xref: /dragonfly/lib/libkvm/kvm_proc.c (revision 23265324)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
38  * $DragonFly: src/lib/libkvm/kvm_proc.c,v 1.12 2007/02/18 16:15:23 corecode Exp $
39  *
40  * @(#)kvm_proc.c	8.3 (Berkeley) 9/23/93
41  */
42 
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49 
50 #include <sys/user.h>
51 #include <sys/conf.h>
52 #include <sys/param.h>
53 #include <sys/proc.h>
54 #include <sys/exec.h>
55 #include <sys/stat.h>
56 #include <sys/ioctl.h>
57 #include <sys/tty.h>
58 #include <sys/file.h>
59 #include <sys/jail.h>
60 #include <stdio.h>
61 #include <stdlib.h>
62 #include <unistd.h>
63 #include <nlist.h>
64 #include <kvm.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <vm/swap_pager.h>
69 
70 #include <sys/sysctl.h>
71 
72 #include <limits.h>
73 #include <memory.h>
74 #include <paths.h>
75 
76 #include "kvm_private.h"
77 
78 #if used
79 static char *
80 kvm_readswap(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
81 {
82 #if defined(__FreeBSD__) || defined(__DragonFly__)
83 	/* XXX Stubbed out, our vm system is differnet */
84 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
85 	return(0);
86 #endif
87 }
88 #endif
89 
90 #define KREAD(kd, addr, obj) \
91 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
92 
93 
94 static struct kinfo_proc *
95 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
96 {
97 	if (bp < kd->procend)
98 		return bp;
99 
100 	size_t pos = bp - kd->procend;
101 	size_t size = kd->procend - kd->procbase;
102 
103 	if (size == 0)
104 		size = 8;
105 	else
106 		size *= 2;
107 	kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
108 	if (kd->procbase == NULL)
109 		return NULL;
110 	kd->procend = kd->procbase + size;
111 	bp = kd->procbase + pos;
112 	return bp;
113 }
114 
115 /*
116  * Read proc's from memory file into buffer bp, which has space to hold
117  * at most maxcnt procs.
118  */
119 static int
120 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
121 	     struct kinfo_proc *bp)
122 {
123 	struct pgrp pgrp;
124 	struct pgrp tpgrp;
125 	struct session sess;
126 	struct tty tty;
127 	struct proc proc;
128 	struct ucred ucred;
129 	struct thread thread;
130 	struct proc pproc;
131 	struct cdev cdev;
132 	struct vmspace vmspace;
133 	struct prison prison;
134 	struct lwp lwp;
135 	uintptr_t lwppos;
136 
137 	for (; p != NULL; p = proc.p_list.le_next) {
138 		if (KREAD(kd, (u_long)p, &proc)) {
139 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
140 			return (-1);
141 		}
142 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
143 			_kvm_err(kd, kd->program, "can't read ucred at %p",
144 				 proc.p_ucred);
145 			return (-1);
146 		}
147 		proc.p_ucred = &ucred;
148 
149 		switch(what & ~KERN_PROC_FLAGMASK) {
150 
151 		case KERN_PROC_PID:
152 			if (proc.p_pid != (pid_t)arg)
153 				continue;
154 			break;
155 
156 		case KERN_PROC_UID:
157 			if (ucred.cr_uid != (uid_t)arg)
158 				continue;
159 			break;
160 
161 		case KERN_PROC_RUID:
162 			if (ucred.cr_ruid != (uid_t)arg)
163 				continue;
164 			break;
165 		}
166 
167 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
168 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
169 				 proc.p_pgrp);
170 			return (-1);
171 		}
172 		proc.p_pgrp = &pgrp;
173 		if (proc.p_pptr) {
174 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
175 			_kvm_err(kd, kd->program, "can't read pproc at %x",
176 				 proc.p_pptr);
177 			return (-1);
178 		  }
179 		  proc.p_pptr = &pproc;
180 		}
181 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
182 			_kvm_err(kd, kd->program, "can't read session at %x",
183 				pgrp.pg_session);
184 			return (-1);
185 		}
186 		pgrp.pg_session = &sess;
187 
188 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
189 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
190 				_kvm_err(kd, kd->program,
191 					 "can't read tty at %x", sess.s_ttyp);
192 				return (-1);
193 			}
194 			sess.s_ttyp = &tty;
195 			if (tty.t_dev && tty.t_dev != NOCDEV) {
196 				if (KREAD(kd, (u_long)tty.t_dev, &cdev))
197 					tty.t_dev = NOCDEV;
198 				else
199 					tty.t_dev = &cdev;
200 			}
201 			if (tty.t_pgrp != NULL) {
202 				if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
203 					_kvm_err(kd, kd->program,
204 						 "can't read tpgrp at %x",
205 						tty.t_pgrp);
206 					return (-1);
207 				}
208 				tty.t_pgrp = &tpgrp;
209 			}
210 		}
211 
212 		if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
213 			_kvm_err(kd, kd->program, "can't read vmspace at %p",
214 				 proc.p_vmspace);
215 			return (-1);
216 		}
217 		proc.p_vmspace = &vmspace;
218 
219 		if (ucred.cr_prison != NULL) {
220 			if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
221 				_kvm_err(kd, kd->program, "can't read prison at %p",
222 					 ucred.cr_prison);
223 				return (-1);
224 			}
225 			ucred.cr_prison = &prison;
226 		}
227 
228 		switch (what & ~KERN_PROC_FLAGMASK) {
229 
230 		case KERN_PROC_PGRP:
231 			if (proc.p_pgrp->pg_id != (pid_t)arg)
232 				continue;
233 			break;
234 
235 		case KERN_PROC_TTY:
236 			if ((proc.p_flag & P_CONTROLT) == 0 ||
237 			    proc.p_pgrp->pg_session->s_ttyp->t_dev->si_udev
238 					!= (dev_t)arg)
239 				continue;
240 			break;
241 		}
242 
243 		if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
244 			return (-1);
245 		fill_kinfo_proc(&proc, bp);
246 		bp->kp_paddr = (uintptr_t)p;
247 
248 		lwppos = (uintptr_t)proc.p_lwps.lh_first;
249 		if (lwppos == 0)
250 			bp++;		/* Just export the proc then */
251 		while (lwppos != 0) {
252 			if (KREAD(kd, lwppos, &lwp)) {
253 				_kvm_err(kd, kd->program, "can't read lwp at %p",
254 				    lwppos);
255 				return (-1);
256 			}
257 			if (p != lwp.lwp_proc) {
258 				_kvm_err(kd, kd->program, "lwp has wrong parent");
259 				return (-1);
260 			}
261 			lwp.lwp_proc = &proc;
262 			if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
263 				_kvm_err(kd, kd->program, "can't read thread at %x",
264 				    lwp.lwp_thread);
265 				return (-1);
266 			}
267 			lwp.lwp_thread = &thread;
268 
269 			if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
270 				return (-1);
271 			fill_kinfo_proc(&proc, bp);
272 			fill_kinfo_lwp(&lwp, &bp->kp_lwp);
273 			bp->kp_paddr = (uintptr_t)p;
274 			bp++;
275 			if ((what & KERN_PROC_FLAG_LWP) == 0)
276 				break;
277 
278 			lwppos = (uintptr_t)lwp.lwp_list.le_next;
279 		}
280 	}
281 	return (0);
282 }
283 
284 /*
285  * Build proc info array by reading in proc list from a crash dump.
286  * We reallocate kd->procbase as necessary.
287  */
288 static int
289 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
290 	      u_long a_zombproc)
291 {
292 	struct kinfo_proc *bp = kd->procbase;
293 	int acnt, zcnt;
294 	struct proc *p;
295 
296 	if (KREAD(kd, a_allproc, &p)) {
297 		_kvm_err(kd, kd->program, "cannot read allproc");
298 		return (-1);
299 	}
300 	acnt = kvm_proclist(kd, what, arg, p, bp);
301 	if (acnt < 0)
302 		return (acnt);
303 
304 	if (KREAD(kd, a_zombproc, &p)) {
305 		_kvm_err(kd, kd->program, "cannot read zombproc");
306 		return (-1);
307 	}
308 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt);
309 	if (zcnt < 0)
310 		zcnt = 0;
311 
312 	return (acnt + zcnt);
313 }
314 
315 struct kinfo_proc *
316 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
317 {
318 	int mib[4], st, nprocs;
319 	size_t size;
320 
321 	if (kd->procbase != 0) {
322 		free((void *)kd->procbase);
323 		/*
324 		 * Clear this pointer in case this call fails.  Otherwise,
325 		 * kvm_close() will free it again.
326 		 */
327 		kd->procbase = 0;
328 	}
329 	if (ISALIVE(kd)) {
330 		size = 0;
331 		mib[0] = CTL_KERN;
332 		mib[1] = KERN_PROC;
333 		mib[2] = op;
334 		mib[3] = arg;
335 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
336 		if (st == -1) {
337 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
338 			return (0);
339 		}
340 		do {
341 			size += size / 10;
342 			kd->procbase = (struct kinfo_proc *)
343 			    _kvm_realloc(kd, kd->procbase, size);
344 			if (kd->procbase == 0)
345 				return (0);
346 			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
347 			    kd->procbase, &size, NULL, 0);
348 		} while (st == -1 && errno == ENOMEM);
349 		if (st == -1) {
350 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
351 			return (0);
352 		}
353 		if (size % sizeof(struct kinfo_proc) != 0) {
354 			_kvm_err(kd, kd->program,
355 				"proc size mismatch (%d total, %d chunks)",
356 				size, sizeof(struct kinfo_proc));
357 			return (0);
358 		}
359 		nprocs = size / sizeof(struct kinfo_proc);
360 	} else {
361 		struct nlist nl[4], *p;
362 
363 		nl[0].n_name = "_nprocs";
364 		nl[1].n_name = "_allproc";
365 		nl[2].n_name = "_zombproc";
366 		nl[3].n_name = 0;
367 
368 		if (kvm_nlist(kd, nl) != 0) {
369 			for (p = nl; p->n_type != 0; ++p)
370 				;
371 			_kvm_err(kd, kd->program,
372 				 "%s: no such symbol", p->n_name);
373 			return (0);
374 		}
375 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
376 			_kvm_err(kd, kd->program, "can't read nprocs");
377 			return (0);
378 		}
379 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
380 				      nl[2].n_value);
381 #ifdef notdef
382 		size = nprocs * sizeof(struct kinfo_proc);
383 		(void)realloc(kd->procbase, size);
384 #endif
385 	}
386 	*cnt = nprocs;
387 	return (kd->procbase);
388 }
389 
390 void
391 _kvm_freeprocs(kvm_t *kd)
392 {
393 	if (kd->procbase) {
394 		free(kd->procbase);
395 		kd->procbase = 0;
396 	}
397 }
398 
399 void *
400 _kvm_realloc(kvm_t *kd, void *p, size_t n)
401 {
402 	void *np = (void *)realloc(p, n);
403 
404 	if (np == 0) {
405 		free(p);
406 		_kvm_err(kd, kd->program, "out of memory");
407 	}
408 	return (np);
409 }
410 
411 #ifndef MAX
412 #define MAX(a, b) ((a) > (b) ? (a) : (b))
413 #endif
414 
415 /*
416  * Read in an argument vector from the user address space of process pid.
417  * addr if the user-space base address of narg null-terminated contiguous
418  * strings.  This is used to read in both the command arguments and
419  * environment strings.  Read at most maxcnt characters of strings.
420  */
421 static char **
422 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
423 {
424 	char *np, *cp, *ep, *ap;
425 	u_long oaddr = -1;
426 	int len, cc;
427 	char **argv;
428 
429 	/*
430 	 * Check that there aren't an unreasonable number of agruments,
431 	 * and that the address is in user space.
432 	 */
433 	if (narg > 512 ||
434 	    addr < VM_MIN_USER_ADDRESS || addr >= VM_MAX_USER_ADDRESS) {
435 		return (0);
436 	}
437 
438 	/*
439 	 * kd->argv : work space for fetching the strings from the target
440 	 *            process's space, and is converted for returning to caller
441 	 */
442 	if (kd->argv == 0) {
443 		/*
444 		 * Try to avoid reallocs.
445 		 */
446 		kd->argc = MAX(narg + 1, 32);
447 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
448 						sizeof(*kd->argv));
449 		if (kd->argv == 0)
450 			return (0);
451 	} else if (narg + 1 > kd->argc) {
452 		kd->argc = MAX(2 * kd->argc, narg + 1);
453 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
454 						sizeof(*kd->argv));
455 		if (kd->argv == 0)
456 			return (0);
457 	}
458 	/*
459 	 * kd->argspc : returned to user, this is where the kd->argv
460 	 *              arrays are left pointing to the collected strings.
461 	 */
462 	if (kd->argspc == 0) {
463 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
464 		if (kd->argspc == 0)
465 			return (0);
466 		kd->arglen = PAGE_SIZE;
467 	}
468 	/*
469 	 * kd->argbuf : used to pull in pages from the target process.
470 	 *              the strings are copied out of here.
471 	 */
472 	if (kd->argbuf == 0) {
473 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
474 		if (kd->argbuf == 0)
475 			return (0);
476 	}
477 
478 	/* Pull in the target process'es argv vector */
479 	cc = sizeof(char *) * narg;
480 	if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
481 		return (0);
482 	/*
483 	 * ap : saved start address of string we're working on in kd->argspc
484 	 * np : pointer to next place to write in kd->argspc
485 	 * len: length of data in kd->argspc
486 	 * argv: pointer to the argv vector that we are hunting around the
487 	 *       target process space for, and converting to addresses in
488 	 *       our address space (kd->argspc).
489 	 */
490 	ap = np = kd->argspc;
491 	argv = kd->argv;
492 	len = 0;
493 	/*
494 	 * Loop over pages, filling in the argument vector.
495 	 * Note that the argv strings could be pointing *anywhere* in
496 	 * the user address space and are no longer contiguous.
497 	 * Note that *argv is modified when we are going to fetch a string
498 	 * that crosses a page boundary.  We copy the next part of the string
499 	 * into to "np" and eventually convert the pointer.
500 	 */
501 	while (argv < kd->argv + narg && *argv != 0) {
502 
503 		/* get the address that the current argv string is on */
504 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
505 
506 		/* is it the same page as the last one? */
507 		if (addr != oaddr) {
508 			if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
509 			    PAGE_SIZE)
510 				return (0);
511 			oaddr = addr;
512 		}
513 
514 		/* offset within the page... kd->argbuf */
515 		addr = (u_long)*argv & (PAGE_SIZE - 1);
516 
517 		/* cp = start of string, cc = count of chars in this chunk */
518 		cp = kd->argbuf + addr;
519 		cc = PAGE_SIZE - addr;
520 
521 		/* dont get more than asked for by user process */
522 		if (maxcnt > 0 && cc > maxcnt - len)
523 			cc = maxcnt - len;
524 
525 		/* pointer to end of string if we found it in this page */
526 		ep = memchr(cp, '\0', cc);
527 		if (ep != 0)
528 			cc = ep - cp + 1;
529 		/*
530 		 * at this point, cc is the count of the chars that we are
531 		 * going to retrieve this time. we may or may not have found
532 		 * the end of it.  (ep points to the null if the end is known)
533 		 */
534 
535 		/* will we exceed the malloc/realloced buffer? */
536 		if (len + cc > kd->arglen) {
537 			int off;
538 			char **pp;
539 			char *op = kd->argspc;
540 
541 			kd->arglen *= 2;
542 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
543 							  kd->arglen);
544 			if (kd->argspc == 0)
545 				return (0);
546 			/*
547 			 * Adjust argv pointers in case realloc moved
548 			 * the string space.
549 			 */
550 			off = kd->argspc - op;
551 			for (pp = kd->argv; pp < argv; pp++)
552 				*pp += off;
553 			ap += off;
554 			np += off;
555 		}
556 		/* np = where to put the next part of the string in kd->argspc*/
557 		/* np is kinda redundant.. could use "kd->argspc + len" */
558 		memcpy(np, cp, cc);
559 		np += cc;	/* inc counters */
560 		len += cc;
561 
562 		/*
563 		 * if end of string found, set the *argv pointer to the
564 		 * saved beginning of string, and advance. argv points to
565 		 * somewhere in kd->argv..  This is initially relative
566 		 * to the target process, but when we close it off, we set
567 		 * it to point in our address space.
568 		 */
569 		if (ep != 0) {
570 			*argv++ = ap;
571 			ap = np;
572 		} else {
573 			/* update the address relative to the target process */
574 			*argv += cc;
575 		}
576 
577 		if (maxcnt > 0 && len >= maxcnt) {
578 			/*
579 			 * We're stopping prematurely.  Terminate the
580 			 * current string.
581 			 */
582 			if (ep == 0) {
583 				*np = '\0';
584 				*argv++ = ap;
585 			}
586 			break;
587 		}
588 	}
589 	/* Make sure argv is terminated. */
590 	*argv = 0;
591 	return (kd->argv);
592 }
593 
594 static void
595 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
596 {
597 	*addr = (u_long)p->ps_argvstr;
598 	*n = p->ps_nargvstr;
599 }
600 
601 static void
602 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
603 {
604 	*addr = (u_long)p->ps_envstr;
605 	*n = p->ps_nenvstr;
606 }
607 
608 /*
609  * Determine if the proc indicated by p is still active.
610  * This test is not 100% foolproof in theory, but chances of
611  * being wrong are very low.
612  */
613 static int
614 proc_verify(kvm_t *kd, const struct kinfo_proc *p)
615 {
616 	struct kinfo_proc kp;
617 	int mib[4];
618 	size_t len;
619 	int error;
620 
621 	mib[0] = CTL_KERN;
622 	mib[1] = KERN_PROC;
623 	mib[2] = KERN_PROC_PID;
624 	mib[3] = p->kp_pid;
625 
626 	len = sizeof(kp);
627 	error = sysctl(mib, 4, &kp, &len, NULL, 0);
628 	if (error)
629 		return (0);
630 
631 	error = (p->kp_pid == kp.kp_pid &&
632 	    (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
633 	return (error);
634 }
635 
636 static char **
637 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
638 	   void (*info)(struct ps_strings *, u_long *, int *))
639 {
640 	char **ap;
641 	u_long addr;
642 	int cnt;
643 	static struct ps_strings arginfo;
644 	static u_long ps_strings;
645 	size_t len;
646 
647 	if (ps_strings == NULL) {
648 		len = sizeof(ps_strings);
649 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
650 		    0) == -1)
651 			ps_strings = PS_STRINGS;
652 	}
653 
654 	/*
655 	 * Pointers are stored at the top of the user stack.
656 	 */
657 	if (kp->kp_stat == SZOMB ||
658 	    kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
659 		      sizeof(arginfo)) != sizeof(arginfo))
660 		return (0);
661 
662 	(*info)(&arginfo, &addr, &cnt);
663 	if (cnt == 0)
664 		return (0);
665 	ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
666 	/*
667 	 * For live kernels, make sure this process didn't go away.
668 	 */
669 	if (ap != 0 && ISALIVE(kd) &&
670 	    !proc_verify(kd, kp))
671 		ap = 0;
672 	return (ap);
673 }
674 
675 /*
676  * Get the command args.  This code is now machine independent.
677  */
678 char **
679 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
680 {
681 	int oid[4];
682 	int i;
683 	size_t bufsz;
684 	static unsigned long buflen;
685 	static char *buf, *p;
686 	static char **bufp;
687 	static int argc;
688 
689 	if (!ISALIVE(kd)) {
690 		_kvm_err(kd, kd->program,
691 		    "cannot read user space from dead kernel");
692 		return (0);
693 	}
694 
695 	if (!buflen) {
696 		bufsz = sizeof(buflen);
697 		i = sysctlbyname("kern.ps_arg_cache_limit",
698 		    &buflen, &bufsz, NULL, 0);
699 		if (i == -1) {
700 			buflen = 0;
701 		} else {
702 			buf = malloc(buflen);
703 			if (buf == NULL)
704 				buflen = 0;
705 			argc = 32;
706 			bufp = malloc(sizeof(char *) * argc);
707 		}
708 	}
709 	if (buf != NULL) {
710 		oid[0] = CTL_KERN;
711 		oid[1] = KERN_PROC;
712 		oid[2] = KERN_PROC_ARGS;
713 		oid[3] = kp->kp_pid;
714 		bufsz = buflen;
715 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
716 		if (i == 0 && bufsz > 0) {
717 			i = 0;
718 			p = buf;
719 			do {
720 				bufp[i++] = p;
721 				p += strlen(p) + 1;
722 				if (i >= argc) {
723 					argc += argc;
724 					bufp = realloc(bufp,
725 					    sizeof(char *) * argc);
726 				}
727 			} while (p < buf + bufsz);
728 			bufp[i++] = 0;
729 			return (bufp);
730 		}
731 	}
732 	if (kp->kp_flags & P_SYSTEM)
733 		return (NULL);
734 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
735 }
736 
737 char **
738 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
739 {
740 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
741 }
742 
743 /*
744  * Read from user space.  The user context is given by pid.
745  */
746 ssize_t
747 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
748 {
749 	char *cp;
750 	char procfile[MAXPATHLEN];
751 	ssize_t amount;
752 	int fd;
753 
754 	if (!ISALIVE(kd)) {
755 		_kvm_err(kd, kd->program,
756 		    "cannot read user space from dead kernel");
757 		return (0);
758 	}
759 
760 	sprintf(procfile, "/proc/%d/mem", pid);
761 	fd = open(procfile, O_RDONLY, 0);
762 	if (fd < 0) {
763 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
764 		close(fd);
765 		return (0);
766 	}
767 
768 	cp = buf;
769 	while (len > 0) {
770 		errno = 0;
771 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
772 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
773 			    uva, procfile);
774 			break;
775 		}
776 		amount = read(fd, cp, len);
777 		if (amount < 0) {
778 			_kvm_syserr(kd, kd->program, "error reading %s",
779 			    procfile);
780 			break;
781 		}
782 		if (amount == 0) {
783 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
784 			break;
785 		}
786 		cp += amount;
787 		uva += amount;
788 		len -= amount;
789 	}
790 
791 	close(fd);
792 	return ((ssize_t)(cp - buf));
793 }
794