xref: /dragonfly/lib/libkvm/kvm_proc.c (revision bc3d4063)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD: src/lib/libkvm/kvm_proc.c,v 1.25.2.3 2002/08/24 07:27:46 kris Exp $
38  * $DragonFly: src/lib/libkvm/kvm_proc.c,v 1.18 2008/06/05 18:06:30 swildner Exp $
39  *
40  * @(#)kvm_proc.c	8.3 (Berkeley) 9/23/93
41  */
42 
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49 
50 #include <sys/user.h>	/* MUST BE FIRST */
51 #include <sys/conf.h>
52 #include <sys/param.h>
53 #include <sys/proc.h>
54 #include <sys/exec.h>
55 #include <sys/stat.h>
56 #include <sys/globaldata.h>
57 #include <sys/ioctl.h>
58 #include <sys/tty.h>
59 #include <sys/file.h>
60 #include <sys/jail.h>
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <unistd.h>
64 #include <nlist.h>
65 #include <kvm.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <vm/swap_pager.h>
70 
71 #include <sys/sysctl.h>
72 
73 #include <limits.h>
74 #include <memory.h>
75 #include <paths.h>
76 
77 #include "kvm_private.h"
78 
79 #if used
80 static char *
81 kvm_readswap(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt)
82 {
83 #if defined(__FreeBSD__) || defined(__DragonFly__)
84 	/* XXX Stubbed out, our vm system is differnet */
85 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
86 	return(0);
87 #endif
88 }
89 #endif
90 
91 #define KREAD(kd, addr, obj) \
92 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
93 #define KREADSTR(kd, addr) \
94 	kvm_readstr(kd, (u_long)addr, NULL, NULL)
95 
96 static struct kinfo_proc *
97 kinfo_resize_proc(kvm_t *kd, struct kinfo_proc *bp)
98 {
99 	if (bp < kd->procend)
100 		return bp;
101 
102 	size_t pos = bp - kd->procend;
103 	size_t size = kd->procend - kd->procbase;
104 
105 	if (size == 0)
106 		size = 8;
107 	else
108 		size *= 2;
109 	kd->procbase = _kvm_realloc(kd, kd->procbase, sizeof(*bp) * size);
110 	if (kd->procbase == NULL)
111 		return NULL;
112 	kd->procend = kd->procbase + size;
113 	bp = kd->procbase + pos;
114 	return bp;
115 }
116 
117 /*
118  * note: this function is also used by /usr/src/sys/kern/kern_kinfo.c as
119  * compiled by userland.
120  */
121 dev_t
122 dev2udev(cdev_t dev)
123 {
124 	if (dev == NULL)
125 		return NOUDEV;
126 	if ((dev->si_umajor & 0xffffff00) ||
127 	    (dev->si_uminor & 0x0000ff00)) {
128 		return NOUDEV;
129 	}
130 	return((dev->si_umajor << 8) | dev->si_uminor);
131 }
132 
133 /*
134  * Helper routine which traverses the left hand side of a red-black sub-tree.
135  */
136 static uintptr_t
137 kvm_lwptraverse(kvm_t *kd, struct lwp *lwp, uintptr_t lwppos)
138 {
139 	for (;;) {
140 		if (KREAD(kd, lwppos, lwp)) {
141 			_kvm_err(kd, kd->program, "can't read lwp at %p",
142 				 (void *)lwppos);
143 			return ((uintptr_t)-1);
144 		}
145 		if (lwp->u.lwp_rbnode.rbe_left == NULL)
146 			break;
147 		lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_left;
148 	}
149 	return(lwppos);
150 }
151 
152 /*
153  * Iterate LWPs in a process.
154  *
155  * The first lwp in a red-black tree is a left-side traversal of the tree.
156  */
157 static uintptr_t
158 kvm_firstlwp(kvm_t *kd, struct lwp *lwp, struct proc *proc)
159 {
160 	return(kvm_lwptraverse(kd, lwp, (uintptr_t)proc->p_lwp_tree.rbh_root));
161 }
162 
163 /*
164  * If the current element is the left side of the parent the next element
165  * will be a left side traversal of the parent's right side.  If the parent
166  * has no right side the next element will be the parent.
167  *
168  * If the current element is the right side of the parent the next element
169  * is the parent.
170  *
171  * If the parent is NULL we are done.
172  */
173 static uintptr_t
174 kvm_nextlwp(kvm_t *kd, uintptr_t lwppos, struct lwp *lwp, struct proc *proc)
175 {
176 	uintptr_t nextpos;
177 
178 	nextpos = (uintptr_t)lwp->u.lwp_rbnode.rbe_parent;
179 	if (nextpos) {
180 		if (KREAD(kd, nextpos, lwp)) {
181 			_kvm_err(kd, kd->program, "can't read lwp at %p",
182 				 (void *)lwppos);
183 			return ((uintptr_t)-1);
184 		}
185 		if (lwppos == (uintptr_t)lwp->u.lwp_rbnode.rbe_left) {
186 			/*
187 			 * If we had gone down the left side the next element
188 			 * is a left hand traversal of the parent's right
189 			 * side, or the parent itself if there is no right
190 			 * side.
191 			 */
192 			lwppos = (uintptr_t)lwp->u.lwp_rbnode.rbe_right;
193 			if (lwppos)
194 				nextpos = kvm_lwptraverse(kd, lwp, lwppos);
195 		} else {
196 			/*
197 			 * If we had gone down the right side the next
198 			 * element is the parent.
199 			 */
200 			/* nextpos = nextpos */
201 		}
202 	}
203 	return(nextpos);
204 }
205 
206 /*
207  * Read proc's from memory file into buffer bp, which has space to hold
208  * at most maxcnt procs.
209  */
210 static int
211 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
212 	     struct kinfo_proc *bp)
213 {
214 	struct pgrp pgrp;
215 	struct pgrp tpgrp;
216 	struct globaldata gdata;
217 	struct session sess;
218 	struct session tsess;
219 	struct tty tty;
220 	struct proc proc;
221 	struct ucred ucred;
222 	struct thread thread;
223 	struct proc pproc;
224 	struct cdev cdev;
225 	struct vmspace vmspace;
226 	struct prison prison;
227 	struct sigacts sigacts;
228 	struct lwp lwp;
229 	uintptr_t lwppos;
230 	int count;
231 	char *wmesg;
232 
233 	count = 0;
234 
235 	for (; p != NULL; p = proc.p_list.le_next) {
236 		if (KREAD(kd, (u_long)p, &proc)) {
237 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
238 			return (-1);
239 		}
240 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred)) {
241 			_kvm_err(kd, kd->program, "can't read ucred at %p",
242 				 proc.p_ucred);
243 			return (-1);
244 		}
245 		proc.p_ucred = &ucred;
246 
247 		switch(what & ~KERN_PROC_FLAGMASK) {
248 
249 		case KERN_PROC_PID:
250 			if (proc.p_pid != (pid_t)arg)
251 				continue;
252 			break;
253 
254 		case KERN_PROC_UID:
255 			if (ucred.cr_uid != (uid_t)arg)
256 				continue;
257 			break;
258 
259 		case KERN_PROC_RUID:
260 			if (ucred.cr_ruid != (uid_t)arg)
261 				continue;
262 			break;
263 		}
264 
265 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
266 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
267 				 proc.p_pgrp);
268 			return (-1);
269 		}
270 		proc.p_pgrp = &pgrp;
271 		if (proc.p_pptr) {
272 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
273 			_kvm_err(kd, kd->program, "can't read pproc at %x",
274 				 proc.p_pptr);
275 			return (-1);
276 		  }
277 		  proc.p_pptr = &pproc;
278 		}
279 
280 		if (proc.p_sigacts) {
281 			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
282 				_kvm_err(kd, kd->program,
283 					 "can't read sigacts at %p",
284 					 proc.p_sigacts);
285 				return (-1);
286 			}
287 			proc.p_sigacts = &sigacts;
288 		}
289 
290 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
291 			_kvm_err(kd, kd->program, "can't read session at %x",
292 				pgrp.pg_session);
293 			return (-1);
294 		}
295 		pgrp.pg_session = &sess;
296 
297 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
298 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
299 				_kvm_err(kd, kd->program,
300 					 "can't read tty at %x", sess.s_ttyp);
301 				return (-1);
302 			}
303 			sess.s_ttyp = &tty;
304 			if (tty.t_dev && tty.t_dev != NULL) {
305 				if (KREAD(kd, (u_long)tty.t_dev, &cdev))
306 					tty.t_dev = NULL;
307 				else
308 					tty.t_dev = &cdev;
309 			}
310 			if (tty.t_pgrp != NULL) {
311 				if (KREAD(kd, (u_long)tty.t_pgrp, &tpgrp)) {
312 					_kvm_err(kd, kd->program,
313 						 "can't read tpgrp at %x",
314 						tty.t_pgrp);
315 					return (-1);
316 				}
317 				tty.t_pgrp = &tpgrp;
318 			}
319 			if (tty.t_session != NULL) {
320 				if (KREAD(kd, (u_long)tty.t_session, &tsess)) {
321 					_kvm_err(kd, kd->program,
322 						 "can't read tsess at %p",
323 						tty.t_session);
324 					return (-1);
325 				}
326 				tty.t_session = &tsess;
327 			}
328 		}
329 
330 		if (KREAD(kd, (u_long)proc.p_vmspace, &vmspace)) {
331 			_kvm_err(kd, kd->program, "can't read vmspace at %p",
332 				 proc.p_vmspace);
333 			return (-1);
334 		}
335 		proc.p_vmspace = &vmspace;
336 
337 		if (ucred.cr_prison != NULL) {
338 			if (KREAD(kd, (u_long)ucred.cr_prison, &prison)) {
339 				_kvm_err(kd, kd->program, "can't read prison at %p",
340 					 ucred.cr_prison);
341 				return (-1);
342 			}
343 			ucred.cr_prison = &prison;
344 		}
345 
346 		switch (what & ~KERN_PROC_FLAGMASK) {
347 
348 		case KERN_PROC_PGRP:
349 			if (proc.p_pgrp->pg_id != (pid_t)arg)
350 				continue;
351 			break;
352 
353 		case KERN_PROC_TTY:
354 			if ((proc.p_flag & P_CONTROLT) == 0 ||
355 			    dev2udev(proc.p_pgrp->pg_session->s_ttyp->t_dev)
356 					!= (dev_t)arg)
357 				continue;
358 			break;
359 		}
360 
361 		if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
362 			return (-1);
363 		fill_kinfo_proc(&proc, bp);
364 		bp->kp_paddr = (uintptr_t)p;
365 
366 		lwppos = kvm_firstlwp(kd, &lwp, &proc);
367 		if (lwppos == 0) {
368 			bp++;		/* Just export the proc then */
369 			count++;
370 		}
371 		while (lwppos && lwppos != (uintptr_t)-1) {
372 			if (p != lwp.lwp_proc) {
373 				_kvm_err(kd, kd->program, "lwp has wrong parent");
374 				return (-1);
375 			}
376 			lwp.lwp_proc = &proc;
377 			if (KREAD(kd, (u_long)lwp.lwp_thread, &thread)) {
378 				_kvm_err(kd, kd->program, "can't read thread at %x",
379 				    lwp.lwp_thread);
380 				return (-1);
381 			}
382 			lwp.lwp_thread = &thread;
383 
384 			if (thread.td_gd) {
385 				if (KREAD(kd, (u_long)thread.td_gd, &gdata)) {
386 					_kvm_err(kd, kd->program, "can't read"
387 						  " gd at %p",
388 						  thread.td_gd);
389 					return(-1);
390 				}
391 				thread.td_gd = &gdata;
392 			}
393 			if (thread.td_wmesg) {
394 				wmesg = (void *)KREADSTR(kd, thread.td_wmesg);
395 				if (wmesg == NULL) {
396 					_kvm_err(kd, kd->program, "can't read"
397 						  " wmesg %p",
398 						  thread.td_wmesg);
399 					return(-1);
400 				}
401 				thread.td_wmesg = wmesg;
402 			} else {
403 				wmesg = NULL;
404 			}
405 
406 			if ((bp = kinfo_resize_proc(kd, bp)) == NULL)
407 				return (-1);
408 			fill_kinfo_proc(&proc, bp);
409 			fill_kinfo_lwp(&lwp, &bp->kp_lwp);
410 			bp->kp_paddr = (uintptr_t)p;
411 			bp++;
412 			count++;
413 			if (wmesg)
414 				free(wmesg);
415 			if ((what & KERN_PROC_FLAG_LWP) == 0)
416 				break;
417 			lwppos = kvm_nextlwp(kd, lwppos, &lwp, &proc);
418 		}
419 		if (lwppos == (uintptr_t)-1)
420 			return(-1);
421 	}
422 	return (count);
423 }
424 
425 /*
426  * Build proc info array by reading in proc list from a crash dump.
427  * We reallocate kd->procbase as necessary.
428  */
429 static int
430 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
431 	      u_long a_zombproc)
432 {
433 	struct kinfo_proc *bp = kd->procbase;
434 	int acnt, zcnt;
435 	struct proc *p;
436 
437 	if (KREAD(kd, a_allproc, &p)) {
438 		_kvm_err(kd, kd->program, "cannot read allproc");
439 		return (-1);
440 	}
441 	acnt = kvm_proclist(kd, what, arg, p, bp);
442 	if (acnt < 0)
443 		return (acnt);
444 
445 	if (KREAD(kd, a_zombproc, &p)) {
446 		_kvm_err(kd, kd->program, "cannot read zombproc");
447 		return (-1);
448 	}
449 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt);
450 	if (zcnt < 0)
451 		zcnt = 0;
452 
453 	return (acnt + zcnt);
454 }
455 
456 struct kinfo_proc *
457 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
458 {
459 	int mib[4], st, nprocs;
460 	int miblen = ((op & ~KERN_PROC_FLAGMASK) == KERN_PROC_ALL) ? 3 : 4;
461 	size_t size;
462 
463 	if (kd->procbase != 0) {
464 		free((void *)kd->procbase);
465 		/*
466 		 * Clear this pointer in case this call fails.  Otherwise,
467 		 * kvm_close() will free it again.
468 		 */
469 		kd->procbase = 0;
470 	}
471 	if (ISALIVE(kd)) {
472 		size = 0;
473 		mib[0] = CTL_KERN;
474 		mib[1] = KERN_PROC;
475 		mib[2] = op;
476 		mib[3] = arg;
477 		st = sysctl(mib, miblen, NULL, &size, NULL, 0);
478 		if (st == -1) {
479 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
480 			return (0);
481 		}
482 		do {
483 			size += size / 10;
484 			kd->procbase = (struct kinfo_proc *)
485 			    _kvm_realloc(kd, kd->procbase, size);
486 			if (kd->procbase == 0)
487 				return (0);
488 			st = sysctl(mib, miblen, kd->procbase, &size, NULL, 0);
489 		} while (st == -1 && errno == ENOMEM);
490 		if (st == -1) {
491 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
492 			return (0);
493 		}
494 		if (size % sizeof(struct kinfo_proc) != 0) {
495 			_kvm_err(kd, kd->program,
496 				"proc size mismatch (%d total, %d chunks)",
497 				size, sizeof(struct kinfo_proc));
498 			return (0);
499 		}
500 		nprocs = size / sizeof(struct kinfo_proc);
501 	} else {
502 		struct nlist nl[4], *p;
503 
504 		nl[0].n_name = "_nprocs";
505 		nl[1].n_name = "_allproc";
506 		nl[2].n_name = "_zombproc";
507 		nl[3].n_name = 0;
508 
509 		if (kvm_nlist(kd, nl) != 0) {
510 			for (p = nl; p->n_type != 0; ++p)
511 				;
512 			_kvm_err(kd, kd->program,
513 				 "%s: no such symbol", p->n_name);
514 			return (0);
515 		}
516 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
517 			_kvm_err(kd, kd->program, "can't read nprocs");
518 			return (0);
519 		}
520 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
521 				      nl[2].n_value);
522 #ifdef notdef
523 		size = nprocs * sizeof(struct kinfo_proc);
524 		(void)realloc(kd->procbase, size);
525 #endif
526 	}
527 	*cnt = nprocs;
528 	return (kd->procbase);
529 }
530 
531 void
532 _kvm_freeprocs(kvm_t *kd)
533 {
534 	if (kd->procbase) {
535 		free(kd->procbase);
536 		kd->procbase = 0;
537 	}
538 }
539 
540 void *
541 _kvm_realloc(kvm_t *kd, void *p, size_t n)
542 {
543 	void *np = (void *)realloc(p, n);
544 
545 	if (np == 0) {
546 		free(p);
547 		_kvm_err(kd, kd->program, "out of memory");
548 	}
549 	return (np);
550 }
551 
552 #ifndef MAX
553 #define MAX(a, b) ((a) > (b) ? (a) : (b))
554 #endif
555 
556 /*
557  * Read in an argument vector from the user address space of process pid.
558  * addr if the user-space base address of narg null-terminated contiguous
559  * strings.  This is used to read in both the command arguments and
560  * environment strings.  Read at most maxcnt characters of strings.
561  */
562 static char **
563 kvm_argv(kvm_t *kd, pid_t pid, u_long addr, int narg, int maxcnt)
564 {
565 	char *np, *cp, *ep, *ap;
566 	u_long oaddr = -1;
567 	int len, cc;
568 	char **argv;
569 
570 	/*
571 	 * Check that there aren't an unreasonable number of agruments,
572 	 * and that the address is in user space.
573 	 */
574 	if (narg > 512 ||
575 	    addr < VM_MIN_USER_ADDRESS || addr >= VM_MAX_USER_ADDRESS) {
576 		return (0);
577 	}
578 
579 	/*
580 	 * kd->argv : work space for fetching the strings from the target
581 	 *            process's space, and is converted for returning to caller
582 	 */
583 	if (kd->argv == 0) {
584 		/*
585 		 * Try to avoid reallocs.
586 		 */
587 		kd->argc = MAX(narg + 1, 32);
588 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
589 						sizeof(*kd->argv));
590 		if (kd->argv == 0)
591 			return (0);
592 	} else if (narg + 1 > kd->argc) {
593 		kd->argc = MAX(2 * kd->argc, narg + 1);
594 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
595 						sizeof(*kd->argv));
596 		if (kd->argv == 0)
597 			return (0);
598 	}
599 	/*
600 	 * kd->argspc : returned to user, this is where the kd->argv
601 	 *              arrays are left pointing to the collected strings.
602 	 */
603 	if (kd->argspc == 0) {
604 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
605 		if (kd->argspc == 0)
606 			return (0);
607 		kd->arglen = PAGE_SIZE;
608 	}
609 	/*
610 	 * kd->argbuf : used to pull in pages from the target process.
611 	 *              the strings are copied out of here.
612 	 */
613 	if (kd->argbuf == 0) {
614 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
615 		if (kd->argbuf == 0)
616 			return (0);
617 	}
618 
619 	/* Pull in the target process'es argv vector */
620 	cc = sizeof(char *) * narg;
621 	if (kvm_uread(kd, pid, addr, (char *)kd->argv, cc) != cc)
622 		return (0);
623 	/*
624 	 * ap : saved start address of string we're working on in kd->argspc
625 	 * np : pointer to next place to write in kd->argspc
626 	 * len: length of data in kd->argspc
627 	 * argv: pointer to the argv vector that we are hunting around the
628 	 *       target process space for, and converting to addresses in
629 	 *       our address space (kd->argspc).
630 	 */
631 	ap = np = kd->argspc;
632 	argv = kd->argv;
633 	len = 0;
634 	/*
635 	 * Loop over pages, filling in the argument vector.
636 	 * Note that the argv strings could be pointing *anywhere* in
637 	 * the user address space and are no longer contiguous.
638 	 * Note that *argv is modified when we are going to fetch a string
639 	 * that crosses a page boundary.  We copy the next part of the string
640 	 * into to "np" and eventually convert the pointer.
641 	 */
642 	while (argv < kd->argv + narg && *argv != 0) {
643 
644 		/* get the address that the current argv string is on */
645 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
646 
647 		/* is it the same page as the last one? */
648 		if (addr != oaddr) {
649 			if (kvm_uread(kd, pid, addr, kd->argbuf, PAGE_SIZE) !=
650 			    PAGE_SIZE)
651 				return (0);
652 			oaddr = addr;
653 		}
654 
655 		/* offset within the page... kd->argbuf */
656 		addr = (u_long)*argv & (PAGE_SIZE - 1);
657 
658 		/* cp = start of string, cc = count of chars in this chunk */
659 		cp = kd->argbuf + addr;
660 		cc = PAGE_SIZE - addr;
661 
662 		/* dont get more than asked for by user process */
663 		if (maxcnt > 0 && cc > maxcnt - len)
664 			cc = maxcnt - len;
665 
666 		/* pointer to end of string if we found it in this page */
667 		ep = memchr(cp, '\0', cc);
668 		if (ep != 0)
669 			cc = ep - cp + 1;
670 		/*
671 		 * at this point, cc is the count of the chars that we are
672 		 * going to retrieve this time. we may or may not have found
673 		 * the end of it.  (ep points to the null if the end is known)
674 		 */
675 
676 		/* will we exceed the malloc/realloced buffer? */
677 		if (len + cc > kd->arglen) {
678 			int off;
679 			char **pp;
680 			char *op = kd->argspc;
681 
682 			kd->arglen *= 2;
683 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
684 							  kd->arglen);
685 			if (kd->argspc == 0)
686 				return (0);
687 			/*
688 			 * Adjust argv pointers in case realloc moved
689 			 * the string space.
690 			 */
691 			off = kd->argspc - op;
692 			for (pp = kd->argv; pp < argv; pp++)
693 				*pp += off;
694 			ap += off;
695 			np += off;
696 		}
697 		/* np = where to put the next part of the string in kd->argspc*/
698 		/* np is kinda redundant.. could use "kd->argspc + len" */
699 		memcpy(np, cp, cc);
700 		np += cc;	/* inc counters */
701 		len += cc;
702 
703 		/*
704 		 * if end of string found, set the *argv pointer to the
705 		 * saved beginning of string, and advance. argv points to
706 		 * somewhere in kd->argv..  This is initially relative
707 		 * to the target process, but when we close it off, we set
708 		 * it to point in our address space.
709 		 */
710 		if (ep != 0) {
711 			*argv++ = ap;
712 			ap = np;
713 		} else {
714 			/* update the address relative to the target process */
715 			*argv += cc;
716 		}
717 
718 		if (maxcnt > 0 && len >= maxcnt) {
719 			/*
720 			 * We're stopping prematurely.  Terminate the
721 			 * current string.
722 			 */
723 			if (ep == 0) {
724 				*np = '\0';
725 				*argv++ = ap;
726 			}
727 			break;
728 		}
729 	}
730 	/* Make sure argv is terminated. */
731 	*argv = 0;
732 	return (kd->argv);
733 }
734 
735 static void
736 ps_str_a(struct ps_strings *p, u_long *addr, int *n)
737 {
738 	*addr = (u_long)p->ps_argvstr;
739 	*n = p->ps_nargvstr;
740 }
741 
742 static void
743 ps_str_e(struct ps_strings *p, u_long *addr, int *n)
744 {
745 	*addr = (u_long)p->ps_envstr;
746 	*n = p->ps_nenvstr;
747 }
748 
749 /*
750  * Determine if the proc indicated by p is still active.
751  * This test is not 100% foolproof in theory, but chances of
752  * being wrong are very low.
753  */
754 static int
755 proc_verify(kvm_t *kd, const struct kinfo_proc *p)
756 {
757 	struct kinfo_proc kp;
758 	int mib[4];
759 	size_t len;
760 	int error;
761 
762 	mib[0] = CTL_KERN;
763 	mib[1] = KERN_PROC;
764 	mib[2] = KERN_PROC_PID;
765 	mib[3] = p->kp_pid;
766 
767 	len = sizeof(kp);
768 	error = sysctl(mib, 4, &kp, &len, NULL, 0);
769 	if (error)
770 		return (0);
771 
772 	error = (p->kp_pid == kp.kp_pid &&
773 	    (kp.kp_stat != SZOMB || p->kp_stat == SZOMB));
774 	return (error);
775 }
776 
777 static char **
778 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr,
779 	   void (*info)(struct ps_strings *, u_long *, int *))
780 {
781 	char **ap;
782 	u_long addr;
783 	int cnt;
784 	static struct ps_strings arginfo;
785 	static u_long ps_strings;
786 	size_t len;
787 
788 	if (ps_strings == 0) {
789 		len = sizeof(ps_strings);
790 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
791 		    0) == -1)
792 			ps_strings = PS_STRINGS;
793 	}
794 
795 	/*
796 	 * Pointers are stored at the top of the user stack.
797 	 */
798 	if (kp->kp_stat == SZOMB ||
799 	    kvm_uread(kd, kp->kp_pid, ps_strings, (char *)&arginfo,
800 		      sizeof(arginfo)) != sizeof(arginfo))
801 		return (0);
802 
803 	(*info)(&arginfo, &addr, &cnt);
804 	if (cnt == 0)
805 		return (0);
806 	ap = kvm_argv(kd, kp->kp_pid, addr, cnt, nchr);
807 	/*
808 	 * For live kernels, make sure this process didn't go away.
809 	 */
810 	if (ap != 0 && ISALIVE(kd) &&
811 	    !proc_verify(kd, kp))
812 		ap = 0;
813 	return (ap);
814 }
815 
816 /*
817  * Get the command args.  This code is now machine independent.
818  */
819 char **
820 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
821 {
822 	int oid[4];
823 	int i;
824 	size_t bufsz;
825 	static unsigned long buflen;
826 	static char *buf, *p;
827 	static char **bufp;
828 	static int argc;
829 
830 	if (!ISALIVE(kd)) {
831 		_kvm_err(kd, kd->program,
832 		    "cannot read user space from dead kernel");
833 		return (0);
834 	}
835 
836 	if (!buflen) {
837 		bufsz = sizeof(buflen);
838 		i = sysctlbyname("kern.ps_arg_cache_limit",
839 		    &buflen, &bufsz, NULL, 0);
840 		if (i == -1) {
841 			buflen = 0;
842 		} else {
843 			buf = malloc(buflen);
844 			if (buf == NULL)
845 				buflen = 0;
846 			argc = 32;
847 			bufp = malloc(sizeof(char *) * argc);
848 		}
849 	}
850 	if (buf != NULL) {
851 		oid[0] = CTL_KERN;
852 		oid[1] = KERN_PROC;
853 		oid[2] = KERN_PROC_ARGS;
854 		oid[3] = kp->kp_pid;
855 		bufsz = buflen;
856 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
857 		if (i == 0 && bufsz > 0) {
858 			i = 0;
859 			p = buf;
860 			do {
861 				bufp[i++] = p;
862 				p += strlen(p) + 1;
863 				if (i >= argc) {
864 					argc += argc;
865 					bufp = realloc(bufp,
866 					    sizeof(char *) * argc);
867 				}
868 			} while (p < buf + bufsz);
869 			bufp[i++] = 0;
870 			return (bufp);
871 		}
872 	}
873 	if (kp->kp_flags & P_SYSTEM)
874 		return (NULL);
875 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
876 }
877 
878 char **
879 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
880 {
881 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
882 }
883 
884 /*
885  * Read from user space.  The user context is given by pid.
886  */
887 ssize_t
888 kvm_uread(kvm_t *kd, pid_t pid, u_long uva, char *buf, size_t len)
889 {
890 	char *cp;
891 	char procfile[MAXPATHLEN];
892 	ssize_t amount;
893 	int fd;
894 
895 	if (!ISALIVE(kd)) {
896 		_kvm_err(kd, kd->program,
897 		    "cannot read user space from dead kernel");
898 		return (0);
899 	}
900 
901 	sprintf(procfile, "/proc/%d/mem", pid);
902 	fd = open(procfile, O_RDONLY, 0);
903 	if (fd < 0) {
904 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
905 		close(fd);
906 		return (0);
907 	}
908 
909 	cp = buf;
910 	while (len > 0) {
911 		errno = 0;
912 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
913 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
914 			    uva, procfile);
915 			break;
916 		}
917 		amount = read(fd, cp, len);
918 		if (amount < 0) {
919 			_kvm_syserr(kd, kd->program, "error reading %s",
920 			    procfile);
921 			break;
922 		}
923 		if (amount == 0) {
924 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
925 			break;
926 		}
927 		cp += amount;
928 		uva += amount;
929 		len -= amount;
930 	}
931 
932 	close(fd);
933 	return ((ssize_t)(cp - buf));
934 }
935