xref: /dragonfly/lib/libkvm/kvm_proc.c (revision 02ac8a8f)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
34  *
35  * @(#)kvm_proc.c	8.3 (Berkeley) 9/23/93
36  */
37 
38 /*
39  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
40  * users of this code, so we've factored it out into a separate module.
41  * Thus, we keep this grunge out of the other kvm applications (i.e.,
42  * most other applications are interested only in open/close/read/nlist).
43  */
44 
45 #include <sys/user.h>	/* MUST BE FIRST */
46 #include <sys/conf.h>
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/exec.h>
50 #include <sys/stat.h>
51 #include <sys/globaldata.h>
52 #include <sys/ioctl.h>
53 #include <sys/tty.h>
54 #include <sys/file.h>
55 #include <sys/jail.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <stddef.h>
59 #include <unistd.h>
60 #include <nlist.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/swap_pager.h>
65 
66 #include <sys/sysctl.h>
67 
68 #include <limits.h>
69 #include <memory.h>
70 #include <paths.h>
71 
72 #include "kvm.h"
73 #include "kvm_private.h"
74 
75 dev_t	dev2udev(cdev_t dev);
76 
77 #define KREAD(kd, addr, obj) \
78 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
79 #define KREADSTR(kd, addr) \
80 	kvm_readstr(kd, (u_long)addr, NULL, NULL)
81 
82 static struct kinfo_proc *
83 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
84 {
85 	if (bp < kd->procend)
86 		return bp;
87 
88 	size_t pos = bp - kd->procend;
89 	size_t size = kd->procend - kd->procbase;
90 
91 	if (size == 0)
92 		size = 8;
93 	else
94 		size *= 2;
95 	kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
96 	if (kd->procbase == NULL)
97 		return NULL;
98 	kd->procend = kd->procbase + size;
99 	bp = kd->procbase + pos;
100 	return bp;
101 }
102 
103 /*
104  * note: this function is also used by /usr/src/sys/kern/kern_kinfo.c as
105  * compiled by userland.
106  */
107 dev_t
108 dev2udev(cdev_t dev)
109 {
110 	if (dev == NULL)
111 		return NOUDEV;
112 	if ((dev->si_umajor & 0xffffff00) ||
113 	    (dev->si_uminor & 0x0000ff00)) {
114 		return NOUDEV;
115 	}
116 	return((dev->si_umajor << 8) | dev->si_uminor);
117 }
118 
119 /*
120  * Helper routine which traverses the left hand side of a red-black sub-tree.
121  */
122 static uintptr_t
123 kvm_lwptraverse(kvm_t *kd, struct lwp *lwp, uintptr_t lwppos)
124 {
125 	for (;;) {
126 		if (KREAD(kd, lwppos, lwp)) {
127 			_kvm_err(kd, kd->program, "can't read lwp at %p",
128 				 (void *)lwppos);
129 			return ((uintptr_t)-1);
130 		}
131 		if (lwp->u.lwp_rbnode.rbe_left == NULL)
132 			break;
133 		lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_left;
134 	}
135 	return(lwppos);
136 }
137 
138 /*
139  * Iterate LWPs in a process.
140  *
141  * The first lwp in a red-black tree is a left-side traversal of the tree.
142  */
143 static uintptr_t
144 kvm_firstlwp(kvm_t *kd, struct lwp *lwp, struct proc *proc)
145 {
146 	return(kvm_lwptraverse(kd, lwp, (uintptr_t)proc->p_lwp_tree.rbh_root));
147 }
148 
149 /*
150  * If the current element is the left side of the parent the next element
151  * will be a left side traversal of the parent's right side.  If the parent
152  * has no right side the next element will be the parent.
153  *
154  * If the current element is the right side of the parent the next element
155  * is the parent.
156  *
157  * If the parent is NULL we are done.
158  */
159 static uintptr_t
160 kvm_nextlwp(kvm_t *kd, uintptr_t lwppos, struct lwp *lwp)
161 {
162 	uintptr_t nextpos;
163 
164 	nextpos = (uintptr_t)lwp->u.lwp_rbnode.rbe_parent;
165 	if (nextpos) {
166 		if (KREAD(kd, nextpos, lwp)) {
167 			_kvm_err(kd, kd->program, "can't read lwp at %p",
168 				 (void *)lwppos);
169 			return ((uintptr_t)-1);
170 		}
171 		if (lwppos == (uintptr_t)lwp->u.lwp_rbnode.rbe_left) {
172 			/*
173 			 * If we had gone down the left side the next element
174 			 * is a left hand traversal of the parent's right
175 			 * side, or the parent itself if there is no right
176 			 * side.
177 			 */
178 			lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_right;
179 			if (lwppos)
180 				nextpos = kvm_lwptraverse(kd, lwp, lwppos);
181 		} else {
182 			/*
183 			 * If we had gone down the right side the next
184 			 * element is the parent.
185 			 */
186 			/* nextpos = nextpos */
187 		}
188 	}
189 	return(nextpos);
190 }
191 
192 /*
193  * Read proc's from memory file into buffer bp, which has space to hold
194  * at most maxcnt procs.
195  */
196 static int
197 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
198 	     struct kinfo_proc *bp)
199 {
200 	struct pgrp pgrp;
201 	struct pgrp tpgrp;
202 	struct globaldata gdata;
203 	struct session sess;
204 	struct session tsess;
205 	struct tty tty;
206 	struct proc proc;
207 	struct ucred ucred;
208 	struct thread thread;
209 	struct proc pproc;
210 	struct cdev cdev;
211 	struct vmspace vmspace;
212 	struct prison prison;
213 	struct sigacts sigacts;
214 	struct lwp lwp;
215 	uintptr_t lwppos;
216 	int count;
217 	char *wmesg;
218 
219 	count = 0;
220 
221 	for (; p != NULL; p = proc.p_list.le_next) {
222 		if (KREAD(kd, (u_long)p, &proc)) {
223 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
224 			return (-1);
225 		}
226 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
227 			_kvm_err(kd, kd->program, "can't read ucred at %p",
228 				 proc.p_ucred);
229 			return (-1);
230 		}
231 		proc.p_ucred = &ucred;
232 
233 		switch(what & ~KERN_PROC_FLAGMASK) {
234 
235 		case KERN_PROC_PID:
236 			if (proc.p_pid != (pid_t)arg)
237 				continue;
238 			break;
239 
240 		case KERN_PROC_UID:
241 			if (ucred.cr_uid != (uid_t)arg)
242 				continue;
243 			break;
244 
245 		case KERN_PROC_RUID:
246 			if (ucred.cr_ruid != (uid_t)arg)
247 				continue;
248 			break;
249 		}
250 
251 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
252 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
253 				 proc.p_pgrp);
254 			return (-1);
255 		}
256 		proc.p_pgrp = &pgrp;
257 		if (proc.p_pptr) {
258 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
259 			_kvm_err(kd, kd->program, "can't read pproc at %p",
260 				 proc.p_pptr);
261 			return (-1);
262 		  }
263 		  proc.p_pptr = &pproc;
264 		}
265 
266 		if (proc.p_sigacts) {
267 			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
268 				_kvm_err(kd, kd->program,
269 					 "can't read sigacts at %p",
270 					 proc.p_sigacts);
271 				return (-1);
272 			}
273 			proc.p_sigacts = &sigacts;
274 		}
275 
276 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
277 			_kvm_err(kd, kd->program, "can't read session at %p",
278 				pgrp.pg_session);
279 			return (-1);
280 		}
281 		pgrp.pg_session = &sess;
282 
283 		if ((proc.p_flags & P_CONTROLT) && sess.s_ttyp != NULL) {
284 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
285 				_kvm_err(kd, kd->program,
286 					 "can't read tty at %p", sess.s_ttyp);
287 				return (-1);
288 			}
289 			sess.s_ttyp = &tty;
290 			if (tty.t_dev != NULL) {
291 				if (KREAD(kd, (u_long)tty.t_dev, &cdev))
292 					tty.t_dev = NULL;
293 				else
294 					tty.t_dev = &cdev;
295 			}
296 			if (tty.t_pgrp != NULL) {
297 				if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
298 					_kvm_err(kd, kd->program,
299 						 "can't read tpgrp at %p",
300 						tty.t_pgrp);
301 					return (-1);
302 				}
303 				tty.t_pgrp = &tpgrp;
304 			}
305 			if (tty.t_session != NULL) {
306 				if (KREAD(kd, (u_long)tty.t_session, &tsess)) {
307 					_kvm_err(kd, kd->program,
308 						 "can't read tsess at %p",
309 						tty.t_session);
310 					return (-1);
311 				}
312 				tty.t_session = &tsess;
313 			}
314 		}
315 
316 		if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
317 			_kvm_err(kd, kd->program, "can't read vmspace at %p",
318 				 proc.p_vmspace);
319 			return (-1);
320 		}
321 		proc.p_vmspace = &vmspace;
322 
323 		if (ucred.cr_prison != NULL) {
324 			if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
325 				_kvm_err(kd, kd->program, "can't read prison at %p",
326 					 ucred.cr_prison);
327 				return (-1);
328 			}
329 			ucred.cr_prison = &prison;
330 		}
331 
332 		switch (what & ~KERN_PROC_FLAGMASK) {
333 
334 		case KERN_PROC_PGRP:
335 			if (proc.p_pgrp->pg_id != (pid_t)arg)
336 				continue;
337 			break;
338 
339 		case KERN_PROC_TTY:
340 			if ((proc.p_flags & P_CONTROLT) == 0 ||
341 			    dev2udev(proc.p_pgrp->pg_session->s_ttyp->t_dev)
342 					!= (dev_t)arg)
343 				continue;
344 			break;
345 		}
346 
347 		if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
348 			return (-1);
349 		fill_kinfo_proc(&proc, bp);
350 		bp->kp_paddr = (uintptr_t)p;
351 
352 		lwppos = kvm_firstlwp(kd, &lwp, &proc);
353 		if (lwppos == 0) {
354 			bp++;		/* Just export the proc then */
355 			count++;
356 		}
357 		while (lwppos && lwppos != (uintptr_t)-1) {
358 			if (p != lwp.lwp_proc) {
359 				_kvm_err(kd, kd->program, "lwp has wrong parent");
360 				return (-1);
361 			}
362 			lwp.lwp_proc = &proc;
363 			if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
364 				_kvm_err(kd, kd->program, "can't read thread at %p",
365 				    lwp.lwp_thread);
366 				return (-1);
367 			}
368 			lwp.lwp_thread = &thread;
369 
370 			if (thread.td_gd) {
371 				if (KREAD(kd, (u_long)thread.td_gd, &gdata)) {
372 					_kvm_err(kd, kd->program, "can't read"
373 						  " gd at %p",
374 						  thread.td_gd);
375 					return(-1);
376 				}
377 				thread.td_gd = &gdata;
378 			}
379 			if (thread.td_wmesg) {
380 				wmesg = (void *)KREADSTR(kd, thread.td_wmesg);
381 				if (wmesg == NULL) {
382 					_kvm_err(kd, kd->program, "can't read"
383 						  " wmesg %p",
384 						  thread.td_wmesg);
385 					return(-1);
386 				}
387 				thread.td_wmesg = wmesg;
388 			} else {
389 				wmesg = NULL;
390 			}
391 
392 			if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
393 				return (-1);
394 			fill_kinfo_proc(&proc, bp);
395 			fill_kinfo_lwp(&lwp, &bp->kp_lwp);
396 			bp->kp_paddr = (uintptr_t)p;
397 			bp++;
398 			count++;
399 			if (wmesg)
400 				free(wmesg);
401 			if ((what & KERN_PROC_FLAG_LWP) == 0)
402 				break;
403 			lwppos = kvm_nextlwp(kd, lwppos, &lwp);
404 		}
405 		if (lwppos == (uintptr_t)-1)
406 			return(-1);
407 	}
408 	return (count);
409 }
410 
411 /*
412  * Build proc info array by reading in proc list from a crash dump.
413  * We reallocate kd->procbase as necessary.
414  */
415 static int
416 kvm_deadprocs(kvm_t *kd, int what, int arg, int allproc_hsize)
417 {
418 	struct kinfo_proc *bp;
419 	struct proc *p;
420 	struct proclist **pl;
421 	int cnt, partcnt, n;
422 	u_long nextoff;
423 	u_long a_allproc;
424 
425 	cnt = partcnt = 0;
426 	nextoff = 0;
427 
428 	/*
429 	 * Dynamically allocate space for all the elements of the
430 	 * allprocs array and KREAD() them.
431 	 */
432 	pl = _kvm_malloc(kd, allproc_hsize * sizeof(struct proclist *));
433 	for (n = 0; n < allproc_hsize; n++) {
434 		pl[n] = _kvm_malloc(kd, sizeof(struct proclist));
435 		a_allproc = sizeof(struct procglob) * n +
436 			    offsetof(struct procglob, allproc);
437 		nextoff = a_allproc;
438 		if (KREAD(kd, (u_long)nextoff, pl[n])) {
439 			_kvm_err(kd, kd->program, "can't read proclist at 0x%lx",
440 				a_allproc);
441 			return (-1);
442 		}
443 
444 		/* Ignore empty proclists */
445 		if (LIST_EMPTY(pl[n]))
446 			continue;
447 
448 		bp = kd->procbase + cnt;
449 		p = pl[n]->lh_first;
450 		partcnt = kvm_proclist(kd, what, arg, p, bp);
451 		if (partcnt < 0) {
452 			free(pl[n]);
453 			return (partcnt);
454 		}
455 
456 		cnt += partcnt;
457 		free(pl[n]);
458 	}
459 
460 	return (cnt);
461 }
462 
463 struct kinfo_proc *
464 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
465 {
466 	int mib[4], st, nprocs, allproc_hsize;
467 	int miblen = ((op & ~KERN_PROC_FLAGMASK) == KERN_PROC_ALL) ? 3 : 4;
468 	size_t size;
469 
470 	if (kd->procbase != NULL) {
471 		free(kd->procbase);
472 		kd->procbase = NULL;
473 	}
474 	if (kvm_ishost(kd)) {
475 		size = 0;
476 		mib[0] = CTL_KERN;
477 		mib[1] = KERN_PROC;
478 		mib[2] = op;
479 		mib[3] = arg;
480 		st = sysctl(mib, miblen, NULL, &size, NULL, 0);
481 		if (st == -1) {
482 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
483 			return (0);
484 		}
485 		do {
486 			size += size / 10;
487 			kd->procbase = (struct kinfo_proc *)
488 			    _kvm_realloc(kd, kd->procbase, size);
489 			if (kd->procbase == 0)
490 				return (0);
491 			st = sysctl(mib, miblen, kd->procbase, &size, NULL, 0);
492 		} while (st == -1 && errno == ENOMEM);
493 		if (st == -1) {
494 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
495 			return (0);
496 		}
497 		if (size % sizeof(struct kinfo_proc) != 0) {
498 			_kvm_err(kd, kd->program,
499 				"proc size mismatch (%zd total, %zd chunks)",
500 				size, sizeof(struct kinfo_proc));
501 			return (0);
502 		}
503 		nprocs = size / sizeof(struct kinfo_proc);
504 	} else {
505 		struct nlist nl[4], *p;
506 
507 		nl[0].n_name = "_nprocs";
508 		nl[1].n_name = "_procglob";
509 		nl[2].n_name = "_allproc_hsize";
510 		nl[3].n_name = 0;
511 
512 		if (kvm_nlist(kd, nl) != 0) {
513 			for (p = nl; p->n_type != 0; ++p)
514 				;
515 			_kvm_err(kd, kd->program,
516 				 "%s: no such symbol", p->n_name);
517 			return (0);
518 		}
519 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
520 			_kvm_err(kd, kd->program, "can't read nprocs");
521 			return (0);
522 		}
523 		if (KREAD(kd, nl[2].n_value, &allproc_hsize)) {
524 			_kvm_err(kd, kd->program, "can't read allproc_hsize");
525 			return (0);
526 		}
527 		nprocs = kvm_deadprocs(kd, op, arg, allproc_hsize);
528 #ifdef notdef
529 		size = nprocs * sizeof(struct kinfo_proc);
530 		(void)realloc(kd->procbase, size);
531 #endif
532 	}
533 	*cnt = nprocs;
534 	return (kd->procbase);
535 }
536 
537 void
538 _kvm_freeprocs(kvm_t *kd)
539 {
540 	if (kd->procbase) {
541 		free(kd->procbase);
542 		kd->procbase = 0;
543 	}
544 }
545 
546 void *
547 _kvm_realloc(kvm_t *kd, void *p, size_t n)
548 {
549 	void *np = (void *)realloc(p, n);
550 
551 	if (np == NULL) {
552 		free(p);
553 		_kvm_err(kd, kd->program, "out of memory");
554 	}
555 	return (np);
556 }
557 
558 #ifndef MAX
559 #define MAX(a, b) ((a) > (b) ? (a) : (b))
560 #endif
561 
562 /*
563  * Read in an argument vector from the user address space of process pid.
564  * addr if the user-space base address of narg null-terminated contiguous
565  * strings.  This is used to read in both the command arguments and
566  * environment strings.  Read at most maxcnt characters of strings.
567  */
568 static char **
569 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
570 {
571 	char *np, *cp, *ep, *ap;
572 	u_long oaddr = -1;
573 	u_long addr_min = VM_MIN_USER_ADDRESS;
574 	u_long addr_max = VM_MAX_USER_ADDRESS;
575 	int len, cc;
576 	char **argv;
577 
578 	/*
579 	 * Check that there aren't an unreasonable number of agruments,
580 	 * and that the address is in user space.
581 	 */
582 	if (narg > 512 || addr < addr_min || addr >= addr_max)
583 		return (0);
584 
585 	/*
586 	 * kd->argv : work space for fetching the strings from the target
587 	 *            process's space, and is converted for returning to caller
588 	 */
589 	if (kd->argv == 0) {
590 		/*
591 		 * Try to avoid reallocs.
592 		 */
593 		kd->argc = MAX(narg + 1, 32);
594 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
595 						sizeof(*kd->argv));
596 		if (kd->argv == 0)
597 			return (0);
598 	} else if (narg + 1 > kd->argc) {
599 		kd->argc = MAX(2 * kd->argc, narg + 1);
600 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
601 						sizeof(*kd->argv));
602 		if (kd->argv == 0)
603 			return (0);
604 	}
605 	/*
606 	 * kd->argspc : returned to user, this is where the kd->argv
607 	 *              arrays are left pointing to the collected strings.
608 	 */
609 	if (kd->argspc == 0) {
610 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
611 		if (kd->argspc == 0)
612 			return (0);
613 		kd->arglen = PAGE_SIZE;
614 	}
615 	/*
616 	 * kd->argbuf : used to pull in pages from the target process.
617 	 *              the strings are copied out of here.
618 	 */
619 	if (kd->argbuf == 0) {
620 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
621 		if (kd->argbuf == 0)
622 			return (0);
623 	}
624 
625 	/* Pull in the target process'es argv vector */
626 	cc = sizeof(char *) * narg;
627 	if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
628 		return (0);
629 	/*
630 	 * ap : saved start address of string we're working on in kd->argspc
631 	 * np : pointer to next place to write in kd->argspc
632 	 * len: length of data in kd->argspc
633 	 * argv: pointer to the argv vector that we are hunting around the
634 	 *       target process space for, and converting to addresses in
635 	 *       our address space (kd->argspc).
636 	 */
637 	ap = np = kd->argspc;
638 	argv = kd->argv;
639 	len = 0;
640 	/*
641 	 * Loop over pages, filling in the argument vector.
642 	 * Note that the argv strings could be pointing *anywhere* in
643 	 * the user address space and are no longer contiguous.
644 	 * Note that *argv is modified when we are going to fetch a string
645 	 * that crosses a page boundary.  We copy the next part of the string
646 	 * into to "np" and eventually convert the pointer.
647 	 */
648 	while (argv < kd->argv + narg && *argv != NULL) {
649 
650 		/* get the address that the current argv string is on */
651 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
652 
653 		/* is it the same page as the last one? */
654 		if (addr != oaddr) {
655 			if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
656 			    PAGE_SIZE)
657 				return (0);
658 			oaddr = addr;
659 		}
660 
661 		/* offset within the page... kd->argbuf */
662 		addr = (u_long)*argv & (PAGE_SIZE - 1);
663 
664 		/* cp = start of string, cc = count of chars in this chunk */
665 		cp = kd->argbuf + addr;
666 		cc = PAGE_SIZE - addr;
667 
668 		/* dont get more than asked for by user process */
669 		if (maxcnt > 0 && cc > maxcnt - len)
670 			cc = maxcnt - len;
671 
672 		/* pointer to end of string if we found it in this page */
673 		ep = memchr(cp, '\0', cc);
674 		if (ep != NULL)
675 			cc = ep - cp + 1;
676 		/*
677 		 * at this point, cc is the count of the chars that we are
678 		 * going to retrieve this time. we may or may not have found
679 		 * the end of it.  (ep points to the null if the end is known)
680 		 */
681 
682 		/* will we exceed the malloc/realloced buffer? */
683 		if (len + cc > kd->arglen) {
684 			size_t off;
685 			char **pp;
686 			char *op = kd->argspc;
687 
688 			kd->arglen *= 2;
689 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
690 							  kd->arglen);
691 			if (kd->argspc == 0)
692 				return (0);
693 			/*
694 			 * Adjust argv pointers in case realloc moved
695 			 * the string space.
696 			 */
697 			off = kd->argspc - op;
698 			for (pp = kd->argv; pp < argv; pp++)
699 				*pp += off;
700 			ap += off;
701 			np += off;
702 		}
703 		/* np = where to put the next part of the string in kd->argspc*/
704 		/* np is kinda redundant.. could use "kd->argspc + len" */
705 		memcpy(np, cp, cc);
706 		np += cc;	/* inc counters */
707 		len += cc;
708 
709 		/*
710 		 * if end of string found, set the *argv pointer to the
711 		 * saved beginning of string, and advance. argv points to
712 		 * somewhere in kd->argv..  This is initially relative
713 		 * to the target process, but when we close it off, we set
714 		 * it to point in our address space.
715 		 */
716 		if (ep != NULL) {
717 			*argv++ = ap;
718 			ap = np;
719 		} else {
720 			/* update the address relative to the target process */
721 			*argv += cc;
722 		}
723 
724 		if (maxcnt > 0 && len >= maxcnt) {
725 			/*
726 			 * We're stopping prematurely.  Terminate the
727 			 * current string.
728 			 */
729 			if (ep == NULL) {
730 				*np = '\0';
731 				*argv++ = ap;
732 			}
733 			break;
734 		}
735 	}
736 	/* Make sure argv is terminated. */
737 	*argv = NULL;
738 	return (kd->argv);
739 }
740 
741 static void
742 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
743 {
744 	*addr = (u_long)p->ps_argvstr;
745 	*n = p->ps_nargvstr;
746 }
747 
748 static void
749 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
750 {
751 	*addr = (u_long)p->ps_envstr;
752 	*n = p->ps_nenvstr;
753 }
754 
755 /*
756  * Determine if the proc indicated by p is still active.
757  * This test is not 100% foolproof in theory, but chances of
758  * being wrong are very low.
759  */
760 static int
761 proc_verify(const struct kinfo_proc *p)
762 {
763 	struct kinfo_proc kp;
764 	int mib[4];
765 	size_t len;
766 	int error;
767 
768 	mib[0] = CTL_KERN;
769 	mib[1] = KERN_PROC;
770 	mib[2] = KERN_PROC_PID;
771 	mib[3] = p->kp_pid;
772 
773 	len = sizeof(kp);
774 	error = sysctl(mib, 4, &kp, &len, NULL, 0);
775 	if (error)
776 		return (0);
777 
778 	error = (p->kp_pid == kp.kp_pid &&
779 	    (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
780 	return (error);
781 }
782 
783 static char **
784 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
785 	   void (*info)(struct ps_strings *, u_long *, int *))
786 {
787 	char **ap;
788 	u_long addr;
789 	int cnt;
790 	static struct ps_strings arginfo;
791 	static u_long ps_strings;
792 	size_t len;
793 
794 	if (ps_strings == 0) {
795 		len = sizeof(ps_strings);
796 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
797 		    0) == -1)
798 			ps_strings = PS_STRINGS;
799 	}
800 
801 	/*
802 	 * Pointers are stored at the top of the user stack.
803 	 */
804 	if (kp->kp_stat == SZOMB ||
805 	    kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
806 		      sizeof(arginfo)) != sizeof(arginfo))
807 		return (0);
808 
809 	(*info)(&arginfo, &addr, &cnt);
810 	if (cnt == 0)
811 		return (0);
812 	ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
813 	/*
814 	 * For live kernels, make sure this process didn't go away.
815 	 */
816 	if (ap != NULL && (kvm_ishost(kd) || kvm_isvkernel(kd)) &&
817 	    !proc_verify(kp))
818 		ap = NULL;
819 	return (ap);
820 }
821 
822 /*
823  * Get the command args.  This code is now machine independent.
824  */
825 char **
826 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
827 {
828 	int oid[4];
829 	int i;
830 	size_t bufsz;
831 	static unsigned long buflen;
832 	static char *buf, *p;
833 	static char **bufp;
834 	static int argc;
835 
836 	if (!kvm_ishost(kd)) { /* XXX: vkernels */
837 		_kvm_err(kd, kd->program,
838 		    "cannot read user space from dead kernel");
839 		return (0);
840 	}
841 
842 	if (!buflen) {
843 		bufsz = sizeof(buflen);
844 		i = sysctlbyname("kern.ps_arg_cache_limit",
845 		    &buflen, &bufsz, NULL, 0);
846 		if (i == -1) {
847 			buflen = 0;
848 		} else {
849 			buf = malloc(buflen);
850 			if (buf == NULL)
851 				buflen = 0;
852 			argc = 32;
853 			bufp = malloc(sizeof(char *) * argc);
854 		}
855 	}
856 	if (buf != NULL) {
857 		oid[0] = CTL_KERN;
858 		oid[1] = KERN_PROC;
859 		oid[2] = KERN_PROC_ARGS;
860 		oid[3] = kp->kp_pid;
861 		bufsz = buflen;
862 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
863 		if (i == 0 && bufsz > 0) {
864 			i = 0;
865 			p = buf;
866 			do {
867 				bufp[i++] = p;
868 				p += strlen(p) + 1;
869 				if (i >= argc) {
870 					argc += argc;
871 					bufp = realloc(bufp,
872 					    sizeof(char *) * argc);
873 				}
874 			} while (p < buf + bufsz);
875 			bufp[i++] = NULL;
876 			return (bufp);
877 		}
878 	}
879 	if (kp->kp_flags & P_SYSTEM)
880 		return (NULL);
881 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
882 }
883 
884 char **
885 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
886 {
887 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
888 }
889 
890 /*
891  * Read from user space.  The user context is given by pid.
892  */
893 ssize_t
894 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
895 {
896 	char *cp;
897 	char procfile[MAXPATHLEN];
898 	ssize_t amount;
899 	int fd;
900 
901 	if (!kvm_ishost(kd)) { /* XXX: vkernels */
902 		_kvm_err(kd, kd->program,
903 		    "cannot read user space from dead kernel");
904 		return (0);
905 	}
906 
907 	sprintf(procfile, "/proc/%d/mem", pid);
908 	fd = open(procfile, O_RDONLY, 0);
909 	if (fd < 0) {
910 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
911 		close(fd);
912 		return (0);
913 	}
914 
915 	cp = buf;
916 	while (len > 0) {
917 		errno = 0;
918 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
919 			_kvm_err(kd, kd->program, "invalid address (%lx) in %s",
920 			    uva, procfile);
921 			break;
922 		}
923 		amount = read(fd, cp, len);
924 		if (amount < 0) {
925 			_kvm_syserr(kd, kd->program, "error reading %s",
926 			    procfile);
927 			break;
928 		}
929 		if (amount == 0) {
930 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
931 			break;
932 		}
933 		cp += amount;
934 		uva += amount;
935 		len -= amount;
936 	}
937 
938 	close(fd);
939 	return ((ssize_t)(cp - buf));
940 }
941