xref: /dragonfly/lib/libdmsg/msg_lnk.c (revision f7df6c8e)
1 /*
2  * Copyright (c) 2012-2014 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 /*
35  * LNK_SPAN PROTOCOL SUPPORT FUNCTIONS - Please see sys/dmsg.h for an
36  * involved explanation of the protocol.
37  */
38 
39 #include "dmsg_local.h"
40 
41 /*
42  * Maximum spanning tree distance.  This has the practical effect of
43  * stopping tail-chasing closed loops when a feeder span is lost.
44  */
45 #define DMSG_SPAN_MAXDIST	16
46 
47 /*
48  * RED-BLACK TREE DEFINITIONS
49  *
50  * We need to track:
51  *
52  * (1) shared fsid's (a cluster).
53  * (2) unique fsid's (a node in a cluster) <--- LNK_SPAN transactions.
54  *
55  * We need to aggegate all active LNK_SPANs, aggregate, and create our own
56  * outgoing LNK_SPAN transactions on each of our connections representing
57  * the aggregated state.
58  *
59  * h2span_conn		- list of iocom connections who wish to receive SPAN
60  *			  propagation from other connections.  Might contain
61  *			  a filter string.  Only iocom's with an open
62  *			  LNK_CONN transactions are applicable for SPAN
63  *			  propagation.
64  *
65  * h2span_relay		- List of links relayed (via SPAN).  Essentially
66  *			  each relay structure represents a LNK_SPAN
67  *			  transaction that we initiated, verses h2span_link
68  *			  which is a LNK_SPAN transaction that we received.
69  *
70  * --
71  *
72  * h2span_cluster	- Organizes the shared fsid's.  One structure for
73  *			  each cluster.
74  *
75  * h2span_node		- Organizes the nodes in a cluster.  One structure
76  *			  for each unique {cluster,node}, aka {fsid, pfs_fsid}.
77  *
78  * h2span_link		- Organizes all incoming and outgoing LNK_SPAN message
79  *			  transactions related to a node.
80  *
81  *			  One h2span_link structure for each incoming LNK_SPAN
82  *			  transaction.  Links selected for propagation back
83  *			  out are also where the outgoing LNK_SPAN messages
84  *			  are indexed into (so we can propagate changes).
85  *
86  *			  The h2span_link's use a red-black tree to sort the
87  *			  distance hop metric for the incoming LNK_SPAN.  We
88  *			  then select the top N for outgoing.  When the
89  *			  topology changes the top N may also change and cause
90  *			  new outgoing LNK_SPAN transactions to be opened
91  *			  and less desireable ones to be closed, causing
92  *			  transactional aborts within the message flow in
93  *			  the process.
94  *
95  * Also note		- All outgoing LNK_SPAN message transactions are also
96  *			  entered into a red-black tree for use by the routing
97  *			  function.  This is handled by msg.c in the state
98  *			  code, not here.
99  */
100 
101 struct h2span_link;
102 struct h2span_relay;
103 TAILQ_HEAD(h2span_conn_queue, h2span_conn);
104 TAILQ_HEAD(h2span_relay_queue, h2span_relay);
105 
106 RB_HEAD(h2span_cluster_tree, h2span_cluster);
107 RB_HEAD(h2span_node_tree, h2span_node);
108 RB_HEAD(h2span_link_tree, h2span_link);
109 RB_HEAD(h2span_relay_tree, h2span_relay);
110 uint32_t DMsgRNSS;
111 
112 /*
113  * Received LNK_CONN transaction enables SPAN protocol over connection.
114  * (may contain filter).  Typically one for each mount and several may
115  * share the same media.
116  */
117 struct h2span_conn {
118 	TAILQ_ENTRY(h2span_conn) entry;
119 	struct h2span_relay_tree tree;
120 	dmsg_state_t *state;
121 	dmsg_lnk_conn_t lnk_conn;
122 };
123 
124 /*
125  * All received LNK_SPANs are organized by cluster (pfs_clid),
126  * node (pfs_fsid), and link (received LNK_SPAN transaction).
127  */
128 struct h2span_cluster {
129 	RB_ENTRY(h2span_cluster) rbnode;
130 	struct h2span_node_tree tree;
131 	uuid_t	pfs_clid;		/* shared fsid */
132 	uint8_t	peer_type;
133 	char	cl_label[128];		/* cluster label (typ PEER_BLOCK) */
134 	int	refs;			/* prevents destruction */
135 };
136 
137 struct h2span_node {
138 	RB_ENTRY(h2span_node) rbnode;
139 	struct h2span_link_tree tree;
140 	struct h2span_cluster *cls;
141 	uint8_t	pfs_type;
142 	uuid_t	pfs_fsid;		/* unique fsid */
143 	char	fs_label[128];		/* fs label (typ PEER_HAMMER2) */
144 	void	*opaque;
145 };
146 
147 struct h2span_link {
148 	RB_ENTRY(h2span_link) rbnode;
149 	dmsg_state_t	*state;		/* state<->link */
150 	struct h2span_node *node;	/* related node */
151 	struct h2span_relay_queue relayq; /* relay out */
152 	dmsg_lnk_span_t lnk_span;
153 };
154 
155 /*
156  * Any LNK_SPAN transactions we receive which are relayed out other
157  * connections utilize this structure to track the LNK_SPAN transactions
158  * we initiate (relay out) on other connections.  We only relay out
159  * LNK_SPANs on connections we have an open CONN transaction for.
160  *
161  * The relay structure points to the outgoing LNK_SPAN trans (out_state)
162  * and to the incoming LNK_SPAN transaction (in_state).  The relay
163  * structure holds refs on the related states.
164  *
165  * In many respects this is the core of the protocol... actually figuring
166  * out what LNK_SPANs to relay.  The spanid used for relaying is the
167  * address of the 'state' structure, which is why h2span_relay has to
168  * be entered into a RB-TREE based at h2span_conn (so we can look
169  * up the spanid to validate it).
170  */
171 struct h2span_relay {
172 	TAILQ_ENTRY(h2span_relay) entry;	/* from link */
173 	RB_ENTRY(h2span_relay) rbnode;		/* from h2span_conn */
174 	struct h2span_conn	*conn;		/* related CONN transaction */
175 	dmsg_state_t		*source_rt;	/* h2span_link state */
176 	dmsg_state_t		*target_rt;	/* h2span_relay state */
177 };
178 
179 typedef struct h2span_conn h2span_conn_t;
180 typedef struct h2span_cluster h2span_cluster_t;
181 typedef struct h2span_node h2span_node_t;
182 typedef struct h2span_link h2span_link_t;
183 typedef struct h2span_relay h2span_relay_t;
184 
185 #define dmsg_termstr(array)	_dmsg_termstr((array), sizeof(array))
186 
187 static h2span_relay_t *dmsg_generate_relay(h2span_conn_t *conn,
188 					h2span_link_t *slink);
189 static uint32_t dmsg_rnss(void);
190 
191 static __inline
192 void
193 _dmsg_termstr(char *base, size_t size)
194 {
195 	base[size-1] = 0;
196 }
197 
198 /*
199  * Cluster peer_type, uuid, AND label must match for a match
200  */
201 static
202 int
203 h2span_cluster_cmp(h2span_cluster_t *cls1, h2span_cluster_t *cls2)
204 {
205 	int r;
206 
207 	if (cls1->peer_type < cls2->peer_type)
208 		return(-1);
209 	if (cls1->peer_type > cls2->peer_type)
210 		return(1);
211 	r = uuid_compare(&cls1->pfs_clid, &cls2->pfs_clid, NULL);
212 	if (r == 0)
213 		r = strcmp(cls1->cl_label, cls2->cl_label);
214 
215 	return r;
216 }
217 
218 /*
219  * Match against fs_label/pfs_fsid.  Together these two items represent a
220  * unique node.  In most cases the primary differentiator is pfs_fsid but
221  * we also string-match fs_label.
222  */
223 static
224 int
225 h2span_node_cmp(h2span_node_t *node1, h2span_node_t *node2)
226 {
227 	int r;
228 
229 	r = strcmp(node1->fs_label, node2->fs_label);
230 	if (r == 0)
231 		r = uuid_compare(&node1->pfs_fsid, &node2->pfs_fsid, NULL);
232 	return (r);
233 }
234 
235 /*
236  * Sort/subsort must match h2span_relay_cmp() under any given node
237  * to make the aggregation algorithm easier, so the best links are
238  * in the same sorted order as the best relays.
239  *
240  * NOTE: We cannot use link*->state->msgid because this msgid is created
241  *	 by each remote host and thus might wind up being the same.
242  */
243 static
244 int
245 h2span_link_cmp(h2span_link_t *link1, h2span_link_t *link2)
246 {
247 	if (link1->lnk_span.dist < link2->lnk_span.dist)
248 		return(-1);
249 	if (link1->lnk_span.dist > link2->lnk_span.dist)
250 		return(1);
251 	if (link1->lnk_span.rnss < link2->lnk_span.rnss)
252 		return(-1);
253 	if (link1->lnk_span.rnss > link2->lnk_span.rnss)
254 		return(1);
255 #if 1
256 	if ((uintptr_t)link1->state < (uintptr_t)link2->state)
257 		return(-1);
258 	if ((uintptr_t)link1->state > (uintptr_t)link2->state)
259 		return(1);
260 #else
261 	if (link1->state->msgid < link2->state->msgid)
262 		return(-1);
263 	if (link1->state->msgid > link2->state->msgid)
264 		return(1);
265 #endif
266 	return(0);
267 }
268 
269 /*
270  * Relay entries are sorted by node, subsorted by distance and link
271  * address (so we can match up the conn->tree relay topology with
272  * a node's link topology).
273  */
274 static
275 int
276 h2span_relay_cmp(h2span_relay_t *relay1, h2span_relay_t *relay2)
277 {
278 	h2span_link_t *link1 = relay1->source_rt->any.link;
279 	h2span_link_t *link2 = relay2->source_rt->any.link;
280 
281 	if ((intptr_t)link1->node < (intptr_t)link2->node)
282 		return(-1);
283 	if ((intptr_t)link1->node > (intptr_t)link2->node)
284 		return(1);
285 	if (link1->lnk_span.dist < link2->lnk_span.dist)
286 		return(-1);
287 	if (link1->lnk_span.dist > link2->lnk_span.dist)
288 		return(1);
289 	if (link1->lnk_span.rnss < link2->lnk_span.rnss)
290 		return(-1);
291 	if (link1->lnk_span.rnss > link2->lnk_span.rnss)
292 		return(1);
293 #if 1
294 	if ((uintptr_t)link1->state < (uintptr_t)link2->state)
295 		return(-1);
296 	if ((uintptr_t)link1->state > (uintptr_t)link2->state)
297 		return(1);
298 #else
299 	if (link1->state->msgid < link2->state->msgid)
300 		return(-1);
301 	if (link1->state->msgid > link2->state->msgid)
302 		return(1);
303 #endif
304 	return(0);
305 }
306 
307 RB_PROTOTYPE_STATIC(h2span_cluster_tree, h2span_cluster,
308 	     rbnode, h2span_cluster_cmp);
309 RB_PROTOTYPE_STATIC(h2span_node_tree, h2span_node,
310 	     rbnode, h2span_node_cmp);
311 RB_PROTOTYPE_STATIC(h2span_link_tree, h2span_link,
312 	     rbnode, h2span_link_cmp);
313 RB_PROTOTYPE_STATIC(h2span_relay_tree, h2span_relay,
314 	     rbnode, h2span_relay_cmp);
315 
316 RB_GENERATE_STATIC(h2span_cluster_tree, h2span_cluster,
317 	     rbnode, h2span_cluster_cmp);
318 RB_GENERATE_STATIC(h2span_node_tree, h2span_node,
319 	     rbnode, h2span_node_cmp);
320 RB_GENERATE_STATIC(h2span_link_tree, h2span_link,
321 	     rbnode, h2span_link_cmp);
322 RB_GENERATE_STATIC(h2span_relay_tree, h2span_relay,
323 	     rbnode, h2span_relay_cmp);
324 
325 /*
326  * Global mutex protects cluster_tree lookups, connq, mediaq.
327  */
328 static pthread_mutex_t cluster_mtx;
329 static struct h2span_cluster_tree cluster_tree = RB_INITIALIZER(cluster_tree);
330 static struct h2span_conn_queue connq = TAILQ_HEAD_INITIALIZER(connq);
331 static struct dmsg_media_queue mediaq = TAILQ_HEAD_INITIALIZER(mediaq);
332 
333 static void dmsg_lnk_span(dmsg_msg_t *msg);
334 static void dmsg_lnk_conn(dmsg_msg_t *msg);
335 static void dmsg_lnk_relay(dmsg_msg_t *msg);
336 static void dmsg_relay_scan(h2span_conn_t *conn, h2span_node_t *node);
337 static void dmsg_relay_delete(h2span_relay_t *relay);
338 
339 void
340 dmsg_msg_lnk_signal(dmsg_iocom_t *iocom __unused)
341 {
342 	pthread_mutex_lock(&cluster_mtx);
343 	dmsg_relay_scan(NULL, NULL);
344 	pthread_mutex_unlock(&cluster_mtx);
345 }
346 
347 /*
348  * DMSG_PROTO_LNK - Generic DMSG_PROTO_LNK.
349  *	      (incoming iocom lock not held)
350  *
351  * This function is typically called for one-way and opening-transactions
352  * since state->func is assigned after that, but it will also be called
353  * if no state->func is assigned on transaction-open.
354  */
355 void
356 dmsg_msg_lnk(dmsg_msg_t *msg)
357 {
358 	dmsg_iocom_t *iocom = msg->state->iocom;
359 
360 	switch(msg->tcmd & DMSGF_BASECMDMASK) {
361 	case DMSG_LNK_CONN:
362 		dmsg_lnk_conn(msg);
363 		break;
364 	case DMSG_LNK_SPAN:
365 		dmsg_lnk_span(msg);
366 		break;
367 	default:
368 		iocom->usrmsg_callback(msg, 1);
369 		/* state invalid after reply */
370 		break;
371 	}
372 }
373 
374 /*
375  * LNK_CONN - iocom identify message reception.
376  *	      (incoming iocom lock not held)
377  *
378  * Remote node identifies itself to us, sets up a SPAN filter, and gives us
379  * the ok to start transmitting SPANs.
380  */
381 void
382 dmsg_lnk_conn(dmsg_msg_t *msg)
383 {
384 	dmsg_state_t *state = msg->state;
385 	dmsg_iocom_t *iocom = state->iocom;
386 	dmsg_media_t *media;
387 	h2span_conn_t *conn;
388 	h2span_relay_t *relay;
389 	char *alloc = NULL;
390 
391 	pthread_mutex_lock(&cluster_mtx);
392 
393 	fprintf(stderr,
394 		"dmsg_lnk_conn: msg %p cmd %08x state %p "
395 		"txcmd %08x rxcmd %08x\n",
396 		msg, msg->any.head.cmd, state,
397 		state->txcmd, state->rxcmd);
398 
399 	switch(msg->any.head.cmd & DMSGF_TRANSMASK) {
400 	case DMSG_LNK_CONN | DMSGF_CREATE:
401 	case DMSG_LNK_CONN | DMSGF_CREATE | DMSGF_DELETE:
402 		/*
403 		 * On transaction start we allocate a new h2span_conn and
404 		 * acknowledge the request, leaving the transaction open.
405 		 * We then relay priority-selected SPANs.
406 		 */
407 		fprintf(stderr, "LNK_CONN(%08x): %s/%s/%s\n",
408 			(uint32_t)msg->any.head.msgid,
409 			dmsg_uuid_to_str(&msg->any.lnk_conn.pfs_clid,
410 					    &alloc),
411 			msg->any.lnk_conn.cl_label,
412 			msg->any.lnk_conn.fs_label);
413 		free(alloc);
414 
415 		conn = dmsg_alloc(sizeof(*conn));
416 		assert(state->iocom->conn == NULL);
417 
418 		RB_INIT(&conn->tree);
419 		state->iocom->conn = conn;	/* XXX only one */
420 		state->iocom->conn_msgid = state->msgid;
421 		conn->state = state;
422 		state->func = dmsg_lnk_conn;
423 		state->any.conn = conn;
424 		TAILQ_INSERT_TAIL(&connq, conn, entry);
425 		conn->lnk_conn = msg->any.lnk_conn;
426 
427 		/*
428 		 * Set up media
429 		 */
430 		TAILQ_FOREACH(media, &mediaq, entry) {
431 			if (uuid_compare(&msg->any.lnk_conn.mediaid,
432 					 &media->mediaid, NULL) == 0) {
433 				break;
434 			}
435 		}
436 		if (media == NULL) {
437 			media = dmsg_alloc(sizeof(*media));
438 			media->mediaid = msg->any.lnk_conn.mediaid;
439 			TAILQ_INSERT_TAIL(&mediaq, media, entry);
440 		}
441 		state->media = media;
442 		++media->refs;
443 
444 		if ((msg->any.head.cmd & DMSGF_DELETE) == 0) {
445 			iocom->usrmsg_callback(msg, 0);
446 			dmsg_msg_result(msg, 0);
447 			dmsg_iocom_signal(iocom);
448 			break;
449 		}
450 		/* FALL THROUGH */
451 	case DMSG_LNK_CONN | DMSGF_DELETE:
452 	case DMSG_LNK_ERROR | DMSGF_DELETE:
453 		/*
454 		 * On transaction terminate we clean out our h2span_conn
455 		 * and acknowledge the request, closing the transaction.
456 		 */
457 		fprintf(stderr, "LNK_CONN: Terminated\n");
458 		conn = state->any.conn;
459 		assert(conn);
460 
461 		/*
462 		 * Adjust media refs
463 		 *
464 		 * Callback will clean out media config / user-opaque state
465 		 */
466 		media = state->media;
467 		--media->refs;
468 		if (media->refs == 0) {
469 			fprintf(stderr, "Media shutdown\n");
470 			TAILQ_REMOVE(&mediaq, media, entry);
471 			pthread_mutex_unlock(&cluster_mtx);
472 			iocom->usrmsg_callback(msg, 0);
473 			pthread_mutex_lock(&cluster_mtx);
474 			dmsg_free(media);
475 		}
476 		state->media = NULL;
477 
478 		/*
479 		 * Clean out all relays.  This requires terminating each
480 		 * relay transaction.
481 		 */
482 		while ((relay = RB_ROOT(&conn->tree)) != NULL) {
483 			dmsg_relay_delete(relay);
484 		}
485 
486 		/*
487 		 * Clean out conn
488 		 */
489 		conn->state = NULL;
490 		msg->state->any.conn = NULL;
491 		msg->state->iocom->conn = NULL;
492 		TAILQ_REMOVE(&connq, conn, entry);
493 		dmsg_free(conn);
494 
495 		dmsg_msg_reply(msg, 0);
496 		/* state invalid after reply */
497 		break;
498 	default:
499 		iocom->usrmsg_callback(msg, 1);
500 #if 0
501 		if (msg->any.head.cmd & DMSGF_DELETE)
502 			goto deleteconn;
503 		dmsg_msg_reply(msg, DMSG_ERR_NOSUPP);
504 #endif
505 		break;
506 	}
507 	pthread_mutex_unlock(&cluster_mtx);
508 }
509 
510 /*
511  * LNK_SPAN - Spanning tree protocol message reception
512  *	      (incoming iocom lock not held)
513  *
514  * Receive a spanning tree transactional message, creating or destroying
515  * a SPAN and propagating it to other iocoms.
516  */
517 void
518 dmsg_lnk_span(dmsg_msg_t *msg)
519 {
520 	dmsg_state_t *state = msg->state;
521 	dmsg_iocom_t *iocom = state->iocom;
522 	h2span_cluster_t dummy_cls;
523 	h2span_node_t dummy_node;
524 	h2span_cluster_t *cls;
525 	h2span_node_t *node;
526 	h2span_link_t *slink;
527 	h2span_relay_t *relay;
528 	char *alloc = NULL;
529 
530 	/*
531 	 * Ignore reply to LNK_SPAN.  The reply is expected and will commands
532 	 * to flow in both directions on the open transaction.  This will also
533 	 * ignore DMSGF_REPLY|DMSGF_DELETE messages.  Since we take no action
534 	 * if the other end unexpectedly closes their side of the transaction,
535 	 * we can ignore that too.
536 	 */
537 	if (msg->any.head.cmd & DMSGF_REPLY) {
538 		printf("Ignore reply to LNK_SPAN\n");
539 		return;
540 	}
541 
542 	pthread_mutex_lock(&cluster_mtx);
543 
544 	/*
545 	 * On transaction start we initialize the tracking infrastructure
546 	 */
547 	if (msg->any.head.cmd & DMSGF_CREATE) {
548 		assert(state->func == NULL);
549 		state->func = dmsg_lnk_span;
550 
551 		dmsg_termstr(msg->any.lnk_span.cl_label);
552 		dmsg_termstr(msg->any.lnk_span.fs_label);
553 
554 		/*
555 		 * Find the cluster
556 		 */
557 		dummy_cls.pfs_clid = msg->any.lnk_span.pfs_clid;
558 		dummy_cls.peer_type = msg->any.lnk_span.peer_type;
559 		bcopy(msg->any.lnk_span.cl_label,
560 		      dummy_cls.cl_label,
561 		      sizeof(dummy_cls.cl_label));
562 		cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
563 		if (cls == NULL) {
564 			cls = dmsg_alloc(sizeof(*cls));
565 			cls->pfs_clid = msg->any.lnk_span.pfs_clid;
566 			cls->peer_type = msg->any.lnk_span.peer_type;
567 			bcopy(msg->any.lnk_span.cl_label,
568 			      cls->cl_label,
569 			      sizeof(cls->cl_label));
570 			RB_INIT(&cls->tree);
571 			RB_INSERT(h2span_cluster_tree, &cluster_tree, cls);
572 		}
573 
574 		/*
575 		 * Find the node
576 		 */
577 		dummy_node.pfs_fsid = msg->any.lnk_span.pfs_fsid;
578 		bcopy(msg->any.lnk_span.fs_label, dummy_node.fs_label,
579 		      sizeof(dummy_node.fs_label));
580 		node = RB_FIND(h2span_node_tree, &cls->tree, &dummy_node);
581 		if (node == NULL) {
582 			node = dmsg_alloc(sizeof(*node));
583 			node->pfs_fsid = msg->any.lnk_span.pfs_fsid;
584 			node->pfs_type = msg->any.lnk_span.pfs_type;
585 			bcopy(msg->any.lnk_span.fs_label,
586 			      node->fs_label,
587 			      sizeof(node->fs_label));
588 			node->cls = cls;
589 			RB_INIT(&node->tree);
590 			RB_INSERT(h2span_node_tree, &cls->tree, node);
591 		}
592 
593 		/*
594 		 * Create the link
595 		 *
596 		 * NOTE: Sub-transactions on the incoming SPAN can be used
597 		 *	 to talk to the originator.  We should not set-up
598 		 *	 state->relay for incoming SPANs since our sub-trans
599 		 *	 is running on the same interface (i.e. no actual
600 		 *	 relaying need be done).
601 		 *
602 		 * NOTE: Later on when we relay the SPAN out the outgoing
603 		 *	 SPAN state will be set up to relay back to this
604 		 *	 state.
605 		 *
606 		 * NOTE: It is possible for SPAN targets to send one-way
607 		 *	 messages to the originator but it is not possible
608 		 *	 for the originator to (currently) broadcast one-way
609 		 *	 messages to all of its SPAN targets.  The protocol
610 		 *	 allows such a feature to be added in the future.
611 		 */
612 		assert(state->any.link == NULL);
613 		slink = dmsg_alloc(sizeof(*slink));
614 		TAILQ_INIT(&slink->relayq);
615 		slink->node = node;
616 		slink->state = state;
617 		state->any.link = slink;
618 		slink->lnk_span = msg->any.lnk_span;
619 
620 		RB_INSERT(h2span_link_tree, &node->tree, slink);
621 
622 		fprintf(stderr,
623 			"LNK_SPAN(thr %p): %p %s cl=%s fs=%s dist=%d\n",
624 			iocom,
625 			slink,
626 			dmsg_uuid_to_str(&msg->any.lnk_span.pfs_clid, &alloc),
627 			msg->any.lnk_span.cl_label,
628 			msg->any.lnk_span.fs_label,
629 			msg->any.lnk_span.dist);
630 		free(alloc);
631 #if 0
632 		dmsg_relay_scan(NULL, node);
633 #endif
634 		/*
635 		 * Ack the open, which will issue a CREATE on our side, and
636 		 * leave the transaction open.  Necessary to allow the
637 		 * transaction to be used as a virtual circuit.
638 		 */
639 		dmsg_state_result(state, 0);
640 		dmsg_iocom_signal(iocom);
641 	}
642 
643 	/*
644 	 * On transaction terminate we remove the tracking infrastructure.
645 	 */
646 	if (msg->any.head.cmd & DMSGF_DELETE) {
647 		slink = state->any.link;
648 		assert(slink != NULL);
649 		node = slink->node;
650 		cls = node->cls;
651 
652 		fprintf(stderr, "LNK_DELE(thr %p): %p %s cl=%s fs=%s\n",
653 			iocom,
654 			slink,
655 			dmsg_uuid_to_str(&cls->pfs_clid, &alloc),
656 			cls->cl_label,
657 			node->fs_label);
658 		free(alloc);
659 
660 		/*
661 		 * Clean out all relays.  This requires terminating each
662 		 * relay transaction.
663 		 */
664 		while ((relay = TAILQ_FIRST(&slink->relayq)) != NULL) {
665 			dmsg_relay_delete(relay);
666 		}
667 
668 		/*
669 		 * Clean out the topology
670 		 */
671 		RB_REMOVE(h2span_link_tree, &node->tree, slink);
672 		if (RB_EMPTY(&node->tree)) {
673 			RB_REMOVE(h2span_node_tree, &cls->tree, node);
674 			if (RB_EMPTY(&cls->tree) && cls->refs == 0) {
675 				RB_REMOVE(h2span_cluster_tree,
676 					  &cluster_tree, cls);
677 				dmsg_free(cls);
678 			}
679 			node->cls = NULL;
680 			dmsg_free(node);
681 			node = NULL;
682 		}
683 		state->any.link = NULL;
684 		slink->state = NULL;
685 		slink->node = NULL;
686 		dmsg_free(slink);
687 
688 		/*
689 		 * We have to terminate the transaction
690 		 */
691 		dmsg_state_reply(state, 0);
692 		/* state invalid after reply */
693 
694 		/*
695 		 * If the node still exists issue any required updates.  If
696 		 * it doesn't then all related relays have already been
697 		 * removed and there's nothing left to do.
698 		 */
699 #if 0
700 		if (node)
701 			dmsg_relay_scan(NULL, node);
702 #endif
703 		if (node)
704 			dmsg_iocom_signal(iocom);
705 	}
706 
707 	pthread_mutex_unlock(&cluster_mtx);
708 }
709 
710 /*
711  * Update relay transactions for SPANs.
712  *
713  * Called with cluster_mtx held.
714  */
715 static void dmsg_relay_scan_specific(h2span_node_t *node,
716 					h2span_conn_t *conn);
717 
718 static void
719 dmsg_relay_scan(h2span_conn_t *conn, h2span_node_t *node)
720 {
721 	h2span_cluster_t *cls;
722 
723 	if (node) {
724 		/*
725 		 * Iterate specific node
726 		 */
727 		TAILQ_FOREACH(conn, &connq, entry)
728 			dmsg_relay_scan_specific(node, conn);
729 	} else {
730 		/*
731 		 * Full iteration.
732 		 *
733 		 * Iterate cluster ids, nodes, and either a specific connection
734 		 * or all connections.
735 		 */
736 		RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
737 			/*
738 			 * Iterate node ids
739 			 */
740 			RB_FOREACH(node, h2span_node_tree, &cls->tree) {
741 				/*
742 				 * Synchronize the node's link (received SPANs)
743 				 * with each connection's relays.
744 				 */
745 				if (conn) {
746 					dmsg_relay_scan_specific(node, conn);
747 				} else {
748 					TAILQ_FOREACH(conn, &connq, entry) {
749 					    dmsg_relay_scan_specific(node,
750 									conn);
751 					}
752 					assert(conn == NULL);
753 				}
754 			}
755 		}
756 	}
757 }
758 
759 /*
760  * Update the relay'd SPANs for this (node, conn).
761  *
762  * Iterate links and adjust relays to match.  We only propagate the top link
763  * for now (XXX we want to propagate the top two).
764  *
765  * The dmsg_relay_scan_cmp() function locates the first relay element
766  * for any given node.  The relay elements will be sub-sorted by dist.
767  */
768 struct relay_scan_info {
769 	h2span_node_t *node;
770 	h2span_relay_t *relay;
771 };
772 
773 static int
774 dmsg_relay_scan_cmp(h2span_relay_t *relay, void *arg)
775 {
776 	struct relay_scan_info *info = arg;
777 
778 	if ((intptr_t)relay->source_rt->any.link->node < (intptr_t)info->node)
779 		return(-1);
780 	if ((intptr_t)relay->source_rt->any.link->node > (intptr_t)info->node)
781 		return(1);
782 	return(0);
783 }
784 
785 static int
786 dmsg_relay_scan_callback(h2span_relay_t *relay, void *arg)
787 {
788 	struct relay_scan_info *info = arg;
789 
790 	info->relay = relay;
791 	return(-1);
792 }
793 
794 static void
795 dmsg_relay_scan_specific(h2span_node_t *node, h2span_conn_t *conn)
796 {
797 	struct relay_scan_info info;
798 	h2span_relay_t *relay;
799 	h2span_relay_t *next_relay;
800 	h2span_link_t *slink;
801 	dmsg_lnk_conn_t *lconn;
802 	dmsg_lnk_span_t *lspan;
803 	int count;
804 	int maxcount = 2;
805 #ifdef REQUIRE_SYMMETRICAL
806 	uint32_t lastdist = DMSG_SPAN_MAXDIST;
807 	uint32_t lastrnss = 0;
808 #endif
809 
810 	info.node = node;
811 	info.relay = NULL;
812 
813 	/*
814 	 * Locate the first related relay for the node on this connection.
815 	 * relay will be NULL if there were none.
816 	 */
817 	RB_SCAN(h2span_relay_tree, &conn->tree,
818 		dmsg_relay_scan_cmp, dmsg_relay_scan_callback, &info);
819 	relay = info.relay;
820 	info.relay = NULL;
821 	if (relay)
822 		assert(relay->source_rt->any.link->node == node);
823 
824 	if (DMsgDebugOpt > 8)
825 		fprintf(stderr, "relay scan for connection %p\n", conn);
826 
827 	/*
828 	 * Iterate the node's links (received SPANs) in distance order,
829 	 * lowest (best) dist first.
830 	 *
831 	 * PROPAGATE THE BEST LINKS OVER THE SPECIFIED CONNECTION.
832 	 *
833 	 * Track relays while iterating the best links and construct
834 	 * missing relays when necessary.
835 	 *
836 	 * (If some prior better link was removed it would have also
837 	 *  removed the relay, so the relay can only match exactly or
838 	 *  be worse).
839 	 */
840 	count = 0;
841 	RB_FOREACH(slink, h2span_link_tree, &node->tree) {
842 		/*
843 		 * Increment count of successful relays.  This isn't
844 		 * quite accurate if we break out but nothing after
845 		 * the loop uses (count).
846 		 *
847 		 * If count exceeds the maximum number of relays we desire
848 		 * we normally want to break out.  However, in order to
849 		 * guarantee a symmetric path we have to continue if both
850 		 * (dist) and (rnss) continue to match.  Otherwise the SPAN
851 		 * propagation in the reverse direction may choose different
852 		 * routes and we will not have a symmetric path.
853 		 *
854 		 * NOTE: Spanning tree does not have to be symmetrical so
855 		 *	 this code is not currently enabled.
856 		 */
857 		if (++count >= maxcount) {
858 #ifdef REQUIRE_SYMMETRICAL
859 			if (lastdist != slink->lnk_span.dist ||
860 			    lastrnss != slink->lnk_span.rnss) {
861 				break;
862 			}
863 #else
864 			break;
865 #endif
866 			/* go beyond the nominal maximum desired relays */
867 		}
868 
869 		/*
870 		 * Match, relay already in-place, get the next
871 		 * relay to match against the next slink.
872 		 */
873 		if (relay && relay->source_rt->any.link == slink) {
874 			relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
875 			continue;
876 		}
877 
878 		/*
879 		 * We might want this SLINK, if it passes our filters.
880 		 *
881 		 * The spanning tree can cause closed loops so we have
882 		 * to limit slink->dist.
883 		 */
884 		if (slink->lnk_span.dist > DMSG_SPAN_MAXDIST)
885 			break;
886 
887 		/*
888 		 * Don't bother transmitting a LNK_SPAN out the same
889 		 * connection it came in on.  Trivial optimization.
890 		 */
891 		if (slink->state->iocom == conn->state->iocom)
892 			break;
893 
894 		/*
895 		 * NOTE ON FILTERS: The protocol spec allows non-requested
896 		 * SPANs to be transmitted, the other end is expected to
897 		 * leave their transactions open but otherwise ignore them.
898 		 *
899 		 * Don't bother transmitting if the remote connection
900 		 * is not accepting this SPAN's peer_type.
901 		 *
902 		 * pfs_mask is typically used so pure clients can filter
903 		 * out receiving SPANs for other pure clients.
904 		 */
905 		lspan = &slink->lnk_span;
906 		lconn = &conn->lnk_conn;
907 		if (((1LLU << lspan->peer_type) & lconn->peer_mask) == 0)
908 			break;
909 		if (((1LLU << lspan->pfs_type) & lconn->pfs_mask) == 0)
910 			break;
911 
912 		/*
913 		 * Do not give pure clients visibility to other pure clients
914 		 */
915 		if (lconn->pfs_type == DMSG_PFSTYPE_CLIENT &&
916 		    lspan->pfs_type == DMSG_PFSTYPE_CLIENT) {
917 			break;
918 		}
919 
920 		/*
921 		 * Connection filter, if cluster uuid is not NULL it must
922 		 * match the span cluster uuid.  Only applies when the
923 		 * peer_type matches.
924 		 */
925 		if (lspan->peer_type == lconn->peer_type &&
926 		    !uuid_is_nil(&lconn->pfs_clid, NULL) &&
927 		    uuid_compare(&slink->node->cls->pfs_clid,
928 				 &lconn->pfs_clid, NULL)) {
929 			break;
930 		}
931 
932 		/*
933 		 * Connection filter, if cluster label is not empty it must
934 		 * match the span cluster label.  Only applies when the
935 		 * peer_type matches.
936 		 */
937 		if (lspan->peer_type == lconn->peer_type &&
938 		    lconn->cl_label[0] &&
939 		    strcmp(lconn->cl_label, slink->node->cls->cl_label)) {
940 			break;
941 		}
942 
943 		/*
944 		 * NOTE! pfs_fsid differentiates nodes within the same cluster
945 		 *	 so we obviously don't want to match those.  Similarly
946 		 *	 for fs_label.
947 		 */
948 
949 		/*
950 		 * Ok, we've accepted this SPAN for relaying.
951 		 */
952 		assert(relay == NULL ||
953 		       relay->source_rt->any.link->node != slink->node ||
954 		       relay->source_rt->any.link->lnk_span.dist >=
955 		        slink->lnk_span.dist);
956 		relay = dmsg_generate_relay(conn, slink);
957 #ifdef REQUIRE_SYMMETRICAL
958 		lastdist = slink->lnk_span.dist;
959 		lastrnss = slink->lnk_span.rnss;
960 #endif
961 
962 		/*
963 		 * Match (created new relay), get the next relay to
964 		 * match against the next slink.
965 		 */
966 		relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
967 	}
968 
969 	/*
970 	 * Any remaining relay's belonging to this connection which match
971 	 * the node are in excess of the current aggregate spanning state
972 	 * and should be removed.
973 	 */
974 	while (relay && relay->source_rt->any.link->node == node) {
975 		next_relay = RB_NEXT(h2span_relay_tree, &conn->tree, relay);
976 		fprintf(stderr, "RELAY DELETE FROM EXTRAS\n");
977 		dmsg_relay_delete(relay);
978 		relay = next_relay;
979 	}
980 }
981 
982 /*
983  * Find the slink associated with the msgid and return its state,
984  * so the caller can issue a transaction.
985  */
986 dmsg_state_t *
987 dmsg_findspan(const char *label)
988 {
989 	dmsg_state_t *state;
990         h2span_cluster_t *cls;
991 	h2span_node_t *node;
992 	h2span_link_t *slink;
993 	uint64_t msgid = strtoull(label, NULL, 16);
994 
995 	pthread_mutex_lock(&cluster_mtx);
996 
997 	state = NULL;
998 	RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
999 		RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1000 			RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1001 				if (slink->state->msgid == msgid) {
1002 					state = slink->state;
1003 					goto done;
1004 				}
1005 			}
1006 		}
1007 	}
1008 done:
1009 	pthread_mutex_unlock(&cluster_mtx);
1010 
1011 	fprintf(stderr, "findspan: %p\n", state);
1012 
1013 	return state;
1014 }
1015 
1016 
1017 /*
1018  * Helper function to generate missing relay on target connection.
1019  *
1020  * cluster_mtx must be held
1021  */
1022 static
1023 h2span_relay_t *
1024 dmsg_generate_relay(h2span_conn_t *conn, h2span_link_t *slink)
1025 {
1026 	h2span_relay_t *relay;
1027 	dmsg_msg_t *msg;
1028 
1029 	relay = dmsg_alloc(sizeof(*relay));
1030 	relay->conn = conn;
1031 	relay->source_rt = slink->state;
1032 	/* relay->source_rt->any.link = slink; */
1033 
1034 	/*
1035 	 * NOTE: relay->target_rt->any.relay set to relay by alloc.
1036 	 *
1037 	 * NOTE: LNK_SPAN is transmitted as a top-level transaction.
1038 	 */
1039 	msg = dmsg_msg_alloc(&conn->state->iocom->state0,
1040 			     0, DMSG_LNK_SPAN | DMSGF_CREATE,
1041 			     dmsg_lnk_relay, relay);
1042 	relay->target_rt = msg->state;
1043 
1044 	msg->any.lnk_span = slink->lnk_span;
1045 	msg->any.lnk_span.dist = slink->lnk_span.dist + 1;
1046 	msg->any.lnk_span.rnss = slink->lnk_span.rnss + dmsg_rnss();
1047 
1048 	RB_INSERT(h2span_relay_tree, &conn->tree, relay);
1049 	TAILQ_INSERT_TAIL(&slink->relayq, relay, entry);
1050 
1051 	/*
1052 	 * Seed the relay so new sub-transactions received on the outgoing
1053 	 * SPAN circuit are relayed back to the originator.
1054 	 */
1055 	msg->state->relay = relay->source_rt;
1056 	dmsg_state_hold(msg->state->relay);
1057 
1058 	dmsg_msg_write(msg);
1059 
1060 	return (relay);
1061 }
1062 
1063 /*
1064  * Messages received on relay SPANs.  These are open transactions so it is
1065  * in fact possible for the other end to close the transaction.
1066  *
1067  * XXX MPRACE on state structure
1068  */
1069 static void
1070 dmsg_lnk_relay(dmsg_msg_t *msg)
1071 {
1072 	dmsg_state_t *state = msg->state;
1073 	h2span_relay_t *relay;
1074 
1075 	assert(msg->any.head.cmd & DMSGF_REPLY);
1076 
1077 	if (msg->any.head.cmd & DMSGF_DELETE) {
1078 		pthread_mutex_lock(&cluster_mtx);
1079 		fprintf(stderr, "RELAY DELETE FROM LNK_RELAY MSG\n");
1080 		if ((relay = state->any.relay) != NULL) {
1081 			dmsg_relay_delete(relay);
1082 		} else {
1083 			dmsg_state_reply(state, 0);
1084 		}
1085 		pthread_mutex_unlock(&cluster_mtx);
1086 	}
1087 }
1088 
1089 /*
1090  * cluster_mtx held by caller
1091  */
1092 static
1093 void
1094 dmsg_relay_delete(h2span_relay_t *relay)
1095 {
1096 	fprintf(stderr,
1097 		"RELAY DELETE %p RELAY %p ON CLS=%p NODE=%p "
1098 		"DIST=%d FD %d STATE %p\n",
1099 		relay->source_rt->any.link,
1100 		relay,
1101 		relay->source_rt->any.link->node->cls,
1102 		relay->source_rt->any.link->node,
1103 		relay->source_rt->any.link->lnk_span.dist,
1104 		relay->conn->state->iocom->sock_fd,
1105 		relay->target_rt);
1106 
1107 	RB_REMOVE(h2span_relay_tree, &relay->conn->tree, relay);
1108 	TAILQ_REMOVE(&relay->source_rt->any.link->relayq, relay, entry);
1109 
1110 	if (relay->target_rt) {
1111 		relay->target_rt->any.relay = NULL;
1112 		dmsg_state_reply(relay->target_rt, 0);
1113 		/* state invalid after reply */
1114 		relay->target_rt = NULL;
1115 	}
1116 
1117 	/*
1118 	 * NOTE: relay->source_rt->refs is held by the relay SPAN
1119 	 *	 state, not by this relay structure.
1120 	 */
1121 	relay->conn = NULL;
1122 	relay->source_rt = NULL;
1123 	dmsg_free(relay);
1124 }
1125 
1126 /************************************************************************
1127  *			ROUTER AND MESSAGING HANDLES			*
1128  ************************************************************************
1129  *
1130  * Basically the idea here is to provide a stable data structure which
1131  * can be localized to the caller for higher level protocols to work with.
1132  * Depends on the context, these dmsg_handle's can be pooled by use-case
1133  * and remain persistent through a client (or mount point's) life.
1134  */
1135 
1136 #if 0
1137 /*
1138  * Obtain a stable handle on a cluster given its uuid.  This ties directly
1139  * into the global cluster topology, creating the structure if necessary
1140  * (even if the uuid does not exist or does not exist yet), and preventing
1141  * the structure from getting ripped out from under us while we hold a
1142  * pointer to it.
1143  */
1144 h2span_cluster_t *
1145 dmsg_cluster_get(uuid_t *pfs_clid)
1146 {
1147 	h2span_cluster_t dummy_cls;
1148 	h2span_cluster_t *cls;
1149 
1150 	dummy_cls.pfs_clid = *pfs_clid;
1151 	pthread_mutex_lock(&cluster_mtx);
1152 	cls = RB_FIND(h2span_cluster_tree, &cluster_tree, &dummy_cls);
1153 	if (cls)
1154 		++cls->refs;
1155 	pthread_mutex_unlock(&cluster_mtx);
1156 	return (cls);
1157 }
1158 
1159 void
1160 dmsg_cluster_put(h2span_cluster_t *cls)
1161 {
1162 	pthread_mutex_lock(&cluster_mtx);
1163 	assert(cls->refs > 0);
1164 	--cls->refs;
1165 	if (RB_EMPTY(&cls->tree) && cls->refs == 0) {
1166 		RB_REMOVE(h2span_cluster_tree,
1167 			  &cluster_tree, cls);
1168 		dmsg_free(cls);
1169 	}
1170 	pthread_mutex_unlock(&cluster_mtx);
1171 }
1172 
1173 /*
1174  * Obtain a stable handle to a specific cluster node given its uuid.
1175  * This handle does NOT lock in the route to the node and is typically
1176  * used as part of the dmsg_handle_*() API to obtain a set of
1177  * stable nodes.
1178  */
1179 h2span_node_t *
1180 dmsg_node_get(h2span_cluster_t *cls, uuid_t *pfs_fsid)
1181 {
1182 }
1183 
1184 #endif
1185 
1186 /*
1187  * Dumps the spanning tree
1188  *
1189  * DEBUG ONLY
1190  */
1191 void
1192 dmsg_shell_tree(dmsg_iocom_t *iocom, char *cmdbuf __unused)
1193 {
1194 	h2span_cluster_t *cls;
1195 	h2span_node_t *node;
1196 	h2span_link_t *slink;
1197 	h2span_relay_t *relay;
1198 	char *uustr = NULL;
1199 
1200 	pthread_mutex_lock(&cluster_mtx);
1201 	RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
1202 		dmsg_printf(iocom, "Cluster %s %s (%s)\n",
1203 				  dmsg_peer_type_to_str(cls->peer_type),
1204 				  dmsg_uuid_to_str(&cls->pfs_clid, &uustr),
1205 				  cls->cl_label);
1206 		RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1207 			dmsg_printf(iocom, "    Node %02x %s (%s)\n",
1208 				node->pfs_type,
1209 				dmsg_uuid_to_str(&node->pfs_fsid, &uustr),
1210 				node->fs_label);
1211 			RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1212 				dmsg_printf(iocom,
1213 					    "\tSLink msgid %016jx "
1214 					    "dist=%d via %d\n",
1215 					    (intmax_t)slink->state->msgid,
1216 					    slink->lnk_span.dist,
1217 					    slink->state->iocom->sock_fd);
1218 				TAILQ_FOREACH(relay, &slink->relayq, entry) {
1219 					dmsg_printf(iocom,
1220 					    "\t    Relay-out msgid %016jx "
1221 					    "via %d\n",
1222 					    (intmax_t)relay->target_rt->msgid,
1223 					    relay->target_rt->iocom->sock_fd);
1224 				}
1225 			}
1226 		}
1227 	}
1228 	pthread_mutex_unlock(&cluster_mtx);
1229 	if (uustr)
1230 		free(uustr);
1231 #if 0
1232 	TAILQ_FOREACH(conn, &connq, entry) {
1233 	}
1234 #endif
1235 }
1236 
1237 /*
1238  * DEBUG ONLY
1239  *
1240  * Locate the state representing an incoming LNK_SPAN given its msgid.
1241  */
1242 int
1243 dmsg_debug_findspan(uint64_t msgid, dmsg_state_t **statep)
1244 {
1245 	h2span_cluster_t *cls;
1246 	h2span_node_t *node;
1247 	h2span_link_t *slink;
1248 
1249 	pthread_mutex_lock(&cluster_mtx);
1250 	RB_FOREACH(cls, h2span_cluster_tree, &cluster_tree) {
1251 		RB_FOREACH(node, h2span_node_tree, &cls->tree) {
1252 			RB_FOREACH(slink, h2span_link_tree, &node->tree) {
1253 				if (slink->state->msgid == msgid) {
1254 					*statep = slink->state;
1255 					goto found;
1256 				}
1257 			}
1258 		}
1259 	}
1260 	pthread_mutex_unlock(&cluster_mtx);
1261 	*statep = NULL;
1262 	return(ENOENT);
1263 found:
1264 	pthread_mutex_unlock(&cluster_mtx);
1265 	return(0);
1266 }
1267 
1268 /*
1269  * Random number sub-sort value to add to SPAN rnss fields on relay.
1270  * This allows us to differentiate spans with the same <dist> field
1271  * for relaying purposes.  We must normally limit the number of relays
1272  * for any given SPAN origination but we must also guarantee that a
1273  * symmetric reverse path exists, so we use the rnss field as a sub-sort
1274  * (since there can be thousands or millions if we only match on <dist>),
1275  * and if there STILL too many spans we go past the limit.
1276  */
1277 static
1278 uint32_t
1279 dmsg_rnss(void)
1280 {
1281 	if (DMsgRNSS == 0) {
1282 		pthread_mutex_lock(&cluster_mtx);
1283 		while (DMsgRNSS == 0) {
1284 			srandomdev();
1285 			DMsgRNSS = random();
1286 		}
1287 		pthread_mutex_unlock(&cluster_mtx);
1288 	}
1289 	return(DMsgRNSS);
1290 }
1291