1 /*	$OpenBSD: queue.h,v 1.36 2012/04/11 13:29:14 naddy Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33  */
34 
35 /* OPENBSD ORIGINAL: sys/sys/queue.h */
36 
37 #ifndef	_FAKE_QUEUE_H_
38 #define	_FAKE_QUEUE_H_
39 
40 /*
41  * Require for OS/X and other platforms that have old/broken/incomplete
42  * <sys/queue.h>.
43  */
44 #undef SLIST_HEAD
45 #undef SLIST_HEAD_INITIALIZER
46 #undef SLIST_ENTRY
47 #undef SLIST_FOREACH_PREVPTR
48 #undef SLIST_FOREACH_SAFE
49 #undef SLIST_FIRST
50 #undef SLIST_END
51 #undef SLIST_EMPTY
52 #undef SLIST_NEXT
53 #undef SLIST_FOREACH
54 #undef SLIST_INIT
55 #undef SLIST_INSERT_AFTER
56 #undef SLIST_INSERT_HEAD
57 #undef SLIST_REMOVE_HEAD
58 #undef SLIST_REMOVE_AFTER
59 #undef SLIST_REMOVE
60 #undef SLIST_REMOVE_NEXT
61 #undef LIST_HEAD
62 #undef LIST_HEAD_INITIALIZER
63 #undef LIST_ENTRY
64 #undef LIST_FIRST
65 #undef LIST_END
66 #undef LIST_EMPTY
67 #undef LIST_NEXT
68 #undef LIST_FOREACH
69 #undef LIST_FOREACH_SAFE
70 #undef LIST_INIT
71 #undef LIST_INSERT_AFTER
72 #undef LIST_INSERT_BEFORE
73 #undef LIST_INSERT_HEAD
74 #undef LIST_REMOVE
75 #undef LIST_REPLACE
76 #undef SIMPLEQ_HEAD
77 #undef SIMPLEQ_HEAD_INITIALIZER
78 #undef SIMPLEQ_ENTRY
79 #undef SIMPLEQ_FIRST
80 #undef SIMPLEQ_END
81 #undef SIMPLEQ_EMPTY
82 #undef SIMPLEQ_NEXT
83 #undef SIMPLEQ_FOREACH
84 #undef SIMPLEQ_FOREACH_SAFE
85 #undef SIMPLEQ_INIT
86 #undef SIMPLEQ_INSERT_HEAD
87 #undef SIMPLEQ_INSERT_TAIL
88 #undef SIMPLEQ_INSERT_AFTER
89 #undef SIMPLEQ_REMOVE_HEAD
90 #undef TAILQ_CONCAT
91 #undef TAILQ_HEAD
92 #undef TAILQ_HEAD_INITIALIZER
93 #undef TAILQ_ENTRY
94 #undef TAILQ_FIRST
95 #undef TAILQ_END
96 #undef TAILQ_NEXT
97 #undef TAILQ_LAST
98 #undef TAILQ_PREV
99 #undef TAILQ_EMPTY
100 #undef TAILQ_FOREACH
101 #undef TAILQ_FOREACH_REVERSE
102 #undef TAILQ_FOREACH_SAFE
103 #undef TAILQ_FOREACH_REVERSE_SAFE
104 #undef TAILQ_INIT
105 #undef TAILQ_INSERT_HEAD
106 #undef TAILQ_INSERT_TAIL
107 #undef TAILQ_INSERT_AFTER
108 #undef TAILQ_INSERT_BEFORE
109 #undef TAILQ_REMOVE
110 #undef TAILQ_REPLACE
111 #undef CIRCLEQ_HEAD
112 #undef CIRCLEQ_HEAD_INITIALIZER
113 #undef CIRCLEQ_ENTRY
114 #undef CIRCLEQ_FIRST
115 #undef CIRCLEQ_LAST
116 #undef CIRCLEQ_END
117 #undef CIRCLEQ_NEXT
118 #undef CIRCLEQ_PREV
119 #undef CIRCLEQ_EMPTY
120 #undef CIRCLEQ_FOREACH
121 #undef CIRCLEQ_FOREACH_REVERSE
122 #undef CIRCLEQ_INIT
123 #undef CIRCLEQ_INSERT_AFTER
124 #undef CIRCLEQ_INSERT_BEFORE
125 #undef CIRCLEQ_INSERT_HEAD
126 #undef CIRCLEQ_INSERT_TAIL
127 #undef CIRCLEQ_REMOVE
128 #undef CIRCLEQ_REPLACE
129 
130 /*
131  * This file defines five types of data structures: singly-linked lists,
132  * lists, simple queues, tail queues, and circular queues.
133  *
134  *
135  * A singly-linked list is headed by a single forward pointer. The elements
136  * are singly linked for minimum space and pointer manipulation overhead at
137  * the expense of O(n) removal for arbitrary elements. New elements can be
138  * added to the list after an existing element or at the head of the list.
139  * Elements being removed from the head of the list should use the explicit
140  * macro for this purpose for optimum efficiency. A singly-linked list may
141  * only be traversed in the forward direction.  Singly-linked lists are ideal
142  * for applications with large datasets and few or no removals or for
143  * implementing a LIFO queue.
144  *
145  * A list is headed by a single forward pointer (or an array of forward
146  * pointers for a hash table header). The elements are doubly linked
147  * so that an arbitrary element can be removed without a need to
148  * traverse the list. New elements can be added to the list before
149  * or after an existing element or at the head of the list. A list
150  * may only be traversed in the forward direction.
151  *
152  * A simple queue is headed by a pair of pointers, one the head of the
153  * list and the other to the tail of the list. The elements are singly
154  * linked to save space, so elements can only be removed from the
155  * head of the list. New elements can be added to the list before or after
156  * an existing element, at the head of the list, or at the end of the
157  * list. A simple queue may only be traversed in the forward direction.
158  *
159  * A tail queue is headed by a pair of pointers, one to the head of the
160  * list and the other to the tail of the list. The elements are doubly
161  * linked so that an arbitrary element can be removed without a need to
162  * traverse the list. New elements can be added to the list before or
163  * after an existing element, at the head of the list, or at the end of
164  * the list. A tail queue may be traversed in either direction.
165  *
166  * A circle queue is headed by a pair of pointers, one to the head of the
167  * list and the other to the tail of the list. The elements are doubly
168  * linked so that an arbitrary element can be removed without a need to
169  * traverse the list. New elements can be added to the list before or after
170  * an existing element, at the head of the list, or at the end of the list.
171  * A circle queue may be traversed in either direction, but has a more
172  * complex end of list detection.
173  *
174  * For details on the use of these macros, see the queue(3) manual page.
175  */
176 
177 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
178 #define _Q_INVALIDATE(a) (a) = ((void *)-1)
179 #else
180 #define _Q_INVALIDATE(a)
181 #endif
182 
183 /*
184  * Singly-linked List definitions.
185  */
186 #define SLIST_HEAD(name, type)						\
187 struct name {								\
188 	struct type *slh_first;	/* first element */			\
189 }
190 
191 #define	SLIST_HEAD_INITIALIZER(head)					\
192 	{ NULL }
193 
194 #define SLIST_ENTRY(type)						\
195 struct {								\
196 	struct type *sle_next;	/* next element */			\
197 }
198 
199 /*
200  * Singly-linked List access methods.
201  */
202 #define	SLIST_FIRST(head)	((head)->slh_first)
203 #define	SLIST_END(head)		NULL
204 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
205 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
206 
207 #define	SLIST_FOREACH(var, head, field)					\
208 	for((var) = SLIST_FIRST(head);					\
209 	    (var) != SLIST_END(head);					\
210 	    (var) = SLIST_NEXT(var, field))
211 
212 #define	SLIST_FOREACH_SAFE(var, head, field, tvar)			\
213 	for ((var) = SLIST_FIRST(head);				\
214 	    (var) && ((tvar) = SLIST_NEXT(var, field), 1);		\
215 	    (var) = (tvar))
216 
217 /*
218  * Singly-linked List functions.
219  */
220 #define	SLIST_INIT(head) {						\
221 	SLIST_FIRST(head) = SLIST_END(head);				\
222 }
223 
224 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
225 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
226 	(slistelm)->field.sle_next = (elm);				\
227 } while (0)
228 
229 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
230 	(elm)->field.sle_next = (head)->slh_first;			\
231 	(head)->slh_first = (elm);					\
232 } while (0)
233 
234 #define	SLIST_REMOVE_AFTER(elm, field) do {				\
235 	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
236 } while (0)
237 
238 #define	SLIST_REMOVE_HEAD(head, field) do {				\
239 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
240 } while (0)
241 
242 #define SLIST_REMOVE(head, elm, type, field) do {			\
243 	if ((head)->slh_first == (elm)) {				\
244 		SLIST_REMOVE_HEAD((head), field);			\
245 	} else {							\
246 		struct type *curelm = (head)->slh_first;		\
247 									\
248 		while (curelm->field.sle_next != (elm))			\
249 			curelm = curelm->field.sle_next;		\
250 		curelm->field.sle_next =				\
251 		    curelm->field.sle_next->field.sle_next;		\
252 		_Q_INVALIDATE((elm)->field.sle_next);			\
253 	}								\
254 } while (0)
255 
256 /*
257  * List definitions.
258  */
259 #define LIST_HEAD(name, type)						\
260 struct name {								\
261 	struct type *lh_first;	/* first element */			\
262 }
263 
264 #define LIST_HEAD_INITIALIZER(head)					\
265 	{ NULL }
266 
267 #define LIST_ENTRY(type)						\
268 struct {								\
269 	struct type *le_next;	/* next element */			\
270 	struct type **le_prev;	/* address of previous next element */	\
271 }
272 
273 /*
274  * List access methods
275  */
276 #define	LIST_FIRST(head)		((head)->lh_first)
277 #define	LIST_END(head)			NULL
278 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
279 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
280 
281 #define LIST_FOREACH(var, head, field)					\
282 	for((var) = LIST_FIRST(head);					\
283 	    (var)!= LIST_END(head);					\
284 	    (var) = LIST_NEXT(var, field))
285 
286 #define	LIST_FOREACH_SAFE(var, head, field, tvar)			\
287 	for ((var) = LIST_FIRST(head);				\
288 	    (var) && ((tvar) = LIST_NEXT(var, field), 1);		\
289 	    (var) = (tvar))
290 
291 /*
292  * List functions.
293  */
294 #define	LIST_INIT(head) do {						\
295 	LIST_FIRST(head) = LIST_END(head);				\
296 } while (0)
297 
298 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
299 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
300 		(listelm)->field.le_next->field.le_prev =		\
301 		    &(elm)->field.le_next;				\
302 	(listelm)->field.le_next = (elm);				\
303 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
304 } while (0)
305 
306 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
307 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
308 	(elm)->field.le_next = (listelm);				\
309 	*(listelm)->field.le_prev = (elm);				\
310 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
311 } while (0)
312 
313 #define LIST_INSERT_HEAD(head, elm, field) do {				\
314 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
315 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
316 	(head)->lh_first = (elm);					\
317 	(elm)->field.le_prev = &(head)->lh_first;			\
318 } while (0)
319 
320 #define LIST_REMOVE(elm, field) do {					\
321 	if ((elm)->field.le_next != NULL)				\
322 		(elm)->field.le_next->field.le_prev =			\
323 		    (elm)->field.le_prev;				\
324 	*(elm)->field.le_prev = (elm)->field.le_next;			\
325 	_Q_INVALIDATE((elm)->field.le_prev);				\
326 	_Q_INVALIDATE((elm)->field.le_next);				\
327 } while (0)
328 
329 #define LIST_REPLACE(elm, elm2, field) do {				\
330 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
331 		(elm2)->field.le_next->field.le_prev =			\
332 		    &(elm2)->field.le_next;				\
333 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
334 	*(elm2)->field.le_prev = (elm2);				\
335 	_Q_INVALIDATE((elm)->field.le_prev);				\
336 	_Q_INVALIDATE((elm)->field.le_next);				\
337 } while (0)
338 
339 /*
340  * Simple queue definitions.
341  */
342 #define SIMPLEQ_HEAD(name, type)					\
343 struct name {								\
344 	struct type *sqh_first;	/* first element */			\
345 	struct type **sqh_last;	/* addr of last next element */		\
346 }
347 
348 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
349 	{ NULL, &(head).sqh_first }
350 
351 #define SIMPLEQ_ENTRY(type)						\
352 struct {								\
353 	struct type *sqe_next;	/* next element */			\
354 }
355 
356 /*
357  * Simple queue access methods.
358  */
359 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
360 #define	SIMPLEQ_END(head)	    NULL
361 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
362 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
363 
364 #define SIMPLEQ_FOREACH(var, head, field)				\
365 	for((var) = SIMPLEQ_FIRST(head);				\
366 	    (var) != SIMPLEQ_END(head);					\
367 	    (var) = SIMPLEQ_NEXT(var, field))
368 
369 #define	SIMPLEQ_FOREACH_SAFE(var, head, field, tvar)			\
370 	for ((var) = SIMPLEQ_FIRST(head);				\
371 	    (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1);		\
372 	    (var) = (tvar))
373 
374 /*
375  * Simple queue functions.
376  */
377 #define	SIMPLEQ_INIT(head) do {						\
378 	(head)->sqh_first = NULL;					\
379 	(head)->sqh_last = &(head)->sqh_first;				\
380 } while (0)
381 
382 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
383 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
384 		(head)->sqh_last = &(elm)->field.sqe_next;		\
385 	(head)->sqh_first = (elm);					\
386 } while (0)
387 
388 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
389 	(elm)->field.sqe_next = NULL;					\
390 	*(head)->sqh_last = (elm);					\
391 	(head)->sqh_last = &(elm)->field.sqe_next;			\
392 } while (0)
393 
394 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
395 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
396 		(head)->sqh_last = &(elm)->field.sqe_next;		\
397 	(listelm)->field.sqe_next = (elm);				\
398 } while (0)
399 
400 #define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
401 	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
402 		(head)->sqh_last = &(head)->sqh_first;			\
403 } while (0)
404 
405 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do {			\
406 	if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \
407 	    == NULL)							\
408 		(head)->sqh_last = &(elm)->field.sqe_next;		\
409 } while (0)
410 
411 /*
412  * Tail queue definitions.
413  */
414 #define TAILQ_HEAD(name, type)						\
415 struct name {								\
416 	struct type *tqh_first;	/* first element */			\
417 	struct type **tqh_last;	/* addr of last next element */		\
418 }
419 
420 #define TAILQ_HEAD_INITIALIZER(head)					\
421 	{ NULL, &(head).tqh_first }
422 
423 #define TAILQ_ENTRY(type)						\
424 struct {								\
425 	struct type *tqe_next;	/* next element */			\
426 	struct type **tqe_prev;	/* address of previous next element */	\
427 }
428 
429 /*
430  * tail queue access methods
431  */
432 #define	TAILQ_FIRST(head)		((head)->tqh_first)
433 #define	TAILQ_END(head)			NULL
434 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
435 #define TAILQ_LAST(head, headname)					\
436 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
437 /* XXX */
438 #define TAILQ_PREV(elm, headname, field)				\
439 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
440 #define	TAILQ_EMPTY(head)						\
441 	(TAILQ_FIRST(head) == TAILQ_END(head))
442 
443 #define TAILQ_FOREACH(var, head, field)					\
444 	for((var) = TAILQ_FIRST(head);					\
445 	    (var) != TAILQ_END(head);					\
446 	    (var) = TAILQ_NEXT(var, field))
447 
448 #define	TAILQ_FOREACH_SAFE(var, head, field, tvar)			\
449 	for ((var) = TAILQ_FIRST(head);					\
450 	    (var) != TAILQ_END(head) &&					\
451 	    ((tvar) = TAILQ_NEXT(var, field), 1);			\
452 	    (var) = (tvar))
453 
454 
455 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
456 	for((var) = TAILQ_LAST(head, headname);				\
457 	    (var) != TAILQ_END(head);					\
458 	    (var) = TAILQ_PREV(var, headname, field))
459 
460 #define	TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
461 	for ((var) = TAILQ_LAST(head, headname);			\
462 	    (var) != TAILQ_END(head) &&					\
463 	    ((tvar) = TAILQ_PREV(var, headname, field), 1);		\
464 	    (var) = (tvar))
465 
466 /*
467  * Tail queue functions.
468  */
469 #define	TAILQ_INIT(head) do {						\
470 	(head)->tqh_first = NULL;					\
471 	(head)->tqh_last = &(head)->tqh_first;				\
472 } while (0)
473 
474 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
475 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
476 		(head)->tqh_first->field.tqe_prev =			\
477 		    &(elm)->field.tqe_next;				\
478 	else								\
479 		(head)->tqh_last = &(elm)->field.tqe_next;		\
480 	(head)->tqh_first = (elm);					\
481 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
482 } while (0)
483 
484 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
485 	(elm)->field.tqe_next = NULL;					\
486 	(elm)->field.tqe_prev = (head)->tqh_last;			\
487 	*(head)->tqh_last = (elm);					\
488 	(head)->tqh_last = &(elm)->field.tqe_next;			\
489 } while (0)
490 
491 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
492 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
493 		(elm)->field.tqe_next->field.tqe_prev =			\
494 		    &(elm)->field.tqe_next;				\
495 	else								\
496 		(head)->tqh_last = &(elm)->field.tqe_next;		\
497 	(listelm)->field.tqe_next = (elm);				\
498 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
499 } while (0)
500 
501 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
502 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
503 	(elm)->field.tqe_next = (listelm);				\
504 	*(listelm)->field.tqe_prev = (elm);				\
505 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
506 } while (0)
507 
508 #define TAILQ_REMOVE(head, elm, field) do {				\
509 	if (((elm)->field.tqe_next) != NULL)				\
510 		(elm)->field.tqe_next->field.tqe_prev =			\
511 		    (elm)->field.tqe_prev;				\
512 	else								\
513 		(head)->tqh_last = (elm)->field.tqe_prev;		\
514 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
515 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
516 	_Q_INVALIDATE((elm)->field.tqe_next);				\
517 } while (0)
518 
519 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
520 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
521 		(elm2)->field.tqe_next->field.tqe_prev =		\
522 		    &(elm2)->field.tqe_next;				\
523 	else								\
524 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
525 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
526 	*(elm2)->field.tqe_prev = (elm2);				\
527 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
528 	_Q_INVALIDATE((elm)->field.tqe_next);				\
529 } while (0)
530 
531 #define TAILQ_CONCAT(head1, head2, field) do {				\
532 	if (!TAILQ_EMPTY(head2)) {					\
533 		*(head1)->tqh_last = (head2)->tqh_first;		\
534 		(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;	\
535 		(head1)->tqh_last = (head2)->tqh_last;			\
536 		TAILQ_INIT((head2));					\
537 	}								\
538 } while (0)
539 
540 /*
541  * Circular queue definitions.
542  */
543 #define CIRCLEQ_HEAD(name, type)					\
544 struct name {								\
545 	struct type *cqh_first;		/* first element */		\
546 	struct type *cqh_last;		/* last element */		\
547 }
548 
549 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
550 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
551 
552 #define CIRCLEQ_ENTRY(type)						\
553 struct {								\
554 	struct type *cqe_next;		/* next element */		\
555 	struct type *cqe_prev;		/* previous element */		\
556 }
557 
558 /*
559  * Circular queue access methods
560  */
561 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
562 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
563 #define	CIRCLEQ_END(head)		((void *)(head))
564 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
565 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
566 #define	CIRCLEQ_EMPTY(head)						\
567 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
568 
569 #define CIRCLEQ_FOREACH(var, head, field)				\
570 	for((var) = CIRCLEQ_FIRST(head);				\
571 	    (var) != CIRCLEQ_END(head);					\
572 	    (var) = CIRCLEQ_NEXT(var, field))
573 
574 #define	CIRCLEQ_FOREACH_SAFE(var, head, field, tvar)			\
575 	for ((var) = CIRCLEQ_FIRST(head);				\
576 	    (var) != CIRCLEQ_END(head) &&				\
577 	    ((tvar) = CIRCLEQ_NEXT(var, field), 1);			\
578 	    (var) = (tvar))
579 
580 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
581 	for((var) = CIRCLEQ_LAST(head);					\
582 	    (var) != CIRCLEQ_END(head);					\
583 	    (var) = CIRCLEQ_PREV(var, field))
584 
585 #define	CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
586 	for ((var) = CIRCLEQ_LAST(head, headname);			\
587 	    (var) != CIRCLEQ_END(head) && 				\
588 	    ((tvar) = CIRCLEQ_PREV(var, headname, field), 1);		\
589 	    (var) = (tvar))
590 
591 /*
592  * Circular queue functions.
593  */
594 #define	CIRCLEQ_INIT(head) do {						\
595 	(head)->cqh_first = CIRCLEQ_END(head);				\
596 	(head)->cqh_last = CIRCLEQ_END(head);				\
597 } while (0)
598 
599 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
600 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
601 	(elm)->field.cqe_prev = (listelm);				\
602 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
603 		(head)->cqh_last = (elm);				\
604 	else								\
605 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
606 	(listelm)->field.cqe_next = (elm);				\
607 } while (0)
608 
609 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
610 	(elm)->field.cqe_next = (listelm);				\
611 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
612 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
613 		(head)->cqh_first = (elm);				\
614 	else								\
615 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
616 	(listelm)->field.cqe_prev = (elm);				\
617 } while (0)
618 
619 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
620 	(elm)->field.cqe_next = (head)->cqh_first;			\
621 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
622 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
623 		(head)->cqh_last = (elm);				\
624 	else								\
625 		(head)->cqh_first->field.cqe_prev = (elm);		\
626 	(head)->cqh_first = (elm);					\
627 } while (0)
628 
629 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
630 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
631 	(elm)->field.cqe_prev = (head)->cqh_last;			\
632 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
633 		(head)->cqh_first = (elm);				\
634 	else								\
635 		(head)->cqh_last->field.cqe_next = (elm);		\
636 	(head)->cqh_last = (elm);					\
637 } while (0)
638 
639 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
640 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
641 		(head)->cqh_last = (elm)->field.cqe_prev;		\
642 	else								\
643 		(elm)->field.cqe_next->field.cqe_prev =			\
644 		    (elm)->field.cqe_prev;				\
645 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
646 		(head)->cqh_first = (elm)->field.cqe_next;		\
647 	else								\
648 		(elm)->field.cqe_prev->field.cqe_next =			\
649 		    (elm)->field.cqe_next;				\
650 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
651 	_Q_INVALIDATE((elm)->field.cqe_next);				\
652 } while (0)
653 
654 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
655 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
656 	    CIRCLEQ_END(head))						\
657 		(head).cqh_last = (elm2);				\
658 	else								\
659 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
660 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
661 	    CIRCLEQ_END(head))						\
662 		(head).cqh_first = (elm2);				\
663 	else								\
664 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
665 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
666 	_Q_INVALIDATE((elm)->field.cqe_next);				\
667 } while (0)
668 
669 #endif	/* !_FAKE_QUEUE_H_ */
670