	if (kb_per_transfer) {
1159 		*kb_per_transfer = totalbytes;
1160 		*kb_per_transfer /= 1024;
1161 		if (totaltransfers > 0)
1162 			*kb_per_transfer /= totaltransfers;
1163 		else
1164 			*kb_per_transfer = 0.0;
1165 	}
1166 
1167 	if (mb_per_second) {
1168 		*mb_per_second = totalbytes;
1169 		*mb_per_second /= 1024 * 1024;
1170 		if (etime > 0.0)
1171 			*mb_per_second /= etime;
1172 		else
1173 			*mb_per_second = 0.0;
1174 	}
1175 
1176 	totalblocks = totalbytes;
1177 	if (current->block_size > 0)
1178 		totalblocks /= current->block_size;
1179 	else
1180 		totalblocks /= 512;
1181 
1182 	if (total_blocks)
1183 		*total_blocks = totalblocks;
1184 
1185 	if (blocks_per_second) {
1186 		*blocks_per_second = totalblocks;
1187 		if (etime > 0.0)
1188 			*blocks_per_second /= etime;
1189 		else
1190 			*blocks_per_second = 0.0;
1191 	}
1192 
1193 	if (ms_per_transaction) {
1194 		if (totaltransfers > 0) {
1195 			*ms_per_transaction = etime;
1196 			*ms_per_transaction /= totaltransfers;
1197 			*ms_per_transaction *= 1000;
1198 		} else
1199 			*ms_per_transaction = 0.0;
1200 	}
1201 
1202 	return(0);
1203 }
1204 
1205 int
1206 compute_stats_write(struct devstat *current, struct devstat *previous,
1207 	      long double etime, u_int64_t *total_bytes,
1208 	      u_int64_t *total_transfers, u_int64_t *total_blocks,
1209 	      long double *kb_per_transfer, long double *transfers_per_second,
1210 	      long double *mb_per_second, long double *blocks_per_second,
1211 	      long double *ms_per_transaction)
1212 {
1213 	u_int64_t totalbytes, totaltransfers, totalblocks;
1214 
1215 	/*
1216 	 * current is the only mandatory field.
1217 	 */
1218 	if (current == NULL) {
1219 		sprintf(devstat_errbuf, "%s: current stats structure was NULL",
1220 			__func__);
1221 		return(-1);
1222 	}
1223 
1224 	totalbytes = current->bytes_written -
1225 		     (previous ? previous->bytes_written : 0);
1226 
1227 	if (total_bytes)
1228 		*total_bytes = totalbytes;
1229 
1230 	totaltransfers = current->num_writes -
1231 			 (previous ? previous->num_writes : 0);
1232 	if (total_transfers)
1233 		*total_transfers = totaltransfers;
1234 
1235 	if (transfers_per_second) {
1236 		if (etime > 0.0) {
1237 			*transfers_per_second = totaltransfers;
1238 			*transfers_per_second /= etime;
1239 		} else
1240 			*transfers_per_second = 0.0;
1241 	}
1242 
1243 	if (kb_per_transfer) {
1244 		*kb_per_transfer = totalbytes;
1245 		*kb_per_transfer /= 1024;
1246 		if (totaltransfers > 0)
1247 			*kb_per_transfer /= totaltransfers;
1248 		else
1249 			*kb_per_transfer = 0.0;
1250 	}
1251 
1252 	if (mb_per_second) {
1253 		*mb_per_second = totalbytes;
1254 		*mb_per_second /= 1024 * 1024;
1255 		if (etime > 0.0)
1256 			*mb_per_second /= etime;
1257 		else
1258 			*mb_per_second = 0.0;
1259 	}
1260 
1261 	totalblocks = totalbytes;
1262 	if (current->block_size > 0)
1263 		totalblocks /= current->block_size;
1264 	else
1265 		totalblocks /= 512;
1266 
1267 	if (total_blocks)
1268 		*total_blocks = totalblocks;
1269 
1270 	if (blocks_per_second) {
1271 		*blocks_per_second = totalblocks;
1272 		if (etime > 0.0)
1273 			*blocks_per_second /= etime;
1274 		else
1275 			*blocks_per_second = 0.0;
1276 	}
1277 
1278 	if (ms_per_transaction) {
1279 		if (totaltransfers > 0) {
1280 			*ms_per_transaction = etime;
1281 			*ms_per_transaction /= totaltransfers;
1282 			*ms_per_transaction *= 1000;
1283 		} else
1284 			*ms_per_transaction = 0.0;
1285 	}
1286 
1287 	return(0);
1288 }
1289 
1290 long double
1291 compute_etime(struct timeval cur_time, struct timeval prev_time)
1292 {
1293 	struct timeval busy_time;
1294 	u_int64_t busy_usec;
1295 	long double etime;
1296 
1297 	timersub(&cur_time, &prev_time, &busy_time);
1298 
1299         busy_usec = busy_time.tv_sec;
1300         busy_usec *= 1000000;
1301         busy_usec += busy_time.tv_usec;
1302         etime = busy_usec;
1303         etime /= 1000000;
1304 
1305 	return(etime);
1306 }
1307