1 /*	$OpenBSD: queue.h,v 1.36 2012/04/11 13:29:14 naddy Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33  */
34 
35 /* OPENBSD ORIGINAL: sys/sys/queue.h */
36 
37 #ifndef	_FAKE_QUEUE_H_
38 #define	_FAKE_QUEUE_H_
39 
40 /*
41  * Require for OS/X and other platforms that have old/broken/incomplete
42  * <sys/queue.h>.
43  */
44 #undef SLIST_HEAD
45 #undef SLIST_HEAD_INITIALIZER
46 #undef SLIST_ENTRY
47 #undef SLIST_FOREACH_PREVPTR
48 #undef SLIST_FOREACH_SAFE
49 #undef SLIST_FIRST
50 #undef SLIST_END
51 #undef SLIST_EMPTY
52 #undef SLIST_NEXT
53 #undef SLIST_FOREACH
54 #undef SLIST_INIT
55 #undef SLIST_INSERT_AFTER
56 #undef SLIST_INSERT_HEAD
57 #undef SLIST_REMOVE_HEAD
58 #undef SLIST_REMOVE_AFTER
59 #undef SLIST_REMOVE
60 #undef SLIST_REMOVE_NEXT
61 #undef LIST_HEAD
62 #undef LIST_HEAD_INITIALIZER
63 #undef LIST_ENTRY
64 #undef LIST_FIRST
65 #undef LIST_END
66 #undef LIST_EMPTY
67 #undef LIST_NEXT
68 #undef LIST_FOREACH
69 #undef LIST_FOREACH_SAFE
70 #undef LIST_INIT
71 #undef LIST_INSERT_AFTER
72 #undef LIST_INSERT_BEFORE
73 #undef LIST_INSERT_HEAD
74 #undef LIST_REMOVE
75 #undef LIST_REPLACE
76 #undef SIMPLEQ_HEAD
77 #undef SIMPLEQ_HEAD_INITIALIZER
78 #undef SIMPLEQ_ENTRY
79 #undef SIMPLEQ_FIRST
80 #undef SIMPLEQ_END
81 #undef SIMPLEQ_EMPTY
82 #undef SIMPLEQ_NEXT
83 #undef SIMPLEQ_FOREACH
84 #undef SIMPLEQ_FOREACH_SAFE
85 #undef SIMPLEQ_INIT
86 #undef SIMPLEQ_INSERT_HEAD
87 #undef SIMPLEQ_INSERT_TAIL
88 #undef SIMPLEQ_INSERT_AFTER
89 #undef SIMPLEQ_REMOVE_HEAD
90 #undef TAILQ_HEAD
91 #undef TAILQ_HEAD_INITIALIZER
92 #undef TAILQ_ENTRY
93 #undef TAILQ_FIRST
94 #undef TAILQ_END
95 #undef TAILQ_NEXT
96 #undef TAILQ_LAST
97 #undef TAILQ_PREV
98 #undef TAILQ_EMPTY
99 #undef TAILQ_FOREACH
100 #undef TAILQ_FOREACH_REVERSE
101 #undef TAILQ_FOREACH_SAFE
102 #undef TAILQ_FOREACH_REVERSE_SAFE
103 #undef TAILQ_INIT
104 #undef TAILQ_INSERT_HEAD
105 #undef TAILQ_INSERT_TAIL
106 #undef TAILQ_INSERT_AFTER
107 #undef TAILQ_INSERT_BEFORE
108 #undef TAILQ_REMOVE
109 #undef TAILQ_REPLACE
110 #undef CIRCLEQ_HEAD
111 #undef CIRCLEQ_HEAD_INITIALIZER
112 #undef CIRCLEQ_ENTRY
113 #undef CIRCLEQ_FIRST
114 #undef CIRCLEQ_LAST
115 #undef CIRCLEQ_END
116 #undef CIRCLEQ_NEXT
117 #undef CIRCLEQ_PREV
118 #undef CIRCLEQ_EMPTY
119 #undef CIRCLEQ_FOREACH
120 #undef CIRCLEQ_FOREACH_REVERSE
121 #undef CIRCLEQ_INIT
122 #undef CIRCLEQ_INSERT_AFTER
123 #undef CIRCLEQ_INSERT_BEFORE
124 #undef CIRCLEQ_INSERT_HEAD
125 #undef CIRCLEQ_INSERT_TAIL
126 #undef CIRCLEQ_REMOVE
127 #undef CIRCLEQ_REPLACE
128 
129 /*
130  * This file defines five types of data structures: singly-linked lists,
131  * lists, simple queues, tail queues, and circular queues.
132  *
133  *
134  * A singly-linked list is headed by a single forward pointer. The elements
135  * are singly linked for minimum space and pointer manipulation overhead at
136  * the expense of O(n) removal for arbitrary elements. New elements can be
137  * added to the list after an existing element or at the head of the list.
138  * Elements being removed from the head of the list should use the explicit
139  * macro for this purpose for optimum efficiency. A singly-linked list may
140  * only be traversed in the forward direction.  Singly-linked lists are ideal
141  * for applications with large datasets and few or no removals or for
142  * implementing a LIFO queue.
143  *
144  * A list is headed by a single forward pointer (or an array of forward
145  * pointers for a hash table header). The elements are doubly linked
146  * so that an arbitrary element can be removed without a need to
147  * traverse the list. New elements can be added to the list before
148  * or after an existing element or at the head of the list. A list
149  * may only be traversed in the forward direction.
150  *
151  * A simple queue is headed by a pair of pointers, one the head of the
152  * list and the other to the tail of the list. The elements are singly
153  * linked to save space, so elements can only be removed from the
154  * head of the list. New elements can be added to the list before or after
155  * an existing element, at the head of the list, or at the end of the
156  * list. A simple queue may only be traversed in the forward direction.
157  *
158  * A tail queue is headed by a pair of pointers, one to the head of the
159  * list and the other to the tail of the list. The elements are doubly
160  * linked so that an arbitrary element can be removed without a need to
161  * traverse the list. New elements can be added to the list before or
162  * after an existing element, at the head of the list, or at the end of
163  * the list. A tail queue may be traversed in either direction.
164  *
165  * A circle queue is headed by a pair of pointers, one to the head of the
166  * list and the other to the tail of the list. The elements are doubly
167  * linked so that an arbitrary element can be removed without a need to
168  * traverse the list. New elements can be added to the list before or after
169  * an existing element, at the head of the list, or at the end of the list.
170  * A circle queue may be traversed in either direction, but has a more
171  * complex end of list detection.
172  *
173  * For details on the use of these macros, see the queue(3) manual page.
174  */
175 
176 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
177 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
178 #else
179 #define _Q_INVALIDATE(a)
180 #endif
181 
182 /*
183  * Singly-linked List definitions.
184  */
185 #define SLIST_HEAD(name, type)						\
186 struct name {								\
187 	struct type *slh_first;	/* first element */			\
188 }
189 
190 #define	SLIST_HEAD_INITIALIZER(head)					\
191 	{ NULL }
192 
193 #define SLIST_ENTRY(type)						\
194 struct {								\
195 	struct type *sle_next;	/* next element */			\
196 }
197 
198 /*
199  * Singly-linked List access methods.
200  */
201 #define	SLIST_FIRST(head)	((head)->slh_first)
202 #define	SLIST_END(head)		NULL
203 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
204 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
205 
206 #define	SLIST_FOREACH(var, head, field)					\
207 	for((var) = SLIST_FIRST(head);					\
208 	    (var) != SLIST_END(head);					\
209 	    (var) = SLIST_NEXT(var, field))
210 
211 #define	SLIST_FOREACH_SAFE(var, head, field, tvar)			\
212 	for ((var) = SLIST_FIRST(head);				\
213 	    (var) && ((tvar) = SLIST_NEXT(var, field), 1);		\
214 	    (var) = (tvar))
215 
216 /*
217  * Singly-linked List functions.
218  */
219 #define	SLIST_INIT(head) {						\
220 	SLIST_FIRST(head) = SLIST_END(head);				\
221 }
222 
223 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
224 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
225 	(slistelm)->field.sle_next = (elm);				\
226 } while (0)
227 
228 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
229 	(elm)->field.sle_next = (head)->slh_first;			\
230 	(head)->slh_first = (elm);					\
231 } while (0)
232 
233 #define	SLIST_REMOVE_AFTER(elm, field) do {				\
234 	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
235 } while (0)
236 
237 #define	SLIST_REMOVE_HEAD(head, field) do {				\
238 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
239 } while (0)
240 
241 #define SLIST_REMOVE(head, elm, type, field) do {			\
242 	if ((head)->slh_first == (elm)) {				\
243 		SLIST_REMOVE_HEAD((head), field);			\
244 	} else {							\
245 		struct type *curelm = (head)->slh_first;		\
246 									\
247 		while (curelm->field.sle_next != (elm))			\
248 			curelm = curelm->field.sle_next;		\
249 		curelm->field.sle_next =				\
250 		    curelm->field.sle_next->field.sle_next;		\
251 		_Q_INVALIDATE((elm)->field.sle_next);			\
252 	}								\
253 } while (0)
254 
255 /*
256  * List definitions.
257  */
258 #define LIST_HEAD(name, type)						\
259 struct name {								\
260 	struct type *lh_first;	/* first element */			\
261 }
262 
263 #define LIST_HEAD_INITIALIZER(head)					\
264 	{ NULL }
265 
266 #define LIST_ENTRY(type)						\
267 struct {								\
268 	struct type *le_next;	/* next element */			\
269 	struct type **le_prev;	/* address of previous next element */	\
270 }
271 
272 /*
273  * List access methods
274  */
275 #define	LIST_FIRST(head)		((head)->lh_first)
276 #define	LIST_END(head)			NULL
277 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
278 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
279 
280 #define LIST_FOREACH(var, head, field)					\
281 	for((var) = LIST_FIRST(head);					\
282 	    (var)!= LIST_END(head);					\
283 	    (var) = LIST_NEXT(var, field))
284 
285 #define	LIST_FOREACH_SAFE(var, head, field, tvar)			\
286 	for ((var) = LIST_FIRST(head);				\
287 	    (var) && ((tvar) = LIST_NEXT(var, field), 1);		\
288 	    (var) = (tvar))
289 
290 /*
291  * List functions.
292  */
293 #define	LIST_INIT(head) do {						\
294 	LIST_FIRST(head) = LIST_END(head);				\
295 } while (0)
296 
297 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
298 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
299 		(listelm)->field.le_next->field.le_prev =		\
300 		    &(elm)->field.le_next;				\
301 	(listelm)->field.le_next = (elm);				\
302 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
303 } while (0)
304 
305 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
306 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
307 	(elm)->field.le_next = (listelm);				\
308 	*(listelm)->field.le_prev = (elm);				\
309 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
310 } while (0)
311 
312 #define LIST_INSERT_HEAD(head, elm, field) do {				\
313 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
314 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
315 	(head)->lh_first = (elm);					\
316 	(elm)->field.le_prev = &(head)->lh_first;			\
317 } while (0)
318 
319 #define LIST_REMOVE(elm, field) do {					\
320 	if ((elm)->field.le_next != NULL)				\
321 		(elm)->field.le_next->field.le_prev =			\
322 		    (elm)->field.le_prev;				\
323 	*(elm)->field.le_prev = (elm)->field.le_next;			\
324 	_Q_INVALIDATE((elm)->field.le_prev);				\
325 	_Q_INVALIDATE((elm)->field.le_next);				\
326 } while (0)
327 
328 #define LIST_REPLACE(elm, elm2, field) do {				\
329 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
330 		(elm2)->field.le_next->field.le_prev =			\
331 		    &(elm2)->field.le_next;				\
332 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
333 	*(elm2)->field.le_prev = (elm2);				\
334 	_Q_INVALIDATE((elm)->field.le_prev);				\
335 	_Q_INVALIDATE((elm)->field.le_next);				\
336 } while (0)
337 
338 /*
339  * Simple queue definitions.
340  */
341 #define SIMPLEQ_HEAD(name, type)					\
342 struct name {								\
343 	struct type *sqh_first;	/* first element */			\
344 	struct type **sqh_last;	/* addr of last next element */		\
345 }
346 
347 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
348 	{ NULL, &(head).sqh_first }
349 
350 #define SIMPLEQ_ENTRY(type)						\
351 struct {								\
352 	struct type *sqe_next;	/* next element */			\
353 }
354 
355 /*
356  * Simple queue access methods.
357  */
358 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
359 #define	SIMPLEQ_END(head)	    NULL
360 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
361 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
362 
363 #define SIMPLEQ_FOREACH(var, head, field)				\
364 	for((var) = SIMPLEQ_FIRST(head);				\
365 	    (var) != SIMPLEQ_END(head);					\
366 	    (var) = SIMPLEQ_NEXT(var, field))
367 
368 #define	SIMPLEQ_FOREACH_SAFE(var, head, field, tvar)			\
369 	for ((var) = SIMPLEQ_FIRST(head);				\
370 	    (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1);		\
371 	    (var) = (tvar))
372 
373 /*
374  * Simple queue functions.
375  */
376 #define	SIMPLEQ_INIT(head) do {						\
377 	(head)->sqh_first = NULL;					\
378 	(head)->sqh_last = &(head)->sqh_first;				\
379 } while (0)
380 
381 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
382 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
383 		(head)->sqh_last = &(elm)->field.sqe_next;		\
384 	(head)->sqh_first = (elm);					\
385 } while (0)
386 
387 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
388 	(elm)->field.sqe_next = NULL;					\
389 	*(head)->sqh_last = (elm);					\
390 	(head)->sqh_last = &(elm)->field.sqe_next;			\
391 } while (0)
392 
393 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
394 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
395 		(head)->sqh_last = &(elm)->field.sqe_next;		\
396 	(listelm)->field.sqe_next = (elm);				\
397 } while (0)
398 
399 #define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
400 	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
401 		(head)->sqh_last = &(head)->sqh_first;			\
402 } while (0)
403 
404 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do {			\
405 	if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
406 	    == NULL)							\
407 		(head)->sqh_last = &(elm)->field.sqe_next;		\
408 } while (0)
409 
410 /*
411  * Tail queue definitions.
412  */
413 #define TAILQ_HEAD(name, type)						\
414 struct name {								\
415 	struct type *tqh_first;	/* first element */			\
416 	struct type **tqh_last;	/* addr of last next element */		\
417 }
418 
419 #define TAILQ_HEAD_INITIALIZER(head)					\
420 	{ NULL, &(head).tqh_first }
421 
422 #define TAILQ_ENTRY(type)						\
423 struct {								\
424 	struct type *tqe_next;	/* next element */			\
425 	struct type **tqe_prev;	/* address of previous next element */	\
426 }
427 
428 /*
429  * tail queue access methods
430  */
431 #define	TAILQ_FIRST(head)		((head)->tqh_first)
432 #define	TAILQ_END(head)			NULL
433 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
434 #define TAILQ_LAST(head, headname)					\
435 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
436 /* XXX */
437 #define TAILQ_PREV(elm, headname, field)				\
438 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
439 #define	TAILQ_EMPTY(head)						\
440 	(TAILQ_FIRST(head) == TAILQ_END(head))
441 
442 #define TAILQ_FOREACH(var, head, field)					\
443 	for((var) = TAILQ_FIRST(head);					\
444 	    (var) != TAILQ_END(head);					\
445 	    (var) = TAILQ_NEXT(var, field))
446 
447 #define	TAILQ_FOREACH_SAFE(var, head, field, tvar)			\
448 	for ((var) = TAILQ_FIRST(head);					\
449 	    (var) != TAILQ_END(head) &&					\
450 	    ((tvar) = TAILQ_NEXT(var, field), 1);			\
451 	    (var) = (tvar))
452 
453 
454 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
455 	for((var) = TAILQ_LAST(head, headname);				\
456 	    (var) != TAILQ_END(head);					\
457 	    (var) = TAILQ_PREV(var, headname, field))
458 
459 #define	TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
460 	for ((var) = TAILQ_LAST(head, headname);			\
461 	    (var) != TAILQ_END(head) &&					\
462 	    ((tvar) = TAILQ_PREV(var, headname, field), 1);		\
463 	    (var) = (tvar))
464 
465 /*
466  * Tail queue functions.
467  */
468 #define	TAILQ_INIT(head) do {						\
469 	(head)->tqh_first = NULL;					\
470 	(head)->tqh_last = &(head)->tqh_first;				\
471 } while (0)
472 
473 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
474 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
475 		(head)->tqh_first->field.tqe_prev =			\
476 		    &(elm)->field.tqe_next;				\
477 	else								\
478 		(head)->tqh_last = &(elm)->field.tqe_next;		\
479 	(head)->tqh_first = (elm);					\
480 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
481 } while (0)
482 
483 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
484 	(elm)->field.tqe_next = NULL;					\
485 	(elm)->field.tqe_prev = (head)->tqh_last;			\
486 	*(head)->tqh_last = (elm);					\
487 	(head)->tqh_last = &(elm)->field.tqe_next;			\
488 } while (0)
489 
490 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
491 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
492 		(elm)->field.tqe_next->field.tqe_prev =			\
493 		    &(elm)->field.tqe_next;				\
494 	else								\
495 		(head)->tqh_last = &(elm)->field.tqe_next;		\
496 	(listelm)->field.tqe_next = (elm);				\
497 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
498 } while (0)
499 
500 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
501 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
502 	(elm)->field.tqe_next = (listelm);				\
503 	*(listelm)->field.tqe_prev = (elm);				\
504 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
505 } while (0)
506 
507 #define TAILQ_REMOVE(head, elm, field) do {				\
508 	if (((elm)->field.tqe_next) != NULL)				\
509 		(elm)->field.tqe_next->field.tqe_prev =			\
510 		    (elm)->field.tqe_prev;				\
511 	else								\
512 		(head)->tqh_last = (elm)->field.tqe_prev;		\
513 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
514 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
515 	_Q_INVALIDATE((elm)->field.tqe_next);				\
516 } while (0)
517 
518 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
519 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
520 		(elm2)->field.tqe_next->field.tqe_prev =		\
521 		    &(elm2)->field.tqe_next;				\
522 	else								\
523 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
524 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
525 	*(elm2)->field.tqe_prev = (elm2);				\
526 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
527 	_Q_INVALIDATE((elm)->field.tqe_next);				\
528 } while (0)
529 
530 /*
531  * Circular queue definitions.
532  */
533 #define CIRCLEQ_HEAD(name, type)					\
534 struct name {								\
535 	struct type *cqh_first;		/* first element */		\
536 	struct type *cqh_last;		/* last element */		\
537 }
538 
539 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
540 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
541 
542 #define CIRCLEQ_ENTRY(type)						\
543 struct {								\
544 	struct type *cqe_next;		/* next element */		\
545 	struct type *cqe_prev;		/* previous element */		\
546 }
547 
548 /*
549  * Circular queue access methods
550  */
551 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
552 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
553 #define	CIRCLEQ_END(head)		((void *)(head))
554 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
555 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
556 #define	CIRCLEQ_EMPTY(head)						\
557 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
558 
559 #define CIRCLEQ_FOREACH(var, head, field)				\
560 	for((var) = CIRCLEQ_FIRST(head);				\
561 	    (var) != CIRCLEQ_END(head);					\
562 	    (var) = CIRCLEQ_NEXT(var, field))
563 
564 #define	CIRCLEQ_FOREACH_SAFE(var, head, field, tvar)			\
565 	for ((var) = CIRCLEQ_FIRST(head);				\
566 	    (var) != CIRCLEQ_END(head) &&				\
567 	    ((tvar) = CIRCLEQ_NEXT(var, field), 1);			\
568 	    (var) = (tvar))
569 
570 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
571 	for((var) = CIRCLEQ_LAST(head);					\
572 	    (var) != CIRCLEQ_END(head);					\
573 	    (var) = CIRCLEQ_PREV(var, field))
574 
575 #define	CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
576 	for ((var) = CIRCLEQ_LAST(head, headname);			\
577 	    (var) != CIRCLEQ_END(head) && 				\
578 	    ((tvar) = CIRCLEQ_PREV(var, headname, field), 1);		\
579 	    (var) = (tvar))
580 
581 /*
582  * Circular queue functions.
583  */
584 #define	CIRCLEQ_INIT(head) do {						\
585 	(head)->cqh_first = CIRCLEQ_END(head);				\
586 	(head)->cqh_last = CIRCLEQ_END(head);				\
587 } while (0)
588 
589 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
590 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
591 	(elm)->field.cqe_prev = (listelm);				\
592 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
593 		(head)->cqh_last = (elm);				\
594 	else								\
595 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
596 	(listelm)->field.cqe_next = (elm);				\
597 } while (0)
598 
599 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
600 	(elm)->field.cqe_next = (listelm);				\
601 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
602 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
603 		(head)->cqh_first = (elm);				\
604 	else								\
605 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
606 	(listelm)->field.cqe_prev = (elm);				\
607 } while (0)
608 
609 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
610 	(elm)->field.cqe_next = (head)->cqh_first;			\
611 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
612 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
613 		(head)->cqh_last = (elm);				\
614 	else								\
615 		(head)->cqh_first->field.cqe_prev = (elm);		\
616 	(head)->cqh_first = (elm);					\
617 } while (0)
618 
619 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
620 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
621 	(elm)->field.cqe_prev = (head)->cqh_last;			\
622 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
623 		(head)->cqh_first = (elm);				\
624 	else								\
625 		(head)->cqh_last->field.cqe_next = (elm);		\
626 	(head)->cqh_last = (elm);					\
627 } while (0)
628 
629 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
630 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
631 		(head)->cqh_last = (elm)->field.cqe_prev;		\
632 	else								\
633 		(elm)->field.cqe_next->field.cqe_prev =			\
634 		    (elm)->field.cqe_prev;				\
635 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
636 		(head)->cqh_first = (elm)->field.cqe_next;		\
637 	else								\
638 		(elm)->field.cqe_prev->field.cqe_next =			\
639 		    (elm)->field.cqe_next;				\
640 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
641 	_Q_INVALIDATE((elm)->field.cqe_next);				\
642 } while (0)
643 
644 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
645 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
646 	    CIRCLEQ_END(head))						\
647 		(head).cqh_last = (elm2);				\
648 	else								\
649 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
650 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
651 	    CIRCLEQ_END(head))						\
652 		(head).cqh_first = (elm2);				\
653 	else								\
654 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
655 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
656 	_Q_INVALIDATE((elm)->field.cqe_next);				\
657 } while (0)
658 
659 #endif	/* !_FAKE_QUEUE_H_ */
660