xref: /dragonfly/lib/libkvm/kvm_proc.c (revision 31c7ac8b)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
34  *
35  * @(#)kvm_proc.c	8.3 (Berkeley) 9/23/93
36  */
37 
38 /*
39  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
40  * users of this code, so we've factored it out into a separate module.
41  * Thus, we keep this grunge out of the other kvm applications (i.e.,
42  * most other applications are interested only in open/close/read/nlist).
43  */
44 
45 #include <sys/user.h>	/* MUST BE FIRST */
46 #include <sys/conf.h>
47 #include <sys/param.h>
48 #include <sys/proc.h>
49 #include <sys/exec.h>
50 #include <sys/stat.h>
51 #include <sys/globaldata.h>
52 #include <sys/ioctl.h>
53 #include <sys/tty.h>
54 #include <sys/file.h>
55 #include <sys/jail.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <unistd.h>
59 #include <nlist.h>
60 #include <kvm.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/swap_pager.h>
65 
66 #include <sys/sysctl.h>
67 
68 #include <limits.h>
69 #include <memory.h>
70 #include <paths.h>
71 
72 #include "kvm_private.h"
73 
74 #if used
75 static char *
76 kvm_readswap(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
77 {
78 #if defined(__FreeBSD__) || defined(__DragonFly__)
79 	/* XXX Stubbed out, our vm system is differnet */
80 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
81 	return(0);
82 #endif
83 }
84 #endif
85 
86 #define KREAD(kd, addr, obj) \
87 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
88 #define KREADSTR(kd, addr) \
89 	kvm_readstr(kd, (u_long)addr, NULL, NULL)
90 
91 static struct kinfo_proc *
92 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
93 {
94 	if (bp < kd->procend)
95 		return bp;
96 
97 	size_t pos = bp - kd->procend;
98 	size_t size = kd->procend - kd->procbase;
99 
100 	if (size == 0)
101 		size = 8;
102 	else
103 		size *= 2;
104 	kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
105 	if (kd->procbase == NULL)
106 		return NULL;
107 	kd->procend = kd->procbase + size;
108 	bp = kd->procbase + pos;
109 	return bp;
110 }
111 
112 /*
113  * note: this function is also used by /usr/src/sys/kern/kern_kinfo.c as
114  * compiled by userland.
115  */
116 dev_t
117 dev2udev(cdev_t dev)
118 {
119 	if (dev == NULL)
120 		return NOUDEV;
121 	if ((dev->si_umajor & 0xffffff00) ||
122 	    (dev->si_uminor & 0x0000ff00)) {
123 		return NOUDEV;
124 	}
125 	return((dev->si_umajor << 8) | dev->si_uminor);
126 }
127 
128 /*
129  * Helper routine which traverses the left hand side of a red-black sub-tree.
130  */
131 static uintptr_t
132 kvm_lwptraverse(kvm_t *kd, struct lwp *lwp, uintptr_t lwppos)
133 {
134 	for (;;) {
135 		if (KREAD(kd, lwppos, lwp)) {
136 			_kvm_err(kd, kd->program, "can't read lwp at %p",
137 				 (void *)lwppos);
138 			return ((uintptr_t)-1);
139 		}
140 		if (lwp->u.lwp_rbnode.rbe_left == NULL)
141 			break;
142 		lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_left;
143 	}
144 	return(lwppos);
145 }
146 
147 /*
148  * Iterate LWPs in a process.
149  *
150  * The first lwp in a red-black tree is a left-side traversal of the tree.
151  */
152 static uintptr_t
153 kvm_firstlwp(kvm_t *kd, struct lwp *lwp, struct proc *proc)
154 {
155 	return(kvm_lwptraverse(kd, lwp, (uintptr_t)proc->p_lwp_tree.rbh_root));
156 }
157 
158 /*
159  * If the current element is the left side of the parent the next element
160  * will be a left side traversal of the parent's right side.  If the parent
161  * has no right side the next element will be the parent.
162  *
163  * If the current element is the right side of the parent the next element
164  * is the parent.
165  *
166  * If the parent is NULL we are done.
167  */
168 static uintptr_t
169 kvm_nextlwp(kvm_t *kd, uintptr_t lwppos, struct lwp *lwp, struct proc *proc)
170 {
171 	uintptr_t nextpos;
172 
173 	nextpos = (uintptr_t)lwp->u.lwp_rbnode.rbe_parent;
174 	if (nextpos) {
175 		if (KREAD(kd, nextpos, lwp)) {
176 			_kvm_err(kd, kd->program, "can't read lwp at %p",
177 				 (void *)lwppos);
178 			return ((uintptr_t)-1);
179 		}
180 		if (lwppos == (uintptr_t)lwp->u.lwp_rbnode.rbe_left) {
181 			/*
182 			 * If we had gone down the left side the next element
183 			 * is a left hand traversal of the parent's right
184 			 * side, or the parent itself if there is no right
185 			 * side.
186 			 */
187 			lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_right;
188 			if (lwppos)
189 				nextpos = kvm_lwptraverse(kd, lwp, lwppos);
190 		} else {
191 			/*
192 			 * If we had gone down the right side the next
193 			 * element is the parent.
194 			 */
195 			/* nextpos = nextpos */
196 		}
197 	}
198 	return(nextpos);
199 }
200 
201 /*
202  * Read proc's from memory file into buffer bp, which has space to hold
203  * at most maxcnt procs.
204  */
205 static int
206 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
207 	     struct kinfo_proc *bp)
208 {
209 	struct pgrp pgrp;
210 	struct pgrp tpgrp;
211 	struct globaldata gdata;
212 	struct session sess;
213 	struct session tsess;
214 	struct tty tty;
215 	struct proc proc;
216 	struct ucred ucred;
217 	struct thread thread;
218 	struct proc pproc;
219 	struct cdev cdev;
220 	struct vmspace vmspace;
221 	struct prison prison;
222 	struct sigacts sigacts;
223 	struct lwp lwp;
224 	uintptr_t lwppos;
225 	int count;
226 	char *wmesg;
227 
228 	count = 0;
229 
230 	for (; p != NULL; p = proc.p_list.le_next) {
231 		if (KREAD(kd, (u_long)p, &proc)) {
232 			_kvm_err(kd, kd->program, "can't read proc at %p", p);
233 			return (-1);
234 		}
235 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
236 			_kvm_err(kd, kd->program, "can't read ucred at %p",
237 				 proc.p_ucred);
238 			return (-1);
239 		}
240 		proc.p_ucred = &ucred;
241 
242 		switch(what & ~KERN_PROC_FLAGMASK) {
243 
244 		case KERN_PROC_PID:
245 			if (proc.p_pid != (pid_t)arg)
246 				continue;
247 			break;
248 
249 		case KERN_PROC_UID:
250 			if (ucred.cr_uid != (uid_t)arg)
251 				continue;
252 			break;
253 
254 		case KERN_PROC_RUID:
255 			if (ucred.cr_ruid != (uid_t)arg)
256 				continue;
257 			break;
258 		}
259 
260 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
261 			_kvm_err(kd, kd->program, "can't read pgrp at %p",
262 				 proc.p_pgrp);
263 			return (-1);
264 		}
265 		proc.p_pgrp = &pgrp;
266 		if (proc.p_pptr) {
267 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
268 			_kvm_err(kd, kd->program, "can't read pproc at %p",
269 				 proc.p_pptr);
270 			return (-1);
271 		  }
272 		  proc.p_pptr = &pproc;
273 		}
274 
275 		if (proc.p_sigacts) {
276 			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
277 				_kvm_err(kd, kd->program,
278 					 "can't read sigacts at %p",
279 					 proc.p_sigacts);
280 				return (-1);
281 			}
282 			proc.p_sigacts = &sigacts;
283 		}
284 
285 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
286 			_kvm_err(kd, kd->program, "can't read session at %p",
287 				pgrp.pg_session);
288 			return (-1);
289 		}
290 		pgrp.pg_session = &sess;
291 
292 		if ((proc.p_flags & P_CONTROLT) && sess.s_ttyp != NULL) {
293 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
294 				_kvm_err(kd, kd->program,
295 					 "can't read tty at %p", sess.s_ttyp);
296 				return (-1);
297 			}
298 			sess.s_ttyp = &tty;
299 			if (tty.t_dev != NULL) {
300 				if (KREAD(kd, (u_long)tty.t_dev, &cdev))
301 					tty.t_dev = NULL;
302 				else
303 					tty.t_dev = &cdev;
304 			}
305 			if (tty.t_pgrp != NULL) {
306 				if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
307 					_kvm_err(kd, kd->program,
308 						 "can't read tpgrp at %p",
309 						tty.t_pgrp);
310 					return (-1);
311 				}
312 				tty.t_pgrp = &tpgrp;
313 			}
314 			if (tty.t_session != NULL) {
315 				if (KREAD(kd, (u_long)tty.t_session, &tsess)) {
316 					_kvm_err(kd, kd->program,
317 						 "can't read tsess at %p",
318 						tty.t_session);
319 					return (-1);
320 				}
321 				tty.t_session = &tsess;
322 			}
323 		}
324 
325 		if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
326 			_kvm_err(kd, kd->program, "can't read vmspace at %p",
327 				 proc.p_vmspace);
328 			return (-1);
329 		}
330 		proc.p_vmspace = &vmspace;
331 
332 		if (ucred.cr_prison != NULL) {
333 			if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
334 				_kvm_err(kd, kd->program, "can't read prison at %p",
335 					 ucred.cr_prison);
336 				return (-1);
337 			}
338 			ucred.cr_prison = &prison;
339 		}
340 
341 		switch (what & ~KERN_PROC_FLAGMASK) {
342 
343 		case KERN_PROC_PGRP:
344 			if (proc.p_pgrp->pg_id != (pid_t)arg)
345 				continue;
346 			break;
347 
348 		case KERN_PROC_TTY:
349 			if ((proc.p_flags & P_CONTROLT) == 0 ||
350 			    dev2udev(proc.p_pgrp->pg_session->s_ttyp->t_dev)
351 					!= (dev_t)arg)
352 				continue;
353 			break;
354 		}
355 
356 		if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
357 			return (-1);
358 		fill_kinfo_proc(&proc, bp);
359 		bp->kp_paddr = (uintptr_t)p;
360 
361 		lwppos = kvm_firstlwp(kd, &lwp, &proc);
362 		if (lwppos == 0) {
363 			bp++;		/* Just export the proc then */
364 			count++;
365 		}
366 		while (lwppos && lwppos != (uintptr_t)-1) {
367 			if (p != lwp.lwp_proc) {
368 				_kvm_err(kd, kd->program, "lwp has wrong parent");
369 				return (-1);
370 			}
371 			lwp.lwp_proc = &proc;
372 			if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
373 				_kvm_err(kd, kd->program, "can't read thread at %p",
374 				    lwp.lwp_thread);
375 				return (-1);
376 			}
377 			lwp.lwp_thread = &thread;
378 
379 			if (thread.td_gd) {
380 				if (KREAD(kd, (u_long)thread.td_gd, &gdata)) {
381 					_kvm_err(kd, kd->program, "can't read"
382 						  " gd at %p",
383 						  thread.td_gd);
384 					return(-1);
385 				}
386 				thread.td_gd = &gdata;
387 			}
388 			if (thread.td_wmesg) {
389 				wmesg = (void *)KREADSTR(kd, thread.td_wmesg);
390 				if (wmesg == NULL) {
391 					_kvm_err(kd, kd->program, "can't read"
392 						  " wmesg %p",
393 						  thread.td_wmesg);
394 					return(-1);
395 				}
396 				thread.td_wmesg = wmesg;
397 			} else {
398 				wmesg = NULL;
399 			}
400 
401 			if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
402 				return (-1);
403 			fill_kinfo_proc(&proc, bp);
404 			fill_kinfo_lwp(&lwp, &bp->kp_lwp);
405 			bp->kp_paddr = (uintptr_t)p;
406 			bp++;
407 			count++;
408 			if (wmesg)
409 				free(wmesg);
410 			if ((what & KERN_PROC_FLAG_LWP) == 0)
411 				break;
412 			lwppos = kvm_nextlwp(kd, lwppos, &lwp, &proc);
413 		}
414 		if (lwppos == (uintptr_t)-1)
415 			return(-1);
416 	}
417 	return (count);
418 }
419 
420 /*
421  * Build proc info array by reading in proc list from a crash dump.
422  * We reallocate kd->procbase as necessary.
423  */
424 static int
425 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
426 	      u_long a_zombproc)
427 {
428 	struct kinfo_proc *bp = kd->procbase;
429 	int acnt, zcnt;
430 	struct proc *p;
431 
432 	if (KREAD(kd, a_allproc, &p)) {
433 		_kvm_err(kd, kd->program, "cannot read allproc");
434 		return (-1);
435 	}
436 	acnt = kvm_proclist(kd, what, arg, p, bp);
437 	if (acnt < 0)
438 		return (acnt);
439 
440 	if (KREAD(kd, a_zombproc, &p)) {
441 		_kvm_err(kd, kd->program, "cannot read zombproc");
442 		return (-1);
443 	}
444 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt);
445 	if (zcnt < 0)
446 		zcnt = 0;
447 
448 	return (acnt + zcnt);
449 }
450 
451 struct kinfo_proc *
452 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
453 {
454 	int mib[4], st, nprocs;
455 	int miblen = ((op & ~KERN_PROC_FLAGMASK) == KERN_PROC_ALL) ? 3 : 4;
456 	size_t size;
457 
458 	if (kd->procbase != 0) {
459 		free((void *)kd->procbase);
460 		/*
461 		 * Clear this pointer in case this call fails.  Otherwise,
462 		 * kvm_close() will free it again.
463 		 */
464 		kd->procbase = 0;
465 	}
466 	if (kvm_ishost(kd)) {
467 		size = 0;
468 		mib[0] = CTL_KERN;
469 		mib[1] = KERN_PROC;
470 		mib[2] = op;
471 		mib[3] = arg;
472 		st = sysctl(mib, miblen, NULL, &size, NULL, 0);
473 		if (st == -1) {
474 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
475 			return (0);
476 		}
477 		do {
478 			size += size / 10;
479 			kd->procbase = (struct kinfo_proc *)
480 			    _kvm_realloc(kd, kd->procbase, size);
481 			if (kd->procbase == 0)
482 				return (0);
483 			st = sysctl(mib, miblen, kd->procbase, &size, NULL, 0);
484 		} while (st == -1 && errno == ENOMEM);
485 		if (st == -1) {
486 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
487 			return (0);
488 		}
489 		if (size % sizeof(struct kinfo_proc) != 0) {
490 			_kvm_err(kd, kd->program,
491 				"proc size mismatch (%zd total, %zd chunks)",
492 				size, sizeof(struct kinfo_proc));
493 			return (0);
494 		}
495 		nprocs = size / sizeof(struct kinfo_proc);
496 	} else {
497 		struct nlist nl[4], *p;
498 
499 		nl[0].n_name = "_nprocs";
500 		nl[1].n_name = "_allproc";
501 		nl[2].n_name = "_zombproc";
502 		nl[3].n_name = 0;
503 
504 		if (kvm_nlist(kd, nl) != 0) {
505 			for (p = nl; p->n_type != 0; ++p)
506 				;
507 			_kvm_err(kd, kd->program,
508 				 "%s: no such symbol", p->n_name);
509 			return (0);
510 		}
511 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
512 			_kvm_err(kd, kd->program, "can't read nprocs");
513 			return (0);
514 		}
515 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
516 				      nl[2].n_value);
517 #ifdef notdef
518 		size = nprocs * sizeof(struct kinfo_proc);
519 		(void)realloc(kd->procbase, size);
520 #endif
521 	}
522 	*cnt = nprocs;
523 	return (kd->procbase);
524 }
525 
526 void
527 _kvm_freeprocs(kvm_t *kd)
528 {
529 	if (kd->procbase) {
530 		free(kd->procbase);
531 		kd->procbase = 0;
532 	}
533 }
534 
535 void *
536 _kvm_realloc(kvm_t *kd, void *p, size_t n)
537 {
538 	void *np = (void *)realloc(p, n);
539 
540 	if (np == NULL) {
541 		free(p);
542 		_kvm_err(kd, kd->program, "out of memory");
543 	}
544 	return (np);
545 }
546 
547 #ifndef MAX
548 #define MAX(a, b) ((a) > (b) ? (a) : (b))
549 #endif
550 
551 /*
552  * Read in an argument vector from the user address space of process pid.
553  * addr if the user-space base address of narg null-terminated contiguous
554  * strings.  This is used to read in both the command arguments and
555  * environment strings.  Read at most maxcnt characters of strings.
556  */
557 static char **
558 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
559 {
560 	char *np, *cp, *ep, *ap;
561 	u_long oaddr = -1;
562 	int len, cc;
563 	char **argv;
564 
565 	/*
566 	 * Check that there aren't an unreasonable number of agruments,
567 	 * and that the address is in user space.
568 	 */
569 	if (narg > 512 ||
570 	    addr < VM_MIN_USER_ADDRESS || addr >= VM_MAX_USER_ADDRESS) {
571 		return (0);
572 	}
573 
574 	/*
575 	 * kd->argv : work space for fetching the strings from the target
576 	 *            process's space, and is converted for returning to caller
577 	 */
578 	if (kd->argv == 0) {
579 		/*
580 		 * Try to avoid reallocs.
581 		 */
582 		kd->argc = MAX(narg + 1, 32);
583 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
584 						sizeof(*kd->argv));
585 		if (kd->argv == 0)
586 			return (0);
587 	} else if (narg + 1 > kd->argc) {
588 		kd->argc = MAX(2 * kd->argc, narg + 1);
589 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
590 						sizeof(*kd->argv));
591 		if (kd->argv == 0)
592 			return (0);
593 	}
594 	/*
595 	 * kd->argspc : returned to user, this is where the kd->argv
596 	 *              arrays are left pointing to the collected strings.
597 	 */
598 	if (kd->argspc == 0) {
599 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
600 		if (kd->argspc == 0)
601 			return (0);
602 		kd->arglen = PAGE_SIZE;
603 	}
604 	/*
605 	 * kd->argbuf : used to pull in pages from the target process.
606 	 *              the strings are copied out of here.
607 	 */
608 	if (kd->argbuf == 0) {
609 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
610 		if (kd->argbuf == 0)
611 			return (0);
612 	}
613 
614 	/* Pull in the target process'es argv vector */
615 	cc = sizeof(char *) * narg;
616 	if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
617 		return (0);
618 	/*
619 	 * ap : saved start address of string we're working on in kd->argspc
620 	 * np : pointer to next place to write in kd->argspc
621 	 * len: length of data in kd->argspc
622 	 * argv: pointer to the argv vector that we are hunting around the
623 	 *       target process space for, and converting to addresses in
624 	 *       our address space (kd->argspc).
625 	 */
626 	ap = np = kd->argspc;
627 	argv = kd->argv;
628 	len = 0;
629 	/*
630 	 * Loop over pages, filling in the argument vector.
631 	 * Note that the argv strings could be pointing *anywhere* in
632 	 * the user address space and are no longer contiguous.
633 	 * Note that *argv is modified when we are going to fetch a string
634 	 * that crosses a page boundary.  We copy the next part of the string
635 	 * into to "np" and eventually convert the pointer.
636 	 */
637 	while (argv < kd->argv + narg && *argv != NULL) {
638 
639 		/* get the address that the current argv string is on */
640 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
641 
642 		/* is it the same page as the last one? */
643 		if (addr != oaddr) {
644 			if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
645 			    PAGE_SIZE)
646 				return (0);
647 			oaddr = addr;
648 		}
649 
650 		/* offset within the page... kd->argbuf */
651 		addr = (u_long)*argv & (PAGE_SIZE - 1);
652 
653 		/* cp = start of string, cc = count of chars in this chunk */
654 		cp = kd->argbuf + addr;
655 		cc = PAGE_SIZE - addr;
656 
657 		/* dont get more than asked for by user process */
658 		if (maxcnt > 0 && cc > maxcnt - len)
659 			cc = maxcnt - len;
660 
661 		/* pointer to end of string if we found it in this page */
662 		ep = memchr(cp, '\0', cc);
663 		if (ep != NULL)
664 			cc = ep - cp + 1;
665 		/*
666 		 * at this point, cc is the count of the chars that we are
667 		 * going to retrieve this time. we may or may not have found
668 		 * the end of it.  (ep points to the null if the end is known)
669 		 */
670 
671 		/* will we exceed the malloc/realloced buffer? */
672 		if (len + cc > kd->arglen) {
673 			size_t off;
674 			char **pp;
675 			char *op = kd->argspc;
676 
677 			kd->arglen *= 2;
678 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
679 							  kd->arglen);
680 			if (kd->argspc == 0)
681 				return (0);
682 			/*
683 			 * Adjust argv pointers in case realloc moved
684 			 * the string space.
685 			 */
686 			off = kd->argspc - op;
687 			for (pp = kd->argv; pp < argv; pp++)
688 				*pp += off;
689 			ap += off;
690 			np += off;
691 		}
692 		/* np = where to put the next part of the string in kd->argspc*/
693 		/* np is kinda redundant.. could use "kd->argspc + len" */
694 		memcpy(np, cp, cc);
695 		np += cc;	/* inc counters */
696 		len += cc;
697 
698 		/*
699 		 * if end of string found, set the *argv pointer to the
700 		 * saved beginning of string, and advance. argv points to
701 		 * somewhere in kd->argv..  This is initially relative
702 		 * to the target process, but when we close it off, we set
703 		 * it to point in our address space.
704 		 */
705 		if (ep != NULL) {
706 			*argv++ = ap;
707 			ap = np;
708 		} else {
709 			/* update the address relative to the target process */
710 			*argv += cc;
711 		}
712 
713 		if (maxcnt > 0 && len >= maxcnt) {
714 			/*
715 			 * We're stopping prematurely.  Terminate the
716 			 * current string.
717 			 */
718 			if (ep == NULL) {
719 				*np = '\0';
720 				*argv++ = ap;
721 			}
722 			break;
723 		}
724 	}
725 	/* Make sure argv is terminated. */
726 	*argv = NULL;
727 	return (kd->argv);
728 }
729 
730 static void
731 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
732 {
733 	*addr = (u_long)p->ps_argvstr;
734 	*n = p->ps_nargvstr;
735 }
736 
737 static void
738 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
739 {
740 	*addr = (u_long)p->ps_envstr;
741 	*n = p->ps_nenvstr;
742 }
743 
744 /*
745  * Determine if the proc indicated by p is still active.
746  * This test is not 100% foolproof in theory, but chances of
747  * being wrong are very low.
748  */
749 static int
750 proc_verify(kvm_t *kd, const struct kinfo_proc *p)
751 {
752 	struct kinfo_proc kp;
753 	int mib[4];
754 	size_t len;
755 	int error;
756 
757 	mib[0] = CTL_KERN;
758 	mib[1] = KERN_PROC;
759 	mib[2] = KERN_PROC_PID;
760 	mib[3] = p->kp_pid;
761 
762 	len = sizeof(kp);
763 	error = sysctl(mib, 4, &kp, &len, NULL, 0);
764 	if (error)
765 		return (0);
766 
767 	error = (p->kp_pid == kp.kp_pid &&
768 	    (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
769 	return (error);
770 }
771 
772 static char **
773 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
774 	   void (*info)(struct ps_strings *, u_long *, int *))
775 {
776 	char **ap;
777 	u_long addr;
778 	int cnt;
779 	static struct ps_strings arginfo;
780 	static u_long ps_strings;
781 	size_t len;
782 
783 	if (ps_strings == 0) {
784 		len = sizeof(ps_strings);
785 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
786 		    0) == -1)
787 			ps_strings = PS_STRINGS;
788 	}
789 
790 	/*
791 	 * Pointers are stored at the top of the user stack.
792 	 */
793 	if (kp->kp_stat == SZOMB ||
794 	    kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
795 		      sizeof(arginfo)) != sizeof(arginfo))
796 		return (0);
797 
798 	(*info)(&arginfo, &addr, &cnt);
799 	if (cnt == 0)
800 		return (0);
801 	ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
802 	/*
803 	 * For live kernels, make sure this process didn't go away.
804 	 */
805 	if (ap != NULL && (kvm_ishost(kd) || kvm_isvkernel(kd)) &&
806 	    !proc_verify(kd, kp))
807 		ap = NULL;
808 	return (ap);
809 }
810 
811 /*
812  * Get the command args.  This code is now machine independent.
813  */
814 char **
815 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
816 {
817 	int oid[4];
818 	int i;
819 	size_t bufsz;
820 	static unsigned long buflen;
821 	static char *buf, *p;
822 	static char **bufp;
823 	static int argc;
824 
825 	if (!kvm_ishost(kd)) { /* XXX: vkernels */
826 		_kvm_err(kd, kd->program,
827 		    "cannot read user space from dead kernel");
828 		return (0);
829 	}
830 
831 	if (!buflen) {
832 		bufsz = sizeof(buflen);
833 		i = sysctlbyname("kern.ps_arg_cache_limit",
834 		    &buflen, &bufsz, NULL, 0);
835 		if (i == -1) {
836 			buflen = 0;
837 		} else {
838 			buf = malloc(buflen);
839 			if (buf == NULL)
840 				buflen = 0;
841 			argc = 32;
842 			bufp = malloc(sizeof(char *) * argc);
843 		}
844 	}
845 	if (buf != NULL) {
846 		oid[0] = CTL_KERN;
847 		oid[1] = KERN_PROC;
848 		oid[2] = KERN_PROC_ARGS;
849 		oid[3] = kp->kp_pid;
850 		bufsz = buflen;
851 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
852 		if (i == 0 && bufsz > 0) {
853 			i = 0;
854 			p = buf;
855 			do {
856 				bufp[i++] = p;
857 				p += strlen(p) + 1;
858 				if (i >= argc) {
859 					argc += argc;
860 					bufp = realloc(bufp,
861 					    sizeof(char *) * argc);
862 				}
863 			} while (p < buf + bufsz);
864 			bufp[i++] = NULL;
865 			return (bufp);
866 		}
867 	}
868 	if (kp->kp_flags & P_SYSTEM)
869 		return (NULL);
870 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
871 }
872 
873 char **
874 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
875 {
876 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
877 }
878 
879 /*
880  * Read from user space.  The user context is given by pid.
881  */
882 ssize_t
883 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
884 {
885 	char *cp;
886 	char procfile[MAXPATHLEN];
887 	ssize_t amount;
888 	int fd;
889 
890 	if (!kvm_ishost(kd)) { /* XXX: vkernels */
891 		_kvm_err(kd, kd->program,
892 		    "cannot read user space from dead kernel");
893 		return (0);
894 	}
895 
896 	sprintf(procfile, "/proc/%d/mem", pid);
897 	fd = open(procfile, O_RDONLY, 0);
898 	if (fd < 0) {
899 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
900 		close(fd);
901 		return (0);
902 	}
903 
904 	cp = buf;
905 	while (len > 0) {
906 		errno = 0;
907 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
908 			_kvm_err(kd, kd->program, "invalid address (%lx) in %s",
909 			    uva, procfile);
910 			break;
911 		}
912 		amount = read(fd, cp, len);
913 		if (amount < 0) {
914 			_kvm_syserr(kd, kd->program, "error reading %s",
915 			    procfile);
916 			break;
917 		}
918 		if (amount == 0) {
919 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
920 			break;
921 		}
922 		cp += amount;
923 		uva += amount;
924 		len -= amount;
925 	}
926 
927 	close(fd);
928 	return ((ssize_t)(cp - buf));
929 }
930