xref: /dragonfly/lib/libkvm/kvm_proc.c (revision 71126e33)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
38  * $DragonFly: src/lib/libkvm/kvm_proc.c,v 1.7 2004/10/25 19:38:45 drhodus Exp $
39  *
40  * @(#)kvm_proc.c	8.3 (Berkeley) 9/23/93
41  */
42 
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49 
50 #include <sys/param.h>
51 #include <sys/user.h>
52 #include <sys/proc.h>
53 #include <sys/exec.h>
54 #include <sys/stat.h>
55 #include <sys/ioctl.h>
56 #include <sys/tty.h>
57 #include <sys/file.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <unistd.h>
61 #include <nlist.h>
62 #include <kvm.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/swap_pager.h>
67 
68 #include <sys/sysctl.h>
69 
70 #include <limits.h>
71 #include <memory.h>
72 #include <paths.h>
73 
74 #include "kvm_private.h"
75 
76 #if used
77 static char *
78 kvm_readswap(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
79 {
80 #if defined(__FreeBSD__) || defined(__DragonFly__)
81 	/* XXX Stubbed out, our vm system is differnet */
82 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
83 	return(0);
84 #endif
85 }
86 #endif
87 
88 #define KREAD(kd, addr, obj) \
89 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
90 
91 /*
92  * Read proc's from memory file into buffer bp, which has space to hold
93  * at most maxcnt procs.
94  */
95 static int
96 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
97 	     struct kinfo_proc *bp, int maxcnt)
98 {
99 	int cnt = 0;
100 	struct eproc eproc;
101 	struct pgrp pgrp;
102 	struct session sess;
103 	struct tty tty;
104 	struct proc proc;
105 	struct thread thread;
106 	struct proc pproc;
107 
108 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
109 		if (KREAD(kd, (u_long)p, &proc)) {
110 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
111 			return (-1);
112 		}
113 		if (KREAD(kd, (u_long)proc.p_thread, &thread)) {
114 			_kvm_err(kd, kd->program, "can't read thread at %x",
115 			    proc.p_thread);
116 			return (-1);
117 		}
118 		KREAD(kd, (u_long)proc.p_ucred, &eproc.e_ucred);
119 
120 		switch(what) {
121 
122 		case KERN_PROC_PID:
123 			if (proc.p_pid != (pid_t)arg)
124 				continue;
125 			break;
126 
127 		case KERN_PROC_UID:
128 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
129 				continue;
130 			break;
131 
132 		case KERN_PROC_RUID:
133 			if (eproc.e_ucred.cr_ruid != (uid_t)arg)
134 				continue;
135 			break;
136 		}
137 		/*
138 		 * We're going to add another proc to the set.  If this
139 		 * will overflow the buffer, assume the reason is because
140 		 * nprocs (or the proc list) is corrupt and declare an error.
141 		 */
142 		if (cnt >= maxcnt) {
143 			_kvm_err(kd, kd->program, "nprocs corrupt");
144 			return (-1);
145 		}
146 		/*
147 		 * gather eproc
148 		 */
149 		eproc.e_paddr = p;
150 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
151 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
152 				 proc.p_pgrp);
153 			return (-1);
154 		}
155 		if (proc.p_oppid)
156 		  eproc.e_ppid = proc.p_oppid;
157 		else if (proc.p_pptr) {
158 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
159 			_kvm_err(kd, kd->program, "can't read pproc at %x",
160 				 proc.p_pptr);
161 			return (-1);
162 		  }
163 		  eproc.e_ppid = pproc.p_pid;
164 		} else
165 		  eproc.e_ppid = 0;
166 		eproc.e_sess = pgrp.pg_session;
167 		eproc.e_pgid = pgrp.pg_id;
168 		eproc.e_jobc = pgrp.pg_jobc;
169 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
170 			_kvm_err(kd, kd->program, "can't read session at %x",
171 				pgrp.pg_session);
172 			return (-1);
173 		}
174 		(void)memcpy(eproc.e_login, sess.s_login,
175 						sizeof(eproc.e_login));
176 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
177 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
178 				_kvm_err(kd, kd->program,
179 					 "can't read tty at %x", sess.s_ttyp);
180 				return (-1);
181 			}
182 			eproc.e_tdev = tty.t_dev;
183 			eproc.e_tsess = tty.t_session;
184 			if (tty.t_pgrp != NULL) {
185 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
186 					_kvm_err(kd, kd->program,
187 						 "can't read tpgrp at %x",
188 						tty.t_pgrp);
189 					return (-1);
190 				}
191 				eproc.e_tpgid = pgrp.pg_id;
192 			} else
193 				eproc.e_tpgid = -1;
194 		} else
195 			eproc.e_tdev = NODEV;
196 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
197 		if (sess.s_leader == p)
198 			eproc.e_flag |= EPROC_SLEADER;
199 		if (thread.td_wmesg)
200 			(void)kvm_read(kd, (u_long)thread.td_wmesg,
201 			    eproc.e_wmesg, WMESGLEN);
202 
203 #ifdef sparc
204 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
205 		    (char *)&eproc.e_vm.vm_rssize,
206 		    sizeof(eproc.e_vm.vm_rssize));
207 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
208 		    (char *)&eproc.e_vm.vm_tsize,
209 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
210 #else
211 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
212 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
213 #endif
214 		eproc.e_xsize = eproc.e_xrssize = 0;
215 		eproc.e_xccount = eproc.e_xswrss = 0;
216 
217 		switch (what) {
218 
219 		case KERN_PROC_PGRP:
220 			if (eproc.e_pgid != (pid_t)arg)
221 				continue;
222 			break;
223 
224 		case KERN_PROC_TTY:
225 			if ((proc.p_flag & P_CONTROLT) == 0 ||
226 			     eproc.e_tdev != (dev_t)arg)
227 				continue;
228 			break;
229 		}
230 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
231 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
232 		++bp;
233 		++cnt;
234 	}
235 	return (cnt);
236 }
237 
238 /*
239  * Build proc info array by reading in proc list from a crash dump.
240  * Return number of procs read.  maxcnt is the max we will read.
241  */
242 static int
243 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
244 	      u_long a_zombproc, int maxcnt)
245 {
246 	struct kinfo_proc *bp = kd->procbase;
247 	int acnt, zcnt;
248 	struct proc *p;
249 
250 	if (KREAD(kd, a_allproc, &p)) {
251 		_kvm_err(kd, kd->program, "cannot read allproc");
252 		return (-1);
253 	}
254 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
255 	if (acnt < 0)
256 		return (acnt);
257 
258 	if (KREAD(kd, a_zombproc, &p)) {
259 		_kvm_err(kd, kd->program, "cannot read zombproc");
260 		return (-1);
261 	}
262 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
263 	if (zcnt < 0)
264 		zcnt = 0;
265 
266 	return (acnt + zcnt);
267 }
268 
269 struct kinfo_proc *
270 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
271 {
272 	int mib[4], st, nprocs;
273 	size_t size;
274 
275 	if (kd->procbase != 0) {
276 		free((void *)kd->procbase);
277 		/*
278 		 * Clear this pointer in case this call fails.  Otherwise,
279 		 * kvm_close() will free it again.
280 		 */
281 		kd->procbase = 0;
282 	}
283 	if (ISALIVE(kd)) {
284 		size = 0;
285 		mib[0] = CTL_KERN;
286 		mib[1] = KERN_PROC;
287 		mib[2] = op;
288 		mib[3] = arg;
289 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
290 		if (st == -1) {
291 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
292 			return (0);
293 		}
294 		do {
295 			size += size / 10;
296 			kd->procbase = (struct kinfo_proc *)
297 			    _kvm_realloc(kd, kd->procbase, size);
298 			if (kd->procbase == 0)
299 				return (0);
300 			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
301 			    kd->procbase, &size, NULL, 0);
302 		} while (st == -1 && errno == ENOMEM);
303 		if (st == -1) {
304 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
305 			return (0);
306 		}
307 		if (size % sizeof(struct kinfo_proc) != 0) {
308 			_kvm_err(kd, kd->program,
309 				"proc size mismatch (%d total, %d chunks)",
310 				size, sizeof(struct kinfo_proc));
311 			return (0);
312 		}
313 		nprocs = size / sizeof(struct kinfo_proc);
314 	} else {
315 		struct nlist nl[4], *p;
316 
317 		nl[0].n_name = "_nprocs";
318 		nl[1].n_name = "_allproc";
319 		nl[2].n_name = "_zombproc";
320 		nl[3].n_name = 0;
321 
322 		if (kvm_nlist(kd, nl) != 0) {
323 			for (p = nl; p->n_type != 0; ++p)
324 				;
325 			_kvm_err(kd, kd->program,
326 				 "%s: no such symbol", p->n_name);
327 			return (0);
328 		}
329 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
330 			_kvm_err(kd, kd->program, "can't read nprocs");
331 			return (0);
332 		}
333 		size = nprocs * sizeof(struct kinfo_proc);
334 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
335 		if (kd->procbase == 0)
336 			return (0);
337 
338 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
339 				      nl[2].n_value, nprocs);
340 #ifdef notdef
341 		size = nprocs * sizeof(struct kinfo_proc);
342 		(void)realloc(kd->procbase, size);
343 #endif
344 	}
345 	*cnt = nprocs;
346 	return (kd->procbase);
347 }
348 
349 void
350 _kvm_freeprocs(kvm_t *kd)
351 {
352 	if (kd->procbase) {
353 		free(kd->procbase);
354 		kd->procbase = 0;
355 	}
356 }
357 
358 void *
359 _kvm_realloc(kvm_t *kd, void *p, size_t n)
360 {
361 	void *np = (void *)realloc(p, n);
362 
363 	if (np == 0) {
364 		free(p);
365 		_kvm_err(kd, kd->program, "out of memory");
366 	}
367 	return (np);
368 }
369 
370 #ifndef MAX
371 #define MAX(a, b) ((a) > (b) ? (a) : (b))
372 #endif
373 
374 /*
375  * Read in an argument vector from the user address space of process p.
376  * addr if the user-space base address of narg null-terminated contiguous
377  * strings.  This is used to read in both the command arguments and
378  * environment strings.  Read at most maxcnt characters of strings.
379  */
380 static char **
381 kvm_argv(kvm_t *kd, const struct proc *p, u_long addr, int narg, int maxcnt)
382 {
383 	char *np, *cp, *ep, *ap;
384 	u_long oaddr = -1;
385 	int len, cc;
386 	char **argv;
387 
388 	/*
389 	 * Check that there aren't an unreasonable number of agruments,
390 	 * and that the address is in user space.
391 	 */
392 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
393 		return (0);
394 
395 	/*
396 	 * kd->argv : work space for fetching the strings from the target
397 	 *            process's space, and is converted for returning to caller
398 	 */
399 	if (kd->argv == 0) {
400 		/*
401 		 * Try to avoid reallocs.
402 		 */
403 		kd->argc = MAX(narg + 1, 32);
404 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
405 						sizeof(*kd->argv));
406 		if (kd->argv == 0)
407 			return (0);
408 	} else if (narg + 1 > kd->argc) {
409 		kd->argc = MAX(2 * kd->argc, narg + 1);
410 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
411 						sizeof(*kd->argv));
412 		if (kd->argv == 0)
413 			return (0);
414 	}
415 	/*
416 	 * kd->argspc : returned to user, this is where the kd->argv
417 	 *              arrays are left pointing to the collected strings.
418 	 */
419 	if (kd->argspc == 0) {
420 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
421 		if (kd->argspc == 0)
422 			return (0);
423 		kd->arglen = PAGE_SIZE;
424 	}
425 	/*
426 	 * kd->argbuf : used to pull in pages from the target process.
427 	 *              the strings are copied out of here.
428 	 */
429 	if (kd->argbuf == 0) {
430 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
431 		if (kd->argbuf == 0)
432 			return (0);
433 	}
434 
435 	/* Pull in the target process'es argv vector */
436 	cc = sizeof(char *) * narg;
437 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
438 		return (0);
439 	/*
440 	 * ap : saved start address of string we're working on in kd->argspc
441 	 * np : pointer to next place to write in kd->argspc
442 	 * len: length of data in kd->argspc
443 	 * argv: pointer to the argv vector that we are hunting around the
444 	 *       target process space for, and converting to addresses in
445 	 *       our address space (kd->argspc).
446 	 */
447 	ap = np = kd->argspc;
448 	argv = kd->argv;
449 	len = 0;
450 	/*
451 	 * Loop over pages, filling in the argument vector.
452 	 * Note that the argv strings could be pointing *anywhere* in
453 	 * the user address space and are no longer contiguous.
454 	 * Note that *argv is modified when we are going to fetch a string
455 	 * that crosses a page boundary.  We copy the next part of the string
456 	 * into to "np" and eventually convert the pointer.
457 	 */
458 	while (argv < kd->argv + narg && *argv != 0) {
459 
460 		/* get the address that the current argv string is on */
461 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
462 
463 		/* is it the same page as the last one? */
464 		if (addr != oaddr) {
465 			if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) !=
466 			    PAGE_SIZE)
467 				return (0);
468 			oaddr = addr;
469 		}
470 
471 		/* offset within the page... kd->argbuf */
472 		addr = (u_long)*argv & (PAGE_SIZE - 1);
473 
474 		/* cp = start of string, cc = count of chars in this chunk */
475 		cp = kd->argbuf + addr;
476 		cc = PAGE_SIZE - addr;
477 
478 		/* dont get more than asked for by user process */
479 		if (maxcnt > 0 && cc > maxcnt - len)
480 			cc = maxcnt - len;
481 
482 		/* pointer to end of string if we found it in this page */
483 		ep = memchr(cp, '\0', cc);
484 		if (ep != 0)
485 			cc = ep - cp + 1;
486 		/*
487 		 * at this point, cc is the count of the chars that we are
488 		 * going to retrieve this time. we may or may not have found
489 		 * the end of it.  (ep points to the null if the end is known)
490 		 */
491 
492 		/* will we exceed the malloc/realloced buffer? */
493 		if (len + cc > kd->arglen) {
494 			int off;
495 			char **pp;
496 			char *op = kd->argspc;
497 
498 			kd->arglen *= 2;
499 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
500 							  kd->arglen);
501 			if (kd->argspc == 0)
502 				return (0);
503 			/*
504 			 * Adjust argv pointers in case realloc moved
505 			 * the string space.
506 			 */
507 			off = kd->argspc - op;
508 			for (pp = kd->argv; pp < argv; pp++)
509 				*pp += off;
510 			ap += off;
511 			np += off;
512 		}
513 		/* np = where to put the next part of the string in kd->argspc*/
514 		/* np is kinda redundant.. could use "kd->argspc + len" */
515 		memcpy(np, cp, cc);
516 		np += cc;	/* inc counters */
517 		len += cc;
518 
519 		/*
520 		 * if end of string found, set the *argv pointer to the
521 		 * saved beginning of string, and advance. argv points to
522 		 * somewhere in kd->argv..  This is initially relative
523 		 * to the target process, but when we close it off, we set
524 		 * it to point in our address space.
525 		 */
526 		if (ep != 0) {
527 			*argv++ = ap;
528 			ap = np;
529 		} else {
530 			/* update the address relative to the target process */
531 			*argv += cc;
532 		}
533 
534 		if (maxcnt > 0 && len >= maxcnt) {
535 			/*
536 			 * We're stopping prematurely.  Terminate the
537 			 * current string.
538 			 */
539 			if (ep == 0) {
540 				*np = '\0';
541 				*argv++ = ap;
542 			}
543 			break;
544 		}
545 	}
546 	/* Make sure argv is terminated. */
547 	*argv = 0;
548 	return (kd->argv);
549 }
550 
551 static void
552 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
553 {
554 	*addr = (u_long)p->ps_argvstr;
555 	*n = p->ps_nargvstr;
556 }
557 
558 static void
559 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
560 {
561 	*addr = (u_long)p->ps_envstr;
562 	*n = p->ps_nenvstr;
563 }
564 
565 /*
566  * Determine if the proc indicated by p is still active.
567  * This test is not 100% foolproof in theory, but chances of
568  * being wrong are very low.
569  */
570 static int
571 proc_verify(kvm_t *kd, u_long kernp, const struct proc *p)
572 {
573 	struct kinfo_proc kp;
574 	int mib[4];
575 	size_t len;
576 
577 	mib[0] = CTL_KERN;
578 	mib[1] = KERN_PROC;
579 	mib[2] = KERN_PROC_PID;
580 	mib[3] = p->p_pid;
581 	len = sizeof(kp);
582 	if (sysctl(mib, 4, &kp, &len, NULL, 0) == -1)
583 		return (0);
584 	return (p->p_pid == kp.kp_proc.p_pid &&
585 	    (kp.kp_proc.p_stat != SZOMB || p->p_stat == SZOMB));
586 }
587 
588 static char **
589 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
590 	   void (*info)(struct ps_strings *, u_long *, int *))
591 {
592 	const struct proc *p = &kp->kp_proc;
593 	char **ap;
594 	u_long addr;
595 	int cnt;
596 	static struct ps_strings arginfo;
597 	static u_long ps_strings;
598 	size_t len;
599 
600 	if (ps_strings == NULL) {
601 		len = sizeof(ps_strings);
602 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
603 		    0) == -1)
604 			ps_strings = PS_STRINGS;
605 	}
606 
607 	/*
608 	 * Pointers are stored at the top of the user stack.
609 	 */
610 	if (p->p_stat == SZOMB ||
611 	    kvm_uread(kd, p, ps_strings, (char *)&arginfo,
612 		      sizeof(arginfo)) != sizeof(arginfo))
613 		return (0);
614 
615 	(*info)(&arginfo, &addr, &cnt);
616 	if (cnt == 0)
617 		return (0);
618 	ap = kvm_argv(kd, p, addr, cnt, nchr);
619 	/*
620 	 * For live kernels, make sure this process didn't go away.
621 	 */
622 	if (ap != 0 && ISALIVE(kd) &&
623 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
624 		ap = 0;
625 	return (ap);
626 }
627 
628 /*
629  * Get the command args.  This code is now machine independent.
630  */
631 char **
632 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
633 {
634 	int oid[4];
635 	int i;
636 	size_t bufsz;
637 	static unsigned long buflen;
638 	static char *buf, *p;
639 	static char **bufp;
640 	static int argc;
641 
642 	if (!ISALIVE(kd)) {
643 		_kvm_err(kd, kd->program,
644 		    "cannot read user space from dead kernel");
645 		return (0);
646 	}
647 
648 	if (!buflen) {
649 		bufsz = sizeof(buflen);
650 		i = sysctlbyname("kern.ps_arg_cache_limit",
651 		    &buflen, &bufsz, NULL, 0);
652 		if (i == -1) {
653 			buflen = 0;
654 		} else {
655 			buf = malloc(buflen);
656 			if (buf == NULL)
657 				buflen = 0;
658 			argc = 32;
659 			bufp = malloc(sizeof(char *) * argc);
660 		}
661 	}
662 	if (buf != NULL) {
663 		oid[0] = CTL_KERN;
664 		oid[1] = KERN_PROC;
665 		oid[2] = KERN_PROC_ARGS;
666 		oid[3] = kp->kp_proc.p_pid;
667 		bufsz = buflen;
668 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
669 		if (i == 0 && bufsz > 0) {
670 			i = 0;
671 			p = buf;
672 			do {
673 				bufp[i++] = p;
674 				p += strlen(p) + 1;
675 				if (i >= argc) {
676 					argc += argc;
677 					bufp = realloc(bufp,
678 					    sizeof(char *) * argc);
679 				}
680 			} while (p < buf + bufsz);
681 			bufp[i++] = 0;
682 			return (bufp);
683 		}
684 	}
685 	if (kp->kp_proc.p_flag & P_SYSTEM)
686 		return (NULL);
687 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
688 }
689 
690 char **
691 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
692 {
693 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
694 }
695 
696 /*
697  * Read from user space.  The user context is given by p.
698  */
699 ssize_t
700 kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len)
701 {
702 	char *cp;
703 	char procfile[MAXPATHLEN];
704 	ssize_t amount;
705 	int fd;
706 
707 	if (!ISALIVE(kd)) {
708 		_kvm_err(kd, kd->program,
709 		    "cannot read user space from dead kernel");
710 		return (0);
711 	}
712 
713 	sprintf(procfile, "/proc/%d/mem", p->p_pid);
714 	fd = open(procfile, O_RDONLY, 0);
715 	if (fd < 0) {
716 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
717 		close(fd);
718 		return (0);
719 	}
720 
721 	cp = buf;
722 	while (len > 0) {
723 		errno = 0;
724 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
725 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
726 			    uva, procfile);
727 			break;
728 		}
729 		amount = read(fd, cp, len);
730 		if (amount < 0) {
731 			_kvm_syserr(kd, kd->program, "error reading %s",
732 			    procfile);
733 			break;
734 		}
735 		if (amount == 0) {
736 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
737 			break;
738 		}
739 		cp += amount;
740 		uva += amount;
741 		len -= amount;
742 	}
743 
744 	close(fd);
745 	return ((ssize_t)(cp - buf));
746 }
747