xref: /dragonfly/lib/libkvm/kvm_proc.c (revision 3f625015)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
38  * $DragonFly: src/lib/libkvm/kvm_proc.c,v 1.15 2007/05/09 04:33:50 dillon Exp $
39  *
40  * @(#)kvm_proc.c	8.3 (Berkeley) 9/23/93
41  */
42 
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49 
50 #include <sys/user.h>	/* MUST BE FIRST */
51 #include <sys/conf.h>
52 #include <sys/param.h>
53 #include <sys/proc.h>
54 #include <sys/exec.h>
55 #include <sys/stat.h>
56 #include <sys/ioctl.h>
57 #include <sys/tty.h>
58 #include <sys/file.h>
59 #include <sys/jail.h>
60 #include <stdio.h>
61 #include <stdlib.h>
62 #include <unistd.h>
63 #include <nlist.h>
64 #include <kvm.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <vm/swap_pager.h>
69 
70 #include <sys/sysctl.h>
71 
72 #include <limits.h>
73 #include <memory.h>
74 #include <paths.h>
75 
76 #include "kvm_private.h"
77 
78 #if used
79 static char *
80 kvm_readswap(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
81 {
82 #if defined(__FreeBSD__) || defined(__DragonFly__)
83 	/* XXX Stubbed out, our vm system is differnet */
84 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
85 	return(0);
86 #endif
87 }
88 #endif
89 
90 #define KREAD(kd, addr, obj) \
91 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
92 
93 
94 static struct kinfo_proc *
95 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
96 {
97 	if (bp < kd->procend)
98 		return bp;
99 
100 	size_t pos = bp - kd->procend;
101 	size_t size = kd->procend - kd->procbase;
102 
103 	if (size == 0)
104 		size = 8;
105 	else
106 		size *= 2;
107 	kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
108 	if (kd->procbase == NULL)
109 		return NULL;
110 	kd->procend = kd->procbase + size;
111 	bp = kd->procbase + pos;
112 	return bp;
113 }
114 
115 /*
116  * note: this function is also used by /usr/src/sys/kern/kern_kinfo.c as
117  * compiled by userland.
118  */
119 dev_t
120 dev2udev(cdev_t dev)
121 {
122 	if (dev == NULL)
123 		return NOUDEV;
124 	if ((dev->si_umajor & 0xffffff00) ||
125 	    (dev->si_uminor & 0x0000ff00)) {
126 		return NOUDEV;
127 	}
128 	return((dev->si_umajor << 8) | dev->si_uminor);
129 }
130 
131 
132 /*
133  * Read proc's from memory file into buffer bp, which has space to hold
134  * at most maxcnt procs.
135  */
136 static int
137 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
138 	     struct kinfo_proc *bp)
139 {
140 	struct pgrp pgrp;
141 	struct pgrp tpgrp;
142 	struct session sess;
143 	struct tty tty;
144 	struct proc proc;
145 	struct ucred ucred;
146 	struct thread thread;
147 	struct proc pproc;
148 	struct cdev cdev;
149 	struct vmspace vmspace;
150 	struct prison prison;
151 	struct lwp lwp;
152 	uintptr_t lwppos;
153 
154 	for (; p != NULL; p = proc.p_list.le_next) {
155 		if (KREAD(kd, (u_long)p, &proc)) {
156 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
157 			return (-1);
158 		}
159 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
160 			_kvm_err(kd, kd->program, "can't read ucred at %p",
161 				 proc.p_ucred);
162 			return (-1);
163 		}
164 		proc.p_ucred = &ucred;
165 
166 		switch(what & ~KERN_PROC_FLAGMASK) {
167 
168 		case KERN_PROC_PID:
169 			if (proc.p_pid != (pid_t)arg)
170 				continue;
171 			break;
172 
173 		case KERN_PROC_UID:
174 			if (ucred.cr_uid != (uid_t)arg)
175 				continue;
176 			break;
177 
178 		case KERN_PROC_RUID:
179 			if (ucred.cr_ruid != (uid_t)arg)
180 				continue;
181 			break;
182 		}
183 
184 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
185 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
186 				 proc.p_pgrp);
187 			return (-1);
188 		}
189 		proc.p_pgrp = &pgrp;
190 		if (proc.p_pptr) {
191 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
192 			_kvm_err(kd, kd->program, "can't read pproc at %x",
193 				 proc.p_pptr);
194 			return (-1);
195 		  }
196 		  proc.p_pptr = &pproc;
197 		}
198 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
199 			_kvm_err(kd, kd->program, "can't read session at %x",
200 				pgrp.pg_session);
201 			return (-1);
202 		}
203 		pgrp.pg_session = &sess;
204 
205 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
206 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
207 				_kvm_err(kd, kd->program,
208 					 "can't read tty at %x", sess.s_ttyp);
209 				return (-1);
210 			}
211 			sess.s_ttyp = &tty;
212 			if (tty.t_dev && tty.t_dev != NULL) {
213 				if (KREAD(kd, (u_long)tty.t_dev, &cdev))
214 					tty.t_dev = NULL;
215 				else
216 					tty.t_dev = &cdev;
217 			}
218 			if (tty.t_pgrp != NULL) {
219 				if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
220 					_kvm_err(kd, kd->program,
221 						 "can't read tpgrp at %x",
222 						tty.t_pgrp);
223 					return (-1);
224 				}
225 				tty.t_pgrp = &tpgrp;
226 			}
227 		}
228 
229 		if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
230 			_kvm_err(kd, kd->program, "can't read vmspace at %p",
231 				 proc.p_vmspace);
232 			return (-1);
233 		}
234 		proc.p_vmspace = &vmspace;
235 
236 		if (ucred.cr_prison != NULL) {
237 			if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
238 				_kvm_err(kd, kd->program, "can't read prison at %p",
239 					 ucred.cr_prison);
240 				return (-1);
241 			}
242 			ucred.cr_prison = &prison;
243 		}
244 
245 		switch (what & ~KERN_PROC_FLAGMASK) {
246 
247 		case KERN_PROC_PGRP:
248 			if (proc.p_pgrp->pg_id != (pid_t)arg)
249 				continue;
250 			break;
251 
252 		case KERN_PROC_TTY:
253 			if ((proc.p_flag & P_CONTROLT) == 0 ||
254 			    dev2udev(proc.p_pgrp->pg_session->s_ttyp->t_dev)
255 					!= (dev_t)arg)
256 				continue;
257 			break;
258 		}
259 
260 		if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
261 			return (-1);
262 		fill_kinfo_proc(&proc, bp);
263 		bp->kp_paddr = (uintptr_t)p;
264 
265 		lwppos = (uintptr_t)proc.p_lwps.lh_first;
266 		if (lwppos == 0)
267 			bp++;		/* Just export the proc then */
268 		while (lwppos != 0) {
269 			if (KREAD(kd, lwppos, &lwp)) {
270 				_kvm_err(kd, kd->program, "can't read lwp at %p",
271 				    lwppos);
272 				return (-1);
273 			}
274 			if (p != lwp.lwp_proc) {
275 				_kvm_err(kd, kd->program, "lwp has wrong parent");
276 				return (-1);
277 			}
278 			lwp.lwp_proc = &proc;
279 			if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
280 				_kvm_err(kd, kd->program, "can't read thread at %x",
281 				    lwp.lwp_thread);
282 				return (-1);
283 			}
284 			lwp.lwp_thread = &thread;
285 
286 			if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
287 				return (-1);
288 			fill_kinfo_proc(&proc, bp);
289 			fill_kinfo_lwp(&lwp, &bp->kp_lwp);
290 			bp->kp_paddr = (uintptr_t)p;
291 			bp++;
292 			if ((what & KERN_PROC_FLAG_LWP) == 0)
293 				break;
294 
295 			lwppos = (uintptr_t)lwp.lwp_list.le_next;
296 		}
297 	}
298 	return (0);
299 }
300 
301 /*
302  * Build proc info array by reading in proc list from a crash dump.
303  * We reallocate kd->procbase as necessary.
304  */
305 static int
306 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
307 	      u_long a_zombproc)
308 {
309 	struct kinfo_proc *bp = kd->procbase;
310 	int acnt, zcnt;
311 	struct proc *p;
312 
313 	if (KREAD(kd, a_allproc, &p)) {
314 		_kvm_err(kd, kd->program, "cannot read allproc");
315 		return (-1);
316 	}
317 	acnt = kvm_proclist(kd, what, arg, p, bp);
318 	if (acnt < 0)
319 		return (acnt);
320 
321 	if (KREAD(kd, a_zombproc, &p)) {
322 		_kvm_err(kd, kd->program, "cannot read zombproc");
323 		return (-1);
324 	}
325 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt);
326 	if (zcnt < 0)
327 		zcnt = 0;
328 
329 	return (acnt + zcnt);
330 }
331 
332 struct kinfo_proc *
333 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
334 {
335 	int mib[4], st, nprocs;
336 	size_t size;
337 
338 	if (kd->procbase != 0) {
339 		free((void *)kd->procbase);
340 		/*
341 		 * Clear this pointer in case this call fails.  Otherwise,
342 		 * kvm_close() will free it again.
343 		 */
344 		kd->procbase = 0;
345 	}
346 	if (ISALIVE(kd)) {
347 		size = 0;
348 		mib[0] = CTL_KERN;
349 		mib[1] = KERN_PROC;
350 		mib[2] = op;
351 		mib[3] = arg;
352 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
353 		if (st == -1) {
354 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
355 			return (0);
356 		}
357 		do {
358 			size += size / 10;
359 			kd->procbase = (struct kinfo_proc *)
360 			    _kvm_realloc(kd, kd->procbase, size);
361 			if (kd->procbase == 0)
362 				return (0);
363 			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
364 			    kd->procbase, &size, NULL, 0);
365 		} while (st == -1 && errno == ENOMEM);
366 		if (st == -1) {
367 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
368 			return (0);
369 		}
370 		if (size % sizeof(struct kinfo_proc) != 0) {
371 			_kvm_err(kd, kd->program,
372 				"proc size mismatch (%d total, %d chunks)",
373 				size, sizeof(struct kinfo_proc));
374 			return (0);
375 		}
376 		nprocs = size / sizeof(struct kinfo_proc);
377 	} else {
378 		struct nlist nl[4], *p;
379 
380 		nl[0].n_name = "_nprocs";
381 		nl[1].n_name = "_allproc";
382 		nl[2].n_name = "_zombproc";
383 		nl[3].n_name = 0;
384 
385 		if (kvm_nlist(kd, nl) != 0) {
386 			for (p = nl; p->n_type != 0; ++p)
387 				;
388 			_kvm_err(kd, kd->program,
389 				 "%s: no such symbol", p->n_name);
390 			return (0);
391 		}
392 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
393 			_kvm_err(kd, kd->program, "can't read nprocs");
394 			return (0);
395 		}
396 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
397 				      nl[2].n_value);
398 #ifdef notdef
399 		size = nprocs * sizeof(struct kinfo_proc);
400 		(void)realloc(kd->procbase, size);
401 #endif
402 	}
403 	*cnt = nprocs;
404 	return (kd->procbase);
405 }
406 
407 void
408 _kvm_freeprocs(kvm_t *kd)
409 {
410 	if (kd->procbase) {
411 		free(kd->procbase);
412 		kd->procbase = 0;
413 	}
414 }
415 
416 void *
417 _kvm_realloc(kvm_t *kd, void *p, size_t n)
418 {
419 	void *np = (void *)realloc(p, n);
420 
421 	if (np == 0) {
422 		free(p);
423 		_kvm_err(kd, kd->program, "out of memory");
424 	}
425 	return (np);
426 }
427 
428 #ifndef MAX
429 #define MAX(a, b) ((a) > (b) ? (a) : (b))
430 #endif
431 
432 /*
433  * Read in an argument vector from the user address space of process pid.
434  * addr if the user-space base address of narg null-terminated contiguous
435  * strings.  This is used to read in both the command arguments and
436  * environment strings.  Read at most maxcnt characters of strings.
437  */
438 static char **
439 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
440 {
441 	char *np, *cp, *ep, *ap;
442 	u_long oaddr = -1;
443 	int len, cc;
444 	char **argv;
445 
446 	/*
447 	 * Check that there aren't an unreasonable number of agruments,
448 	 * and that the address is in user space.
449 	 */
450 	if (narg > 512 ||
451 	    addr < VM_MIN_USER_ADDRESS || addr >= VM_MAX_USER_ADDRESS) {
452 		return (0);
453 	}
454 
455 	/*
456 	 * kd->argv : work space for fetching the strings from the target
457 	 *            process's space, and is converted for returning to caller
458 	 */
459 	if (kd->argv == 0) {
460 		/*
461 		 * Try to avoid reallocs.
462 		 */
463 		kd->argc = MAX(narg + 1, 32);
464 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
465 						sizeof(*kd->argv));
466 		if (kd->argv == 0)
467 			return (0);
468 	} else if (narg + 1 > kd->argc) {
469 		kd->argc = MAX(2 * kd->argc, narg + 1);
470 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
471 						sizeof(*kd->argv));
472 		if (kd->argv == 0)
473 			return (0);
474 	}
475 	/*
476 	 * kd->argspc : returned to user, this is where the kd->argv
477 	 *              arrays are left pointing to the collected strings.
478 	 */
479 	if (kd->argspc == 0) {
480 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
481 		if (kd->argspc == 0)
482 			return (0);
483 		kd->arglen = PAGE_SIZE;
484 	}
485 	/*
486 	 * kd->argbuf : used to pull in pages from the target process.
487 	 *              the strings are copied out of here.
488 	 */
489 	if (kd->argbuf == 0) {
490 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
491 		if (kd->argbuf == 0)
492 			return (0);
493 	}
494 
495 	/* Pull in the target process'es argv vector */
496 	cc = sizeof(char *) * narg;
497 	if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
498 		return (0);
499 	/*
500 	 * ap : saved start address of string we're working on in kd->argspc
501 	 * np : pointer to next place to write in kd->argspc
502 	 * len: length of data in kd->argspc
503 	 * argv: pointer to the argv vector that we are hunting around the
504 	 *       target process space for, and converting to addresses in
505 	 *       our address space (kd->argspc).
506 	 */
507 	ap = np = kd->argspc;
508 	argv = kd->argv;
509 	len = 0;
510 	/*
511 	 * Loop over pages, filling in the argument vector.
512 	 * Note that the argv strings could be pointing *anywhere* in
513 	 * the user address space and are no longer contiguous.
514 	 * Note that *argv is modified when we are going to fetch a string
515 	 * that crosses a page boundary.  We copy the next part of the string
516 	 * into to "np" and eventually convert the pointer.
517 	 */
518 	while (argv < kd->argv + narg && *argv != 0) {
519 
520 		/* get the address that the current argv string is on */
521 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
522 
523 		/* is it the same page as the last one? */
524 		if (addr != oaddr) {
525 			if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
526 			    PAGE_SIZE)
527 				return (0);
528 			oaddr = addr;
529 		}
530 
531 		/* offset within the page... kd->argbuf */
532 		addr = (u_long)*argv & (PAGE_SIZE - 1);
533 
534 		/* cp = start of string, cc = count of chars in this chunk */
535 		cp = kd->argbuf + addr;
536 		cc = PAGE_SIZE - addr;
537 
538 		/* dont get more than asked for by user process */
539 		if (maxcnt > 0 && cc > maxcnt - len)
540 			cc = maxcnt - len;
541 
542 		/* pointer to end of string if we found it in this page */
543 		ep = memchr(cp, '\0', cc);
544 		if (ep != 0)
545 			cc = ep - cp + 1;
546 		/*
547 		 * at this point, cc is the count of the chars that we are
548 		 * going to retrieve this time. we may or may not have found
549 		 * the end of it.  (ep points to the null if the end is known)
550 		 */
551 
552 		/* will we exceed the malloc/realloced buffer? */
553 		if (len + cc > kd->arglen) {
554 			int off;
555 			char **pp;
556 			char *op = kd->argspc;
557 
558 			kd->arglen *= 2;
559 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
560 							  kd->arglen);
561 			if (kd->argspc == 0)
562 				return (0);
563 			/*
564 			 * Adjust argv pointers in case realloc moved
565 			 * the string space.
566 			 */
567 			off = kd->argspc - op;
568 			for (pp = kd->argv; pp < argv; pp++)
569 				*pp += off;
570 			ap += off;
571 			np += off;
572 		}
573 		/* np = where to put the next part of the string in kd->argspc*/
574 		/* np is kinda redundant.. could use "kd->argspc + len" */
575 		memcpy(np, cp, cc);
576 		np += cc;	/* inc counters */
577 		len += cc;
578 
579 		/*
580 		 * if end of string found, set the *argv pointer to the
581 		 * saved beginning of string, and advance. argv points to
582 		 * somewhere in kd->argv..  This is initially relative
583 		 * to the target process, but when we close it off, we set
584 		 * it to point in our address space.
585 		 */
586 		if (ep != 0) {
587 			*argv++ = ap;
588 			ap = np;
589 		} else {
590 			/* update the address relative to the target process */
591 			*argv += cc;
592 		}
593 
594 		if (maxcnt > 0 && len >= maxcnt) {
595 			/*
596 			 * We're stopping prematurely.  Terminate the
597 			 * current string.
598 			 */
599 			if (ep == 0) {
600 				*np = '\0';
601 				*argv++ = ap;
602 			}
603 			break;
604 		}
605 	}
606 	/* Make sure argv is terminated. */
607 	*argv = 0;
608 	return (kd->argv);
609 }
610 
611 static void
612 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
613 {
614 	*addr = (u_long)p->ps_argvstr;
615 	*n = p->ps_nargvstr;
616 }
617 
618 static void
619 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
620 {
621 	*addr = (u_long)p->ps_envstr;
622 	*n = p->ps_nenvstr;
623 }
624 
625 /*
626  * Determine if the proc indicated by p is still active.
627  * This test is not 100% foolproof in theory, but chances of
628  * being wrong are very low.
629  */
630 static int
631 proc_verify(kvm_t *kd, const struct kinfo_proc *p)
632 {
633 	struct kinfo_proc kp;
634 	int mib[4];
635 	size_t len;
636 	int error;
637 
638 	mib[0] = CTL_KERN;
639 	mib[1] = KERN_PROC;
640 	mib[2] = KERN_PROC_PID;
641 	mib[3] = p->kp_pid;
642 
643 	len = sizeof(kp);
644 	error = sysctl(mib, 4, &kp, &len, NULL, 0);
645 	if (error)
646 		return (0);
647 
648 	error = (p->kp_pid == kp.kp_pid &&
649 	    (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
650 	return (error);
651 }
652 
653 static char **
654 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
655 	   void (*info)(struct ps_strings *, u_long *, int *))
656 {
657 	char **ap;
658 	u_long addr;
659 	int cnt;
660 	static struct ps_strings arginfo;
661 	static u_long ps_strings;
662 	size_t len;
663 
664 	if (ps_strings == NULL) {
665 		len = sizeof(ps_strings);
666 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
667 		    0) == -1)
668 			ps_strings = PS_STRINGS;
669 	}
670 
671 	/*
672 	 * Pointers are stored at the top of the user stack.
673 	 */
674 	if (kp->kp_stat == SZOMB ||
675 	    kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
676 		      sizeof(arginfo)) != sizeof(arginfo))
677 		return (0);
678 
679 	(*info)(&arginfo, &addr, &cnt);
680 	if (cnt == 0)
681 		return (0);
682 	ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
683 	/*
684 	 * For live kernels, make sure this process didn't go away.
685 	 */
686 	if (ap != 0 && ISALIVE(kd) &&
687 	    !proc_verify(kd, kp))
688 		ap = 0;
689 	return (ap);
690 }
691 
692 /*
693  * Get the command args.  This code is now machine independent.
694  */
695 char **
696 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
697 {
698 	int oid[4];
699 	int i;
700 	size_t bufsz;
701 	static unsigned long buflen;
702 	static char *buf, *p;
703 	static char **bufp;
704 	static int argc;
705 
706 	if (!ISALIVE(kd)) {
707 		_kvm_err(kd, kd->program,
708 		    "cannot read user space from dead kernel");
709 		return (0);
710 	}
711 
712 	if (!buflen) {
713 		bufsz = sizeof(buflen);
714 		i = sysctlbyname("kern.ps_arg_cache_limit",
715 		    &buflen, &bufsz, NULL, 0);
716 		if (i == -1) {
717 			buflen = 0;
718 		} else {
719 			buf = malloc(buflen);
720 			if (buf == NULL)
721 				buflen = 0;
722 			argc = 32;
723 			bufp = malloc(sizeof(char *) * argc);
724 		}
725 	}
726 	if (buf != NULL) {
727 		oid[0] = CTL_KERN;
728 		oid[1] = KERN_PROC;
729 		oid[2] = KERN_PROC_ARGS;
730 		oid[3] = kp->kp_pid;
731 		bufsz = buflen;
732 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
733 		if (i == 0 && bufsz > 0) {
734 			i = 0;
735 			p = buf;
736 			do {
737 				bufp[i++] = p;
738 				p += strlen(p) + 1;
739 				if (i >= argc) {
740 					argc += argc;
741 					bufp = realloc(bufp,
742 					    sizeof(char *) * argc);
743 				}
744 			} while (p < buf + bufsz);
745 			bufp[i++] = 0;
746 			return (bufp);
747 		}
748 	}
749 	if (kp->kp_flags & P_SYSTEM)
750 		return (NULL);
751 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
752 }
753 
754 char **
755 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
756 {
757 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
758 }
759 
760 /*
761  * Read from user space.  The user context is given by pid.
762  */
763 ssize_t
764 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
765 {
766 	char *cp;
767 	char procfile[MAXPATHLEN];
768 	ssize_t amount;
769 	int fd;
770 
771 	if (!ISALIVE(kd)) {
772 		_kvm_err(kd, kd->program,
773 		    "cannot read user space from dead kernel");
774 		return (0);
775 	}
776 
777 	sprintf(procfile, "/proc/%d/mem", pid);
778 	fd = open(procfile, O_RDONLY, 0);
779 	if (fd < 0) {
780 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
781 		close(fd);
782 		return (0);
783 	}
784 
785 	cp = buf;
786 	while (len > 0) {
787 		errno = 0;
788 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
789 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
790 			    uva, procfile);
791 			break;
792 		}
793 		amount = read(fd, cp, len);
794 		if (amount < 0) {
795 			_kvm_syserr(kd, kd->program, "error reading %s",
796 			    procfile);
797 			break;
798 		}
799 		if (amount == 0) {
800 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
801 			break;
802 		}
803 		cp += amount;
804 		uva += amount;
805 		len -= amount;
806 	}
807 
808 	close(fd);
809 	return ((ssize_t)(cp - buf));
810 }
811