xref: /dragonfly/lib/libnvmm/libnvmm_x86.c (revision 9cc8047e)
1 /*	$NetBSD: libnvmm_x86.c,v 1.43 2020/12/27 20:56:14 reinoud Exp $	*/
2 
3 /*
4  * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5  * All rights reserved.
6  *
7  * This code is part of the NVMM hypervisor.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #include <sys/cdefs.h>
32 #include <sys/ioctl.h>
33 #include <sys/mman.h>
34 
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <unistd.h>
39 #include <fcntl.h>
40 #include <errno.h>
41 
42 #include <machine/psl.h>
43 #include <machine/specialreg.h>
44 
45 /* -------------------------------------------------------------------------- */
46 
47 /*
48  * Undocumented debugging function. Helpful.
49  */
50 int
51 nvmm_vcpu_dump(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
52 {
53 	struct nvmm_x64_state *state = vcpu->state;
54 	uint16_t *attr;
55 	size_t i;
56 	int ret;
57 
58 	const char *segnames[] = {
59 		"ES", "CS", "SS", "DS", "FS", "GS", "GDT", "IDT", "LDT", "TR"
60 	};
61 
62 	ret = nvmm_vcpu_getstate(mach, vcpu, NVMM_X64_STATE_ALL);
63 	if (ret == -1)
64 		return -1;
65 
66 	printf("+ VCPU id=%d\n", (int)vcpu->cpuid);
67 	printf("| -> RAX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RAX]);
68 	printf("| -> RCX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RCX]);
69 	printf("| -> RDX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RDX]);
70 	printf("| -> RBX=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBX]);
71 	printf("| -> RSP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSP]);
72 	printf("| -> RBP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RBP]);
73 	printf("| -> RSI=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RSI]);
74 	printf("| -> RDI=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RDI]);
75 	printf("| -> RIP=%"PRIx64"\n", state->gprs[NVMM_X64_GPR_RIP]);
76 	printf("| -> RFLAGS=%p\n", (void *)state->gprs[NVMM_X64_GPR_RFLAGS]);
77 	for (i = 0; i < NVMM_X64_NSEG; i++) {
78 		attr = (uint16_t *)&state->segs[i].attrib;
79 		printf("| -> %s: sel=0x%x base=%"PRIx64", limit=%x, "
80 		    "attrib=%x [type=%d,l=%d,def=%d]\n",
81 		    segnames[i],
82 		    state->segs[i].selector,
83 		    state->segs[i].base,
84 		    state->segs[i].limit,
85 		    *attr,
86 		    state->segs[i].attrib.type,
87 		    state->segs[i].attrib.l,
88 		    state->segs[i].attrib.def);
89 	}
90 	printf("| -> MSR_EFER=%"PRIx64"\n", state->msrs[NVMM_X64_MSR_EFER]);
91 	printf("| -> CR0=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR0]);
92 	printf("| -> CR3=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR3]);
93 	printf("| -> CR4=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR4]);
94 	printf("| -> CR8=%"PRIx64"\n", state->crs[NVMM_X64_CR_CR8]);
95 
96 	return 0;
97 }
98 
99 /* -------------------------------------------------------------------------- */
100 
101 #define PTE32_L1_SHIFT	12
102 #define PTE32_L2_SHIFT	22
103 
104 #define PTE32_L2_MASK	0xffc00000
105 #define PTE32_L1_MASK	0x003ff000
106 
107 #define PTE32_L2_FRAME	(PTE32_L2_MASK)
108 #define PTE32_L1_FRAME	(PTE32_L2_FRAME|PTE32_L1_MASK)
109 
110 #define pte32_l1idx(va)	(((va) & PTE32_L1_MASK) >> PTE32_L1_SHIFT)
111 #define pte32_l2idx(va)	(((va) & PTE32_L2_MASK) >> PTE32_L2_SHIFT)
112 
113 #define CR3_FRAME_32BIT	__BITS(31, 12)
114 
115 typedef uint32_t pte_32bit_t;
116 
117 static int
118 x86_gva_to_gpa_32bit(struct nvmm_machine *mach, uint64_t cr3,
119     gvaddr_t gva, gpaddr_t *gpa, bool has_pse, nvmm_prot_t *prot)
120 {
121 	gpaddr_t L2gpa, L1gpa;
122 	uintptr_t L2hva, L1hva;
123 	pte_32bit_t *pdir, pte;
124 	nvmm_prot_t pageprot;
125 
126 	/* We begin with an RWXU access. */
127 	*prot = NVMM_PROT_ALL;
128 
129 	/* Parse L2. */
130 	L2gpa = (cr3 & CR3_FRAME_32BIT);
131 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
132 		return -1;
133 	pdir = (pte_32bit_t *)L2hva;
134 	pte = pdir[pte32_l2idx(gva)];
135 	if ((pte & PTE_P) == 0)
136 		return -1;
137 	if ((pte & PTE_U) == 0)
138 		*prot &= ~NVMM_PROT_USER;
139 	if ((pte & PTE_W) == 0)
140 		*prot &= ~NVMM_PROT_WRITE;
141 	if ((pte & PTE_PS) && !has_pse)
142 		return -1;
143 	if (pte & PTE_PS) {
144 		*gpa = (pte & PTE32_L2_FRAME);
145 		*gpa = *gpa + (gva & PTE32_L1_MASK);
146 		return 0;
147 	}
148 
149 	/* Parse L1. */
150 	L1gpa = (pte & PTE_FRAME);
151 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
152 		return -1;
153 	pdir = (pte_32bit_t *)L1hva;
154 	pte = pdir[pte32_l1idx(gva)];
155 	if ((pte & PTE_P) == 0)
156 		return -1;
157 	if ((pte & PTE_U) == 0)
158 		*prot &= ~NVMM_PROT_USER;
159 	if ((pte & PTE_W) == 0)
160 		*prot &= ~NVMM_PROT_WRITE;
161 	if (pte & PTE_PS)
162 		return -1;
163 
164 	*gpa = (pte & PTE_FRAME);
165 	return 0;
166 }
167 
168 /* -------------------------------------------------------------------------- */
169 
170 #define	PTE32_PAE_L1_SHIFT	12
171 #define	PTE32_PAE_L2_SHIFT	21
172 #define	PTE32_PAE_L3_SHIFT	30
173 
174 #define	PTE32_PAE_L3_MASK	0xc0000000
175 #define	PTE32_PAE_L2_MASK	0x3fe00000
176 #define	PTE32_PAE_L1_MASK	0x001ff000
177 
178 #define	PTE32_PAE_L3_FRAME	(PTE32_PAE_L3_MASK)
179 #define	PTE32_PAE_L2_FRAME	(PTE32_PAE_L3_FRAME|PTE32_PAE_L2_MASK)
180 #define	PTE32_PAE_L1_FRAME	(PTE32_PAE_L2_FRAME|PTE32_PAE_L1_MASK)
181 
182 #define pte32_pae_l1idx(va)	(((va) & PTE32_PAE_L1_MASK) >> PTE32_PAE_L1_SHIFT)
183 #define pte32_pae_l2idx(va)	(((va) & PTE32_PAE_L2_MASK) >> PTE32_PAE_L2_SHIFT)
184 #define pte32_pae_l3idx(va)	(((va) & PTE32_PAE_L3_MASK) >> PTE32_PAE_L3_SHIFT)
185 
186 #define CR3_FRAME_32BIT_PAE	__BITS(31, 5)
187 
188 typedef uint64_t pte_32bit_pae_t;
189 
190 static int
191 x86_gva_to_gpa_32bit_pae(struct nvmm_machine *mach, uint64_t cr3,
192     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
193 {
194 	gpaddr_t L3gpa, L2gpa, L1gpa;
195 	uintptr_t L3hva, L2hva, L1hva;
196 	pte_32bit_pae_t *pdir, pte;
197 	nvmm_prot_t pageprot;
198 
199 	/* We begin with an RWXU access. */
200 	*prot = NVMM_PROT_ALL;
201 
202 	/* Parse L3. */
203 	L3gpa = (cr3 & CR3_FRAME_32BIT_PAE);
204 	if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
205 		return -1;
206 	pdir = (pte_32bit_pae_t *)L3hva;
207 	pte = pdir[pte32_pae_l3idx(gva)];
208 	if ((pte & PTE_P) == 0)
209 		return -1;
210 	if (pte & PTE_NX)
211 		*prot &= ~NVMM_PROT_EXEC;
212 	if (pte & PTE_PS)
213 		return -1;
214 
215 	/* Parse L2. */
216 	L2gpa = (pte & PTE_FRAME);
217 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
218 		return -1;
219 	pdir = (pte_32bit_pae_t *)L2hva;
220 	pte = pdir[pte32_pae_l2idx(gva)];
221 	if ((pte & PTE_P) == 0)
222 		return -1;
223 	if ((pte & PTE_U) == 0)
224 		*prot &= ~NVMM_PROT_USER;
225 	if ((pte & PTE_W) == 0)
226 		*prot &= ~NVMM_PROT_WRITE;
227 	if (pte & PTE_NX)
228 		*prot &= ~NVMM_PROT_EXEC;
229 	if (pte & PTE_PS) {
230 		*gpa = (pte & PTE32_PAE_L2_FRAME);
231 		*gpa = *gpa + (gva & PTE32_PAE_L1_MASK);
232 		return 0;
233 	}
234 
235 	/* Parse L1. */
236 	L1gpa = (pte & PTE_FRAME);
237 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
238 		return -1;
239 	pdir = (pte_32bit_pae_t *)L1hva;
240 	pte = pdir[pte32_pae_l1idx(gva)];
241 	if ((pte & PTE_P) == 0)
242 		return -1;
243 	if ((pte & PTE_U) == 0)
244 		*prot &= ~NVMM_PROT_USER;
245 	if ((pte & PTE_W) == 0)
246 		*prot &= ~NVMM_PROT_WRITE;
247 	if (pte & PTE_NX)
248 		*prot &= ~NVMM_PROT_EXEC;
249 	if (pte & PTE_PS)
250 		return -1;
251 
252 	*gpa = (pte & PTE_FRAME);
253 	return 0;
254 }
255 
256 /* -------------------------------------------------------------------------- */
257 
258 #define PTE64_L1_SHIFT	12
259 #define PTE64_L2_SHIFT	21
260 #define PTE64_L3_SHIFT	30
261 #define PTE64_L4_SHIFT	39
262 
263 #define PTE64_L4_MASK	0x0000ff8000000000
264 #define PTE64_L3_MASK	0x0000007fc0000000
265 #define PTE64_L2_MASK	0x000000003fe00000
266 #define PTE64_L1_MASK	0x00000000001ff000
267 
268 #define PTE64_L4_FRAME	PTE64_L4_MASK
269 #define PTE64_L3_FRAME	(PTE64_L4_FRAME|PTE64_L3_MASK)
270 #define PTE64_L2_FRAME	(PTE64_L3_FRAME|PTE64_L2_MASK)
271 #define PTE64_L1_FRAME	(PTE64_L2_FRAME|PTE64_L1_MASK)
272 
273 #define pte64_l1idx(va)	(((va) & PTE64_L1_MASK) >> PTE64_L1_SHIFT)
274 #define pte64_l2idx(va)	(((va) & PTE64_L2_MASK) >> PTE64_L2_SHIFT)
275 #define pte64_l3idx(va)	(((va) & PTE64_L3_MASK) >> PTE64_L3_SHIFT)
276 #define pte64_l4idx(va)	(((va) & PTE64_L4_MASK) >> PTE64_L4_SHIFT)
277 
278 #define CR3_FRAME_64BIT	__BITS(51, 12)
279 
280 typedef uint64_t pte_64bit_t;
281 
282 static inline bool
283 x86_gva_64bit_canonical(gvaddr_t gva)
284 {
285 	/* Bits 63:47 must have the same value. */
286 #define SIGN_EXTEND	0xffff800000000000ULL
287 	return (gva & SIGN_EXTEND) == 0 || (gva & SIGN_EXTEND) == SIGN_EXTEND;
288 }
289 
290 static int
291 x86_gva_to_gpa_64bit(struct nvmm_machine *mach, uint64_t cr3,
292     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
293 {
294 	gpaddr_t L4gpa, L3gpa, L2gpa, L1gpa;
295 	uintptr_t L4hva, L3hva, L2hva, L1hva;
296 	pte_64bit_t *pdir, pte;
297 	nvmm_prot_t pageprot;
298 
299 	/* We begin with an RWXU access. */
300 	*prot = NVMM_PROT_ALL;
301 
302 	if (!x86_gva_64bit_canonical(gva))
303 		return -1;
304 
305 	/* Parse L4. */
306 	L4gpa = (cr3 & CR3_FRAME_64BIT);
307 	if (nvmm_gpa_to_hva(mach, L4gpa, &L4hva, &pageprot) == -1)
308 		return -1;
309 	pdir = (pte_64bit_t *)L4hva;
310 	pte = pdir[pte64_l4idx(gva)];
311 	if ((pte & PTE_P) == 0)
312 		return -1;
313 	if ((pte & PTE_U) == 0)
314 		*prot &= ~NVMM_PROT_USER;
315 	if ((pte & PTE_W) == 0)
316 		*prot &= ~NVMM_PROT_WRITE;
317 	if (pte & PTE_NX)
318 		*prot &= ~NVMM_PROT_EXEC;
319 	if (pte & PTE_PS)
320 		return -1;
321 
322 	/* Parse L3. */
323 	L3gpa = (pte & PTE_FRAME);
324 	if (nvmm_gpa_to_hva(mach, L3gpa, &L3hva, &pageprot) == -1)
325 		return -1;
326 	pdir = (pte_64bit_t *)L3hva;
327 	pte = pdir[pte64_l3idx(gva)];
328 	if ((pte & PTE_P) == 0)
329 		return -1;
330 	if ((pte & PTE_U) == 0)
331 		*prot &= ~NVMM_PROT_USER;
332 	if ((pte & PTE_W) == 0)
333 		*prot &= ~NVMM_PROT_WRITE;
334 	if (pte & PTE_NX)
335 		*prot &= ~NVMM_PROT_EXEC;
336 	if (pte & PTE_PS) {
337 		*gpa = (pte & PTE64_L3_FRAME);
338 		*gpa = *gpa + (gva & (PTE64_L2_MASK|PTE64_L1_MASK));
339 		return 0;
340 	}
341 
342 	/* Parse L2. */
343 	L2gpa = (pte & PTE_FRAME);
344 	if (nvmm_gpa_to_hva(mach, L2gpa, &L2hva, &pageprot) == -1)
345 		return -1;
346 	pdir = (pte_64bit_t *)L2hva;
347 	pte = pdir[pte64_l2idx(gva)];
348 	if ((pte & PTE_P) == 0)
349 		return -1;
350 	if ((pte & PTE_U) == 0)
351 		*prot &= ~NVMM_PROT_USER;
352 	if ((pte & PTE_W) == 0)
353 		*prot &= ~NVMM_PROT_WRITE;
354 	if (pte & PTE_NX)
355 		*prot &= ~NVMM_PROT_EXEC;
356 	if (pte & PTE_PS) {
357 		*gpa = (pte & PTE64_L2_FRAME);
358 		*gpa = *gpa + (gva & PTE64_L1_MASK);
359 		return 0;
360 	}
361 
362 	/* Parse L1. */
363 	L1gpa = (pte & PTE_FRAME);
364 	if (nvmm_gpa_to_hva(mach, L1gpa, &L1hva, &pageprot) == -1)
365 		return -1;
366 	pdir = (pte_64bit_t *)L1hva;
367 	pte = pdir[pte64_l1idx(gva)];
368 	if ((pte & PTE_P) == 0)
369 		return -1;
370 	if ((pte & PTE_U) == 0)
371 		*prot &= ~NVMM_PROT_USER;
372 	if ((pte & PTE_W) == 0)
373 		*prot &= ~NVMM_PROT_WRITE;
374 	if (pte & PTE_NX)
375 		*prot &= ~NVMM_PROT_EXEC;
376 	if (pte & PTE_PS)
377 		return -1;
378 
379 	*gpa = (pte & PTE_FRAME);
380 	return 0;
381 }
382 
383 static inline int
384 x86_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_x64_state *state,
385     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
386 {
387 	bool is_pae, is_lng, has_pse;
388 	uint64_t cr3;
389 	size_t off;
390 	int ret;
391 
392 	if ((state->crs[NVMM_X64_CR_CR0] & CR0_PG) == 0) {
393 		/* No paging. */
394 		*prot = NVMM_PROT_ALL;
395 		*gpa = gva;
396 		return 0;
397 	}
398 
399 	off = (gva & PAGE_MASK);
400 	gva &= ~PAGE_MASK;
401 
402 	is_pae = (state->crs[NVMM_X64_CR_CR4] & CR4_PAE) != 0;
403 	is_lng = (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
404 	has_pse = (state->crs[NVMM_X64_CR_CR4] & CR4_PSE) != 0;
405 	cr3 = state->crs[NVMM_X64_CR_CR3];
406 
407 	if (is_pae && is_lng) {
408 		/* 64bit */
409 		ret = x86_gva_to_gpa_64bit(mach, cr3, gva, gpa, prot);
410 	} else if (is_pae && !is_lng) {
411 		/* 32bit PAE */
412 		ret = x86_gva_to_gpa_32bit_pae(mach, cr3, gva, gpa, prot);
413 	} else if (!is_pae && !is_lng) {
414 		/* 32bit */
415 		ret = x86_gva_to_gpa_32bit(mach, cr3, gva, gpa, has_pse, prot);
416 	} else {
417 		ret = -1;
418 	}
419 
420 	if (ret == -1) {
421 		errno = EFAULT;
422 	}
423 
424 	*gpa = *gpa + off;
425 
426 	return ret;
427 }
428 
429 int
430 nvmm_gva_to_gpa(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
431     gvaddr_t gva, gpaddr_t *gpa, nvmm_prot_t *prot)
432 {
433 	struct nvmm_x64_state *state = vcpu->state;
434 	int ret;
435 
436 	ret = nvmm_vcpu_getstate(mach, vcpu,
437 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
438 	if (ret == -1)
439 		return -1;
440 
441 	return x86_gva_to_gpa(mach, state, gva, gpa, prot);
442 }
443 
444 /* -------------------------------------------------------------------------- */
445 
446 #define DISASSEMBLER_BUG()	\
447 	do {			\
448 		errno = EINVAL;	\
449 		return -1;	\
450 	} while (0);
451 
452 static inline bool
453 is_long_mode(struct nvmm_x64_state *state)
454 {
455 	return (state->msrs[NVMM_X64_MSR_EFER] & EFER_LMA) != 0;
456 }
457 
458 static inline bool
459 is_64bit(struct nvmm_x64_state *state)
460 {
461 	return (state->segs[NVMM_X64_SEG_CS].attrib.l != 0);
462 }
463 
464 static inline bool
465 is_32bit(struct nvmm_x64_state *state)
466 {
467 	return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
468 	    (state->segs[NVMM_X64_SEG_CS].attrib.def == 1);
469 }
470 
471 static inline bool
472 is_16bit(struct nvmm_x64_state *state)
473 {
474 	return (state->segs[NVMM_X64_SEG_CS].attrib.l == 0) &&
475 	    (state->segs[NVMM_X64_SEG_CS].attrib.def == 0);
476 }
477 
478 static int
479 segment_check(struct nvmm_x64_state_seg *seg, gvaddr_t gva, size_t size)
480 {
481 	uint64_t limit;
482 
483 	/*
484 	 * This is incomplete. We should check topdown, etc, really that's
485 	 * tiring.
486 	 */
487 	if (__predict_false(!seg->attrib.p)) {
488 		goto error;
489 	}
490 
491 	limit = (uint64_t)seg->limit + 1;
492 	if (__predict_true(seg->attrib.g)) {
493 		limit *= PAGE_SIZE;
494 	}
495 
496 	if (__predict_false(gva + size > limit)) {
497 		goto error;
498 	}
499 
500 	return 0;
501 
502 error:
503 	errno = EFAULT;
504 	return -1;
505 }
506 
507 static inline void
508 segment_apply(struct nvmm_x64_state_seg *seg, gvaddr_t *gva)
509 {
510 	*gva += seg->base;
511 }
512 
513 static inline uint64_t
514 size_to_mask(size_t size)
515 {
516 	switch (size) {
517 	case 1:
518 		return 0x00000000000000FF;
519 	case 2:
520 		return 0x000000000000FFFF;
521 	case 4:
522 		return 0x00000000FFFFFFFF;
523 	case 8:
524 	default:
525 		return 0xFFFFFFFFFFFFFFFF;
526 	}
527 }
528 
529 static uint64_t
530 rep_get_cnt(struct nvmm_x64_state *state, size_t adsize)
531 {
532 	uint64_t mask, cnt;
533 
534 	mask = size_to_mask(adsize);
535 	cnt = state->gprs[NVMM_X64_GPR_RCX] & mask;
536 
537 	return cnt;
538 }
539 
540 static void
541 rep_set_cnt(struct nvmm_x64_state *state, size_t adsize, uint64_t cnt)
542 {
543 	uint64_t mask;
544 
545 	/* XXX: should we zero-extend? */
546 	mask = size_to_mask(adsize);
547 	state->gprs[NVMM_X64_GPR_RCX] &= ~mask;
548 	state->gprs[NVMM_X64_GPR_RCX] |= cnt;
549 }
550 
551 static int
552 read_guest_memory(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
553     gvaddr_t gva, uint8_t *data, size_t size)
554 {
555 	struct nvmm_x64_state *state = vcpu->state;
556 	struct nvmm_mem mem;
557 	nvmm_prot_t prot;
558 	gpaddr_t gpa;
559 	uintptr_t hva;
560 	bool is_mmio;
561 	int ret, remain;
562 
563 	ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
564 	if (__predict_false(ret == -1)) {
565 		return -1;
566 	}
567 	if (__predict_false(!(prot & NVMM_PROT_READ))) {
568 		errno = EFAULT;
569 		return -1;
570 	}
571 
572 	if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
573 		remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
574 	} else {
575 		remain = 0;
576 	}
577 	size -= remain;
578 
579 	ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
580 	is_mmio = (ret == -1);
581 
582 	if (is_mmio) {
583 		mem.mach = mach;
584 		mem.vcpu = vcpu;
585 		mem.data = data;
586 		mem.gpa = gpa;
587 		mem.write = false;
588 		mem.size = size;
589 		(*vcpu->cbs.mem)(&mem);
590 	} else {
591 		if (__predict_false(!(prot & NVMM_PROT_READ))) {
592 			errno = EFAULT;
593 			return -1;
594 		}
595 		memcpy(data, (uint8_t *)hva, size);
596 	}
597 
598 	if (remain > 0) {
599 		ret = read_guest_memory(mach, vcpu, gva + size,
600 		    data + size, remain);
601 	} else {
602 		ret = 0;
603 	}
604 
605 	return ret;
606 }
607 
608 static int
609 write_guest_memory(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
610     gvaddr_t gva, uint8_t *data, size_t size)
611 {
612 	struct nvmm_x64_state *state = vcpu->state;
613 	struct nvmm_mem mem;
614 	nvmm_prot_t prot;
615 	gpaddr_t gpa;
616 	uintptr_t hva;
617 	bool is_mmio;
618 	int ret, remain;
619 
620 	ret = x86_gva_to_gpa(mach, state, gva, &gpa, &prot);
621 	if (__predict_false(ret == -1)) {
622 		return -1;
623 	}
624 	if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
625 		errno = EFAULT;
626 		return -1;
627 	}
628 
629 	if ((gva & PAGE_MASK) + size > PAGE_SIZE) {
630 		remain = ((gva & PAGE_MASK) + size - PAGE_SIZE);
631 	} else {
632 		remain = 0;
633 	}
634 	size -= remain;
635 
636 	ret = nvmm_gpa_to_hva(mach, gpa, &hva, &prot);
637 	is_mmio = (ret == -1);
638 
639 	if (is_mmio) {
640 		mem.mach = mach;
641 		mem.vcpu = vcpu;
642 		mem.data = data;
643 		mem.gpa = gpa;
644 		mem.write = true;
645 		mem.size = size;
646 		(*vcpu->cbs.mem)(&mem);
647 	} else {
648 		if (__predict_false(!(prot & NVMM_PROT_WRITE))) {
649 			errno = EFAULT;
650 			return -1;
651 		}
652 		memcpy((uint8_t *)hva, data, size);
653 	}
654 
655 	if (remain > 0) {
656 		ret = write_guest_memory(mach, vcpu, gva + size,
657 		    data + size, remain);
658 	} else {
659 		ret = 0;
660 	}
661 
662 	return ret;
663 }
664 
665 /* -------------------------------------------------------------------------- */
666 
667 static int fetch_segment(struct nvmm_machine *, struct nvmm_vcpu *);
668 
669 #define NVMM_IO_BATCH_SIZE	32
670 
671 static int
672 assist_io_batch(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
673     struct nvmm_io *io, gvaddr_t gva, uint64_t cnt)
674 {
675 	uint8_t iobuf[NVMM_IO_BATCH_SIZE];
676 	size_t i, iosize, iocnt;
677 	int ret;
678 
679 	cnt = MIN(cnt, NVMM_IO_BATCH_SIZE);
680 	iosize = MIN(io->size * cnt, NVMM_IO_BATCH_SIZE);
681 	iocnt = iosize / io->size;
682 
683 	io->data = iobuf;
684 
685 	if (!io->in) {
686 		ret = read_guest_memory(mach, vcpu, gva, iobuf, iosize);
687 		if (ret == -1)
688 			return -1;
689 	}
690 
691 	for (i = 0; i < iocnt; i++) {
692 		(*vcpu->cbs.io)(io);
693 		io->data += io->size;
694 	}
695 
696 	if (io->in) {
697 		ret = write_guest_memory(mach, vcpu, gva, iobuf, iosize);
698 		if (ret == -1)
699 			return -1;
700 	}
701 
702 	return iocnt;
703 }
704 
705 int
706 nvmm_assist_io(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
707 {
708 	struct nvmm_x64_state *state = vcpu->state;
709 	struct nvmm_vcpu_exit *exit = vcpu->exit;
710 	struct nvmm_io io;
711 	uint64_t cnt = 0; /* GCC */
712 	uint8_t iobuf[8];
713 	int iocnt = 1;
714 	gvaddr_t gva = 0; /* GCC */
715 	int reg = 0; /* GCC */
716 	int ret, seg;
717 	bool psld = false;
718 
719 	if (__predict_false(exit->reason != NVMM_VCPU_EXIT_IO)) {
720 		errno = EINVAL;
721 		return -1;
722 	}
723 
724 	io.mach = mach;
725 	io.vcpu = vcpu;
726 	io.port = exit->u.io.port;
727 	io.in = exit->u.io.in;
728 	io.size = exit->u.io.operand_size;
729 	io.data = iobuf;
730 
731 	ret = nvmm_vcpu_getstate(mach, vcpu,
732 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
733 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
734 	if (ret == -1)
735 		return -1;
736 
737 	if (exit->u.io.rep) {
738 		cnt = rep_get_cnt(state, exit->u.io.address_size);
739 		if (__predict_false(cnt == 0)) {
740 			state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
741 			goto out;
742 		}
743 	}
744 
745 	if (__predict_false(state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_D)) {
746 		psld = true;
747 	}
748 
749 	/*
750 	 * Determine GVA.
751 	 */
752 	if (exit->u.io.str) {
753 		if (io.in) {
754 			reg = NVMM_X64_GPR_RDI;
755 		} else {
756 			reg = NVMM_X64_GPR_RSI;
757 		}
758 
759 		gva = state->gprs[reg];
760 		gva &= size_to_mask(exit->u.io.address_size);
761 
762 		if (exit->u.io.seg != -1) {
763 			seg = exit->u.io.seg;
764 		} else {
765 			if (io.in) {
766 				seg = NVMM_X64_SEG_ES;
767 			} else {
768 				seg = fetch_segment(mach, vcpu);
769 				if (seg == -1)
770 					return -1;
771 			}
772 		}
773 
774 		if (__predict_true(is_long_mode(state))) {
775 			if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
776 				segment_apply(&state->segs[seg], &gva);
777 			}
778 		} else {
779 			ret = segment_check(&state->segs[seg], gva, io.size);
780 			if (ret == -1)
781 				return -1;
782 			segment_apply(&state->segs[seg], &gva);
783 		}
784 
785 		if (exit->u.io.rep && !psld) {
786 			iocnt = assist_io_batch(mach, vcpu, &io, gva, cnt);
787 			if (iocnt == -1)
788 				return -1;
789 			goto done;
790 		}
791 	}
792 
793 	if (!io.in) {
794 		if (!exit->u.io.str) {
795 			memcpy(io.data, &state->gprs[NVMM_X64_GPR_RAX], io.size);
796 		} else {
797 			ret = read_guest_memory(mach, vcpu, gva, io.data,
798 			    io.size);
799 			if (ret == -1)
800 				return -1;
801 		}
802 	}
803 
804 	(*vcpu->cbs.io)(&io);
805 
806 	if (io.in) {
807 		if (!exit->u.io.str) {
808 			memcpy(&state->gprs[NVMM_X64_GPR_RAX], io.data, io.size);
809 			if (io.size == 4) {
810 				/* Zero-extend to 64 bits. */
811 				state->gprs[NVMM_X64_GPR_RAX] &= size_to_mask(4);
812 			}
813 		} else {
814 			ret = write_guest_memory(mach, vcpu, gva, io.data,
815 			    io.size);
816 			if (ret == -1)
817 				return -1;
818 		}
819 	}
820 
821 done:
822 	if (exit->u.io.str) {
823 		if (__predict_false(psld)) {
824 			state->gprs[reg] -= iocnt * io.size;
825 		} else {
826 			state->gprs[reg] += iocnt * io.size;
827 		}
828 	}
829 
830 	if (exit->u.io.rep) {
831 		cnt -= iocnt;
832 		rep_set_cnt(state, exit->u.io.address_size, cnt);
833 		if (cnt == 0) {
834 			state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
835 		}
836 	} else {
837 		state->gprs[NVMM_X64_GPR_RIP] = exit->u.io.npc;
838 	}
839 
840 out:
841 	ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
842 	if (ret == -1)
843 		return -1;
844 
845 	return 0;
846 }
847 
848 /* -------------------------------------------------------------------------- */
849 
850 struct x86_emul {
851 	bool readreg;
852 	bool backprop;
853 	bool notouch;
854 	void (*func)(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
855 };
856 
857 static void x86_func_or(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
858 static void x86_func_and(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
859 static void x86_func_xchg(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
860 static void x86_func_sub(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
861 static void x86_func_xor(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
862 static void x86_func_cmp(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
863 static void x86_func_test(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
864 static void x86_func_mov(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
865 static void x86_func_stos(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
866 static void x86_func_lods(struct nvmm_vcpu *, struct nvmm_mem *, uint64_t *);
867 
868 static const struct x86_emul x86_emul_or = {
869 	.readreg = true,
870 	.func = x86_func_or
871 };
872 
873 static const struct x86_emul x86_emul_and = {
874 	.readreg = true,
875 	.func = x86_func_and
876 };
877 
878 static const struct x86_emul x86_emul_xchg = {
879 	.readreg = true,
880 	.backprop = true,
881 	.func = x86_func_xchg
882 };
883 
884 static const struct x86_emul x86_emul_sub = {
885 	.readreg = true,
886 	.func = x86_func_sub
887 };
888 
889 static const struct x86_emul x86_emul_xor = {
890 	.readreg = true,
891 	.func = x86_func_xor
892 };
893 
894 static const struct x86_emul x86_emul_cmp = {
895 	.notouch = true,
896 	.func = x86_func_cmp
897 };
898 
899 static const struct x86_emul x86_emul_test = {
900 	.notouch = true,
901 	.func = x86_func_test
902 };
903 
904 static const struct x86_emul x86_emul_mov = {
905 	.func = x86_func_mov
906 };
907 
908 static const struct x86_emul x86_emul_stos = {
909 	.func = x86_func_stos
910 };
911 
912 static const struct x86_emul x86_emul_lods = {
913 	.func = x86_func_lods
914 };
915 
916 /* Legacy prefixes. */
917 #define LEG_LOCK	0xF0
918 #define LEG_REPN	0xF2
919 #define LEG_REP		0xF3
920 #define LEG_OVR_CS	0x2E
921 #define LEG_OVR_SS	0x36
922 #define LEG_OVR_DS	0x3E
923 #define LEG_OVR_ES	0x26
924 #define LEG_OVR_FS	0x64
925 #define LEG_OVR_GS	0x65
926 #define LEG_OPR_OVR	0x66
927 #define LEG_ADR_OVR	0x67
928 
929 struct x86_legpref {
930 	bool opr_ovr:1;
931 	bool adr_ovr:1;
932 	bool rep:1;
933 	bool repn:1;
934 	int8_t seg;
935 };
936 
937 struct x86_rexpref {
938 	bool b:1;
939 	bool x:1;
940 	bool r:1;
941 	bool w:1;
942 	bool present:1;
943 };
944 
945 struct x86_reg {
946 	int num;	/* NVMM GPR state index */
947 	uint64_t mask;
948 };
949 
950 struct x86_dualreg {
951 	int reg1;
952 	int reg2;
953 };
954 
955 enum x86_disp_type {
956 	DISP_NONE,
957 	DISP_0,
958 	DISP_1,
959 	DISP_2,
960 	DISP_4
961 };
962 
963 struct x86_disp {
964 	enum x86_disp_type type;
965 	uint64_t data; /* 4 bytes, but can be sign-extended */
966 };
967 
968 struct x86_regmodrm {
969 	uint8_t mod:2;
970 	uint8_t reg:3;
971 	uint8_t rm:3;
972 };
973 
974 struct x86_immediate {
975 	uint64_t data;
976 };
977 
978 struct x86_sib {
979 	uint8_t scale;
980 	const struct x86_reg *idx;
981 	const struct x86_reg *bas;
982 };
983 
984 enum x86_store_type {
985 	STORE_NONE,
986 	STORE_REG,
987 	STORE_DUALREG,
988 	STORE_IMM,
989 	STORE_SIB,
990 	STORE_DMO
991 };
992 
993 struct x86_store {
994 	enum x86_store_type type;
995 	union {
996 		const struct x86_reg *reg;
997 		struct x86_dualreg dualreg;
998 		struct x86_immediate imm;
999 		struct x86_sib sib;
1000 		uint64_t dmo;
1001 	} u;
1002 	struct x86_disp disp;
1003 	int hardseg;
1004 };
1005 
1006 struct x86_instr {
1007 	uint8_t len;
1008 	struct x86_legpref legpref;
1009 	struct x86_rexpref rexpref;
1010 	struct x86_regmodrm regmodrm;
1011 	uint8_t operand_size;
1012 	uint8_t address_size;
1013 	uint64_t zeroextend_mask;
1014 
1015 	const struct x86_opcode *opcode;
1016 	const struct x86_emul *emul;
1017 
1018 	struct x86_store src;
1019 	struct x86_store dst;
1020 	struct x86_store *strm;
1021 };
1022 
1023 struct x86_decode_fsm {
1024 	/* vcpu */
1025 	bool is64bit;
1026 	bool is32bit;
1027 	bool is16bit;
1028 
1029 	/* fsm */
1030 	int (*fn)(struct x86_decode_fsm *, struct x86_instr *);
1031 	uint8_t *buf;
1032 	uint8_t *end;
1033 };
1034 
1035 struct x86_opcode {
1036 	bool valid:1;
1037 	bool regmodrm:1;
1038 	bool regtorm:1;
1039 	bool dmo:1;
1040 	bool todmo:1;
1041 	bool movs:1;
1042 	bool stos:1;
1043 	bool lods:1;
1044 	bool szoverride:1;
1045 	bool group1:1;
1046 	bool group3:1;
1047 	bool group11:1;
1048 	bool immediate:1;
1049 	uint8_t defsize;
1050 	uint8_t flags;
1051 	const struct x86_emul *emul;
1052 };
1053 
1054 struct x86_group_entry {
1055 	const struct x86_emul *emul;
1056 };
1057 
1058 #define OPSIZE_BYTE 0x01
1059 #define OPSIZE_WORD 0x02 /* 2 bytes */
1060 #define OPSIZE_DOUB 0x04 /* 4 bytes */
1061 #define OPSIZE_QUAD 0x08 /* 8 bytes */
1062 
1063 #define FLAG_imm8	0x01
1064 #define FLAG_immz	0x02
1065 #define FLAG_ze		0x04
1066 
1067 static const struct x86_group_entry group1[8] __cacheline_aligned = {
1068 	[1] = { .emul = &x86_emul_or },
1069 	[4] = { .emul = &x86_emul_and },
1070 	[6] = { .emul = &x86_emul_xor },
1071 	[7] = { .emul = &x86_emul_cmp }
1072 };
1073 
1074 static const struct x86_group_entry group3[8] __cacheline_aligned = {
1075 	[0] = { .emul = &x86_emul_test },
1076 	[1] = { .emul = &x86_emul_test }
1077 };
1078 
1079 static const struct x86_group_entry group11[8] __cacheline_aligned = {
1080 	[0] = { .emul = &x86_emul_mov }
1081 };
1082 
1083 static const struct x86_opcode primary_opcode_table[256] __cacheline_aligned = {
1084 	/*
1085 	 * Group1
1086 	 */
1087 	[0x80] = {
1088 		/* Eb, Ib */
1089 		.valid = true,
1090 		.regmodrm = true,
1091 		.regtorm = true,
1092 		.szoverride = false,
1093 		.defsize = OPSIZE_BYTE,
1094 		.group1 = true,
1095 		.immediate = true,
1096 		.emul = NULL /* group1 */
1097 	},
1098 	[0x81] = {
1099 		/* Ev, Iz */
1100 		.valid = true,
1101 		.regmodrm = true,
1102 		.regtorm = true,
1103 		.szoverride = true,
1104 		.defsize = -1,
1105 		.group1 = true,
1106 		.immediate = true,
1107 		.flags = FLAG_immz,
1108 		.emul = NULL /* group1 */
1109 	},
1110 	[0x83] = {
1111 		/* Ev, Ib */
1112 		.valid = true,
1113 		.regmodrm = true,
1114 		.regtorm = true,
1115 		.szoverride = true,
1116 		.defsize = -1,
1117 		.group1 = true,
1118 		.immediate = true,
1119 		.flags = FLAG_imm8,
1120 		.emul = NULL /* group1 */
1121 	},
1122 
1123 	/*
1124 	 * Group3
1125 	 */
1126 	[0xF6] = {
1127 		/* Eb, Ib */
1128 		.valid = true,
1129 		.regmodrm = true,
1130 		.regtorm = true,
1131 		.szoverride = false,
1132 		.defsize = OPSIZE_BYTE,
1133 		.group3 = true,
1134 		.immediate = true,
1135 		.emul = NULL /* group3 */
1136 	},
1137 	[0xF7] = {
1138 		/* Ev, Iz */
1139 		.valid = true,
1140 		.regmodrm = true,
1141 		.regtorm = true,
1142 		.szoverride = true,
1143 		.defsize = -1,
1144 		.group3 = true,
1145 		.immediate = true,
1146 		.flags = FLAG_immz,
1147 		.emul = NULL /* group3 */
1148 	},
1149 
1150 	/*
1151 	 * Group11
1152 	 */
1153 	[0xC6] = {
1154 		/* Eb, Ib */
1155 		.valid = true,
1156 		.regmodrm = true,
1157 		.regtorm = true,
1158 		.szoverride = false,
1159 		.defsize = OPSIZE_BYTE,
1160 		.group11 = true,
1161 		.immediate = true,
1162 		.emul = NULL /* group11 */
1163 	},
1164 	[0xC7] = {
1165 		/* Ev, Iz */
1166 		.valid = true,
1167 		.regmodrm = true,
1168 		.regtorm = true,
1169 		.szoverride = true,
1170 		.defsize = -1,
1171 		.group11 = true,
1172 		.immediate = true,
1173 		.flags = FLAG_immz,
1174 		.emul = NULL /* group11 */
1175 	},
1176 
1177 	/*
1178 	 * OR
1179 	 */
1180 	[0x08] = {
1181 		/* Eb, Gb */
1182 		.valid = true,
1183 		.regmodrm = true,
1184 		.regtorm = true,
1185 		.szoverride = false,
1186 		.defsize = OPSIZE_BYTE,
1187 		.emul = &x86_emul_or
1188 	},
1189 	[0x09] = {
1190 		/* Ev, Gv */
1191 		.valid = true,
1192 		.regmodrm = true,
1193 		.regtorm = true,
1194 		.szoverride = true,
1195 		.defsize = -1,
1196 		.emul = &x86_emul_or
1197 	},
1198 	[0x0A] = {
1199 		/* Gb, Eb */
1200 		.valid = true,
1201 		.regmodrm = true,
1202 		.regtorm = false,
1203 		.szoverride = false,
1204 		.defsize = OPSIZE_BYTE,
1205 		.emul = &x86_emul_or
1206 	},
1207 	[0x0B] = {
1208 		/* Gv, Ev */
1209 		.valid = true,
1210 		.regmodrm = true,
1211 		.regtorm = false,
1212 		.szoverride = true,
1213 		.defsize = -1,
1214 		.emul = &x86_emul_or
1215 	},
1216 
1217 	/*
1218 	 * AND
1219 	 */
1220 	[0x20] = {
1221 		/* Eb, Gb */
1222 		.valid = true,
1223 		.regmodrm = true,
1224 		.regtorm = true,
1225 		.szoverride = false,
1226 		.defsize = OPSIZE_BYTE,
1227 		.emul = &x86_emul_and
1228 	},
1229 	[0x21] = {
1230 		/* Ev, Gv */
1231 		.valid = true,
1232 		.regmodrm = true,
1233 		.regtorm = true,
1234 		.szoverride = true,
1235 		.defsize = -1,
1236 		.emul = &x86_emul_and
1237 	},
1238 	[0x22] = {
1239 		/* Gb, Eb */
1240 		.valid = true,
1241 		.regmodrm = true,
1242 		.regtorm = false,
1243 		.szoverride = false,
1244 		.defsize = OPSIZE_BYTE,
1245 		.emul = &x86_emul_and
1246 	},
1247 	[0x23] = {
1248 		/* Gv, Ev */
1249 		.valid = true,
1250 		.regmodrm = true,
1251 		.regtorm = false,
1252 		.szoverride = true,
1253 		.defsize = -1,
1254 		.emul = &x86_emul_and
1255 	},
1256 
1257 	/*
1258 	 * SUB
1259 	 */
1260 	[0x28] = {
1261 		/* Eb, Gb */
1262 		.valid = true,
1263 		.regmodrm = true,
1264 		.regtorm = true,
1265 		.szoverride = false,
1266 		.defsize = OPSIZE_BYTE,
1267 		.emul = &x86_emul_sub
1268 	},
1269 	[0x29] = {
1270 		/* Ev, Gv */
1271 		.valid = true,
1272 		.regmodrm = true,
1273 		.regtorm = true,
1274 		.szoverride = true,
1275 		.defsize = -1,
1276 		.emul = &x86_emul_sub
1277 	},
1278 	[0x2A] = {
1279 		/* Gb, Eb */
1280 		.valid = true,
1281 		.regmodrm = true,
1282 		.regtorm = false,
1283 		.szoverride = false,
1284 		.defsize = OPSIZE_BYTE,
1285 		.emul = &x86_emul_sub
1286 	},
1287 	[0x2B] = {
1288 		/* Gv, Ev */
1289 		.valid = true,
1290 		.regmodrm = true,
1291 		.regtorm = false,
1292 		.szoverride = true,
1293 		.defsize = -1,
1294 		.emul = &x86_emul_sub
1295 	},
1296 
1297 	/*
1298 	 * XOR
1299 	 */
1300 	[0x30] = {
1301 		/* Eb, Gb */
1302 		.valid = true,
1303 		.regmodrm = true,
1304 		.regtorm = true,
1305 		.szoverride = false,
1306 		.defsize = OPSIZE_BYTE,
1307 		.emul = &x86_emul_xor
1308 	},
1309 	[0x31] = {
1310 		/* Ev, Gv */
1311 		.valid = true,
1312 		.regmodrm = true,
1313 		.regtorm = true,
1314 		.szoverride = true,
1315 		.defsize = -1,
1316 		.emul = &x86_emul_xor
1317 	},
1318 	[0x32] = {
1319 		/* Gb, Eb */
1320 		.valid = true,
1321 		.regmodrm = true,
1322 		.regtorm = false,
1323 		.szoverride = false,
1324 		.defsize = OPSIZE_BYTE,
1325 		.emul = &x86_emul_xor
1326 	},
1327 	[0x33] = {
1328 		/* Gv, Ev */
1329 		.valid = true,
1330 		.regmodrm = true,
1331 		.regtorm = false,
1332 		.szoverride = true,
1333 		.defsize = -1,
1334 		.emul = &x86_emul_xor
1335 	},
1336 
1337 	/*
1338 	 * XCHG
1339 	 */
1340 	[0x86] = {
1341 		/* Eb, Gb */
1342 		.valid = true,
1343 		.regmodrm = true,
1344 		.regtorm = true,
1345 		.szoverride = false,
1346 		.defsize = OPSIZE_BYTE,
1347 		.emul = &x86_emul_xchg
1348 	},
1349 	[0x87] = {
1350 		/* Ev, Gv */
1351 		.valid = true,
1352 		.regmodrm = true,
1353 		.regtorm = true,
1354 		.szoverride = true,
1355 		.defsize = -1,
1356 		.emul = &x86_emul_xchg
1357 	},
1358 
1359 	/*
1360 	 * MOV
1361 	 */
1362 	[0x88] = {
1363 		/* Eb, Gb */
1364 		.valid = true,
1365 		.regmodrm = true,
1366 		.regtorm = true,
1367 		.szoverride = false,
1368 		.defsize = OPSIZE_BYTE,
1369 		.emul = &x86_emul_mov
1370 	},
1371 	[0x89] = {
1372 		/* Ev, Gv */
1373 		.valid = true,
1374 		.regmodrm = true,
1375 		.regtorm = true,
1376 		.szoverride = true,
1377 		.defsize = -1,
1378 		.emul = &x86_emul_mov
1379 	},
1380 	[0x8A] = {
1381 		/* Gb, Eb */
1382 		.valid = true,
1383 		.regmodrm = true,
1384 		.regtorm = false,
1385 		.szoverride = false,
1386 		.defsize = OPSIZE_BYTE,
1387 		.emul = &x86_emul_mov
1388 	},
1389 	[0x8B] = {
1390 		/* Gv, Ev */
1391 		.valid = true,
1392 		.regmodrm = true,
1393 		.regtorm = false,
1394 		.szoverride = true,
1395 		.defsize = -1,
1396 		.emul = &x86_emul_mov
1397 	},
1398 	[0xA0] = {
1399 		/* AL, Ob */
1400 		.valid = true,
1401 		.dmo = true,
1402 		.todmo = false,
1403 		.szoverride = false,
1404 		.defsize = OPSIZE_BYTE,
1405 		.emul = &x86_emul_mov
1406 	},
1407 	[0xA1] = {
1408 		/* rAX, Ov */
1409 		.valid = true,
1410 		.dmo = true,
1411 		.todmo = false,
1412 		.szoverride = true,
1413 		.defsize = -1,
1414 		.emul = &x86_emul_mov
1415 	},
1416 	[0xA2] = {
1417 		/* Ob, AL */
1418 		.valid = true,
1419 		.dmo = true,
1420 		.todmo = true,
1421 		.szoverride = false,
1422 		.defsize = OPSIZE_BYTE,
1423 		.emul = &x86_emul_mov
1424 	},
1425 	[0xA3] = {
1426 		/* Ov, rAX */
1427 		.valid = true,
1428 		.dmo = true,
1429 		.todmo = true,
1430 		.szoverride = true,
1431 		.defsize = -1,
1432 		.emul = &x86_emul_mov
1433 	},
1434 
1435 	/*
1436 	 * MOVS
1437 	 */
1438 	[0xA4] = {
1439 		/* Yb, Xb */
1440 		.valid = true,
1441 		.movs = true,
1442 		.szoverride = false,
1443 		.defsize = OPSIZE_BYTE,
1444 		.emul = NULL /* assist_mem_double_movs */
1445 	},
1446 	[0xA5] = {
1447 		/* Yv, Xv */
1448 		.valid = true,
1449 		.movs = true,
1450 		.szoverride = true,
1451 		.defsize = -1,
1452 		.emul = NULL /* assist_mem_double_movs */
1453 	},
1454 
1455 	/*
1456 	 * STOS
1457 	 */
1458 	[0xAA] = {
1459 		/* Yb, AL */
1460 		.valid = true,
1461 		.stos = true,
1462 		.szoverride = false,
1463 		.defsize = OPSIZE_BYTE,
1464 		.emul = &x86_emul_stos
1465 	},
1466 	[0xAB] = {
1467 		/* Yv, rAX */
1468 		.valid = true,
1469 		.stos = true,
1470 		.szoverride = true,
1471 		.defsize = -1,
1472 		.emul = &x86_emul_stos
1473 	},
1474 
1475 	/*
1476 	 * LODS
1477 	 */
1478 	[0xAC] = {
1479 		/* AL, Xb */
1480 		.valid = true,
1481 		.lods = true,
1482 		.szoverride = false,
1483 		.defsize = OPSIZE_BYTE,
1484 		.emul = &x86_emul_lods
1485 	},
1486 	[0xAD] = {
1487 		/* rAX, Xv */
1488 		.valid = true,
1489 		.lods = true,
1490 		.szoverride = true,
1491 		.defsize = -1,
1492 		.emul = &x86_emul_lods
1493 	},
1494 };
1495 
1496 static const struct x86_opcode secondary_opcode_table[256] __cacheline_aligned = {
1497 	/*
1498 	 * MOVZX
1499 	 */
1500 	[0xB6] = {
1501 		/* Gv, Eb */
1502 		.valid = true,
1503 		.regmodrm = true,
1504 		.regtorm = false,
1505 		.szoverride = true,
1506 		.defsize = OPSIZE_BYTE,
1507 		.flags = FLAG_ze,
1508 		.emul = &x86_emul_mov
1509 	},
1510 	[0xB7] = {
1511 		/* Gv, Ew */
1512 		.valid = true,
1513 		.regmodrm = true,
1514 		.regtorm = false,
1515 		.szoverride = true,
1516 		.defsize = OPSIZE_WORD,
1517 		.flags = FLAG_ze,
1518 		.emul = &x86_emul_mov
1519 	},
1520 };
1521 
1522 static const struct x86_reg gpr_map__rip = { NVMM_X64_GPR_RIP, 0xFFFFFFFFFFFFFFFF };
1523 
1524 /* [REX-present][enc][opsize] */
1525 static const struct x86_reg gpr_map__special[2][4][8] __cacheline_aligned = {
1526 	[false] = {
1527 		/* No REX prefix. */
1528 		[0b00] = {
1529 			[0] = { NVMM_X64_GPR_RAX, 0x000000000000FF00 }, /* AH */
1530 			[1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1531 			[2] = { -1, 0 },
1532 			[3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1533 			[4] = { -1, 0 },
1534 			[5] = { -1, 0 },
1535 			[6] = { -1, 0 },
1536 			[7] = { -1, 0 },
1537 		},
1538 		[0b01] = {
1539 			[0] = { NVMM_X64_GPR_RCX, 0x000000000000FF00 }, /* CH */
1540 			[1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1541 			[2] = { -1, 0 },
1542 			[3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF },	/* EBP */
1543 			[4] = { -1, 0 },
1544 			[5] = { -1, 0 },
1545 			[6] = { -1, 0 },
1546 			[7] = { -1, 0 },
1547 		},
1548 		[0b10] = {
1549 			[0] = { NVMM_X64_GPR_RDX, 0x000000000000FF00 }, /* DH */
1550 			[1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1551 			[2] = { -1, 0 },
1552 			[3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1553 			[4] = { -1, 0 },
1554 			[5] = { -1, 0 },
1555 			[6] = { -1, 0 },
1556 			[7] = { -1, 0 },
1557 		},
1558 		[0b11] = {
1559 			[0] = { NVMM_X64_GPR_RBX, 0x000000000000FF00 }, /* BH */
1560 			[1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1561 			[2] = { -1, 0 },
1562 			[3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1563 			[4] = { -1, 0 },
1564 			[5] = { -1, 0 },
1565 			[6] = { -1, 0 },
1566 			[7] = { -1, 0 },
1567 		}
1568 	},
1569 	[true] = {
1570 		/* Has REX prefix. */
1571 		[0b00] = {
1572 			[0] = { NVMM_X64_GPR_RSP, 0x00000000000000FF }, /* SPL */
1573 			[1] = { NVMM_X64_GPR_RSP, 0x000000000000FFFF }, /* SP */
1574 			[2] = { -1, 0 },
1575 			[3] = { NVMM_X64_GPR_RSP, 0x00000000FFFFFFFF }, /* ESP */
1576 			[4] = { -1, 0 },
1577 			[5] = { -1, 0 },
1578 			[6] = { -1, 0 },
1579 			[7] = { NVMM_X64_GPR_RSP, 0xFFFFFFFFFFFFFFFF }, /* RSP */
1580 		},
1581 		[0b01] = {
1582 			[0] = { NVMM_X64_GPR_RBP, 0x00000000000000FF }, /* BPL */
1583 			[1] = { NVMM_X64_GPR_RBP, 0x000000000000FFFF }, /* BP */
1584 			[2] = { -1, 0 },
1585 			[3] = { NVMM_X64_GPR_RBP, 0x00000000FFFFFFFF }, /* EBP */
1586 			[4] = { -1, 0 },
1587 			[5] = { -1, 0 },
1588 			[6] = { -1, 0 },
1589 			[7] = { NVMM_X64_GPR_RBP, 0xFFFFFFFFFFFFFFFF }, /* RBP */
1590 		},
1591 		[0b10] = {
1592 			[0] = { NVMM_X64_GPR_RSI, 0x00000000000000FF }, /* SIL */
1593 			[1] = { NVMM_X64_GPR_RSI, 0x000000000000FFFF }, /* SI */
1594 			[2] = { -1, 0 },
1595 			[3] = { NVMM_X64_GPR_RSI, 0x00000000FFFFFFFF }, /* ESI */
1596 			[4] = { -1, 0 },
1597 			[5] = { -1, 0 },
1598 			[6] = { -1, 0 },
1599 			[7] = { NVMM_X64_GPR_RSI, 0xFFFFFFFFFFFFFFFF }, /* RSI */
1600 		},
1601 		[0b11] = {
1602 			[0] = { NVMM_X64_GPR_RDI, 0x00000000000000FF }, /* DIL */
1603 			[1] = { NVMM_X64_GPR_RDI, 0x000000000000FFFF }, /* DI */
1604 			[2] = { -1, 0 },
1605 			[3] = { NVMM_X64_GPR_RDI, 0x00000000FFFFFFFF }, /* EDI */
1606 			[4] = { -1, 0 },
1607 			[5] = { -1, 0 },
1608 			[6] = { -1, 0 },
1609 			[7] = { NVMM_X64_GPR_RDI, 0xFFFFFFFFFFFFFFFF }, /* RDI */
1610 		}
1611 	}
1612 };
1613 
1614 /* [depends][enc][size] */
1615 static const struct x86_reg gpr_map[2][8][8] __cacheline_aligned = {
1616 	[false] = {
1617 		/* Not extended. */
1618 		[0b000] = {
1619 			[0] = { NVMM_X64_GPR_RAX, 0x00000000000000FF }, /* AL */
1620 			[1] = { NVMM_X64_GPR_RAX, 0x000000000000FFFF }, /* AX */
1621 			[2] = { -1, 0 },
1622 			[3] = { NVMM_X64_GPR_RAX, 0x00000000FFFFFFFF }, /* EAX */
1623 			[4] = { -1, 0 },
1624 			[5] = { -1, 0 },
1625 			[6] = { -1, 0 },
1626 			[7] = { NVMM_X64_GPR_RAX, 0xFFFFFFFFFFFFFFFF }, /* RAX */
1627 		},
1628 		[0b001] = {
1629 			[0] = { NVMM_X64_GPR_RCX, 0x00000000000000FF }, /* CL */
1630 			[1] = { NVMM_X64_GPR_RCX, 0x000000000000FFFF }, /* CX */
1631 			[2] = { -1, 0 },
1632 			[3] = { NVMM_X64_GPR_RCX, 0x00000000FFFFFFFF }, /* ECX */
1633 			[4] = { -1, 0 },
1634 			[5] = { -1, 0 },
1635 			[6] = { -1, 0 },
1636 			[7] = { NVMM_X64_GPR_RCX, 0xFFFFFFFFFFFFFFFF }, /* RCX */
1637 		},
1638 		[0b010] = {
1639 			[0] = { NVMM_X64_GPR_RDX, 0x00000000000000FF }, /* DL */
1640 			[1] = { NVMM_X64_GPR_RDX, 0x000000000000FFFF }, /* DX */
1641 			[2] = { -1, 0 },
1642 			[3] = { NVMM_X64_GPR_RDX, 0x00000000FFFFFFFF }, /* EDX */
1643 			[4] = { -1, 0 },
1644 			[5] = { -1, 0 },
1645 			[6] = { -1, 0 },
1646 			[7] = { NVMM_X64_GPR_RDX, 0xFFFFFFFFFFFFFFFF }, /* RDX */
1647 		},
1648 		[0b011] = {
1649 			[0] = { NVMM_X64_GPR_RBX, 0x00000000000000FF }, /* BL */
1650 			[1] = { NVMM_X64_GPR_RBX, 0x000000000000FFFF }, /* BX */
1651 			[2] = { -1, 0 },
1652 			[3] = { NVMM_X64_GPR_RBX, 0x00000000FFFFFFFF }, /* EBX */
1653 			[4] = { -1, 0 },
1654 			[5] = { -1, 0 },
1655 			[6] = { -1, 0 },
1656 			[7] = { NVMM_X64_GPR_RBX, 0xFFFFFFFFFFFFFFFF }, /* RBX */
1657 		},
1658 		[0b100] = {
1659 			[0] = { -1, 0 }, /* SPECIAL */
1660 			[1] = { -1, 0 }, /* SPECIAL */
1661 			[2] = { -1, 0 },
1662 			[3] = { -1, 0 }, /* SPECIAL */
1663 			[4] = { -1, 0 },
1664 			[5] = { -1, 0 },
1665 			[6] = { -1, 0 },
1666 			[7] = { -1, 0 }, /* SPECIAL */
1667 		},
1668 		[0b101] = {
1669 			[0] = { -1, 0 }, /* SPECIAL */
1670 			[1] = { -1, 0 }, /* SPECIAL */
1671 			[2] = { -1, 0 },
1672 			[3] = { -1, 0 }, /* SPECIAL */
1673 			[4] = { -1, 0 },
1674 			[5] = { -1, 0 },
1675 			[6] = { -1, 0 },
1676 			[7] = { -1, 0 }, /* SPECIAL */
1677 		},
1678 		[0b110] = {
1679 			[0] = { -1, 0 }, /* SPECIAL */
1680 			[1] = { -1, 0 }, /* SPECIAL */
1681 			[2] = { -1, 0 },
1682 			[3] = { -1, 0 }, /* SPECIAL */
1683 			[4] = { -1, 0 },
1684 			[5] = { -1, 0 },
1685 			[6] = { -1, 0 },
1686 			[7] = { -1, 0 }, /* SPECIAL */
1687 		},
1688 		[0b111] = {
1689 			[0] = { -1, 0 }, /* SPECIAL */
1690 			[1] = { -1, 0 }, /* SPECIAL */
1691 			[2] = { -1, 0 },
1692 			[3] = { -1, 0 }, /* SPECIAL */
1693 			[4] = { -1, 0 },
1694 			[5] = { -1, 0 },
1695 			[6] = { -1, 0 },
1696 			[7] = { -1, 0 }, /* SPECIAL */
1697 		},
1698 	},
1699 	[true] = {
1700 		/* Extended. */
1701 		[0b000] = {
1702 			[0] = { NVMM_X64_GPR_R8, 0x00000000000000FF }, /* R8B */
1703 			[1] = { NVMM_X64_GPR_R8, 0x000000000000FFFF }, /* R8W */
1704 			[2] = { -1, 0 },
1705 			[3] = { NVMM_X64_GPR_R8, 0x00000000FFFFFFFF }, /* R8D */
1706 			[4] = { -1, 0 },
1707 			[5] = { -1, 0 },
1708 			[6] = { -1, 0 },
1709 			[7] = { NVMM_X64_GPR_R8, 0xFFFFFFFFFFFFFFFF }, /* R8 */
1710 		},
1711 		[0b001] = {
1712 			[0] = { NVMM_X64_GPR_R9, 0x00000000000000FF }, /* R9B */
1713 			[1] = { NVMM_X64_GPR_R9, 0x000000000000FFFF }, /* R9W */
1714 			[2] = { -1, 0 },
1715 			[3] = { NVMM_X64_GPR_R9, 0x00000000FFFFFFFF }, /* R9D */
1716 			[4] = { -1, 0 },
1717 			[5] = { -1, 0 },
1718 			[6] = { -1, 0 },
1719 			[7] = { NVMM_X64_GPR_R9, 0xFFFFFFFFFFFFFFFF }, /* R9 */
1720 		},
1721 		[0b010] = {
1722 			[0] = { NVMM_X64_GPR_R10, 0x00000000000000FF }, /* R10B */
1723 			[1] = { NVMM_X64_GPR_R10, 0x000000000000FFFF }, /* R10W */
1724 			[2] = { -1, 0 },
1725 			[3] = { NVMM_X64_GPR_R10, 0x00000000FFFFFFFF }, /* R10D */
1726 			[4] = { -1, 0 },
1727 			[5] = { -1, 0 },
1728 			[6] = { -1, 0 },
1729 			[7] = { NVMM_X64_GPR_R10, 0xFFFFFFFFFFFFFFFF }, /* R10 */
1730 		},
1731 		[0b011] = {
1732 			[0] = { NVMM_X64_GPR_R11, 0x00000000000000FF }, /* R11B */
1733 			[1] = { NVMM_X64_GPR_R11, 0x000000000000FFFF }, /* R11W */
1734 			[2] = { -1, 0 },
1735 			[3] = { NVMM_X64_GPR_R11, 0x00000000FFFFFFFF }, /* R11D */
1736 			[4] = { -1, 0 },
1737 			[5] = { -1, 0 },
1738 			[6] = { -1, 0 },
1739 			[7] = { NVMM_X64_GPR_R11, 0xFFFFFFFFFFFFFFFF }, /* R11 */
1740 		},
1741 		[0b100] = {
1742 			[0] = { NVMM_X64_GPR_R12, 0x00000000000000FF }, /* R12B */
1743 			[1] = { NVMM_X64_GPR_R12, 0x000000000000FFFF }, /* R12W */
1744 			[2] = { -1, 0 },
1745 			[3] = { NVMM_X64_GPR_R12, 0x00000000FFFFFFFF }, /* R12D */
1746 			[4] = { -1, 0 },
1747 			[5] = { -1, 0 },
1748 			[6] = { -1, 0 },
1749 			[7] = { NVMM_X64_GPR_R12, 0xFFFFFFFFFFFFFFFF }, /* R12 */
1750 		},
1751 		[0b101] = {
1752 			[0] = { NVMM_X64_GPR_R13, 0x00000000000000FF }, /* R13B */
1753 			[1] = { NVMM_X64_GPR_R13, 0x000000000000FFFF }, /* R13W */
1754 			[2] = { -1, 0 },
1755 			[3] = { NVMM_X64_GPR_R13, 0x00000000FFFFFFFF }, /* R13D */
1756 			[4] = { -1, 0 },
1757 			[5] = { -1, 0 },
1758 			[6] = { -1, 0 },
1759 			[7] = { NVMM_X64_GPR_R13, 0xFFFFFFFFFFFFFFFF }, /* R13 */
1760 		},
1761 		[0b110] = {
1762 			[0] = { NVMM_X64_GPR_R14, 0x00000000000000FF }, /* R14B */
1763 			[1] = { NVMM_X64_GPR_R14, 0x000000000000FFFF }, /* R14W */
1764 			[2] = { -1, 0 },
1765 			[3] = { NVMM_X64_GPR_R14, 0x00000000FFFFFFFF }, /* R14D */
1766 			[4] = { -1, 0 },
1767 			[5] = { -1, 0 },
1768 			[6] = { -1, 0 },
1769 			[7] = { NVMM_X64_GPR_R14, 0xFFFFFFFFFFFFFFFF }, /* R14 */
1770 		},
1771 		[0b111] = {
1772 			[0] = { NVMM_X64_GPR_R15, 0x00000000000000FF }, /* R15B */
1773 			[1] = { NVMM_X64_GPR_R15, 0x000000000000FFFF }, /* R15W */
1774 			[2] = { -1, 0 },
1775 			[3] = { NVMM_X64_GPR_R15, 0x00000000FFFFFFFF }, /* R15D */
1776 			[4] = { -1, 0 },
1777 			[5] = { -1, 0 },
1778 			[6] = { -1, 0 },
1779 			[7] = { NVMM_X64_GPR_R15, 0xFFFFFFFFFFFFFFFF }, /* R15 */
1780 		},
1781 	}
1782 };
1783 
1784 /* [enc] */
1785 static const int gpr_dual_reg1_rm[8] __cacheline_aligned = {
1786 	[0b000] = NVMM_X64_GPR_RBX, /* BX (+SI) */
1787 	[0b001] = NVMM_X64_GPR_RBX, /* BX (+DI) */
1788 	[0b010] = NVMM_X64_GPR_RBP, /* BP (+SI) */
1789 	[0b011] = NVMM_X64_GPR_RBP, /* BP (+DI) */
1790 	[0b100] = NVMM_X64_GPR_RSI, /* SI */
1791 	[0b101] = NVMM_X64_GPR_RDI, /* DI */
1792 	[0b110] = NVMM_X64_GPR_RBP, /* BP */
1793 	[0b111] = NVMM_X64_GPR_RBX, /* BX */
1794 };
1795 
1796 static int
1797 node_overflow(struct x86_decode_fsm *fsm, struct x86_instr *instr __unused)
1798 {
1799 	fsm->fn = NULL;
1800 	return -1;
1801 }
1802 
1803 static int
1804 fsm_read(struct x86_decode_fsm *fsm, uint8_t *bytes, size_t n)
1805 {
1806 	if (fsm->buf + n > fsm->end) {
1807 		return -1;
1808 	}
1809 	memcpy(bytes, fsm->buf, n);
1810 	return 0;
1811 }
1812 
1813 static inline void
1814 fsm_advance(struct x86_decode_fsm *fsm, size_t n,
1815     int (*fn)(struct x86_decode_fsm *, struct x86_instr *))
1816 {
1817 	fsm->buf += n;
1818 	if (fsm->buf > fsm->end) {
1819 		fsm->fn = node_overflow;
1820 	} else {
1821 		fsm->fn = fn;
1822 	}
1823 }
1824 
1825 static const struct x86_reg *
1826 resolve_special_register(struct x86_instr *instr, uint8_t enc, size_t regsize)
1827 {
1828 	enc &= 0b11;
1829 	if (regsize == 8) {
1830 		/* May be 64bit without REX */
1831 		return &gpr_map__special[1][enc][regsize-1];
1832 	}
1833 	return &gpr_map__special[instr->rexpref.present][enc][regsize-1];
1834 }
1835 
1836 /*
1837  * Special node, for MOVS. Fake two displacements of zero on the source and
1838  * destination registers.
1839  */
1840 static int
1841 node_movs(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1842 {
1843 	size_t adrsize;
1844 
1845 	adrsize = instr->address_size;
1846 
1847 	/* DS:RSI */
1848 	instr->src.type = STORE_REG;
1849 	instr->src.u.reg = &gpr_map__special[1][2][adrsize-1];
1850 	instr->src.disp.type = DISP_0;
1851 
1852 	/* ES:RDI, force ES */
1853 	instr->dst.type = STORE_REG;
1854 	instr->dst.u.reg = &gpr_map__special[1][3][adrsize-1];
1855 	instr->dst.disp.type = DISP_0;
1856 	instr->dst.hardseg = NVMM_X64_SEG_ES;
1857 
1858 	fsm_advance(fsm, 0, NULL);
1859 
1860 	return 0;
1861 }
1862 
1863 /*
1864  * Special node, for STOS and LODS. Fake a displacement of zero on the
1865  * destination register.
1866  */
1867 static int
1868 node_stlo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1869 {
1870 	const struct x86_opcode *opcode = instr->opcode;
1871 	struct x86_store *stlo, *streg;
1872 	size_t adrsize, regsize;
1873 
1874 	adrsize = instr->address_size;
1875 	regsize = instr->operand_size;
1876 
1877 	if (opcode->stos) {
1878 		streg = &instr->src;
1879 		stlo = &instr->dst;
1880 	} else {
1881 		streg = &instr->dst;
1882 		stlo = &instr->src;
1883 	}
1884 
1885 	streg->type = STORE_REG;
1886 	streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1887 
1888 	stlo->type = STORE_REG;
1889 	if (opcode->stos) {
1890 		/* ES:RDI, force ES */
1891 		stlo->u.reg = &gpr_map__special[1][3][adrsize-1];
1892 		stlo->hardseg = NVMM_X64_SEG_ES;
1893 	} else {
1894 		/* DS:RSI */
1895 		stlo->u.reg = &gpr_map__special[1][2][adrsize-1];
1896 	}
1897 	stlo->disp.type = DISP_0;
1898 
1899 	fsm_advance(fsm, 0, NULL);
1900 
1901 	return 0;
1902 }
1903 
1904 static int
1905 node_dmo(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1906 {
1907 	const struct x86_opcode *opcode = instr->opcode;
1908 	struct x86_store *stdmo, *streg;
1909 	size_t adrsize, regsize;
1910 
1911 	adrsize = instr->address_size;
1912 	regsize = instr->operand_size;
1913 
1914 	if (opcode->todmo) {
1915 		streg = &instr->src;
1916 		stdmo = &instr->dst;
1917 	} else {
1918 		streg = &instr->dst;
1919 		stdmo = &instr->src;
1920 	}
1921 
1922 	streg->type = STORE_REG;
1923 	streg->u.reg = &gpr_map[0][0][regsize-1]; /* ?AX */
1924 
1925 	stdmo->type = STORE_DMO;
1926 	if (fsm_read(fsm, (uint8_t *)&stdmo->u.dmo, adrsize) == -1) {
1927 		return -1;
1928 	}
1929 	fsm_advance(fsm, adrsize, NULL);
1930 
1931 	return 0;
1932 }
1933 
1934 static inline uint64_t
1935 sign_extend(uint64_t val, int size)
1936 {
1937 	if (size == 1) {
1938 		if (val & __BIT(7))
1939 			val |= 0xFFFFFFFFFFFFFF00;
1940 	} else if (size == 2) {
1941 		if (val & __BIT(15))
1942 			val |= 0xFFFFFFFFFFFF0000;
1943 	} else if (size == 4) {
1944 		if (val & __BIT(31))
1945 			val |= 0xFFFFFFFF00000000;
1946 	}
1947 	return val;
1948 }
1949 
1950 static int
1951 node_immediate(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1952 {
1953 	const struct x86_opcode *opcode = instr->opcode;
1954 	struct x86_store *store;
1955 	uint8_t immsize;
1956 	size_t sesize = 0;
1957 
1958 	/* The immediate is the source */
1959 	store = &instr->src;
1960 	immsize = instr->operand_size;
1961 
1962 	if (opcode->flags & FLAG_imm8) {
1963 		sesize = immsize;
1964 		immsize = 1;
1965 	} else if ((opcode->flags & FLAG_immz) && (immsize == 8)) {
1966 		sesize = immsize;
1967 		immsize = 4;
1968 	}
1969 
1970 	store->type = STORE_IMM;
1971 	if (fsm_read(fsm, (uint8_t *)&store->u.imm.data, immsize) == -1) {
1972 		return -1;
1973 	}
1974 	fsm_advance(fsm, immsize, NULL);
1975 
1976 	if (sesize != 0) {
1977 		store->u.imm.data = sign_extend(store->u.imm.data, sesize);
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 static int
1984 node_disp(struct x86_decode_fsm *fsm, struct x86_instr *instr)
1985 {
1986 	const struct x86_opcode *opcode = instr->opcode;
1987 	uint64_t data = 0;
1988 	size_t n;
1989 
1990 	if (instr->strm->disp.type == DISP_1) {
1991 		n = 1;
1992 	} else if (instr->strm->disp.type == DISP_2) {
1993 		n = 2;
1994 	} else if (instr->strm->disp.type == DISP_4) {
1995 		n = 4;
1996 	} else {
1997 		DISASSEMBLER_BUG();
1998 	}
1999 
2000 	if (fsm_read(fsm, (uint8_t *)&data, n) == -1) {
2001 		return -1;
2002 	}
2003 
2004 	if (__predict_true(fsm->is64bit)) {
2005 		data = sign_extend(data, n);
2006 	}
2007 
2008 	instr->strm->disp.data = data;
2009 
2010 	if (opcode->immediate) {
2011 		fsm_advance(fsm, n, node_immediate);
2012 	} else {
2013 		fsm_advance(fsm, n, NULL);
2014 	}
2015 
2016 	return 0;
2017 }
2018 
2019 /*
2020  * Special node to handle 16bit addressing encoding, which can reference two
2021  * registers at once.
2022  */
2023 static int
2024 node_dual(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2025 {
2026 	int reg1, reg2;
2027 
2028 	reg1 = gpr_dual_reg1_rm[instr->regmodrm.rm];
2029 
2030 	if (instr->regmodrm.rm == 0b000 ||
2031 	    instr->regmodrm.rm == 0b010) {
2032 		reg2 = NVMM_X64_GPR_RSI;
2033 	} else if (instr->regmodrm.rm == 0b001 ||
2034 	    instr->regmodrm.rm == 0b011) {
2035 		reg2 = NVMM_X64_GPR_RDI;
2036 	} else {
2037 		DISASSEMBLER_BUG();
2038 	}
2039 
2040 	instr->strm->type = STORE_DUALREG;
2041 	instr->strm->u.dualreg.reg1 = reg1;
2042 	instr->strm->u.dualreg.reg2 = reg2;
2043 
2044 	if (instr->strm->disp.type == DISP_NONE) {
2045 		DISASSEMBLER_BUG();
2046 	} else if (instr->strm->disp.type == DISP_0) {
2047 		/* Indirect register addressing mode */
2048 		if (instr->opcode->immediate) {
2049 			fsm_advance(fsm, 1, node_immediate);
2050 		} else {
2051 			fsm_advance(fsm, 1, NULL);
2052 		}
2053 	} else {
2054 		fsm_advance(fsm, 1, node_disp);
2055 	}
2056 
2057 	return 0;
2058 }
2059 
2060 static const struct x86_reg *
2061 get_register_idx(struct x86_instr *instr, uint8_t index)
2062 {
2063 	uint8_t enc = index;
2064 	const struct x86_reg *reg;
2065 	size_t regsize;
2066 
2067 	regsize = instr->address_size;
2068 	reg = &gpr_map[instr->rexpref.x][enc][regsize-1];
2069 
2070 	if (reg->num == -1) {
2071 		reg = resolve_special_register(instr, enc, regsize);
2072 	}
2073 
2074 	return reg;
2075 }
2076 
2077 static const struct x86_reg *
2078 get_register_bas(struct x86_instr *instr, uint8_t base)
2079 {
2080 	uint8_t enc = base;
2081 	const struct x86_reg *reg;
2082 	size_t regsize;
2083 
2084 	regsize = instr->address_size;
2085 	reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2086 	if (reg->num == -1) {
2087 		reg = resolve_special_register(instr, enc, regsize);
2088 	}
2089 
2090 	return reg;
2091 }
2092 
2093 static int
2094 node_sib(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2095 {
2096 	const struct x86_opcode *opcode;
2097 	uint8_t scale, index, base;
2098 	bool noindex, nobase;
2099 	uint8_t byte;
2100 
2101 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2102 		return -1;
2103 	}
2104 
2105 	scale = ((byte & 0b11000000) >> 6);
2106 	index = ((byte & 0b00111000) >> 3);
2107 	base  = ((byte & 0b00000111) >> 0);
2108 
2109 	opcode = instr->opcode;
2110 
2111 	noindex = false;
2112 	nobase = false;
2113 
2114 	if (index == 0b100 && !instr->rexpref.x) {
2115 		/* Special case: the index is null */
2116 		noindex = true;
2117 	}
2118 
2119 	if (instr->regmodrm.mod == 0b00 && base == 0b101) {
2120 		/* Special case: the base is null + disp32 */
2121 		instr->strm->disp.type = DISP_4;
2122 		nobase = true;
2123 	}
2124 
2125 	instr->strm->type = STORE_SIB;
2126 	instr->strm->u.sib.scale = (1 << scale);
2127 	if (!noindex)
2128 		instr->strm->u.sib.idx = get_register_idx(instr, index);
2129 	if (!nobase)
2130 		instr->strm->u.sib.bas = get_register_bas(instr, base);
2131 
2132 	/* May have a displacement, or an immediate */
2133 	if (instr->strm->disp.type == DISP_1 ||
2134 	    instr->strm->disp.type == DISP_2 ||
2135 	    instr->strm->disp.type == DISP_4) {
2136 		fsm_advance(fsm, 1, node_disp);
2137 	} else if (opcode->immediate) {
2138 		fsm_advance(fsm, 1, node_immediate);
2139 	} else {
2140 		fsm_advance(fsm, 1, NULL);
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 static const struct x86_reg *
2147 get_register_reg(struct x86_instr *instr, const struct x86_opcode *opcode __unused)
2148 {
2149 	uint8_t enc = instr->regmodrm.reg;
2150 	const struct x86_reg *reg;
2151 	size_t regsize;
2152 
2153 	regsize = instr->operand_size;
2154 
2155 	reg = &gpr_map[instr->rexpref.r][enc][regsize-1];
2156 	if (reg->num == -1) {
2157 		reg = resolve_special_register(instr, enc, regsize);
2158 	}
2159 
2160 	return reg;
2161 }
2162 
2163 static const struct x86_reg *
2164 get_register_rm(struct x86_instr *instr, const struct x86_opcode *opcode __unused)
2165 {
2166 	uint8_t enc = instr->regmodrm.rm;
2167 	const struct x86_reg *reg;
2168 	size_t regsize;
2169 
2170 	if (instr->strm->disp.type == DISP_NONE) {
2171 		regsize = instr->operand_size;
2172 	} else {
2173 		/* Indirect access, the size is that of the address. */
2174 		regsize = instr->address_size;
2175 	}
2176 
2177 	reg = &gpr_map[instr->rexpref.b][enc][regsize-1];
2178 	if (reg->num == -1) {
2179 		reg = resolve_special_register(instr, enc, regsize);
2180 	}
2181 
2182 	return reg;
2183 }
2184 
2185 static inline bool
2186 has_sib(struct x86_instr *instr)
2187 {
2188 	return (instr->address_size != 2 && /* no SIB in 16bit addressing */
2189 	    instr->regmodrm.mod != 0b11 &&
2190 	    instr->regmodrm.rm == 0b100);
2191 }
2192 
2193 static inline bool
2194 is_rip_relative(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2195 {
2196 	return (fsm->is64bit && /* RIP-relative only in 64bit mode */
2197 	    instr->regmodrm.mod == 0b00 &&
2198 	    instr->regmodrm.rm == 0b101);
2199 }
2200 
2201 static inline bool
2202 is_disp32_only(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2203 {
2204 	return (!fsm->is64bit && /* no disp32-only in 64bit mode */
2205 	    instr->address_size != 2 && /* no disp32-only in 16bit addressing */
2206 	    instr->regmodrm.mod == 0b00 &&
2207 	    instr->regmodrm.rm == 0b101);
2208 }
2209 
2210 static inline bool
2211 is_disp16_only(struct x86_decode_fsm *fsm __unused, struct x86_instr *instr)
2212 {
2213 	return (instr->address_size == 2 && /* disp16-only only in 16bit addr */
2214 	    instr->regmodrm.mod == 0b00 &&
2215 	    instr->regmodrm.rm == 0b110);
2216 }
2217 
2218 static inline bool
2219 is_dual(struct x86_decode_fsm *fsm __unused, struct x86_instr *instr)
2220 {
2221 	return (instr->address_size == 2 &&
2222 	    instr->regmodrm.mod != 0b11 &&
2223 	    instr->regmodrm.rm <= 0b011);
2224 }
2225 
2226 static enum x86_disp_type
2227 get_disp_type(struct x86_instr *instr)
2228 {
2229 	switch (instr->regmodrm.mod) {
2230 	case 0b00:	/* indirect */
2231 		return DISP_0;
2232 	case 0b01:	/* indirect+1 */
2233 		return DISP_1;
2234 	case 0b10:	/* indirect+{2,4} */
2235 		if (__predict_false(instr->address_size == 2)) {
2236 			return DISP_2;
2237 		}
2238 		return DISP_4;
2239 	case 0b11:	/* direct */
2240 	default:	/* llvm */
2241 		return DISP_NONE;
2242 	}
2243 	__unreachable();
2244 }
2245 
2246 static int
2247 node_regmodrm(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2248 {
2249 	struct x86_store *strg, *strm;
2250 	const struct x86_opcode *opcode;
2251 	const struct x86_reg *reg;
2252 	uint8_t byte;
2253 
2254 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2255 		return -1;
2256 	}
2257 
2258 	opcode = instr->opcode;
2259 
2260 	instr->regmodrm.rm  = ((byte & 0b00000111) >> 0);
2261 	instr->regmodrm.reg = ((byte & 0b00111000) >> 3);
2262 	instr->regmodrm.mod = ((byte & 0b11000000) >> 6);
2263 
2264 	if (opcode->regtorm) {
2265 		strg = &instr->src;
2266 		strm = &instr->dst;
2267 	} else { /* RM to REG */
2268 		strm = &instr->src;
2269 		strg = &instr->dst;
2270 	}
2271 
2272 	/* Save for later use. */
2273 	instr->strm = strm;
2274 
2275 	/*
2276 	 * Special cases: Groups. The REG field of REGMODRM is the index in
2277 	 * the group. op1 gets overwritten in the Immediate node, if any.
2278 	 */
2279 	if (opcode->group1) {
2280 		if (group1[instr->regmodrm.reg].emul == NULL) {
2281 			return -1;
2282 		}
2283 		instr->emul = group1[instr->regmodrm.reg].emul;
2284 	} else if (opcode->group3) {
2285 		if (group3[instr->regmodrm.reg].emul == NULL) {
2286 			return -1;
2287 		}
2288 		instr->emul = group3[instr->regmodrm.reg].emul;
2289 	} else if (opcode->group11) {
2290 		if (group11[instr->regmodrm.reg].emul == NULL) {
2291 			return -1;
2292 		}
2293 		instr->emul = group11[instr->regmodrm.reg].emul;
2294 	}
2295 
2296 	if (!opcode->immediate) {
2297 		reg = get_register_reg(instr, opcode);
2298 		if (reg == NULL) {
2299 			return -1;
2300 		}
2301 		strg->type = STORE_REG;
2302 		strg->u.reg = reg;
2303 	}
2304 
2305 	/* The displacement applies to RM. */
2306 	strm->disp.type = get_disp_type(instr);
2307 
2308 	if (has_sib(instr)) {
2309 		/* Overwrites RM */
2310 		fsm_advance(fsm, 1, node_sib);
2311 		return 0;
2312 	}
2313 
2314 	if (is_rip_relative(fsm, instr)) {
2315 		/* Overwrites RM */
2316 		strm->type = STORE_REG;
2317 		strm->u.reg = &gpr_map__rip;
2318 		strm->disp.type = DISP_4;
2319 		fsm_advance(fsm, 1, node_disp);
2320 		return 0;
2321 	}
2322 
2323 	if (is_disp32_only(fsm, instr)) {
2324 		/* Overwrites RM */
2325 		strm->type = STORE_REG;
2326 		strm->u.reg = NULL;
2327 		strm->disp.type = DISP_4;
2328 		fsm_advance(fsm, 1, node_disp);
2329 		return 0;
2330 	}
2331 
2332 	if (__predict_false(is_disp16_only(fsm, instr))) {
2333 		/* Overwrites RM */
2334 		strm->type = STORE_REG;
2335 		strm->u.reg = NULL;
2336 		strm->disp.type = DISP_2;
2337 		fsm_advance(fsm, 1, node_disp);
2338 		return 0;
2339 	}
2340 
2341 	if (__predict_false(is_dual(fsm, instr))) {
2342 		/* Overwrites RM */
2343 		fsm_advance(fsm, 0, node_dual);
2344 		return 0;
2345 	}
2346 
2347 	reg = get_register_rm(instr, opcode);
2348 	if (reg == NULL) {
2349 		return -1;
2350 	}
2351 	strm->type = STORE_REG;
2352 	strm->u.reg = reg;
2353 
2354 	if (strm->disp.type == DISP_NONE) {
2355 		/* Direct register addressing mode */
2356 		if (opcode->immediate) {
2357 			fsm_advance(fsm, 1, node_immediate);
2358 		} else {
2359 			fsm_advance(fsm, 1, NULL);
2360 		}
2361 	} else if (strm->disp.type == DISP_0) {
2362 		/* Indirect register addressing mode */
2363 		if (opcode->immediate) {
2364 			fsm_advance(fsm, 1, node_immediate);
2365 		} else {
2366 			fsm_advance(fsm, 1, NULL);
2367 		}
2368 	} else {
2369 		fsm_advance(fsm, 1, node_disp);
2370 	}
2371 
2372 	return 0;
2373 }
2374 
2375 static size_t
2376 get_operand_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2377 {
2378 	const struct x86_opcode *opcode = instr->opcode;
2379 	int opsize;
2380 
2381 	/* Get the opsize */
2382 	if (!opcode->szoverride) {
2383 		opsize = opcode->defsize;
2384 	} else if (instr->rexpref.present && instr->rexpref.w) {
2385 		opsize = 8;
2386 	} else {
2387 		if (!fsm->is16bit) {
2388 			if (instr->legpref.opr_ovr) {
2389 				opsize = 2;
2390 			} else {
2391 				opsize = 4;
2392 			}
2393 		} else { /* 16bit */
2394 			if (instr->legpref.opr_ovr) {
2395 				opsize = 4;
2396 			} else {
2397 				opsize = 2;
2398 			}
2399 		}
2400 	}
2401 
2402 	return opsize;
2403 }
2404 
2405 static size_t
2406 get_address_size(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2407 {
2408 	if (fsm->is64bit) {
2409 		if (__predict_false(instr->legpref.adr_ovr)) {
2410 			return 4;
2411 		}
2412 		return 8;
2413 	}
2414 
2415 	if (fsm->is32bit) {
2416 		if (__predict_false(instr->legpref.adr_ovr)) {
2417 			return 2;
2418 		}
2419 		return 4;
2420 	}
2421 
2422 	/* 16bit. */
2423 	if (__predict_false(instr->legpref.adr_ovr)) {
2424 		return 4;
2425 	}
2426 	return 2;
2427 }
2428 
2429 static int
2430 node_primary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2431 {
2432 	const struct x86_opcode *opcode;
2433 	uint8_t byte;
2434 
2435 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2436 		return -1;
2437 	}
2438 
2439 	opcode = &primary_opcode_table[byte];
2440 	if (__predict_false(!opcode->valid)) {
2441 		return -1;
2442 	}
2443 
2444 	instr->opcode = opcode;
2445 	instr->emul = opcode->emul;
2446 	instr->operand_size = get_operand_size(fsm, instr);
2447 	instr->address_size = get_address_size(fsm, instr);
2448 
2449 	if (fsm->is64bit && (instr->operand_size == 4)) {
2450 		/* Zero-extend to 64 bits. */
2451 		instr->zeroextend_mask = ~size_to_mask(4);
2452 	}
2453 
2454 	if (opcode->regmodrm) {
2455 		fsm_advance(fsm, 1, node_regmodrm);
2456 	} else if (opcode->dmo) {
2457 		/* Direct-Memory Offsets */
2458 		fsm_advance(fsm, 1, node_dmo);
2459 	} else if (opcode->stos || opcode->lods) {
2460 		fsm_advance(fsm, 1, node_stlo);
2461 	} else if (opcode->movs) {
2462 		fsm_advance(fsm, 1, node_movs);
2463 	} else {
2464 		return -1;
2465 	}
2466 
2467 	return 0;
2468 }
2469 
2470 static int
2471 node_secondary_opcode(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2472 {
2473 	const struct x86_opcode *opcode;
2474 	uint8_t byte;
2475 
2476 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2477 		return -1;
2478 	}
2479 
2480 	opcode = &secondary_opcode_table[byte];
2481 	if (__predict_false(!opcode->valid)) {
2482 		return -1;
2483 	}
2484 
2485 	instr->opcode = opcode;
2486 	instr->emul = opcode->emul;
2487 	instr->operand_size = get_operand_size(fsm, instr);
2488 	instr->address_size = get_address_size(fsm, instr);
2489 
2490 	if (fsm->is64bit && (instr->operand_size == 4)) {
2491 		/* Zero-extend to 64 bits. */
2492 		instr->zeroextend_mask = ~size_to_mask(4);
2493 	}
2494 
2495 	if (opcode->flags & FLAG_ze) {
2496 		/*
2497 		 * Compute the mask for zero-extend. Update the operand size,
2498 		 * we move fewer bytes.
2499 		 */
2500 		instr->zeroextend_mask |= size_to_mask(instr->operand_size);
2501 		instr->zeroextend_mask &= ~size_to_mask(opcode->defsize);
2502 		instr->operand_size = opcode->defsize;
2503 	}
2504 
2505 	if (opcode->regmodrm) {
2506 		fsm_advance(fsm, 1, node_regmodrm);
2507 	} else {
2508 		return -1;
2509 	}
2510 
2511 	return 0;
2512 }
2513 
2514 static int
2515 node_main(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2516 {
2517 	uint8_t byte;
2518 
2519 #define ESCAPE	0x0F
2520 #define VEX_1	0xC5
2521 #define VEX_2	0xC4
2522 #define XOP	0x8F
2523 
2524 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2525 		return -1;
2526 	}
2527 
2528 	/*
2529 	 * We don't take XOP. It is AMD-specific, and it was removed shortly
2530 	 * after being introduced.
2531 	 */
2532 	if (byte == ESCAPE) {
2533 		fsm_advance(fsm, 1, node_secondary_opcode);
2534 	} else if (!instr->rexpref.present) {
2535 		if (byte == VEX_1) {
2536 			return -1;
2537 		} else if (byte == VEX_2) {
2538 			return -1;
2539 		} else {
2540 			fsm->fn = node_primary_opcode;
2541 		}
2542 	} else {
2543 		fsm->fn = node_primary_opcode;
2544 	}
2545 
2546 	return 0;
2547 }
2548 
2549 static int
2550 node_rex_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2551 {
2552 	struct x86_rexpref *rexpref = &instr->rexpref;
2553 	uint8_t byte;
2554 	size_t n = 0;
2555 
2556 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2557 		return -1;
2558 	}
2559 
2560 	if (byte >= 0x40 && byte <= 0x4F) {
2561 		if (__predict_false(!fsm->is64bit)) {
2562 			return -1;
2563 		}
2564 		rexpref->b = ((byte & 0x1) != 0);
2565 		rexpref->x = ((byte & 0x2) != 0);
2566 		rexpref->r = ((byte & 0x4) != 0);
2567 		rexpref->w = ((byte & 0x8) != 0);
2568 		rexpref->present = true;
2569 		n = 1;
2570 	}
2571 
2572 	fsm_advance(fsm, n, node_main);
2573 	return 0;
2574 }
2575 
2576 static int
2577 node_legacy_prefix(struct x86_decode_fsm *fsm, struct x86_instr *instr)
2578 {
2579 	uint8_t byte;
2580 
2581 	if (fsm_read(fsm, &byte, sizeof(byte)) == -1) {
2582 		return -1;
2583 	}
2584 
2585 	if (byte == LEG_OPR_OVR) {
2586 		instr->legpref.opr_ovr = 1;
2587 	} else if (byte == LEG_OVR_DS) {
2588 		instr->legpref.seg = NVMM_X64_SEG_DS;
2589 	} else if (byte == LEG_OVR_ES) {
2590 		instr->legpref.seg = NVMM_X64_SEG_ES;
2591 	} else if (byte == LEG_REP) {
2592 		instr->legpref.rep = 1;
2593 	} else if (byte == LEG_OVR_GS) {
2594 		instr->legpref.seg = NVMM_X64_SEG_GS;
2595 	} else if (byte == LEG_OVR_FS) {
2596 		instr->legpref.seg = NVMM_X64_SEG_FS;
2597 	} else if (byte == LEG_ADR_OVR) {
2598 		instr->legpref.adr_ovr = 1;
2599 	} else if (byte == LEG_OVR_CS) {
2600 		instr->legpref.seg = NVMM_X64_SEG_CS;
2601 	} else if (byte == LEG_OVR_SS) {
2602 		instr->legpref.seg = NVMM_X64_SEG_SS;
2603 	} else if (byte == LEG_REPN) {
2604 		instr->legpref.repn = 1;
2605 	} else if (byte == LEG_LOCK) {
2606 		/* ignore */
2607 	} else {
2608 		/* not a legacy prefix */
2609 		fsm_advance(fsm, 0, node_rex_prefix);
2610 		return 0;
2611 	}
2612 
2613 	fsm_advance(fsm, 1, node_legacy_prefix);
2614 	return 0;
2615 }
2616 
2617 static int
2618 x86_decode(uint8_t *inst_bytes, size_t inst_len, struct x86_instr *instr,
2619     struct nvmm_x64_state *state)
2620 {
2621 	struct x86_decode_fsm fsm;
2622 	int ret;
2623 
2624 	memset(instr, 0, sizeof(*instr));
2625 	instr->legpref.seg = -1;
2626 	instr->src.hardseg = -1;
2627 	instr->dst.hardseg = -1;
2628 
2629 	fsm.is64bit = is_64bit(state);
2630 	fsm.is32bit = is_32bit(state);
2631 	fsm.is16bit = is_16bit(state);
2632 
2633 	fsm.fn = node_legacy_prefix;
2634 	fsm.buf = inst_bytes;
2635 	fsm.end = inst_bytes + inst_len;
2636 
2637 	while (fsm.fn != NULL) {
2638 		ret = (*fsm.fn)(&fsm, instr);
2639 		if (ret == -1)
2640 			return -1;
2641 	}
2642 
2643 	instr->len = fsm.buf - inst_bytes;
2644 
2645 	return 0;
2646 }
2647 
2648 /* -------------------------------------------------------------------------- */
2649 
2650 #define EXEC_INSTR(sz, instr)						\
2651 static uint##sz##_t							\
2652 exec_##instr##sz(uint##sz##_t op1, uint##sz##_t op2, uint64_t *rflags)	\
2653 {									\
2654 	uint##sz##_t res;						\
2655 	__asm __volatile (						\
2656 		#instr"	%2, %3;"					\
2657 		"mov	%3, %1;"					\
2658 		"pushfq;"						\
2659 		"popq	%0"						\
2660 	    : "=r" (*rflags), "=r" (res)				\
2661 	    : "r" (op1), "r" (op2));					\
2662 	return res;							\
2663 }
2664 
2665 #define EXEC_DISPATCHER(instr)						\
2666 static uint64_t								\
2667 exec_##instr(uint64_t op1, uint64_t op2, uint64_t *rflags, size_t opsize) \
2668 {									\
2669 	switch (opsize) {						\
2670 	case 1:								\
2671 		return exec_##instr##8(op1, op2, rflags);		\
2672 	case 2:								\
2673 		return exec_##instr##16(op1, op2, rflags);		\
2674 	case 4:								\
2675 		return exec_##instr##32(op1, op2, rflags);		\
2676 	default:							\
2677 		return exec_##instr##64(op1, op2, rflags);		\
2678 	}								\
2679 }
2680 
2681 /* SUB: ret = op1 - op2 */
2682 #define PSL_SUB_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF|PSL_AF)
2683 EXEC_INSTR(8, sub)
2684 EXEC_INSTR(16, sub)
2685 EXEC_INSTR(32, sub)
2686 EXEC_INSTR(64, sub)
2687 EXEC_DISPATCHER(sub)
2688 
2689 /* OR:  ret = op1 | op2 */
2690 #define PSL_OR_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2691 EXEC_INSTR(8, or)
2692 EXEC_INSTR(16, or)
2693 EXEC_INSTR(32, or)
2694 EXEC_INSTR(64, or)
2695 EXEC_DISPATCHER(or)
2696 
2697 /* AND: ret = op1 & op2 */
2698 #define PSL_AND_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2699 EXEC_INSTR(8, and)
2700 EXEC_INSTR(16, and)
2701 EXEC_INSTR(32, and)
2702 EXEC_INSTR(64, and)
2703 EXEC_DISPATCHER(and)
2704 
2705 /* XOR: ret = op1 ^ op2 */
2706 #define PSL_XOR_MASK	(PSL_V|PSL_C|PSL_Z|PSL_N|PSL_PF)
2707 EXEC_INSTR(8, xor)
2708 EXEC_INSTR(16, xor)
2709 EXEC_INSTR(32, xor)
2710 EXEC_INSTR(64, xor)
2711 EXEC_DISPATCHER(xor)
2712 
2713 /* -------------------------------------------------------------------------- */
2714 
2715 /*
2716  * Emulation functions. We don't care about the order of the operands, except
2717  * for SUB, CMP and TEST. For these ones we look at mem->write to determine who
2718  * is op1 and who is op2.
2719  */
2720 
2721 static void
2722 x86_func_or(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2723 {
2724 	uint64_t *retval = (uint64_t *)mem->data;
2725 	const bool write = mem->write;
2726 	uint64_t *op1, op2, fl, ret;
2727 
2728 	op1 = (uint64_t *)mem->data;
2729 	op2 = 0;
2730 
2731 	/* Fetch the value to be OR'ed (op2). */
2732 	mem->data = (uint8_t *)&op2;
2733 	mem->write = false;
2734 	(*vcpu->cbs.mem)(mem);
2735 
2736 	/* Perform the OR. */
2737 	ret = exec_or(*op1, op2, &fl, mem->size);
2738 
2739 	if (write) {
2740 		/* Write back the result. */
2741 		mem->data = (uint8_t *)&ret;
2742 		mem->write = true;
2743 		(*vcpu->cbs.mem)(mem);
2744 	} else {
2745 		/* Return data to the caller. */
2746 		*retval = ret;
2747 	}
2748 
2749 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_OR_MASK;
2750 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_OR_MASK);
2751 }
2752 
2753 static void
2754 x86_func_and(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2755 {
2756 	uint64_t *retval = (uint64_t *)mem->data;
2757 	const bool write = mem->write;
2758 	uint64_t *op1, op2, fl, ret;
2759 
2760 	op1 = (uint64_t *)mem->data;
2761 	op2 = 0;
2762 
2763 	/* Fetch the value to be AND'ed (op2). */
2764 	mem->data = (uint8_t *)&op2;
2765 	mem->write = false;
2766 	(*vcpu->cbs.mem)(mem);
2767 
2768 	/* Perform the AND. */
2769 	ret = exec_and(*op1, op2, &fl, mem->size);
2770 
2771 	if (write) {
2772 		/* Write back the result. */
2773 		mem->data = (uint8_t *)&ret;
2774 		mem->write = true;
2775 		(*vcpu->cbs.mem)(mem);
2776 	} else {
2777 		/* Return data to the caller. */
2778 		*retval = ret;
2779 	}
2780 
2781 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2782 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2783 }
2784 
2785 static void
2786 x86_func_xchg(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs __unused)
2787 {
2788 	uint64_t *op1, op2;
2789 
2790 	op1 = (uint64_t *)mem->data;
2791 	op2 = 0;
2792 
2793 	/* Fetch op2. */
2794 	mem->data = (uint8_t *)&op2;
2795 	mem->write = false;
2796 	(*vcpu->cbs.mem)(mem);
2797 
2798 	/* Write op1 in op2. */
2799 	mem->data = (uint8_t *)op1;
2800 	mem->write = true;
2801 	(*vcpu->cbs.mem)(mem);
2802 
2803 	/* Write op2 in op1. */
2804 	*op1 = op2;
2805 }
2806 
2807 static void
2808 x86_func_sub(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2809 {
2810 	uint64_t *retval = (uint64_t *)mem->data;
2811 	const bool write = mem->write;
2812 	uint64_t *op1, *op2, fl, ret;
2813 	uint64_t tmp;
2814 	bool memop1;
2815 
2816 	memop1 = !mem->write;
2817 	op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2818 	op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2819 
2820 	/* Fetch the value to be SUB'ed (op1 or op2). */
2821 	mem->data = (uint8_t *)&tmp;
2822 	mem->write = false;
2823 	(*vcpu->cbs.mem)(mem);
2824 
2825 	/* Perform the SUB. */
2826 	ret = exec_sub(*op1, *op2, &fl, mem->size);
2827 
2828 	if (write) {
2829 		/* Write back the result. */
2830 		mem->data = (uint8_t *)&ret;
2831 		mem->write = true;
2832 		(*vcpu->cbs.mem)(mem);
2833 	} else {
2834 		/* Return data to the caller. */
2835 		*retval = ret;
2836 	}
2837 
2838 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2839 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2840 }
2841 
2842 static void
2843 x86_func_xor(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2844 {
2845 	uint64_t *retval = (uint64_t *)mem->data;
2846 	const bool write = mem->write;
2847 	uint64_t *op1, op2, fl, ret;
2848 
2849 	op1 = (uint64_t *)mem->data;
2850 	op2 = 0;
2851 
2852 	/* Fetch the value to be XOR'ed (op2). */
2853 	mem->data = (uint8_t *)&op2;
2854 	mem->write = false;
2855 	(*vcpu->cbs.mem)(mem);
2856 
2857 	/* Perform the XOR. */
2858 	ret = exec_xor(*op1, op2, &fl, mem->size);
2859 
2860 	if (write) {
2861 		/* Write back the result. */
2862 		mem->data = (uint8_t *)&ret;
2863 		mem->write = true;
2864 		(*vcpu->cbs.mem)(mem);
2865 	} else {
2866 		/* Return data to the caller. */
2867 		*retval = ret;
2868 	}
2869 
2870 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_XOR_MASK;
2871 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_XOR_MASK);
2872 }
2873 
2874 static void
2875 x86_func_cmp(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2876 {
2877 	uint64_t *op1, *op2, fl;
2878 	uint64_t tmp;
2879 	bool memop1;
2880 
2881 	memop1 = !mem->write;
2882 	op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2883 	op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2884 
2885 	/* Fetch the value to be CMP'ed (op1 or op2). */
2886 	mem->data = (uint8_t *)&tmp;
2887 	mem->write = false;
2888 	(*vcpu->cbs.mem)(mem);
2889 
2890 	/* Perform the CMP. */
2891 	exec_sub(*op1, *op2, &fl, mem->size);
2892 
2893 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_SUB_MASK;
2894 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_SUB_MASK);
2895 }
2896 
2897 static void
2898 x86_func_test(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2899 {
2900 	uint64_t *op1, *op2, fl;
2901 	uint64_t tmp;
2902 	bool memop1;
2903 
2904 	memop1 = !mem->write;
2905 	op1 = memop1 ? &tmp : (uint64_t *)mem->data;
2906 	op2 = memop1 ? (uint64_t *)mem->data : &tmp;
2907 
2908 	/* Fetch the value to be TEST'ed (op1 or op2). */
2909 	mem->data = (uint8_t *)&tmp;
2910 	mem->write = false;
2911 	(*vcpu->cbs.mem)(mem);
2912 
2913 	/* Perform the TEST. */
2914 	exec_and(*op1, *op2, &fl, mem->size);
2915 
2916 	gprs[NVMM_X64_GPR_RFLAGS] &= ~PSL_AND_MASK;
2917 	gprs[NVMM_X64_GPR_RFLAGS] |= (fl & PSL_AND_MASK);
2918 }
2919 
2920 static void
2921 x86_func_mov(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs __unused)
2922 {
2923 	/*
2924 	 * Nothing special, just move without emulation.
2925 	 */
2926 	(*vcpu->cbs.mem)(mem);
2927 }
2928 
2929 static void
2930 x86_func_stos(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2931 {
2932 	/*
2933 	 * Just move, and update RDI.
2934 	 */
2935 	(*vcpu->cbs.mem)(mem);
2936 
2937 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2938 		gprs[NVMM_X64_GPR_RDI] -= mem->size;
2939 	} else {
2940 		gprs[NVMM_X64_GPR_RDI] += mem->size;
2941 	}
2942 }
2943 
2944 static void
2945 x86_func_lods(struct nvmm_vcpu *vcpu, struct nvmm_mem *mem, uint64_t *gprs)
2946 {
2947 	/*
2948 	 * Just move, and update RSI.
2949 	 */
2950 	(*vcpu->cbs.mem)(mem);
2951 
2952 	if (gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
2953 		gprs[NVMM_X64_GPR_RSI] -= mem->size;
2954 	} else {
2955 		gprs[NVMM_X64_GPR_RSI] += mem->size;
2956 	}
2957 }
2958 
2959 /* -------------------------------------------------------------------------- */
2960 
2961 static inline uint64_t
2962 gpr_read_address(struct x86_instr *instr, struct nvmm_x64_state *state, int gpr)
2963 {
2964 	uint64_t val;
2965 
2966 	val = state->gprs[gpr];
2967 	val &= size_to_mask(instr->address_size);
2968 
2969 	return val;
2970 }
2971 
2972 static int
2973 store_to_gva(struct nvmm_x64_state *state, struct x86_instr *instr,
2974     struct x86_store *store, gvaddr_t *gvap, size_t size)
2975 {
2976 	struct x86_sib *sib;
2977 	gvaddr_t gva = 0;
2978 	uint64_t reg;
2979 	int ret, seg;
2980 
2981 	if (store->type == STORE_SIB) {
2982 		sib = &store->u.sib;
2983 		if (sib->bas != NULL)
2984 			gva += gpr_read_address(instr, state, sib->bas->num);
2985 		if (sib->idx != NULL) {
2986 			reg = gpr_read_address(instr, state, sib->idx->num);
2987 			gva += sib->scale * reg;
2988 		}
2989 	} else if (store->type == STORE_REG) {
2990 		if (store->u.reg == NULL) {
2991 			/* The base is null. Happens with disp32-only and
2992 			 * disp16-only. */
2993 		} else {
2994 			gva = gpr_read_address(instr, state, store->u.reg->num);
2995 		}
2996 	} else if (store->type == STORE_DUALREG) {
2997 		gva = gpr_read_address(instr, state, store->u.dualreg.reg1) +
2998 		    gpr_read_address(instr, state, store->u.dualreg.reg2);
2999 	} else {
3000 		gva = store->u.dmo;
3001 	}
3002 
3003 	if (store->disp.type != DISP_NONE) {
3004 		gva += store->disp.data;
3005 	}
3006 
3007 	if (store->hardseg != -1) {
3008 		seg = store->hardseg;
3009 	} else {
3010 		if (__predict_false(instr->legpref.seg != -1)) {
3011 			seg = instr->legpref.seg;
3012 		} else {
3013 			seg = NVMM_X64_SEG_DS;
3014 		}
3015 	}
3016 
3017 	if (__predict_true(is_long_mode(state))) {
3018 		if (seg == NVMM_X64_SEG_GS || seg == NVMM_X64_SEG_FS) {
3019 			segment_apply(&state->segs[seg], &gva);
3020 		}
3021 	} else {
3022 		ret = segment_check(&state->segs[seg], gva, size);
3023 		if (ret == -1)
3024 			return -1;
3025 		segment_apply(&state->segs[seg], &gva);
3026 	}
3027 
3028 	*gvap = gva;
3029 	return 0;
3030 }
3031 
3032 static int
3033 fetch_segment(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3034 {
3035 	struct nvmm_x64_state *state = vcpu->state;
3036 	uint8_t inst_bytes[5], byte;
3037 	size_t i, fetchsize;
3038 	gvaddr_t gva;
3039 	int ret, seg;
3040 
3041 	fetchsize = sizeof(inst_bytes);
3042 
3043 	gva = state->gprs[NVMM_X64_GPR_RIP];
3044 	if (__predict_false(!is_long_mode(state))) {
3045 		ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3046 		    fetchsize);
3047 		if (ret == -1)
3048 			return -1;
3049 		segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3050 	}
3051 
3052 	ret = read_guest_memory(mach, vcpu, gva, inst_bytes, fetchsize);
3053 	if (ret == -1)
3054 		return -1;
3055 
3056 	seg = NVMM_X64_SEG_DS;
3057 	for (i = 0; i < fetchsize; i++) {
3058 		byte = inst_bytes[i];
3059 
3060 		if (byte == LEG_OVR_DS) {
3061 			seg = NVMM_X64_SEG_DS;
3062 		} else if (byte == LEG_OVR_ES) {
3063 			seg = NVMM_X64_SEG_ES;
3064 		} else if (byte == LEG_OVR_GS) {
3065 			seg = NVMM_X64_SEG_GS;
3066 		} else if (byte == LEG_OVR_FS) {
3067 			seg = NVMM_X64_SEG_FS;
3068 		} else if (byte == LEG_OVR_CS) {
3069 			seg = NVMM_X64_SEG_CS;
3070 		} else if (byte == LEG_OVR_SS) {
3071 			seg = NVMM_X64_SEG_SS;
3072 		} else if (byte == LEG_OPR_OVR) {
3073 			/* nothing */
3074 		} else if (byte == LEG_ADR_OVR) {
3075 			/* nothing */
3076 		} else if (byte == LEG_REP) {
3077 			/* nothing */
3078 		} else if (byte == LEG_REPN) {
3079 			/* nothing */
3080 		} else if (byte == LEG_LOCK) {
3081 			/* nothing */
3082 		} else {
3083 			return seg;
3084 		}
3085 	}
3086 
3087 	return seg;
3088 }
3089 
3090 static int
3091 fetch_instruction(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3092     struct nvmm_vcpu_exit *exit)
3093 {
3094 	struct nvmm_x64_state *state = vcpu->state;
3095 	size_t fetchsize;
3096 	gvaddr_t gva;
3097 	int ret;
3098 
3099 	fetchsize = sizeof(exit->u.mem.inst_bytes);
3100 
3101 	gva = state->gprs[NVMM_X64_GPR_RIP];
3102 	if (__predict_false(!is_long_mode(state))) {
3103 		ret = segment_check(&state->segs[NVMM_X64_SEG_CS], gva,
3104 		    fetchsize);
3105 		if (ret == -1)
3106 			return -1;
3107 		segment_apply(&state->segs[NVMM_X64_SEG_CS], &gva);
3108 	}
3109 
3110 	ret = read_guest_memory(mach, vcpu, gva, exit->u.mem.inst_bytes,
3111 	    fetchsize);
3112 	if (ret == -1)
3113 		return -1;
3114 
3115 	exit->u.mem.inst_len = fetchsize;
3116 
3117 	return 0;
3118 }
3119 
3120 /*
3121  * Double memory operand, MOVS only.
3122  */
3123 static int
3124 assist_mem_double_movs(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3125     struct x86_instr *instr)
3126 {
3127 	struct nvmm_x64_state *state = vcpu->state;
3128 	uint8_t data[8];
3129 	gvaddr_t gva;
3130 	size_t size;
3131 	int ret;
3132 
3133 	size = instr->operand_size;
3134 
3135 	/* Source. */
3136 	ret = store_to_gva(state, instr, &instr->src, &gva, size);
3137 	if (ret == -1)
3138 		return -1;
3139 	ret = read_guest_memory(mach, vcpu, gva, data, size);
3140 	if (ret == -1)
3141 		return -1;
3142 
3143 	/* Destination. */
3144 	ret = store_to_gva(state, instr, &instr->dst, &gva, size);
3145 	if (ret == -1)
3146 		return -1;
3147 	ret = write_guest_memory(mach, vcpu, gva, data, size);
3148 	if (ret == -1)
3149 		return -1;
3150 
3151 	if (state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_D) {
3152 		state->gprs[NVMM_X64_GPR_RSI] -= size;
3153 		state->gprs[NVMM_X64_GPR_RDI] -= size;
3154 	} else {
3155 		state->gprs[NVMM_X64_GPR_RSI] += size;
3156 		state->gprs[NVMM_X64_GPR_RDI] += size;
3157 	}
3158 
3159 	return 0;
3160 }
3161 
3162 /*
3163  * Single memory operand, covers most instructions.
3164  */
3165 static int
3166 assist_mem_single(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu,
3167     struct x86_instr *instr)
3168 {
3169 	struct nvmm_x64_state *state = vcpu->state;
3170 	struct nvmm_vcpu_exit *exit = vcpu->exit;
3171 	struct nvmm_mem mem;
3172 	uint8_t membuf[8];
3173 	uint64_t val;
3174 
3175 	memset(membuf, 0, sizeof(membuf));
3176 
3177 	mem.mach = mach;
3178 	mem.vcpu = vcpu;
3179 	mem.gpa = exit->u.mem.gpa;
3180 	mem.size = instr->operand_size;
3181 	mem.data = membuf;
3182 
3183 	/* Determine the direction. */
3184 	switch (instr->src.type) {
3185 	case STORE_REG:
3186 		if (instr->src.disp.type != DISP_NONE) {
3187 			/* Indirect access. */
3188 			mem.write = false;
3189 		} else {
3190 			/* Direct access. */
3191 			mem.write = true;
3192 		}
3193 		break;
3194 	case STORE_DUALREG:
3195 		if (instr->src.disp.type == DISP_NONE) {
3196 			DISASSEMBLER_BUG();
3197 		}
3198 		mem.write = false;
3199 		break;
3200 	case STORE_IMM:
3201 		mem.write = true;
3202 		break;
3203 	case STORE_SIB:
3204 		mem.write = false;
3205 		break;
3206 	case STORE_DMO:
3207 		mem.write = false;
3208 		break;
3209 	default:
3210 		DISASSEMBLER_BUG();
3211 	}
3212 
3213 	if (mem.write) {
3214 		switch (instr->src.type) {
3215 		case STORE_REG:
3216 			/* The instruction was "reg -> mem". Fetch the register
3217 			 * in membuf. */
3218 			if (__predict_false(instr->src.disp.type != DISP_NONE)) {
3219 				DISASSEMBLER_BUG();
3220 			}
3221 			val = state->gprs[instr->src.u.reg->num];
3222 			val = __SHIFTOUT(val, instr->src.u.reg->mask);
3223 			memcpy(mem.data, &val, mem.size);
3224 			break;
3225 		case STORE_IMM:
3226 			/* The instruction was "imm -> mem". Fetch the immediate
3227 			 * in membuf. */
3228 			memcpy(mem.data, &instr->src.u.imm.data, mem.size);
3229 			break;
3230 		default:
3231 			DISASSEMBLER_BUG();
3232 		}
3233 	} else if (instr->emul->readreg) {
3234 		/* The instruction was "mem -> reg", but the value of the
3235 		 * register matters for the emul func. Fetch it in membuf. */
3236 		if (__predict_false(instr->dst.type != STORE_REG)) {
3237 			DISASSEMBLER_BUG();
3238 		}
3239 		if (__predict_false(instr->dst.disp.type != DISP_NONE)) {
3240 			DISASSEMBLER_BUG();
3241 		}
3242 		val = state->gprs[instr->dst.u.reg->num];
3243 		val = __SHIFTOUT(val, instr->dst.u.reg->mask);
3244 		memcpy(mem.data, &val, mem.size);
3245 	}
3246 
3247 	(*instr->emul->func)(vcpu, &mem, state->gprs);
3248 
3249 	if (instr->emul->notouch) {
3250 		/* We're done. */
3251 		return 0;
3252 	}
3253 
3254 	if (!mem.write) {
3255 		/* The instruction was "mem -> reg". The emul func has filled
3256 		 * membuf with the memory content. Install membuf in the
3257 		 * register. */
3258 		if (__predict_false(instr->dst.type != STORE_REG)) {
3259 			DISASSEMBLER_BUG();
3260 		}
3261 		if (__predict_false(instr->dst.disp.type != DISP_NONE)) {
3262 			DISASSEMBLER_BUG();
3263 		}
3264 		memcpy(&val, membuf, sizeof(uint64_t));
3265 		val = __SHIFTIN(val, instr->dst.u.reg->mask);
3266 		state->gprs[instr->dst.u.reg->num] &= ~instr->dst.u.reg->mask;
3267 		state->gprs[instr->dst.u.reg->num] |= val;
3268 		state->gprs[instr->dst.u.reg->num] &= ~instr->zeroextend_mask;
3269 	} else if (instr->emul->backprop) {
3270 		/* The instruction was "reg -> mem", but the memory must be
3271 		 * back-propagated to the register. Install membuf in the
3272 		 * register. */
3273 		if (__predict_false(instr->src.type != STORE_REG)) {
3274 			DISASSEMBLER_BUG();
3275 		}
3276 		if (__predict_false(instr->src.disp.type != DISP_NONE)) {
3277 			DISASSEMBLER_BUG();
3278 		}
3279 		memcpy(&val, membuf, sizeof(uint64_t));
3280 		val = __SHIFTIN(val, instr->src.u.reg->mask);
3281 		state->gprs[instr->src.u.reg->num] &= ~instr->src.u.reg->mask;
3282 		state->gprs[instr->src.u.reg->num] |= val;
3283 		state->gprs[instr->src.u.reg->num] &= ~instr->zeroextend_mask;
3284 	}
3285 
3286 	return 0;
3287 }
3288 
3289 int
3290 nvmm_assist_mem(struct nvmm_machine *mach, struct nvmm_vcpu *vcpu)
3291 {
3292 	struct nvmm_x64_state *state = vcpu->state;
3293 	struct nvmm_vcpu_exit *exit = vcpu->exit;
3294 	struct x86_instr instr;
3295 	uint64_t cnt = 0; /* GCC */
3296 	int ret;
3297 
3298 	if (__predict_false(exit->reason != NVMM_VCPU_EXIT_MEMORY)) {
3299 		errno = EINVAL;
3300 		return -1;
3301 	}
3302 
3303 	ret = nvmm_vcpu_getstate(mach, vcpu,
3304 	    NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
3305 	    NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
3306 	if (ret == -1)
3307 		return -1;
3308 
3309 	if (exit->u.mem.inst_len == 0) {
3310 		/*
3311 		 * The instruction was not fetched from the kernel. Fetch
3312 		 * it ourselves.
3313 		 */
3314 		ret = fetch_instruction(mach, vcpu, exit);
3315 		if (ret == -1)
3316 			return -1;
3317 	}
3318 
3319 	ret = x86_decode(exit->u.mem.inst_bytes, exit->u.mem.inst_len,
3320 	    &instr, state);
3321 	if (ret == -1) {
3322 		errno = ENODEV;
3323 		return -1;
3324 	}
3325 
3326 	if (instr.legpref.rep || instr.legpref.repn) {
3327 		cnt = rep_get_cnt(state, instr.address_size);
3328 		if (__predict_false(cnt == 0)) {
3329 			state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3330 			goto out;
3331 		}
3332 	}
3333 
3334 	if (instr.opcode->movs) {
3335 		ret = assist_mem_double_movs(mach, vcpu, &instr);
3336 	} else {
3337 		ret = assist_mem_single(mach, vcpu, &instr);
3338 	}
3339 	if (ret == -1) {
3340 		errno = ENODEV;
3341 		return -1;
3342 	}
3343 
3344 	if (instr.legpref.rep || instr.legpref.repn) {
3345 		cnt -= 1;
3346 		rep_set_cnt(state, instr.address_size, cnt);
3347 		if (cnt == 0) {
3348 			state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3349 		} else if (__predict_false(instr.legpref.repn)) {
3350 			if (state->gprs[NVMM_X64_GPR_RFLAGS] & PSL_Z) {
3351 				state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3352 			}
3353 		}
3354 	} else {
3355 		state->gprs[NVMM_X64_GPR_RIP] += instr.len;
3356 	}
3357 
3358 out:
3359 	ret = nvmm_vcpu_setstate(mach, vcpu, NVMM_X64_STATE_GPRS);
3360 	if (ret == -1)
3361 		return -1;
3362 
3363 	return 0;
3364 }
3365