xref: /dragonfly/libexec/rtld-elf/rtld.c (revision 52f9f0d9)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 #include <sys/resident.h>
50 #include <sys/tls.h>
51 
52 #include <machine/tls.h>
53 
54 #include <dlfcn.h>
55 #include <err.h>
56 #include <errno.h>
57 #include <fcntl.h>
58 #include <stdarg.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <unistd.h>
63 
64 #include "debug.h"
65 #include "rtld.h"
66 #include "libmap.h"
67 #include "rtld_printf.h"
68 #include "notes.h"
69 
70 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
71 #define LD_ARY_CACHE	16
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *_getenv_ld(const char *id);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static bool is_exported(const Elf_Sym *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static Obj_Entry *obj_from_addr(const void *);
113 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114 static void objlist_call_init(Objlist *, RtldLockState *);
115 static void objlist_clear(Objlist *);
116 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117 static void objlist_init(Objlist *);
118 static void objlist_push_head(Objlist *, Obj_Entry *);
119 static void objlist_push_tail(Objlist *, Obj_Entry *);
120 static void objlist_remove(Objlist *, Obj_Entry *);
121 static void *path_enumerate(const char *, path_enum_proc, void *);
122 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
123     RtldLockState *);
124 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
125     int flags, RtldLockState *lockstate);
126 static int rtld_dirname(const char *, char *);
127 static int rtld_dirname_abs(const char *, char *);
128 static void *rtld_dlopen(const char *name, int fd, int mode);
129 static void rtld_exit(void);
130 static char *search_library_path(const char *, const char *);
131 static const void **get_program_var_addr(const char *, RtldLockState *);
132 static void set_program_var(const char *, const void *);
133 static int symlook_default(SymLook *, const Obj_Entry *refobj);
134 static int symlook_global(SymLook *, DoneList *);
135 static void symlook_init_from_req(SymLook *, const SymLook *);
136 static int symlook_list(SymLook *, const Objlist *, DoneList *);
137 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
138 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
139 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
140 static void trace_loaded_objects(Obj_Entry *);
141 static void unlink_object(Obj_Entry *);
142 static void unload_object(Obj_Entry *);
143 static void unref_dag(Obj_Entry *);
144 static void ref_dag(Obj_Entry *);
145 static int origin_subst_one(char **, const char *, const char *,
146   const char *, char *);
147 static char *origin_subst(const char *, const char *);
148 static void preinitialize_main_object (void);
149 static int  rtld_verify_versions(const Objlist *);
150 static int  rtld_verify_object_versions(Obj_Entry *);
151 static void object_add_name(Obj_Entry *, const char *);
152 static int  object_match_name(const Obj_Entry *, const char *);
153 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
154 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
155     struct dl_phdr_info *phdr_info);
156 static uint_fast32_t gnu_hash (const char *);
157 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
158     const unsigned long);
159 
160 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
161 
162 /*
163  * Data declarations.
164  */
165 static char *error_message;	/* Message for dlerror(), or NULL */
166 struct r_debug r_debug;		/* for GDB; */
167 static bool libmap_disable;	/* Disable libmap */
168 static bool ld_loadfltr;	/* Immediate filters processing */
169 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
170 static bool trust;		/* False for setuid and setgid programs */
171 static bool dangerous_ld_env;	/* True if environment variables have been
172 				   used to affect the libraries loaded */
173 static const char *ld_bind_now;	/* Environment variable for immediate binding */
174 static const char *ld_debug;	/* Environment variable for debugging */
175 static const char *ld_library_path; /* Environment variable for search path */
176 static char *ld_preload;	/* Environment variable for libraries to
177 				   load first */
178 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
179 static const char *ld_tracing;	/* Called from ldd to print libs */
180 static const char *ld_utrace;	/* Use utrace() to log events. */
181 static int (*rtld_functrace)(   /* Optional function call tracing hook */
182 	const char *caller_obj,
183 	const char *callee_obj,
184 	const char *callee_func,
185 	void *stack);
186 static const Obj_Entry *rtld_functrace_obj;	/* Object thereof */
187 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
188 static Obj_Entry **obj_tail;	/* Link field of last object in list */
189 static Obj_Entry **preload_tail;
190 static Obj_Entry *obj_main;	/* The main program shared object */
191 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
192 static unsigned int obj_count;	/* Number of objects in obj_list */
193 static unsigned int obj_loads;	/* Number of objects in obj_list */
194 
195 static int	ld_resident;	/* Non-zero if resident */
196 static const char *ld_ary[LD_ARY_CACHE];
197 static int	ld_index;
198 static Objlist initlist;
199 
200 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
201   STAILQ_HEAD_INITIALIZER(list_global);
202 static Objlist list_main =	/* Objects loaded at program startup */
203   STAILQ_HEAD_INITIALIZER(list_main);
204 static Objlist list_fini =	/* Objects needing fini() calls */
205   STAILQ_HEAD_INITIALIZER(list_fini);
206 
207 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
208 
209 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
210 
211 extern Elf_Dyn _DYNAMIC;
212 #pragma weak _DYNAMIC
213 #ifndef RTLD_IS_DYNAMIC
214 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
215 #endif
216 
217 #ifdef ENABLE_OSRELDATE
218 int osreldate;
219 #endif
220 
221 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
222 static int max_stack_flags;
223 
224 /*
225  * These are the functions the dynamic linker exports to application
226  * programs.  They are the only symbols the dynamic linker is willing
227  * to export from itself.
228  */
229 static func_ptr_type exports[] = {
230     (func_ptr_type) &_rtld_error,
231     (func_ptr_type) &dlclose,
232     (func_ptr_type) &dlerror,
233     (func_ptr_type) &dlopen,
234     (func_ptr_type) &fdlopen,
235     (func_ptr_type) &dlfunc,
236     (func_ptr_type) &dlsym,
237     (func_ptr_type) &dlvsym,
238     (func_ptr_type) &dladdr,
239     (func_ptr_type) &dlinfo,
240     (func_ptr_type) &dl_iterate_phdr,
241 #ifdef __i386__
242     (func_ptr_type) &___tls_get_addr,
243 #endif
244     (func_ptr_type) &__tls_get_addr,
245     (func_ptr_type) &__tls_get_addr_tcb,
246     (func_ptr_type) &_rtld_allocate_tls,
247     (func_ptr_type) &_rtld_free_tls,
248     (func_ptr_type) &_rtld_call_init,
249     (func_ptr_type) &_rtld_thread_init,
250     (func_ptr_type) &_rtld_addr_phdr,
251     (func_ptr_type) &_rtld_get_stack_prot,
252     NULL
253 };
254 
255 /*
256  * Global declarations normally provided by crt1.  The dynamic linker is
257  * not built with crt1, so we have to provide them ourselves.
258  */
259 char *__progname;
260 char **environ;
261 
262 /*
263  * Used to pass argc, argv to init functions.
264  */
265 int main_argc;
266 char **main_argv;
267 
268 /*
269  * Globals to control TLS allocation.
270  */
271 size_t tls_last_offset;		/* Static TLS offset of last module */
272 size_t tls_last_size;		/* Static TLS size of last module */
273 size_t tls_static_space;	/* Static TLS space allocated */
274 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
275 int tls_max_index = 1;		/* Largest module index allocated */
276 
277 /*
278  * Fill in a DoneList with an allocation large enough to hold all of
279  * the currently-loaded objects.  Keep this as a macro since it calls
280  * alloca and we want that to occur within the scope of the caller.
281  */
282 #define donelist_init(dlp)					\
283     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
284     assert((dlp)->objs != NULL),				\
285     (dlp)->num_alloc = obj_count,				\
286     (dlp)->num_used = 0)
287 
288 #define	UTRACE_DLOPEN_START		1
289 #define	UTRACE_DLOPEN_STOP		2
290 #define	UTRACE_DLCLOSE_START		3
291 #define	UTRACE_DLCLOSE_STOP		4
292 #define	UTRACE_LOAD_OBJECT		5
293 #define	UTRACE_UNLOAD_OBJECT		6
294 #define	UTRACE_ADD_RUNDEP		7
295 #define	UTRACE_PRELOAD_FINISHED		8
296 #define	UTRACE_INIT_CALL		9
297 #define	UTRACE_FINI_CALL		10
298 
299 struct utrace_rtld {
300 	char sig[4];			/* 'RTLD' */
301 	int event;
302 	void *handle;
303 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
304 	size_t mapsize;
305 	int refcnt;			/* Used for 'mode' */
306 	char name[MAXPATHLEN];
307 };
308 
309 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
310 	if (ld_utrace != NULL)					\
311 		ld_utrace_log(e, h, mb, ms, r, n);		\
312 } while (0)
313 
314 static void
315 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
316     int refcnt, const char *name)
317 {
318 	struct utrace_rtld ut;
319 
320 	ut.sig[0] = 'R';
321 	ut.sig[1] = 'T';
322 	ut.sig[2] = 'L';
323 	ut.sig[3] = 'D';
324 	ut.event = event;
325 	ut.handle = handle;
326 	ut.mapbase = mapbase;
327 	ut.mapsize = mapsize;
328 	ut.refcnt = refcnt;
329 	bzero(ut.name, sizeof(ut.name));
330 	if (name)
331 		strlcpy(ut.name, name, sizeof(ut.name));
332 	utrace(&ut, sizeof(ut));
333 }
334 
335 /*
336  * Main entry point for dynamic linking.  The first argument is the
337  * stack pointer.  The stack is expected to be laid out as described
338  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
339  * Specifically, the stack pointer points to a word containing
340  * ARGC.  Following that in the stack is a null-terminated sequence
341  * of pointers to argument strings.  Then comes a null-terminated
342  * sequence of pointers to environment strings.  Finally, there is a
343  * sequence of "auxiliary vector" entries.
344  *
345  * The second argument points to a place to store the dynamic linker's
346  * exit procedure pointer and the third to a place to store the main
347  * program's object.
348  *
349  * The return value is the main program's entry point.
350  */
351 func_ptr_type
352 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
353 {
354     Elf_Auxinfo *aux_info[AT_COUNT];
355     int i;
356     int argc;
357     char **argv;
358     char **env;
359     Elf_Auxinfo *aux;
360     Elf_Auxinfo *auxp;
361     const char *argv0;
362     Objlist_Entry *entry;
363     Obj_Entry *obj;
364 
365     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
366              Obj_Entry **preload_tail;
367              Objlist initlist;
368        from global to here.  It will break the DWARF2 unwind scheme.
369        The system compilers were unaffected, but not gcc 4.6
370     */
371 
372     /*
373      * On entry, the dynamic linker itself has not been relocated yet.
374      * Be very careful not to reference any global data until after
375      * init_rtld has returned.  It is OK to reference file-scope statics
376      * and string constants, and to call static and global functions.
377      */
378 
379     /* Find the auxiliary vector on the stack. */
380     argc = *sp++;
381     argv = (char **) sp;
382     sp += argc + 1;	/* Skip over arguments and NULL terminator */
383     env = (char **) sp;
384 
385     /*
386      * If we aren't already resident we have to dig out some more info.
387      * Note that auxinfo does not exist when we are resident.
388      *
389      * I'm not sure about the ld_resident check.  It seems to read zero
390      * prior to relocation, which is what we want.  When running from a
391      * resident copy everything will be relocated so we are definitely
392      * good there.
393      */
394     if (ld_resident == 0)  {
395 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
396 	    ;
397 	aux = (Elf_Auxinfo *) sp;
398 
399 	/* Digest the auxiliary vector. */
400 	for (i = 0;  i < AT_COUNT;  i++)
401 	    aux_info[i] = NULL;
402 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
403 	    if (auxp->a_type < AT_COUNT)
404 		aux_info[auxp->a_type] = auxp;
405 	}
406 
407 	/* Initialize and relocate ourselves. */
408 	assert(aux_info[AT_BASE] != NULL);
409 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
410     }
411 
412     ld_index = 0;	/* don't use old env cache in case we are resident */
413     __progname = obj_rtld.path;
414     argv0 = argv[0] != NULL ? argv[0] : "(null)";
415     environ = env;
416     main_argc = argc;
417     main_argv = argv;
418 
419     trust = !issetugid();
420 
421     ld_bind_now = _getenv_ld("LD_BIND_NOW");
422     /*
423      * If the process is tainted, then we un-set the dangerous environment
424      * variables.  The process will be marked as tainted until setuid(2)
425      * is called.  If any child process calls setuid(2) we do not want any
426      * future processes to honor the potentially un-safe variables.
427      */
428     if (!trust) {
429 	if (   unsetenv("LD_DEBUG")
430 	    || unsetenv("LD_PRELOAD")
431 	    || unsetenv("LD_LIBRARY_PATH")
432 	    || unsetenv("LD_ELF_HINTS_PATH")
433 	    || unsetenv("LD_LIBMAP")
434 	    || unsetenv("LD_LIBMAP_DISABLE")
435 	    || unsetenv("LD_LOADFLTR")
436 	) {
437 	    _rtld_error("environment corrupt; aborting");
438 	    die();
439 	}
440     }
441     ld_debug = _getenv_ld("LD_DEBUG");
442     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
443     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
444     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
445     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
446     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
447     ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
448     dangerous_ld_env = (ld_library_path != NULL)
449 			|| (ld_preload != NULL)
450 			|| (ld_elf_hints_path != NULL)
451 			|| ld_loadfltr
452 			|| (libmap_override != NULL)
453 			|| libmap_disable
454 			;
455     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
456     ld_utrace = _getenv_ld("LD_UTRACE");
457 
458     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
459 	ld_elf_hints_path = _PATH_ELF_HINTS;
460 
461     if (ld_debug != NULL && *ld_debug != '\0')
462 	debug = 1;
463     dbg("%s is initialized, base address = %p", __progname,
464 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
465     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
466     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
467 
468     dbg("initializing thread locks");
469     lockdflt_init();
470 
471     /*
472      * If we are resident we can skip work that we have already done.
473      * Note that the stack is reset and there is no Elf_Auxinfo
474      * when running from a resident image, and the static globals setup
475      * between here and resident_skip will have already been setup.
476      */
477     if (ld_resident)
478 	goto resident_skip1;
479 
480     /*
481      * Load the main program, or process its program header if it is
482      * already loaded.
483      */
484     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
485 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
486 	dbg("loading main program");
487 	obj_main = map_object(fd, argv0, NULL);
488 	close(fd);
489 	if (obj_main == NULL)
490 	    die();
491 	max_stack_flags = obj->stack_flags;
492     } else {				/* Main program already loaded. */
493 	const Elf_Phdr *phdr;
494 	int phnum;
495 	caddr_t entry;
496 
497 	dbg("processing main program's program header");
498 	assert(aux_info[AT_PHDR] != NULL);
499 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
500 	assert(aux_info[AT_PHNUM] != NULL);
501 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
502 	assert(aux_info[AT_PHENT] != NULL);
503 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
504 	assert(aux_info[AT_ENTRY] != NULL);
505 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
506 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
507 	    die();
508     }
509 
510     char buf[MAXPATHLEN];
511     if (aux_info[AT_EXECPATH] != NULL) {
512 	char *kexecpath;
513 
514 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
515 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
516 	if (kexecpath[0] == '/')
517 		obj_main->path = kexecpath;
518 	else if (getcwd(buf, sizeof(buf)) == NULL ||
519 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
520 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
521 		obj_main->path = xstrdup(argv0);
522 	else
523 		obj_main->path = xstrdup(buf);
524     } else {
525 	char resolved[MAXPATHLEN];
526 	dbg("No AT_EXECPATH");
527 	if (argv0[0] == '/') {
528 		if (realpath(argv0, resolved) != NULL)
529 			obj_main->path = xstrdup(resolved);
530 		else
531 			obj_main->path = xstrdup(argv0);
532 	} else {
533 		if (getcwd(buf, sizeof(buf)) != NULL
534 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
535 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
536 		    && access(buf, R_OK) == 0
537 		    && realpath(buf, resolved) != NULL)
538 			obj_main->path = xstrdup(resolved);
539 		else
540 			obj_main->path = xstrdup(argv0);
541 	}
542     }
543     dbg("obj_main path %s", obj_main->path);
544     obj_main->mainprog = true;
545 
546     if (aux_info[AT_STACKPROT] != NULL &&
547       aux_info[AT_STACKPROT]->a_un.a_val != 0)
548 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
549 
550     /*
551      * Get the actual dynamic linker pathname from the executable if
552      * possible.  (It should always be possible.)  That ensures that
553      * gdb will find the right dynamic linker even if a non-standard
554      * one is being used.
555      */
556     if (obj_main->interp != NULL &&
557       strcmp(obj_main->interp, obj_rtld.path) != 0) {
558 	free(obj_rtld.path);
559 	obj_rtld.path = xstrdup(obj_main->interp);
560 	__progname = obj_rtld.path;
561     }
562 
563     digest_dynamic(obj_main, 0);
564     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
565 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
566 	obj_main->dynsymcount);
567 
568     linkmap_add(obj_main);
569     linkmap_add(&obj_rtld);
570 
571     /* Link the main program into the list of objects. */
572     *obj_tail = obj_main;
573     obj_tail = &obj_main->next;
574     obj_count++;
575     obj_loads++;
576 
577     /* Initialize a fake symbol for resolving undefined weak references. */
578     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
579     sym_zero.st_shndx = SHN_UNDEF;
580     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
581 
582     if (!libmap_disable)
583         libmap_disable = (bool)lm_init(libmap_override);
584 
585     dbg("loading LD_PRELOAD libraries");
586     if (load_preload_objects() == -1)
587 	die();
588     preload_tail = obj_tail;
589 
590     dbg("loading needed objects");
591     if (load_needed_objects(obj_main, 0) == -1)
592 	die();
593 
594     /* Make a list of all objects loaded at startup. */
595     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
596 	objlist_push_tail(&list_main, obj);
597 	obj->refcount++;
598     }
599 
600     dbg("checking for required versions");
601     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
602 	die();
603 
604 resident_skip1:
605 
606     if (ld_tracing) {		/* We're done */
607 	trace_loaded_objects(obj_main);
608 	exit(0);
609     }
610 
611     if (ld_resident)		/* XXX clean this up! */
612 	goto resident_skip2;
613 
614     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
615        dump_relocations(obj_main);
616        exit (0);
617     }
618 
619     /* setup TLS for main thread */
620     dbg("initializing initial thread local storage");
621     STAILQ_FOREACH(entry, &list_main, link) {
622 	/*
623 	 * Allocate all the initial objects out of the static TLS
624 	 * block even if they didn't ask for it.
625 	 */
626 	allocate_tls_offset(entry->obj);
627     }
628 
629     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
630 
631     /*
632      * Do not try to allocate the TLS here, let libc do it itself.
633      * (crt1 for the program will call _init_tls())
634      */
635 
636     if (relocate_objects(obj_main,
637       ld_bind_now != NULL && *ld_bind_now != '\0',
638       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
639 	die();
640 
641     dbg("doing copy relocations");
642     if (do_copy_relocations(obj_main) == -1)
643 	die();
644 
645 resident_skip2:
646 
647     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
648 	if (exec_sys_unregister(-1) < 0) {
649 	    dbg("exec_sys_unregister failed %d\n", errno);
650 	    exit(errno);
651 	}
652 	dbg("exec_sys_unregister success\n");
653 	exit(0);
654     }
655 
656     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
657        dump_relocations(obj_main);
658        exit (0);
659     }
660 
661     dbg("initializing key program variables");
662     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
663     set_program_var("environ", env);
664     set_program_var("__elf_aux_vector", aux);
665 
666     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
667 	extern void resident_start(void);
668 	ld_resident = 1;
669 	if (exec_sys_register(resident_start) < 0) {
670 	    dbg("exec_sys_register failed %d\n", errno);
671 	    exit(errno);
672 	}
673 	dbg("exec_sys_register success\n");
674 	exit(0);
675     }
676 
677     /* Make a list of init functions to call. */
678     objlist_init(&initlist);
679     initlist_add_objects(obj_list, preload_tail, &initlist);
680 
681     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
682 
683     map_stacks_exec(NULL);
684 
685     dbg("resolving ifuncs");
686     if (resolve_objects_ifunc(obj_main,
687       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
688       NULL) == -1)
689 	die();
690 
691     /*
692      * Do NOT call the initlist here, give libc a chance to set up
693      * the initial TLS segment.  crt1 will then call _rtld_call_init().
694      */
695 
696     dbg("transferring control to program entry point = %p", obj_main->entry);
697 
698     /* Return the exit procedure and the program entry point. */
699     *exit_proc = rtld_exit;
700     *objp = obj_main;
701     return (func_ptr_type) obj_main->entry;
702 }
703 
704 /*
705  * Call the initialization list for dynamically loaded libraries.
706  * (called from crt1.c).
707  */
708 void
709 _rtld_call_init(void)
710 {
711     RtldLockState lockstate;
712     Obj_Entry *obj;
713 
714     if (!obj_main->note_present && obj_main->valid_hash_gnu) {
715 	/*
716 	 * The use of a linker script with a PHDRS directive that does not include
717 	 * PT_NOTE will block the crt_no_init note.  In this case we'll look for the
718 	 * recently added GNU hash dynamic tag which gets built by default.  It is
719 	 * extremely unlikely to find a pre-3.1 binary without a PT_NOTE header and
720 	 * a gnu hash tag.  If gnu hash found, consider binary to use new crt code.
721 	 */
722 	obj_main->crt_no_init = true;
723 	dbg("Setting crt_no_init without presence of PT_NOTE header");
724     }
725 
726     wlock_acquire(rtld_bind_lock, &lockstate);
727     if (obj_main->crt_no_init) {
728 	preinitialize_main_object();
729     }
730     else {
731 	/*
732 	 * Make sure we don't call the main program's init and fini functions
733 	 * for binaries linked with old crt1 which calls _init itself.
734 	 */
735 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
736 	obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL;
737     }
738     objlist_call_init(&initlist, &lockstate);
739     objlist_clear(&initlist);
740     dbg("loading filtees");
741     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
742 	if (ld_loadfltr || obj->z_loadfltr)
743 	    load_filtees(obj, 0, &lockstate);
744     }
745     lock_release(rtld_bind_lock, &lockstate);
746 }
747 
748 void *
749 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
750 {
751 	void *ptr;
752 	Elf_Addr target;
753 
754 	ptr = (void *)make_function_pointer(def, obj);
755 	target = ((Elf_Addr (*)(void))ptr)();
756 	return ((void *)target);
757 }
758 
759 Elf_Addr
760 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
761 {
762     const Elf_Rel *rel;
763     const Elf_Sym *def;
764     const Obj_Entry *defobj;
765     Elf_Addr *where;
766     Elf_Addr target;
767     RtldLockState lockstate;
768 
769     rlock_acquire(rtld_bind_lock, &lockstate);
770     if (sigsetjmp(lockstate.env, 0) != 0)
771 	    lock_upgrade(rtld_bind_lock, &lockstate);
772     if (obj->pltrel)
773 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
774     else
775 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
776 
777     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
778     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
779 	&lockstate);
780     if (def == NULL)
781 	die();
782     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
783 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
784     else
785         target = (Elf_Addr)(defobj->relocbase + def->st_value);
786 
787     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
788       defobj->strtab + def->st_name, basename(obj->path),
789       (void *)target, basename(defobj->path));
790 
791     /*
792      * If we have a function call tracing hook, and the
793      * hook would like to keep tracing this one function,
794      * prevent the relocation so we will wind up here
795      * the next time again.
796      *
797      * We don't want to functrace calls from the functracer
798      * to avoid recursive loops.
799      */
800     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
801 	if (rtld_functrace(obj->path,
802 			   defobj->path,
803 			   defobj->strtab + def->st_name,
804 			   stack)) {
805 	    lock_release(rtld_bind_lock, &lockstate);
806 	    return target;
807 	}
808     }
809 
810     /*
811      * Write the new contents for the jmpslot. Note that depending on
812      * architecture, the value which we need to return back to the
813      * lazy binding trampoline may or may not be the target
814      * address. The value returned from reloc_jmpslot() is the value
815      * that the trampoline needs.
816      */
817     target = reloc_jmpslot(where, target, defobj, obj, rel);
818     lock_release(rtld_bind_lock, &lockstate);
819     return target;
820 }
821 
822 /*
823  * Error reporting function.  Use it like printf.  If formats the message
824  * into a buffer, and sets things up so that the next call to dlerror()
825  * will return the message.
826  */
827 void
828 _rtld_error(const char *fmt, ...)
829 {
830     static char buf[512];
831     va_list ap;
832 
833     va_start(ap, fmt);
834     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
835     error_message = buf;
836     va_end(ap);
837 }
838 
839 /*
840  * Return a dynamically-allocated copy of the current error message, if any.
841  */
842 static char *
843 errmsg_save(void)
844 {
845     return error_message == NULL ? NULL : xstrdup(error_message);
846 }
847 
848 /*
849  * Restore the current error message from a copy which was previously saved
850  * by errmsg_save().  The copy is freed.
851  */
852 static void
853 errmsg_restore(char *saved_msg)
854 {
855     if (saved_msg == NULL)
856 	error_message = NULL;
857     else {
858 	_rtld_error("%s", saved_msg);
859 	free(saved_msg);
860     }
861 }
862 
863 const char *
864 basename(const char *name)
865 {
866     const char *p = strrchr(name, '/');
867     return p != NULL ? p + 1 : name;
868 }
869 
870 static struct utsname uts;
871 
872 static int
873 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
874     char *may_free)
875 {
876     const char *p, *p1;
877     char *res1;
878     int subst_len;
879     int kw_len;
880 
881     res1 = *res = NULL;
882     p = real;
883     subst_len = kw_len = 0;
884     for (;;) {
885 	 p1 = strstr(p, kw);
886 	 if (p1 != NULL) {
887 	     if (subst_len == 0) {
888 		 subst_len = strlen(subst);
889 		 kw_len = strlen(kw);
890 	     }
891 	     if (*res == NULL) {
892 		 *res = xmalloc(PATH_MAX);
893 		 res1 = *res;
894 	     }
895 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
896 		 _rtld_error("Substitution of %s in %s cannot be performed",
897 		     kw, real);
898 		 if (may_free != NULL)
899 		     free(may_free);
900 		 free(res);
901 		 return (false);
902 	     }
903 	     memcpy(res1, p, p1 - p);
904 	     res1 += p1 - p;
905 	     memcpy(res1, subst, subst_len);
906 	     res1 += subst_len;
907 	     p = p1 + kw_len;
908 	 } else {
909 	    if (*res == NULL) {
910 		if (may_free != NULL)
911 		    *res = may_free;
912 		else
913 		    *res = xstrdup(real);
914 		return (true);
915 	    }
916 	    *res1 = '\0';
917 	    if (may_free != NULL)
918 		free(may_free);
919 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
920 		free(res);
921 		return (false);
922 	    }
923 	    return (true);
924 	 }
925     }
926 }
927 
928 static char *
929 origin_subst(const char *real, const char *origin_path)
930 {
931     char *res1, *res2, *res3, *res4;
932 
933     if (uts.sysname[0] == '\0') {
934 	if (uname(&uts) != 0) {
935 	    _rtld_error("utsname failed: %d", errno);
936 	    return (NULL);
937 	}
938     }
939     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
940 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
941 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
942 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
943 	    return (NULL);
944     return (res4);
945 }
946 
947 static void
948 die(void)
949 {
950     const char *msg = dlerror();
951 
952     if (msg == NULL)
953 	msg = "Fatal error";
954     rtld_fdputstr(STDERR_FILENO, msg);
955     rtld_fdputchar(STDERR_FILENO, '\n');
956     _exit(1);
957 }
958 
959 /*
960  * Process a shared object's DYNAMIC section, and save the important
961  * information in its Obj_Entry structure.
962  */
963 static void
964 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
965     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
966 {
967     const Elf_Dyn *dynp;
968     Needed_Entry **needed_tail = &obj->needed;
969     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
970     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
971     const Elf_Hashelt *hashtab;
972     const Elf32_Word *hashval;
973     Elf32_Word bkt, nmaskwords;
974     int bloom_size32;
975     bool nmw_power2;
976     int plttype = DT_REL;
977 
978     *dyn_rpath = NULL;
979     *dyn_soname = NULL;
980     *dyn_runpath = NULL;
981 
982     obj->bind_now = false;
983     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
984 	switch (dynp->d_tag) {
985 
986 	case DT_REL:
987 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
988 	    break;
989 
990 	case DT_RELSZ:
991 	    obj->relsize = dynp->d_un.d_val;
992 	    break;
993 
994 	case DT_RELENT:
995 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
996 	    break;
997 
998 	case DT_JMPREL:
999 	    obj->pltrel = (const Elf_Rel *)
1000 	      (obj->relocbase + dynp->d_un.d_ptr);
1001 	    break;
1002 
1003 	case DT_PLTRELSZ:
1004 	    obj->pltrelsize = dynp->d_un.d_val;
1005 	    break;
1006 
1007 	case DT_RELA:
1008 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1009 	    break;
1010 
1011 	case DT_RELASZ:
1012 	    obj->relasize = dynp->d_un.d_val;
1013 	    break;
1014 
1015 	case DT_RELAENT:
1016 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1017 	    break;
1018 
1019 	case DT_PLTREL:
1020 	    plttype = dynp->d_un.d_val;
1021 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1022 	    break;
1023 
1024 	case DT_SYMTAB:
1025 	    obj->symtab = (const Elf_Sym *)
1026 	      (obj->relocbase + dynp->d_un.d_ptr);
1027 	    break;
1028 
1029 	case DT_SYMENT:
1030 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1031 	    break;
1032 
1033 	case DT_STRTAB:
1034 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1035 	    break;
1036 
1037 	case DT_STRSZ:
1038 	    obj->strsize = dynp->d_un.d_val;
1039 	    break;
1040 
1041 	case DT_VERNEED:
1042 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1043 		dynp->d_un.d_val);
1044 	    break;
1045 
1046 	case DT_VERNEEDNUM:
1047 	    obj->verneednum = dynp->d_un.d_val;
1048 	    break;
1049 
1050 	case DT_VERDEF:
1051 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1052 		dynp->d_un.d_val);
1053 	    break;
1054 
1055 	case DT_VERDEFNUM:
1056 	    obj->verdefnum = dynp->d_un.d_val;
1057 	    break;
1058 
1059 	case DT_VERSYM:
1060 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1061 		dynp->d_un.d_val);
1062 	    break;
1063 
1064 	case DT_HASH:
1065 	    {
1066 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1067 		    dynp->d_un.d_ptr);
1068 		obj->nbuckets = hashtab[0];
1069 		obj->nchains = hashtab[1];
1070 		obj->buckets = hashtab + 2;
1071 		obj->chains = obj->buckets + obj->nbuckets;
1072 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1073 		  obj->buckets != NULL;
1074 	    }
1075 	    break;
1076 
1077 	case DT_GNU_HASH:
1078 	    {
1079 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1080 		    dynp->d_un.d_ptr);
1081 		obj->nbuckets_gnu = hashtab[0];
1082 		obj->symndx_gnu = hashtab[1];
1083 		nmaskwords = hashtab[2];
1084 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1085 		/* Number of bitmask words is required to be power of 2 */
1086 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
1087 		obj->maskwords_bm_gnu = nmaskwords - 1;
1088 		obj->shift2_gnu = hashtab[3];
1089 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1090 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1091 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1092 		  obj->symndx_gnu;
1093 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
1094 		  obj->buckets_gnu != NULL;
1095 	    }
1096 	    break;
1097 
1098 	case DT_NEEDED:
1099 	    if (!obj->rtld) {
1100 		Needed_Entry *nep = NEW(Needed_Entry);
1101 		nep->name = dynp->d_un.d_val;
1102 		nep->obj = NULL;
1103 		nep->next = NULL;
1104 
1105 		*needed_tail = nep;
1106 		needed_tail = &nep->next;
1107 	    }
1108 	    break;
1109 
1110 	case DT_FILTER:
1111 	    if (!obj->rtld) {
1112 		Needed_Entry *nep = NEW(Needed_Entry);
1113 		nep->name = dynp->d_un.d_val;
1114 		nep->obj = NULL;
1115 		nep->next = NULL;
1116 
1117 		*needed_filtees_tail = nep;
1118 		needed_filtees_tail = &nep->next;
1119 	    }
1120 	    break;
1121 
1122 	case DT_AUXILIARY:
1123 	    if (!obj->rtld) {
1124 		Needed_Entry *nep = NEW(Needed_Entry);
1125 		nep->name = dynp->d_un.d_val;
1126 		nep->obj = NULL;
1127 		nep->next = NULL;
1128 
1129 		*needed_aux_filtees_tail = nep;
1130 		needed_aux_filtees_tail = &nep->next;
1131 	    }
1132 	    break;
1133 
1134 	case DT_PLTGOT:
1135 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1136 	    break;
1137 
1138 	case DT_TEXTREL:
1139 	    obj->textrel = true;
1140 	    break;
1141 
1142 	case DT_SYMBOLIC:
1143 	    obj->symbolic = true;
1144 	    break;
1145 
1146 	case DT_RPATH:
1147 	    /*
1148 	     * We have to wait until later to process this, because we
1149 	     * might not have gotten the address of the string table yet.
1150 	     */
1151 	    *dyn_rpath = dynp;
1152 	    break;
1153 
1154 	case DT_SONAME:
1155 	    *dyn_soname = dynp;
1156 	    break;
1157 
1158 	case DT_RUNPATH:
1159 	    *dyn_runpath = dynp;
1160 	    break;
1161 
1162 	case DT_INIT:
1163 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1164 	    break;
1165 
1166 	case DT_FINI:
1167 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1168 	    break;
1169 
1170 	case DT_PREINIT_ARRAY:
1171 	    obj->preinit_array = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1172 	    break;
1173 
1174 	case DT_INIT_ARRAY:
1175 	    obj->init_array = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1176 	    break;
1177 
1178 	case DT_FINI_ARRAY:
1179 	    obj->fini_array = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1180 	    break;
1181 
1182 	case DT_PREINIT_ARRAYSZ:
1183 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1184 	    break;
1185 
1186 	case DT_INIT_ARRAYSZ:
1187 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1188 	    break;
1189 
1190 	case DT_FINI_ARRAYSZ:
1191 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1192 	    break;
1193 
1194 	case DT_DEBUG:
1195 	    /* XXX - not implemented yet */
1196 	    if (!early)
1197 		dbg("Filling in DT_DEBUG entry");
1198 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1199 	    break;
1200 
1201 	case DT_FLAGS:
1202 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1203 		    obj->z_origin = true;
1204 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1205 		    obj->symbolic = true;
1206 		if (dynp->d_un.d_val & DF_TEXTREL)
1207 		    obj->textrel = true;
1208 		if (dynp->d_un.d_val & DF_BIND_NOW)
1209 		    obj->bind_now = true;
1210 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1211 		    ;*/
1212 	    break;
1213 
1214 	case DT_FLAGS_1:
1215 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1216 		    obj->z_noopen = true;
1217 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1218 		    obj->z_origin = true;
1219 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1220 		    XXX ;*/
1221 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1222 		    obj->bind_now = true;
1223 		if (dynp->d_un.d_val & DF_1_NODELETE)
1224 		    obj->z_nodelete = true;
1225 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1226 		    obj->z_loadfltr = true;
1227 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1228 		    obj->z_nodeflib = true;
1229 	    break;
1230 
1231 	default:
1232 	    if (!early) {
1233 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1234 		    (long)dynp->d_tag);
1235 	    }
1236 	    break;
1237 	}
1238     }
1239 
1240     obj->traced = false;
1241 
1242     if (plttype == DT_RELA) {
1243 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1244 	obj->pltrel = NULL;
1245 	obj->pltrelasize = obj->pltrelsize;
1246 	obj->pltrelsize = 0;
1247     }
1248 
1249     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1250     if (obj->valid_hash_sysv)
1251 	obj->dynsymcount = obj->nchains;
1252     else if (obj->valid_hash_gnu) {
1253 	obj->dynsymcount = 0;
1254 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1255 	    if (obj->buckets_gnu[bkt] == 0)
1256 		continue;
1257 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1258 	    do
1259 		obj->dynsymcount++;
1260 	    while ((*hashval++ & 1u) == 0);
1261 	}
1262 	obj->dynsymcount += obj->symndx_gnu;
1263     }
1264 }
1265 
1266 static void
1267 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1268     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1269 {
1270 
1271     if (obj->z_origin && obj->origin_path == NULL) {
1272 	obj->origin_path = xmalloc(PATH_MAX);
1273 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1274 	    die();
1275     }
1276 
1277     if (dyn_runpath != NULL) {
1278 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1279 	if (obj->z_origin)
1280 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1281     }
1282     else if (dyn_rpath != NULL) {
1283 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1284 	if (obj->z_origin)
1285 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1286     }
1287 
1288     if (dyn_soname != NULL)
1289 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1290 }
1291 
1292 static void
1293 digest_dynamic(Obj_Entry *obj, int early)
1294 {
1295 	const Elf_Dyn *dyn_rpath;
1296 	const Elf_Dyn *dyn_soname;
1297 	const Elf_Dyn *dyn_runpath;
1298 
1299 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1300 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1301 }
1302 
1303 /*
1304  * Process a shared object's program header.  This is used only for the
1305  * main program, when the kernel has already loaded the main program
1306  * into memory before calling the dynamic linker.  It creates and
1307  * returns an Obj_Entry structure.
1308  */
1309 static Obj_Entry *
1310 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1311 {
1312     Obj_Entry *obj;
1313     const Elf_Phdr *phlimit = phdr + phnum;
1314     const Elf_Phdr *ph;
1315     Elf_Addr note_start, note_end;
1316     int nsegs = 0;
1317 
1318     obj = obj_new();
1319     for (ph = phdr;  ph < phlimit;  ph++) {
1320 	if (ph->p_type != PT_PHDR)
1321 	    continue;
1322 
1323 	obj->phdr = phdr;
1324 	obj->phsize = ph->p_memsz;
1325 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1326 	break;
1327     }
1328 
1329     obj->stack_flags = PF_X | PF_R | PF_W;
1330 
1331     for (ph = phdr;  ph < phlimit;  ph++) {
1332 	switch (ph->p_type) {
1333 
1334 	case PT_INTERP:
1335 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1336 	    break;
1337 
1338 	case PT_LOAD:
1339 	    if (nsegs == 0) {	/* First load segment */
1340 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1341 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1342 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1343 		  obj->vaddrbase;
1344 	    } else {		/* Last load segment */
1345 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1346 		  obj->vaddrbase;
1347 	    }
1348 	    nsegs++;
1349 	    break;
1350 
1351 	case PT_DYNAMIC:
1352 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1353 	    break;
1354 
1355 	case PT_TLS:
1356 	    obj->tlsindex = 1;
1357 	    obj->tlssize = ph->p_memsz;
1358 	    obj->tlsalign = ph->p_align;
1359 	    obj->tlsinitsize = ph->p_filesz;
1360 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1361 	    break;
1362 
1363 	case PT_GNU_STACK:
1364 	    obj->stack_flags = ph->p_flags;
1365 	    break;
1366 
1367 	case PT_GNU_RELRO:
1368 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1369 	    obj->relro_size = round_page(ph->p_memsz);
1370 	    break;
1371 
1372 	case PT_NOTE:
1373 	    obj->note_present = true;
1374 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1375 	    note_end = note_start + ph->p_filesz;
1376 	    digest_notes(obj, note_start, note_end);
1377 	    break;
1378 	}
1379     }
1380     if (nsegs < 1) {
1381 	_rtld_error("%s: too few PT_LOAD segments", path);
1382 	return NULL;
1383     }
1384 
1385     obj->entry = entry;
1386     return obj;
1387 }
1388 
1389 void
1390 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1391 {
1392 	const Elf_Note *note;
1393 	const char *note_name;
1394 	uintptr_t p;
1395 
1396 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1397 	    note = (const Elf_Note *)((const char *)(note + 1) +
1398 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1399 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1400 		if (note->n_namesz != sizeof(NOTE_VENDOR) ||
1401 		    note->n_descsz != sizeof(int32_t))
1402 			continue;
1403 		if (note->n_type != ABI_NOTETYPE && note->n_type != CRT_NOINIT_NOTETYPE)
1404 			continue;
1405 		note_name = (const char *)(note + 1);
1406 		if (strncmp(NOTE_VENDOR, note_name, sizeof(NOTE_VENDOR)) != 0)
1407 			continue;
1408 		switch (note->n_type) {
1409 		case ABI_NOTETYPE:
1410 			/* DragonFly osrel note */
1411 			p = (uintptr_t)(note + 1);
1412 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1413 			obj->osrel = *(const int32_t *)(p);
1414 			dbg("note osrel %d", obj->osrel);
1415 			break;
1416 		case CRT_NOINIT_NOTETYPE:
1417 			/* DragonFly 'crt does not call init' note */
1418 			obj->crt_no_init = true;
1419 			dbg("note crt_no_init");
1420 			break;
1421 		}
1422 	}
1423 }
1424 
1425 static Obj_Entry *
1426 dlcheck(void *handle)
1427 {
1428     Obj_Entry *obj;
1429 
1430     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1431 	if (obj == (Obj_Entry *) handle)
1432 	    break;
1433 
1434     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1435 	_rtld_error("Invalid shared object handle %p", handle);
1436 	return NULL;
1437     }
1438     return obj;
1439 }
1440 
1441 /*
1442  * If the given object is already in the donelist, return true.  Otherwise
1443  * add the object to the list and return false.
1444  */
1445 static bool
1446 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1447 {
1448     unsigned int i;
1449 
1450     for (i = 0;  i < dlp->num_used;  i++)
1451 	if (dlp->objs[i] == obj)
1452 	    return true;
1453     /*
1454      * Our donelist allocation should always be sufficient.  But if
1455      * our threads locking isn't working properly, more shared objects
1456      * could have been loaded since we allocated the list.  That should
1457      * never happen, but we'll handle it properly just in case it does.
1458      */
1459     if (dlp->num_used < dlp->num_alloc)
1460 	dlp->objs[dlp->num_used++] = obj;
1461     return false;
1462 }
1463 
1464 /*
1465  * Hash function for symbol table lookup.  Don't even think about changing
1466  * this.  It is specified by the System V ABI.
1467  */
1468 unsigned long
1469 elf_hash(const char *name)
1470 {
1471     const unsigned char *p = (const unsigned char *) name;
1472     unsigned long h = 0;
1473     unsigned long g;
1474 
1475     while (*p != '\0') {
1476 	h = (h << 4) + *p++;
1477 	if ((g = h & 0xf0000000) != 0)
1478 	    h ^= g >> 24;
1479 	h &= ~g;
1480     }
1481     return h;
1482 }
1483 
1484 /*
1485  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1486  * unsigned in case it's implemented with a wider type.
1487  */
1488 static uint_fast32_t
1489 gnu_hash (const char *s)
1490 {
1491     uint_fast32_t h = 5381;
1492     for (unsigned char c = *s; c != '\0'; c = *++s)
1493 	h = h * 33 + c;
1494     return h & 0xffffffff;
1495 }
1496 
1497 /*
1498  * Find the library with the given name, and return its full pathname.
1499  * The returned string is dynamically allocated.  Generates an error
1500  * message and returns NULL if the library cannot be found.
1501  *
1502  * If the second argument is non-NULL, then it refers to an already-
1503  * loaded shared object, whose library search path will be searched.
1504  *
1505  * The search order is:
1506  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1507  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1508  *   LD_LIBRARY_PATH
1509  *   DT_RUNPATH in the referencing file
1510  *   ldconfig hints (if -z nodefaultlib, filter out /usr/lib from list)
1511  *   /usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1512  *
1513  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1514  */
1515 static char *
1516 find_library(const char *xname, const Obj_Entry *refobj)
1517 {
1518     char *pathname;
1519     char *name;
1520     bool objgiven = (refobj != NULL);
1521 
1522     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1523 	if (xname[0] != '/' && !trust) {
1524 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1525 	      xname);
1526 	    return NULL;
1527 	}
1528 	if (objgiven && refobj->z_origin)
1529 	    return origin_subst(xname, refobj->origin_path);
1530 	else
1531 	    return xstrdup(xname);
1532     }
1533 
1534     if (libmap_disable || !objgiven ||
1535 	(name = lm_find(refobj->path, xname)) == NULL)
1536 	name = (char *)xname;
1537 
1538     dbg(" Searching for \"%s\"", name);
1539 
1540     if ((objgiven &&
1541       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1542       (objgiven && (refobj->runpath == NULL) && (refobj != obj_main) &&
1543       (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1544       (pathname = search_library_path(name, ld_library_path)) != NULL ||
1545       (objgiven &&
1546       (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1547       (pathname = search_library_path(name, gethints(refobj->z_nodeflib)))
1548        != NULL ||
1549       (objgiven && !refobj->z_nodeflib &&
1550       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1551 	return pathname;
1552 
1553     if(objgiven && refobj->path != NULL) {
1554 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1555 	  name, basename(refobj->path));
1556     } else {
1557 	_rtld_error("Shared object \"%s\" not found", name);
1558     }
1559     return NULL;
1560 }
1561 
1562 /*
1563  * Given a symbol number in a referencing object, find the corresponding
1564  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1565  * no definition was found.  Returns a pointer to the Obj_Entry of the
1566  * defining object via the reference parameter DEFOBJ_OUT.
1567  */
1568 const Elf_Sym *
1569 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1570     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1571     RtldLockState *lockstate)
1572 {
1573     const Elf_Sym *ref;
1574     const Elf_Sym *def;
1575     const Obj_Entry *defobj;
1576     SymLook req;
1577     const char *name;
1578     int res;
1579 
1580     /*
1581      * If we have already found this symbol, get the information from
1582      * the cache.
1583      */
1584     if (symnum >= refobj->dynsymcount)
1585 	return NULL;	/* Bad object */
1586     if (cache != NULL && cache[symnum].sym != NULL) {
1587 	*defobj_out = cache[symnum].obj;
1588 	return cache[symnum].sym;
1589     }
1590 
1591     ref = refobj->symtab + symnum;
1592     name = refobj->strtab + ref->st_name;
1593     def = NULL;
1594     defobj = NULL;
1595 
1596     /*
1597      * We don't have to do a full scale lookup if the symbol is local.
1598      * We know it will bind to the instance in this load module; to
1599      * which we already have a pointer (ie ref). By not doing a lookup,
1600      * we not only improve performance, but it also avoids unresolvable
1601      * symbols when local symbols are not in the hash table.
1602      *
1603      * This might occur for TLS module relocations, which simply use
1604      * symbol 0.
1605      */
1606     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1607 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1608 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1609 		symnum);
1610 	}
1611 	symlook_init(&req, name);
1612 	req.flags = flags;
1613 	req.ventry = fetch_ventry(refobj, symnum);
1614 	req.lockstate = lockstate;
1615 	res = symlook_default(&req, refobj);
1616 	if (res == 0) {
1617 	    def = req.sym_out;
1618 	    defobj = req.defobj_out;
1619 	}
1620     } else {
1621 	def = ref;
1622 	defobj = refobj;
1623     }
1624 
1625     /*
1626      * If we found no definition and the reference is weak, treat the
1627      * symbol as having the value zero.
1628      */
1629     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1630 	def = &sym_zero;
1631 	defobj = obj_main;
1632     }
1633 
1634     if (def != NULL) {
1635 	*defobj_out = defobj;
1636 	/* Record the information in the cache to avoid subsequent lookups. */
1637 	if (cache != NULL) {
1638 	    cache[symnum].sym = def;
1639 	    cache[symnum].obj = defobj;
1640 	}
1641     } else {
1642 	if (refobj != &obj_rtld)
1643 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1644     }
1645     return def;
1646 }
1647 
1648 /*
1649  * Return the search path from the ldconfig hints file, reading it if
1650  * necessary.  Returns NULL if there are problems with the hints file,
1651  * or if the search path there is empty.
1652  * If DF_1_NODEFLIB flag set, omit STANDARD_LIBRARY_PATH directories
1653  */
1654 static const char *
1655 gethints(bool nostdlib)
1656 {
1657     static char *hints, *filtered_path;
1658     struct elfhints_hdr hdr;
1659     struct fill_search_info_args sargs, hargs;
1660     struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1661     struct dl_serpath *SLPpath, *hintpath;
1662     char *p;
1663     unsigned int SLPndx, hintndx, fndx, fcount;
1664     int fd;
1665     size_t flen;
1666     bool skip;
1667 
1668     if (hints == NULL) {
1669 	/* Keep from trying again in case the hints file is bad. */
1670 	hints = "";
1671 
1672 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1673 	    return (NULL);
1674 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1675 	  hdr.magic != ELFHINTS_MAGIC || hdr.version != 1) {
1676 	    close(fd);
1677 	    return (NULL);
1678 	}
1679 	p = xmalloc(hdr.dirlistlen + 1);
1680 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1681 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1682 	    free(p);
1683 	    close(fd);
1684 	    return (NULL);
1685 	}
1686 	hints = p;
1687 	close(fd);
1688     }
1689 
1690     if (!nostdlib)
1691 	return (hints[0] != '\0' ? hints : NULL);
1692 
1693     if (filtered_path != NULL)
1694 	goto filt_ret;
1695 
1696     smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1697     smeta.dls_cnt  = 0;
1698     hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1699     hmeta.dls_cnt  = 0;
1700 
1701     sargs.request = RTLD_DI_SERINFOSIZE;
1702     sargs.serinfo = &smeta;
1703     hargs.request = RTLD_DI_SERINFOSIZE;
1704     hargs.serinfo = &hmeta;
1705 
1706     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1707     path_enumerate(p, fill_search_info, &hargs);
1708 
1709     SLPinfo = malloc(smeta.dls_size);
1710     hintinfo = malloc(hmeta.dls_size);
1711 
1712     sargs.request  = RTLD_DI_SERINFO;
1713     sargs.serinfo  = SLPinfo;
1714     sargs.serpath  = &SLPinfo->dls_serpath[0];
1715     sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1716 
1717     hargs.request  = RTLD_DI_SERINFO;
1718     hargs.serinfo  = hintinfo;
1719     hargs.serpath  = &hintinfo->dls_serpath[0];
1720     hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1721 
1722     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1723     path_enumerate(p, fill_search_info, &hargs);
1724 
1725     fndx = 0;
1726     fcount = 0;
1727     filtered_path = xmalloc(hdr.dirlistlen + 1);
1728     hintpath = &hintinfo->dls_serpath[0];
1729     for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1730 	skip = false;
1731 	SLPpath = &SLPinfo->dls_serpath[0];
1732 	for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1733 	    if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1734 		skip = true;
1735 		break;
1736 	    }
1737 	}
1738 	if (skip)
1739 	    continue;
1740 	if (fcount > 0) {
1741 	    filtered_path[fndx] = ':';
1742 	    fndx++;
1743 	}
1744 	fcount++;
1745 	flen = strlen(hintpath->dls_name);
1746 	strncpy((filtered_path + fndx), hintpath->dls_name, flen);
1747 	fndx+= flen;
1748     }
1749     filtered_path[fndx] = '\0';
1750 
1751     free(SLPinfo);
1752     free(hintinfo);
1753 
1754 filt_ret:
1755     return (filtered_path[0] != '\0' ? filtered_path : NULL);
1756 }
1757 
1758 static void
1759 init_dag(Obj_Entry *root)
1760 {
1761     const Needed_Entry *needed;
1762     const Objlist_Entry *elm;
1763     DoneList donelist;
1764 
1765     if (root->dag_inited)
1766 	return;
1767     donelist_init(&donelist);
1768 
1769     /* Root object belongs to own DAG. */
1770     objlist_push_tail(&root->dldags, root);
1771     objlist_push_tail(&root->dagmembers, root);
1772     donelist_check(&donelist, root);
1773 
1774     /*
1775      * Add dependencies of root object to DAG in breadth order
1776      * by exploiting the fact that each new object get added
1777      * to the tail of the dagmembers list.
1778      */
1779     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1780 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1781 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1782 		continue;
1783 	    objlist_push_tail(&needed->obj->dldags, root);
1784 	    objlist_push_tail(&root->dagmembers, needed->obj);
1785 	}
1786     }
1787     root->dag_inited = true;
1788 }
1789 
1790 /*
1791  * Initialize the dynamic linker.  The argument is the address at which
1792  * the dynamic linker has been mapped into memory.  The primary task of
1793  * this function is to relocate the dynamic linker.
1794  */
1795 static void
1796 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1797 {
1798     Obj_Entry objtmp;	/* Temporary rtld object */
1799     const Elf_Dyn *dyn_rpath;
1800     const Elf_Dyn *dyn_soname;
1801     const Elf_Dyn *dyn_runpath;
1802 
1803     /*
1804      * Conjure up an Obj_Entry structure for the dynamic linker.
1805      *
1806      * The "path" member can't be initialized yet because string constants
1807      * cannot yet be accessed. Below we will set it correctly.
1808      */
1809     memset(&objtmp, 0, sizeof(objtmp));
1810     objtmp.path = NULL;
1811     objtmp.rtld = true;
1812     objtmp.mapbase = mapbase;
1813 #ifdef PIC
1814     objtmp.relocbase = mapbase;
1815 #endif
1816     if (RTLD_IS_DYNAMIC()) {
1817 	objtmp.dynamic = rtld_dynamic(&objtmp);
1818 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1819 	assert(objtmp.needed == NULL);
1820 	assert(!objtmp.textrel);
1821 
1822 	/*
1823 	 * Temporarily put the dynamic linker entry into the object list, so
1824 	 * that symbols can be found.
1825 	 */
1826 
1827 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1828     }
1829 
1830     /* Initialize the object list. */
1831     obj_tail = &obj_list;
1832 
1833     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1834     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1835 
1836 #ifdef ENABLE_OSRELDATE
1837     if (aux_info[AT_OSRELDATE] != NULL)
1838 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1839 #endif
1840 
1841     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1842 
1843     /* Replace the path with a dynamically allocated copy. */
1844     obj_rtld.path = xstrdup(PATH_RTLD);
1845 
1846     r_debug.r_brk = r_debug_state;
1847     r_debug.r_state = RT_CONSISTENT;
1848 }
1849 
1850 /*
1851  * Add the init functions from a needed object list (and its recursive
1852  * needed objects) to "list".  This is not used directly; it is a helper
1853  * function for initlist_add_objects().  The write lock must be held
1854  * when this function is called.
1855  */
1856 static void
1857 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1858 {
1859     /* Recursively process the successor needed objects. */
1860     if (needed->next != NULL)
1861 	initlist_add_neededs(needed->next, list);
1862 
1863     /* Process the current needed object. */
1864     if (needed->obj != NULL)
1865 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1866 }
1867 
1868 /*
1869  * Scan all of the DAGs rooted in the range of objects from "obj" to
1870  * "tail" and add their init functions to "list".  This recurses over
1871  * the DAGs and ensure the proper init ordering such that each object's
1872  * needed libraries are initialized before the object itself.  At the
1873  * same time, this function adds the objects to the global finalization
1874  * list "list_fini" in the opposite order.  The write lock must be
1875  * held when this function is called.
1876  */
1877 static void
1878 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1879 {
1880 
1881     if (obj->init_scanned || obj->init_done)
1882 	return;
1883     obj->init_scanned = true;
1884 
1885     /* Recursively process the successor objects. */
1886     if (&obj->next != tail)
1887 	initlist_add_objects(obj->next, tail, list);
1888 
1889     /* Recursively process the needed objects. */
1890     if (obj->needed != NULL)
1891 	initlist_add_neededs(obj->needed, list);
1892     if (obj->needed_filtees != NULL)
1893 	initlist_add_neededs(obj->needed_filtees, list);
1894     if (obj->needed_aux_filtees != NULL)
1895 	initlist_add_neededs(obj->needed_aux_filtees, list);
1896 
1897     /* Add the object to the init list. */
1898     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1899       obj->init_array != (Elf_Addr)NULL)
1900 	objlist_push_tail(list, obj);
1901 
1902     /* Add the object to the global fini list in the reverse order. */
1903     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1904       && !obj->on_fini_list) {
1905 	objlist_push_head(&list_fini, obj);
1906 	obj->on_fini_list = true;
1907     }
1908 }
1909 
1910 #ifndef FPTR_TARGET
1911 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1912 #endif
1913 
1914 static bool
1915 is_exported(const Elf_Sym *def)
1916 {
1917     Elf_Addr value;
1918     const func_ptr_type *p;
1919 
1920     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1921     for (p = exports;  *p != NULL;  p++)
1922 	if (FPTR_TARGET(*p) == value)
1923 	    return true;
1924     return false;
1925 }
1926 
1927 static void
1928 free_needed_filtees(Needed_Entry *n)
1929 {
1930     Needed_Entry *needed, *needed1;
1931 
1932     for (needed = n; needed != NULL; needed = needed->next) {
1933 	if (needed->obj != NULL) {
1934 	    dlclose(needed->obj);
1935 	    needed->obj = NULL;
1936 	}
1937     }
1938     for (needed = n; needed != NULL; needed = needed1) {
1939 	needed1 = needed->next;
1940 	free(needed);
1941     }
1942 }
1943 
1944 static void
1945 unload_filtees(Obj_Entry *obj)
1946 {
1947 
1948     free_needed_filtees(obj->needed_filtees);
1949     obj->needed_filtees = NULL;
1950     free_needed_filtees(obj->needed_aux_filtees);
1951     obj->needed_aux_filtees = NULL;
1952     obj->filtees_loaded = false;
1953 }
1954 
1955 static void
1956 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1957     RtldLockState *lockstate)
1958 {
1959 
1960     for (; needed != NULL; needed = needed->next) {
1961 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1962 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1963 	  RTLD_LOCAL, lockstate);
1964     }
1965 }
1966 
1967 static void
1968 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1969 {
1970 
1971     lock_restart_for_upgrade(lockstate);
1972     if (!obj->filtees_loaded) {
1973 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1974 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
1975 	obj->filtees_loaded = true;
1976     }
1977 }
1978 
1979 static int
1980 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1981 {
1982     Obj_Entry *obj1;
1983 
1984     for (; needed != NULL; needed = needed->next) {
1985 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
1986 	  flags & ~RTLD_LO_NOLOAD);
1987 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1988 	    return (-1);
1989 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1990 	    dbg("obj %s nodelete", obj1->path);
1991 	    init_dag(obj1);
1992 	    ref_dag(obj1);
1993 	    obj1->ref_nodel = true;
1994 	}
1995     }
1996     return (0);
1997 }
1998 
1999 /*
2000  * Given a shared object, traverse its list of needed objects, and load
2001  * each of them.  Returns 0 on success.  Generates an error message and
2002  * returns -1 on failure.
2003  */
2004 static int
2005 load_needed_objects(Obj_Entry *first, int flags)
2006 {
2007     Obj_Entry *obj;
2008 
2009     for (obj = first;  obj != NULL;  obj = obj->next) {
2010 	if (process_needed(obj, obj->needed, flags) == -1)
2011 	    return (-1);
2012     }
2013     return (0);
2014 }
2015 
2016 static int
2017 load_preload_objects(void)
2018 {
2019     char *p = ld_preload;
2020     static const char delim[] = " \t:;";
2021 
2022     if (p == NULL)
2023 	return 0;
2024 
2025     p += strspn(p, delim);
2026     while (*p != '\0') {
2027 	size_t len = strcspn(p, delim);
2028 	char savech;
2029 	Obj_Entry *obj;
2030 	SymLook req;
2031 	int res;
2032 
2033 	savech = p[len];
2034 	p[len] = '\0';
2035 	obj = load_object(p, -1, NULL, 0);
2036 	if (obj == NULL)
2037 	    return -1;	/* XXX - cleanup */
2038 	p[len] = savech;
2039 	p += len;
2040 	p += strspn(p, delim);
2041 
2042 	/* Check for the magic tracing function */
2043 	symlook_init(&req, RTLD_FUNCTRACE);
2044 	res = symlook_obj(&req, obj);
2045 	if (res == 0) {
2046 	    rtld_functrace = (void *)(req.defobj_out->relocbase +
2047 				      req.sym_out->st_value);
2048 	    rtld_functrace_obj = req.defobj_out;
2049 	}
2050     }
2051     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2052     return 0;
2053 }
2054 
2055 static const char *
2056 printable_path(const char *path)
2057 {
2058 
2059 	return (path == NULL ? "<unknown>" : path);
2060 }
2061 
2062 /*
2063  * Load a shared object into memory, if it is not already loaded.  The
2064  * object may be specified by name or by user-supplied file descriptor
2065  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2066  * duplicate is.
2067  *
2068  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2069  * on failure.
2070  */
2071 static Obj_Entry *
2072 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2073 {
2074     Obj_Entry *obj;
2075     int fd;
2076     struct stat sb;
2077     char *path;
2078 
2079     if (name != NULL) {
2080 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2081 	    if (object_match_name(obj, name))
2082 		return (obj);
2083 	}
2084 
2085 	path = find_library(name, refobj);
2086 	if (path == NULL)
2087 	    return (NULL);
2088     } else
2089 	path = NULL;
2090 
2091     /*
2092      * If we didn't find a match by pathname, or the name is not
2093      * supplied, open the file and check again by device and inode.
2094      * This avoids false mismatches caused by multiple links or ".."
2095      * in pathnames.
2096      *
2097      * To avoid a race, we open the file and use fstat() rather than
2098      * using stat().
2099      */
2100     fd = -1;
2101     if (fd_u == -1) {
2102 	if ((fd = open(path, O_RDONLY)) == -1) {
2103 	    _rtld_error("Cannot open \"%s\"", path);
2104 	    free(path);
2105 	    return (NULL);
2106 	}
2107     } else {
2108 	fd = dup(fd_u);
2109 	if (fd == -1) {
2110 	    _rtld_error("Cannot dup fd");
2111 	    free(path);
2112 	    return (NULL);
2113 	}
2114     }
2115     if (fstat(fd, &sb) == -1) {
2116 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2117 	close(fd);
2118 	free(path);
2119 	return NULL;
2120     }
2121     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2122 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2123 	    break;
2124     if (obj != NULL && name != NULL) {
2125 	object_add_name(obj, name);
2126 	free(path);
2127 	close(fd);
2128 	return obj;
2129     }
2130     if (flags & RTLD_LO_NOLOAD) {
2131 	free(path);
2132 	close(fd);
2133 	return (NULL);
2134     }
2135 
2136     /* First use of this object, so we must map it in */
2137     obj = do_load_object(fd, name, path, &sb, flags);
2138     if (obj == NULL)
2139 	free(path);
2140     close(fd);
2141 
2142     return obj;
2143 }
2144 
2145 static Obj_Entry *
2146 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2147   int flags)
2148 {
2149     Obj_Entry *obj;
2150     struct statfs fs;
2151 
2152     /*
2153      * but first, make sure that environment variables haven't been
2154      * used to circumvent the noexec flag on a filesystem.
2155      */
2156     if (dangerous_ld_env) {
2157 	if (fstatfs(fd, &fs) != 0) {
2158 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2159 		return NULL;
2160 	}
2161 	if (fs.f_flags & MNT_NOEXEC) {
2162 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2163 	    return NULL;
2164 	}
2165     }
2166     dbg("loading \"%s\"", printable_path(path));
2167     obj = map_object(fd, printable_path(path), sbp);
2168     if (obj == NULL)
2169         return NULL;
2170 
2171     /*
2172      * If DT_SONAME is present in the object, digest_dynamic2 already
2173      * added it to the object names.
2174      */
2175     if (name != NULL)
2176 	object_add_name(obj, name);
2177     obj->path = path;
2178     digest_dynamic(obj, 0);
2179     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2180 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2181     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2182       RTLD_LO_DLOPEN) {
2183 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2184 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2185 	munmap(obj->mapbase, obj->mapsize);
2186 	obj_free(obj);
2187 	return (NULL);
2188     }
2189 
2190     *obj_tail = obj;
2191     obj_tail = &obj->next;
2192     obj_count++;
2193     obj_loads++;
2194     linkmap_add(obj);	/* for GDB & dlinfo() */
2195     max_stack_flags |= obj->stack_flags;
2196 
2197     dbg("  %p .. %p: %s", obj->mapbase,
2198          obj->mapbase + obj->mapsize - 1, obj->path);
2199     if (obj->textrel)
2200 	dbg("  WARNING: %s has impure text", obj->path);
2201     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2202 	obj->path);
2203 
2204     return obj;
2205 }
2206 
2207 static Obj_Entry *
2208 obj_from_addr(const void *addr)
2209 {
2210     Obj_Entry *obj;
2211 
2212     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2213 	if (addr < (void *) obj->mapbase)
2214 	    continue;
2215 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2216 	    return obj;
2217     }
2218     return NULL;
2219 }
2220 
2221 /*
2222  * Call the finalization functions for each of the objects in "list"
2223  * belonging to the DAG of "root" and referenced once. If NULL "root"
2224  * is specified, every finalization function will be called regardless
2225  * of the reference count and the list elements won't be freed. All of
2226  * the objects are expected to have non-NULL fini functions.
2227  */
2228 static void
2229 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2230 {
2231     Objlist_Entry *elm;
2232     char *saved_msg;
2233     Elf_Addr *fini_addr;
2234     int index;
2235 
2236     assert(root == NULL || root->refcount == 1);
2237 
2238     /*
2239      * Preserve the current error message since a fini function might
2240      * call into the dynamic linker and overwrite it.
2241      */
2242     saved_msg = errmsg_save();
2243     do {
2244 	STAILQ_FOREACH(elm, list, link) {
2245 	    if (root != NULL && (elm->obj->refcount != 1 ||
2246 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2247 		continue;
2248 
2249 	    /* Remove object from fini list to prevent recursive invocation. */
2250 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2251 	    /*
2252 	     * XXX: If a dlopen() call references an object while the
2253 	     * fini function is in progress, we might end up trying to
2254 	     * unload the referenced object in dlclose() or the object
2255 	     * won't be unloaded although its fini function has been
2256 	     * called.
2257 	     */
2258 	    lock_release(rtld_bind_lock, lockstate);
2259 
2260 	    /*
2261 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.  When this
2262 	     * happens, DT_FINI_ARRAY is processed first, and it is also processed
2263 	     * backwards.  It is possible to encounter DT_FINI_ARRAY elements with
2264 	     * values of 0 or 1, but they need to be ignored.
2265 	     */
2266 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2267 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2268 		for (index = elm->obj->fini_array_num - 1; index >= 0; index--) {
2269 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2270 			dbg("calling fini array function for %s at %p",
2271 		            elm->obj->path, (void *)fini_addr[index]);
2272 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2273 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2274 			call_initfini_pointer(elm->obj, fini_addr[index]);
2275 		    }
2276 	        }
2277 	    }
2278 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2279 		dbg("calling fini function for %s at %p", elm->obj->path,
2280 		    (void *)elm->obj->fini);
2281 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2282 		    0, 0, elm->obj->path);
2283 	        call_initfini_pointer(elm->obj, elm->obj->fini);
2284 	    }
2285 	    wlock_acquire(rtld_bind_lock, lockstate);
2286 	    /* No need to free anything if process is going down. */
2287 	    if (root != NULL)
2288 		free(elm);
2289 	    /*
2290 	     * We must restart the list traversal after every fini call
2291 	     * because a dlclose() call from the fini function or from
2292 	     * another thread might have modified the reference counts.
2293 	     */
2294 	    break;
2295 	}
2296     } while (elm != NULL);
2297     errmsg_restore(saved_msg);
2298 }
2299 
2300 /*
2301  * If the main program is defined with a .preinit_array section, call
2302  * each function in order.  This must occur before the initialization
2303  * of any shared object or the main program.
2304  */
2305 static void
2306 preinitialize_main_object (void)
2307 {
2308     Elf_Addr *preinit_addr;
2309     int index;
2310 
2311     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2312     if (preinit_addr == NULL)
2313 	return;
2314 
2315     for (index = 0; index < obj_main->preinit_array_num; index++) {
2316 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2317 	    dbg("calling preinit function for %s at %p", obj_main->path,
2318 		(void *)preinit_addr[index]);
2319 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2320 		0, 0, obj_main->path);
2321 	    call_init_pointer(obj_main, preinit_addr[index]);
2322 	}
2323     }
2324 }
2325 
2326 /*
2327  * Call the initialization functions for each of the objects in
2328  * "list".  All of the objects are expected to have non-NULL init
2329  * functions.
2330  */
2331 static void
2332 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2333 {
2334     Objlist_Entry *elm;
2335     Obj_Entry *obj;
2336     char *saved_msg;
2337     Elf_Addr *init_addr;
2338     int index;
2339 
2340     /*
2341      * Clean init_scanned flag so that objects can be rechecked and
2342      * possibly initialized earlier if any of vectors called below
2343      * cause the change by using dlopen.
2344      */
2345     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2346 	obj->init_scanned = false;
2347 
2348     /*
2349      * Preserve the current error message since an init function might
2350      * call into the dynamic linker and overwrite it.
2351      */
2352     saved_msg = errmsg_save();
2353     STAILQ_FOREACH(elm, list, link) {
2354 	if (elm->obj->init_done) /* Initialized early. */
2355 	    continue;
2356 
2357 	/*
2358 	 * Race: other thread might try to use this object before current
2359 	 * one completes the initilization. Not much can be done here
2360 	 * without better locking.
2361 	 */
2362 	elm->obj->init_done = true;
2363 	lock_release(rtld_bind_lock, lockstate);
2364 
2365         /*
2366          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.  When
2367          * this happens, DT_INIT is processed first.  It is possible to
2368          * encounter DT_INIT_ARRAY elements with values of 0 or 1, but they
2369          * need to be ignored.
2370          */
2371          if (elm->obj->init != (Elf_Addr)NULL) {
2372 	    dbg("calling init function for %s at %p", elm->obj->path,
2373 	        (void *)elm->obj->init);
2374 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2375 	        0, 0, elm->obj->path);
2376 	    call_initfini_pointer(elm->obj, elm->obj->init);
2377 	}
2378 	init_addr = (Elf_Addr *)elm->obj->init_array;
2379 	if (init_addr != NULL) {
2380 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2381 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2382 		    dbg("calling init array function for %s at %p", elm->obj->path,
2383 			(void *)init_addr[index]);
2384 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2385 			(void *)init_addr[index], 0, 0, elm->obj->path);
2386 		    call_init_pointer(elm->obj, init_addr[index]);
2387 		}
2388 	    }
2389 	}
2390 	wlock_acquire(rtld_bind_lock, lockstate);
2391     }
2392     errmsg_restore(saved_msg);
2393 }
2394 
2395 static void
2396 objlist_clear(Objlist *list)
2397 {
2398     Objlist_Entry *elm;
2399 
2400     while (!STAILQ_EMPTY(list)) {
2401 	elm = STAILQ_FIRST(list);
2402 	STAILQ_REMOVE_HEAD(list, link);
2403 	free(elm);
2404     }
2405 }
2406 
2407 static Objlist_Entry *
2408 objlist_find(Objlist *list, const Obj_Entry *obj)
2409 {
2410     Objlist_Entry *elm;
2411 
2412     STAILQ_FOREACH(elm, list, link)
2413 	if (elm->obj == obj)
2414 	    return elm;
2415     return NULL;
2416 }
2417 
2418 static void
2419 objlist_init(Objlist *list)
2420 {
2421     STAILQ_INIT(list);
2422 }
2423 
2424 static void
2425 objlist_push_head(Objlist *list, Obj_Entry *obj)
2426 {
2427     Objlist_Entry *elm;
2428 
2429     elm = NEW(Objlist_Entry);
2430     elm->obj = obj;
2431     STAILQ_INSERT_HEAD(list, elm, link);
2432 }
2433 
2434 static void
2435 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2436 {
2437     Objlist_Entry *elm;
2438 
2439     elm = NEW(Objlist_Entry);
2440     elm->obj = obj;
2441     STAILQ_INSERT_TAIL(list, elm, link);
2442 }
2443 
2444 static void
2445 objlist_remove(Objlist *list, Obj_Entry *obj)
2446 {
2447     Objlist_Entry *elm;
2448 
2449     if ((elm = objlist_find(list, obj)) != NULL) {
2450 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2451 	free(elm);
2452     }
2453 }
2454 
2455 /*
2456  * Relocate newly-loaded shared objects.  The argument is a pointer to
2457  * the Obj_Entry for the first such object.  All objects from the first
2458  * to the end of the list of objects are relocated.  Returns 0 on success,
2459  * or -1 on failure.
2460  */
2461 static int
2462 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2463     int flags, RtldLockState *lockstate)
2464 {
2465     Obj_Entry *obj;
2466 
2467     for (obj = first;  obj != NULL;  obj = obj->next) {
2468 	if (obj->relocated)
2469 	    continue;
2470 	obj->relocated = true;
2471 	if (obj != rtldobj)
2472 	    dbg("relocating \"%s\"", obj->path);
2473 
2474 	if (obj->symtab == NULL || obj->strtab == NULL ||
2475 	  !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2476 	    _rtld_error("%s: Shared object has no run-time symbol table",
2477 	      obj->path);
2478 	    return -1;
2479 	}
2480 
2481 	if (obj->textrel) {
2482 	    /* There are relocations to the write-protected text segment. */
2483 	    if (mprotect(obj->mapbase, obj->textsize,
2484 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2485 		_rtld_error("%s: Cannot write-enable text segment: %s",
2486 		  obj->path, rtld_strerror(errno));
2487 		return -1;
2488 	    }
2489 	}
2490 
2491 	/* Process the non-PLT relocations. */
2492 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2493 		return -1;
2494 
2495 	/*
2496 	 * Reprotect the text segment.  Make sure it is included in the
2497 	 * core dump since we modified it.  This unfortunately causes the
2498 	 * entire text segment to core-out but we don't have much of a
2499 	 * choice.  We could try to only reenable core dumps on pages
2500 	 * in which relocations occured but that is likely most of the text
2501 	 * pages anyway, and even that would not work because the rest of
2502 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
2503 	 * (created due to our modifications) backed by the original OBJT_VNODE
2504 	 * object, and the ELF coredump code is currently only able to dump
2505 	 * vnode records for pure vnode-backed mappings, not vnode backings
2506 	 * to memory objects.
2507 	 */
2508 	if (obj->textrel) {
2509 	    madvise(obj->mapbase, obj->textsize, MADV_CORE);
2510 	    if (mprotect(obj->mapbase, obj->textsize,
2511 	      PROT_READ|PROT_EXEC) == -1) {
2512 		_rtld_error("%s: Cannot write-protect text segment: %s",
2513 		  obj->path, rtld_strerror(errno));
2514 		return -1;
2515 	    }
2516 	}
2517 
2518 
2519 	/* Set the special PLT or GOT entries. */
2520 	init_pltgot(obj);
2521 
2522 	/* Process the PLT relocations. */
2523 	if (reloc_plt(obj) == -1)
2524 	    return -1;
2525 	/* Relocate the jump slots if we are doing immediate binding. */
2526 	if (obj->bind_now || bind_now)
2527 	    if (reloc_jmpslots(obj, flags, lockstate) == -1)
2528 		return -1;
2529 
2530 	/*
2531 	 * Set up the magic number and version in the Obj_Entry.  These
2532 	 * were checked in the crt1.o from the original ElfKit, so we
2533 	 * set them for backward compatibility.
2534 	 */
2535 	obj->magic = RTLD_MAGIC;
2536 	obj->version = RTLD_VERSION;
2537 
2538 	/*
2539 	 * Set relocated data to read-only status if protection specified
2540 	 */
2541 
2542 	if (obj->relro_size) {
2543 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2544 		_rtld_error("%s: Cannot enforce relro relocation: %s",
2545 		  obj->path, rtld_strerror(errno));
2546 		return -1;
2547 	    }
2548 	}
2549     }
2550 
2551     return (0);
2552 }
2553 
2554 /*
2555  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2556  * referencing STT_GNU_IFUNC symbols is postponed till the other
2557  * relocations are done.  The indirect functions specified as
2558  * ifunc are allowed to call other symbols, so we need to have
2559  * objects relocated before asking for resolution from indirects.
2560  *
2561  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2562  * instead of the usual lazy handling of PLT slots.  It is
2563  * consistent with how GNU does it.
2564  */
2565 static int
2566 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2567     RtldLockState *lockstate)
2568 {
2569 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2570 		return (-1);
2571 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2572 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2573 		return (-1);
2574 	return (0);
2575 }
2576 
2577 static int
2578 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2579     RtldLockState *lockstate)
2580 {
2581 	Obj_Entry *obj;
2582 
2583 	for (obj = first;  obj != NULL;  obj = obj->next) {
2584 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2585 			return (-1);
2586 	}
2587 	return (0);
2588 }
2589 
2590 static int
2591 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2592     RtldLockState *lockstate)
2593 {
2594 	Objlist_Entry *elm;
2595 
2596 	STAILQ_FOREACH(elm, list, link) {
2597 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2598 		    lockstate) == -1)
2599 			return (-1);
2600 	}
2601 	return (0);
2602 }
2603 
2604 /*
2605  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2606  * before the process exits.
2607  */
2608 static void
2609 rtld_exit(void)
2610 {
2611     RtldLockState lockstate;
2612 
2613     wlock_acquire(rtld_bind_lock, &lockstate);
2614     dbg("rtld_exit()");
2615     objlist_call_fini(&list_fini, NULL, &lockstate);
2616     /* No need to remove the items from the list, since we are exiting. */
2617     if (!libmap_disable)
2618         lm_fini();
2619     lock_release(rtld_bind_lock, &lockstate);
2620 }
2621 
2622 static void *
2623 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2624 {
2625     if (path == NULL)
2626 	return (NULL);
2627 
2628     path += strspn(path, ":;");
2629     while (*path != '\0') {
2630 	size_t len;
2631 	char  *res;
2632 
2633 	len = strcspn(path, ":;");
2634 	res = callback(path, len, arg);
2635 
2636 	if (res != NULL)
2637 	    return (res);
2638 
2639 	path += len;
2640 	path += strspn(path, ":;");
2641     }
2642 
2643     return (NULL);
2644 }
2645 
2646 struct try_library_args {
2647     const char	*name;
2648     size_t	 namelen;
2649     char	*buffer;
2650     size_t	 buflen;
2651 };
2652 
2653 static void *
2654 try_library_path(const char *dir, size_t dirlen, void *param)
2655 {
2656     struct try_library_args *arg;
2657 
2658     arg = param;
2659     if (*dir == '/' || trust) {
2660 	char *pathname;
2661 
2662 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2663 		return (NULL);
2664 
2665 	pathname = arg->buffer;
2666 	strncpy(pathname, dir, dirlen);
2667 	pathname[dirlen] = '/';
2668 	strcpy(pathname + dirlen + 1, arg->name);
2669 
2670 	dbg("  Trying \"%s\"", pathname);
2671 	if (access(pathname, F_OK) == 0) {		/* We found it */
2672 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2673 	    strcpy(pathname, arg->buffer);
2674 	    return (pathname);
2675 	}
2676     }
2677     return (NULL);
2678 }
2679 
2680 static char *
2681 search_library_path(const char *name, const char *path)
2682 {
2683     char *p;
2684     struct try_library_args arg;
2685 
2686     if (path == NULL)
2687 	return NULL;
2688 
2689     arg.name = name;
2690     arg.namelen = strlen(name);
2691     arg.buffer = xmalloc(PATH_MAX);
2692     arg.buflen = PATH_MAX;
2693 
2694     p = path_enumerate(path, try_library_path, &arg);
2695 
2696     free(arg.buffer);
2697 
2698     return (p);
2699 }
2700 
2701 int
2702 dlclose(void *handle)
2703 {
2704     Obj_Entry *root;
2705     RtldLockState lockstate;
2706 
2707     wlock_acquire(rtld_bind_lock, &lockstate);
2708     root = dlcheck(handle);
2709     if (root == NULL) {
2710 	lock_release(rtld_bind_lock, &lockstate);
2711 	return -1;
2712     }
2713     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2714 	root->path);
2715 
2716     /* Unreference the object and its dependencies. */
2717     root->dl_refcount--;
2718 
2719     if (root->refcount == 1) {
2720 	/*
2721 	 * The object will be no longer referenced, so we must unload it.
2722 	 * First, call the fini functions.
2723 	 */
2724 	objlist_call_fini(&list_fini, root, &lockstate);
2725 
2726 	unref_dag(root);
2727 
2728 	/* Finish cleaning up the newly-unreferenced objects. */
2729 	GDB_STATE(RT_DELETE,&root->linkmap);
2730 	unload_object(root);
2731 	GDB_STATE(RT_CONSISTENT,NULL);
2732     } else
2733 	unref_dag(root);
2734 
2735     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2736     lock_release(rtld_bind_lock, &lockstate);
2737     return 0;
2738 }
2739 
2740 char *
2741 dlerror(void)
2742 {
2743     char *msg = error_message;
2744     error_message = NULL;
2745     return msg;
2746 }
2747 
2748 void *
2749 dlopen(const char *name, int mode)
2750 {
2751 
2752 	return (rtld_dlopen(name, -1, mode));
2753 }
2754 
2755 void *
2756 fdlopen(int fd, int mode)
2757 {
2758 
2759 	return (rtld_dlopen(NULL, fd, mode));
2760 }
2761 
2762 static void *
2763 rtld_dlopen(const char *name, int fd, int mode)
2764 {
2765     RtldLockState lockstate;
2766     int lo_flags;
2767 
2768     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2769     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2770     if (ld_tracing != NULL) {
2771 	rlock_acquire(rtld_bind_lock, &lockstate);
2772 	if (sigsetjmp(lockstate.env, 0) != 0)
2773 	    lock_upgrade(rtld_bind_lock, &lockstate);
2774 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2775 	lock_release(rtld_bind_lock, &lockstate);
2776     }
2777     lo_flags = RTLD_LO_DLOPEN;
2778     if (mode & RTLD_NODELETE)
2779 	    lo_flags |= RTLD_LO_NODELETE;
2780     if (mode & RTLD_NOLOAD)
2781 	    lo_flags |= RTLD_LO_NOLOAD;
2782     if (ld_tracing != NULL)
2783 	    lo_flags |= RTLD_LO_TRACE;
2784 
2785     return (dlopen_object(name, fd, obj_main, lo_flags,
2786       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2787 }
2788 
2789 static void
2790 dlopen_cleanup(Obj_Entry *obj)
2791 {
2792 
2793 	obj->dl_refcount--;
2794 	unref_dag(obj);
2795 	if (obj->refcount == 0)
2796 		unload_object(obj);
2797 }
2798 
2799 static Obj_Entry *
2800 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2801     int mode, RtldLockState *lockstate)
2802 {
2803     Obj_Entry **old_obj_tail;
2804     Obj_Entry *obj;
2805     Objlist initlist;
2806     RtldLockState mlockstate;
2807     int result;
2808 
2809     objlist_init(&initlist);
2810 
2811     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2812 	wlock_acquire(rtld_bind_lock, &mlockstate);
2813 	lockstate = &mlockstate;
2814     }
2815     GDB_STATE(RT_ADD,NULL);
2816 
2817     old_obj_tail = obj_tail;
2818     obj = NULL;
2819     if (name == NULL && fd == -1) {
2820 	obj = obj_main;
2821 	obj->refcount++;
2822     } else {
2823 	obj = load_object(name, fd, refobj, lo_flags);
2824     }
2825 
2826     if (obj) {
2827 	obj->dl_refcount++;
2828 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2829 	    objlist_push_tail(&list_global, obj);
2830 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2831 	    assert(*old_obj_tail == obj);
2832 	    result = load_needed_objects(obj,
2833 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2834 	    init_dag(obj);
2835 	    ref_dag(obj);
2836 	    if (result != -1)
2837 		result = rtld_verify_versions(&obj->dagmembers);
2838 	    if (result != -1 && ld_tracing)
2839 		goto trace;
2840 	    if (result == -1 || (relocate_objects(obj,
2841 	     (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2842 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2843 	      lockstate)) == -1) {
2844 		dlopen_cleanup(obj);
2845 		obj = NULL;
2846 	    } else if (lo_flags & RTLD_LO_EARLY) {
2847 		/*
2848 		 * Do not call the init functions for early loaded
2849 		 * filtees.  The image is still not initialized enough
2850 		 * for them to work.
2851 		 *
2852 		 * Our object is found by the global object list and
2853 		 * will be ordered among all init calls done right
2854 		 * before transferring control to main.
2855 		 */
2856 	    } else {
2857 		/* Make list of init functions to call. */
2858 		initlist_add_objects(obj, &obj->next, &initlist);
2859 	    }
2860 	} else {
2861 
2862 	    /*
2863 	     * Bump the reference counts for objects on this DAG.  If
2864 	     * this is the first dlopen() call for the object that was
2865 	     * already loaded as a dependency, initialize the dag
2866 	     * starting at it.
2867 	     */
2868 	    init_dag(obj);
2869 	    ref_dag(obj);
2870 
2871 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2872 		goto trace;
2873 	}
2874 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2875 	  obj->z_nodelete) && !obj->ref_nodel) {
2876 	    dbg("obj %s nodelete", obj->path);
2877 	    ref_dag(obj);
2878 	    obj->z_nodelete = obj->ref_nodel = true;
2879 	}
2880     }
2881 
2882     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2883 	name);
2884     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2885 
2886     if (!(lo_flags & RTLD_LO_EARLY)) {
2887 	map_stacks_exec(lockstate);
2888     }
2889 
2890     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2891       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2892       lockstate) == -1) {
2893 	objlist_clear(&initlist);
2894 	dlopen_cleanup(obj);
2895 	if (lockstate == &mlockstate)
2896 	    lock_release(rtld_bind_lock, lockstate);
2897 	return (NULL);
2898     }
2899 
2900     if (!(lo_flags & RTLD_LO_EARLY)) {
2901 	/* Call the init functions. */
2902 	objlist_call_init(&initlist, lockstate);
2903     }
2904     objlist_clear(&initlist);
2905     if (lockstate == &mlockstate)
2906 	lock_release(rtld_bind_lock, lockstate);
2907     return obj;
2908 trace:
2909     trace_loaded_objects(obj);
2910     if (lockstate == &mlockstate)
2911 	lock_release(rtld_bind_lock, lockstate);
2912     exit(0);
2913 }
2914 
2915 static void *
2916 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2917     int flags)
2918 {
2919     DoneList donelist;
2920     const Obj_Entry *obj, *defobj;
2921     const Elf_Sym *def;
2922     SymLook req;
2923     RtldLockState lockstate;
2924     int res;
2925 
2926     def = NULL;
2927     defobj = NULL;
2928     symlook_init(&req, name);
2929     req.ventry = ve;
2930     req.flags = flags | SYMLOOK_IN_PLT;
2931     req.lockstate = &lockstate;
2932 
2933     rlock_acquire(rtld_bind_lock, &lockstate);
2934     if (sigsetjmp(lockstate.env, 0) != 0)
2935 	    lock_upgrade(rtld_bind_lock, &lockstate);
2936     if (handle == NULL || handle == RTLD_NEXT ||
2937 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2938 
2939 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2940 	    _rtld_error("Cannot determine caller's shared object");
2941 	    lock_release(rtld_bind_lock, &lockstate);
2942 	    return NULL;
2943 	}
2944 	if (handle == NULL) {	/* Just the caller's shared object. */
2945 	    res = symlook_obj(&req, obj);
2946 	    if (res == 0) {
2947 		def = req.sym_out;
2948 		defobj = req.defobj_out;
2949 	    }
2950 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2951 		   handle == RTLD_SELF) { /* ... caller included */
2952 	    if (handle == RTLD_NEXT)
2953 		obj = obj->next;
2954 	    for (; obj != NULL; obj = obj->next) {
2955 		res = symlook_obj(&req, obj);
2956 		if (res == 0) {
2957 		    if (def == NULL ||
2958 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2959 			def = req.sym_out;
2960 			defobj = req.defobj_out;
2961 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2962 			    break;
2963 		    }
2964 		}
2965 	    }
2966 	    /*
2967 	     * Search the dynamic linker itself, and possibly resolve the
2968 	     * symbol from there.  This is how the application links to
2969 	     * dynamic linker services such as dlopen.
2970 	     */
2971 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2972 		res = symlook_obj(&req, &obj_rtld);
2973 		if (res == 0 && is_exported(req.sym_out)) {
2974 		    def = req.sym_out;
2975 		    defobj = req.defobj_out;
2976 		}
2977 	    }
2978 	} else {
2979 	    assert(handle == RTLD_DEFAULT);
2980 	    res = symlook_default(&req, obj);
2981 	    if (res == 0) {
2982 		defobj = req.defobj_out;
2983 		def = req.sym_out;
2984 	    }
2985 	}
2986     } else {
2987 	if ((obj = dlcheck(handle)) == NULL) {
2988 	    lock_release(rtld_bind_lock, &lockstate);
2989 	    return NULL;
2990 	}
2991 
2992 	donelist_init(&donelist);
2993 	if (obj->mainprog) {
2994             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2995 	    res = symlook_global(&req, &donelist);
2996 	    if (res == 0) {
2997 		def = req.sym_out;
2998 		defobj = req.defobj_out;
2999 	    }
3000 	    /*
3001 	     * Search the dynamic linker itself, and possibly resolve the
3002 	     * symbol from there.  This is how the application links to
3003 	     * dynamic linker services such as dlopen.
3004 	     */
3005 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3006 		res = symlook_obj(&req, &obj_rtld);
3007 		if (res == 0) {
3008 		    def = req.sym_out;
3009 		    defobj = req.defobj_out;
3010 		}
3011 	    }
3012 	}
3013 	else {
3014 	    /* Search the whole DAG rooted at the given object. */
3015 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3016 	    if (res == 0) {
3017 		def = req.sym_out;
3018 		defobj = req.defobj_out;
3019 	    }
3020 	}
3021     }
3022 
3023     if (def != NULL) {
3024 	lock_release(rtld_bind_lock, &lockstate);
3025 
3026 	/*
3027 	 * The value required by the caller is derived from the value
3028 	 * of the symbol. For the ia64 architecture, we need to
3029 	 * construct a function descriptor which the caller can use to
3030 	 * call the function with the right 'gp' value. For other
3031 	 * architectures and for non-functions, the value is simply
3032 	 * the relocated value of the symbol.
3033 	 */
3034 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3035 	    return (make_function_pointer(def, defobj));
3036 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3037 	    return (rtld_resolve_ifunc(defobj, def));
3038 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3039 	    tls_index ti;
3040 	    ti.ti_module = defobj->tlsindex;
3041 	    ti.ti_offset = def->st_value;
3042 	    return (__tls_get_addr(&ti));
3043 	} else
3044 	    return (defobj->relocbase + def->st_value);
3045     }
3046 
3047     _rtld_error("Undefined symbol \"%s\"", name);
3048     lock_release(rtld_bind_lock, &lockstate);
3049     return NULL;
3050 }
3051 
3052 void *
3053 dlsym(void *handle, const char *name)
3054 {
3055 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3056 	    SYMLOOK_DLSYM);
3057 }
3058 
3059 dlfunc_t
3060 dlfunc(void *handle, const char *name)
3061 {
3062 	union {
3063 		void *d;
3064 		dlfunc_t f;
3065 	} rv;
3066 
3067 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3068 	    SYMLOOK_DLSYM);
3069 	return (rv.f);
3070 }
3071 
3072 void *
3073 dlvsym(void *handle, const char *name, const char *version)
3074 {
3075 	Ver_Entry ventry;
3076 
3077 	ventry.name = version;
3078 	ventry.file = NULL;
3079 	ventry.hash = elf_hash(version);
3080 	ventry.flags= 0;
3081 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3082 	    SYMLOOK_DLSYM);
3083 }
3084 
3085 int
3086 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3087 {
3088     const Obj_Entry *obj;
3089     RtldLockState lockstate;
3090 
3091     rlock_acquire(rtld_bind_lock, &lockstate);
3092     obj = obj_from_addr(addr);
3093     if (obj == NULL) {
3094         _rtld_error("No shared object contains address");
3095 	lock_release(rtld_bind_lock, &lockstate);
3096         return (0);
3097     }
3098     rtld_fill_dl_phdr_info(obj, phdr_info);
3099     lock_release(rtld_bind_lock, &lockstate);
3100     return (1);
3101 }
3102 
3103 int
3104 dladdr(const void *addr, Dl_info *info)
3105 {
3106     const Obj_Entry *obj;
3107     const Elf_Sym *def;
3108     void *symbol_addr;
3109     unsigned long symoffset;
3110     RtldLockState lockstate;
3111 
3112     rlock_acquire(rtld_bind_lock, &lockstate);
3113     obj = obj_from_addr(addr);
3114     if (obj == NULL) {
3115         _rtld_error("No shared object contains address");
3116 	lock_release(rtld_bind_lock, &lockstate);
3117         return 0;
3118     }
3119     info->dli_fname = obj->path;
3120     info->dli_fbase = obj->mapbase;
3121     info->dli_saddr = NULL;
3122     info->dli_sname = NULL;
3123 
3124     /*
3125      * Walk the symbol list looking for the symbol whose address is
3126      * closest to the address sent in.
3127      */
3128     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3129         def = obj->symtab + symoffset;
3130 
3131         /*
3132          * For skip the symbol if st_shndx is either SHN_UNDEF or
3133          * SHN_COMMON.
3134          */
3135         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3136             continue;
3137 
3138         /*
3139          * If the symbol is greater than the specified address, or if it
3140          * is further away from addr than the current nearest symbol,
3141          * then reject it.
3142          */
3143         symbol_addr = obj->relocbase + def->st_value;
3144         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3145             continue;
3146 
3147         /* Update our idea of the nearest symbol. */
3148         info->dli_sname = obj->strtab + def->st_name;
3149         info->dli_saddr = symbol_addr;
3150 
3151         /* Exact match? */
3152         if (info->dli_saddr == addr)
3153             break;
3154     }
3155     lock_release(rtld_bind_lock, &lockstate);
3156     return 1;
3157 }
3158 
3159 int
3160 dlinfo(void *handle, int request, void *p)
3161 {
3162     const Obj_Entry *obj;
3163     RtldLockState lockstate;
3164     int error;
3165 
3166     rlock_acquire(rtld_bind_lock, &lockstate);
3167 
3168     if (handle == NULL || handle == RTLD_SELF) {
3169 	void *retaddr;
3170 
3171 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3172 	if ((obj = obj_from_addr(retaddr)) == NULL)
3173 	    _rtld_error("Cannot determine caller's shared object");
3174     } else
3175 	obj = dlcheck(handle);
3176 
3177     if (obj == NULL) {
3178 	lock_release(rtld_bind_lock, &lockstate);
3179 	return (-1);
3180     }
3181 
3182     error = 0;
3183     switch (request) {
3184     case RTLD_DI_LINKMAP:
3185 	*((struct link_map const **)p) = &obj->linkmap;
3186 	break;
3187     case RTLD_DI_ORIGIN:
3188 	error = rtld_dirname(obj->path, p);
3189 	break;
3190 
3191     case RTLD_DI_SERINFOSIZE:
3192     case RTLD_DI_SERINFO:
3193 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3194 	break;
3195 
3196     default:
3197 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3198 	error = -1;
3199     }
3200 
3201     lock_release(rtld_bind_lock, &lockstate);
3202 
3203     return (error);
3204 }
3205 
3206 static void
3207 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3208 {
3209 
3210 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3211 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3212 	    STAILQ_FIRST(&obj->names)->name : obj->path;
3213 	phdr_info->dlpi_phdr = obj->phdr;
3214 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3215 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3216 	phdr_info->dlpi_tls_data = obj->tlsinit;
3217 	phdr_info->dlpi_adds = obj_loads;
3218 	phdr_info->dlpi_subs = obj_loads - obj_count;
3219 }
3220 
3221 int
3222 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3223 {
3224     struct dl_phdr_info phdr_info;
3225     const Obj_Entry *obj;
3226     RtldLockState bind_lockstate, phdr_lockstate;
3227     int error;
3228 
3229     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3230     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3231 
3232     error = 0;
3233 
3234     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3235 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3236 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3237 		break;
3238 
3239     }
3240     lock_release(rtld_bind_lock, &bind_lockstate);
3241     lock_release(rtld_phdr_lock, &phdr_lockstate);
3242 
3243     return (error);
3244 }
3245 
3246 static void *
3247 fill_search_info(const char *dir, size_t dirlen, void *param)
3248 {
3249     struct fill_search_info_args *arg;
3250 
3251     arg = param;
3252 
3253     if (arg->request == RTLD_DI_SERINFOSIZE) {
3254 	arg->serinfo->dls_cnt ++;
3255 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3256     } else {
3257 	struct dl_serpath *s_entry;
3258 
3259 	s_entry = arg->serpath;
3260 	s_entry->dls_name  = arg->strspace;
3261 	s_entry->dls_flags = arg->flags;
3262 
3263 	strncpy(arg->strspace, dir, dirlen);
3264 	arg->strspace[dirlen] = '\0';
3265 
3266 	arg->strspace += dirlen + 1;
3267 	arg->serpath++;
3268     }
3269 
3270     return (NULL);
3271 }
3272 
3273 static int
3274 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3275 {
3276     struct dl_serinfo _info;
3277     struct fill_search_info_args args;
3278 
3279     args.request = RTLD_DI_SERINFOSIZE;
3280     args.serinfo = &_info;
3281 
3282     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3283     _info.dls_cnt  = 0;
3284 
3285     path_enumerate(obj->rpath, fill_search_info, &args);
3286     path_enumerate(ld_library_path, fill_search_info, &args);
3287     path_enumerate(obj->runpath, fill_search_info, &args);
3288     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3289     if (!obj->z_nodeflib)
3290       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3291 
3292 
3293     if (request == RTLD_DI_SERINFOSIZE) {
3294 	info->dls_size = _info.dls_size;
3295 	info->dls_cnt = _info.dls_cnt;
3296 	return (0);
3297     }
3298 
3299     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3300 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3301 	return (-1);
3302     }
3303 
3304     args.request  = RTLD_DI_SERINFO;
3305     args.serinfo  = info;
3306     args.serpath  = &info->dls_serpath[0];
3307     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3308 
3309     args.flags = LA_SER_RUNPATH;
3310     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3311 	return (-1);
3312 
3313     args.flags = LA_SER_LIBPATH;
3314     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3315 	return (-1);
3316 
3317     args.flags = LA_SER_RUNPATH;
3318     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3319 	return (-1);
3320 
3321     args.flags = LA_SER_CONFIG;
3322     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3323       != NULL)
3324 	return (-1);
3325 
3326     args.flags = LA_SER_DEFAULT;
3327     if (!obj->z_nodeflib &&
3328       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3329 	return (-1);
3330     return (0);
3331 }
3332 
3333 static int
3334 rtld_dirname(const char *path, char *bname)
3335 {
3336     const char *endp;
3337 
3338     /* Empty or NULL string gets treated as "." */
3339     if (path == NULL || *path == '\0') {
3340 	bname[0] = '.';
3341 	bname[1] = '\0';
3342 	return (0);
3343     }
3344 
3345     /* Strip trailing slashes */
3346     endp = path + strlen(path) - 1;
3347     while (endp > path && *endp == '/')
3348 	endp--;
3349 
3350     /* Find the start of the dir */
3351     while (endp > path && *endp != '/')
3352 	endp--;
3353 
3354     /* Either the dir is "/" or there are no slashes */
3355     if (endp == path) {
3356 	bname[0] = *endp == '/' ? '/' : '.';
3357 	bname[1] = '\0';
3358 	return (0);
3359     } else {
3360 	do {
3361 	    endp--;
3362 	} while (endp > path && *endp == '/');
3363     }
3364 
3365     if (endp - path + 2 > PATH_MAX)
3366     {
3367 	_rtld_error("Filename is too long: %s", path);
3368 	return(-1);
3369     }
3370 
3371     strncpy(bname, path, endp - path + 1);
3372     bname[endp - path + 1] = '\0';
3373     return (0);
3374 }
3375 
3376 static int
3377 rtld_dirname_abs(const char *path, char *base)
3378 {
3379 	char base_rel[PATH_MAX];
3380 
3381 	if (rtld_dirname(path, base) == -1)
3382 		return (-1);
3383 	if (base[0] == '/')
3384 		return (0);
3385 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3386 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3387 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3388 		return (-1);
3389 	strcpy(base, base_rel);
3390 	return (0);
3391 }
3392 
3393 static void
3394 linkmap_add(Obj_Entry *obj)
3395 {
3396     struct link_map *l = &obj->linkmap;
3397     struct link_map *prev;
3398 
3399     obj->linkmap.l_name = obj->path;
3400     obj->linkmap.l_addr = obj->mapbase;
3401     obj->linkmap.l_ld = obj->dynamic;
3402 #ifdef __mips__
3403     /* GDB needs load offset on MIPS to use the symbols */
3404     obj->linkmap.l_offs = obj->relocbase;
3405 #endif
3406 
3407     if (r_debug.r_map == NULL) {
3408 	r_debug.r_map = l;
3409 	return;
3410     }
3411 
3412     /*
3413      * Scan to the end of the list, but not past the entry for the
3414      * dynamic linker, which we want to keep at the very end.
3415      */
3416     for (prev = r_debug.r_map;
3417       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3418       prev = prev->l_next)
3419 	;
3420 
3421     /* Link in the new entry. */
3422     l->l_prev = prev;
3423     l->l_next = prev->l_next;
3424     if (l->l_next != NULL)
3425 	l->l_next->l_prev = l;
3426     prev->l_next = l;
3427 }
3428 
3429 static void
3430 linkmap_delete(Obj_Entry *obj)
3431 {
3432     struct link_map *l = &obj->linkmap;
3433 
3434     if (l->l_prev == NULL) {
3435 	if ((r_debug.r_map = l->l_next) != NULL)
3436 	    l->l_next->l_prev = NULL;
3437 	return;
3438     }
3439 
3440     if ((l->l_prev->l_next = l->l_next) != NULL)
3441 	l->l_next->l_prev = l->l_prev;
3442 }
3443 
3444 /*
3445  * Function for the debugger to set a breakpoint on to gain control.
3446  *
3447  * The two parameters allow the debugger to easily find and determine
3448  * what the runtime loader is doing and to whom it is doing it.
3449  *
3450  * When the loadhook trap is hit (r_debug_state, set at program
3451  * initialization), the arguments can be found on the stack:
3452  *
3453  *  +8   struct link_map *m
3454  *  +4   struct r_debug  *rd
3455  *  +0   RetAddr
3456  */
3457 void
3458 r_debug_state(struct r_debug* rd, struct link_map *m)
3459 {
3460     /*
3461      * The following is a hack to force the compiler to emit calls to
3462      * this function, even when optimizing.  If the function is empty,
3463      * the compiler is not obliged to emit any code for calls to it,
3464      * even when marked __noinline.  However, gdb depends on those
3465      * calls being made.
3466      */
3467     __asm __volatile("" : : : "memory");
3468 }
3469 
3470 /*
3471  * Get address of the pointer variable in the main program.
3472  * Prefer non-weak symbol over the weak one.
3473  */
3474 static const void **
3475 get_program_var_addr(const char *name, RtldLockState *lockstate)
3476 {
3477     SymLook req;
3478     DoneList donelist;
3479 
3480     symlook_init(&req, name);
3481     req.lockstate = lockstate;
3482     donelist_init(&donelist);
3483     if (symlook_global(&req, &donelist) != 0)
3484 	return (NULL);
3485     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3486 	return ((const void **)make_function_pointer(req.sym_out,
3487 	  req.defobj_out));
3488     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3489 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3490     else
3491 	return ((const void **)(req.defobj_out->relocbase + req.sym_out->st_value));
3492 }
3493 
3494 /*
3495  * Set a pointer variable in the main program to the given value.  This
3496  * is used to set key variables such as "environ" before any of the
3497  * init functions are called.
3498  */
3499 static void
3500 set_program_var(const char *name, const void *value)
3501 {
3502     const void **addr;
3503 
3504     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3505 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3506 	*addr = value;
3507     }
3508 }
3509 
3510 /*
3511  * Search the global objects, including dependencies and main object,
3512  * for the given symbol.
3513  */
3514 static int
3515 symlook_global(SymLook *req, DoneList *donelist)
3516 {
3517     SymLook req1;
3518     const Objlist_Entry *elm;
3519     int res;
3520 
3521     symlook_init_from_req(&req1, req);
3522 
3523     /* Search all objects loaded at program start up. */
3524     if (req->defobj_out == NULL ||
3525       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3526 	res = symlook_list(&req1, &list_main, donelist);
3527 	if (res == 0 && (req->defobj_out == NULL ||
3528 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3529 	    req->sym_out = req1.sym_out;
3530 	    req->defobj_out = req1.defobj_out;
3531 	    assert(req->defobj_out != NULL);
3532 	}
3533     }
3534 
3535     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3536     STAILQ_FOREACH(elm, &list_global, link) {
3537 	if (req->defobj_out != NULL &&
3538 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3539 	    break;
3540 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3541 	if (res == 0 && (req->defobj_out == NULL ||
3542 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3543 	    req->sym_out = req1.sym_out;
3544 	    req->defobj_out = req1.defobj_out;
3545 	    assert(req->defobj_out != NULL);
3546 	}
3547     }
3548 
3549     return (req->sym_out != NULL ? 0 : ESRCH);
3550 }
3551 
3552 /*
3553  * This is a special version of getenv which is far more efficient
3554  * at finding LD_ environment vars.
3555  */
3556 static
3557 const char *
3558 _getenv_ld(const char *id)
3559 {
3560     const char *envp;
3561     int i, j;
3562     int idlen = strlen(id);
3563 
3564     if (ld_index == LD_ARY_CACHE)
3565 	return(getenv(id));
3566     if (ld_index == 0) {
3567 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3568 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3569 		ld_ary[j++] = envp;
3570 	}
3571 	if (j == 0)
3572 		ld_ary[j++] = "";
3573 	ld_index = j;
3574     }
3575     for (i = ld_index - 1; i >= 0; --i) {
3576 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3577 	    return(ld_ary[i] + idlen + 1);
3578     }
3579     return(NULL);
3580 }
3581 
3582 /*
3583  * Given a symbol name in a referencing object, find the corresponding
3584  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3585  * no definition was found.  Returns a pointer to the Obj_Entry of the
3586  * defining object via the reference parameter DEFOBJ_OUT.
3587  */
3588 static int
3589 symlook_default(SymLook *req, const Obj_Entry *refobj)
3590 {
3591     DoneList donelist;
3592     const Objlist_Entry *elm;
3593     SymLook req1;
3594     int res;
3595 
3596     donelist_init(&donelist);
3597     symlook_init_from_req(&req1, req);
3598 
3599     /* Look first in the referencing object if linked symbolically. */
3600     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3601 	res = symlook_obj(&req1, refobj);
3602 	if (res == 0) {
3603 	    req->sym_out = req1.sym_out;
3604 	    req->defobj_out = req1.defobj_out;
3605 	    assert(req->defobj_out != NULL);
3606 	}
3607     }
3608 
3609     symlook_global(req, &donelist);
3610 
3611     /* Search all dlopened DAGs containing the referencing object. */
3612     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3613 	if (req->sym_out != NULL &&
3614 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3615 	    break;
3616 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3617 	if (res == 0 && (req->sym_out == NULL ||
3618 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3619 	    req->sym_out = req1.sym_out;
3620 	    req->defobj_out = req1.defobj_out;
3621 	    assert(req->defobj_out != NULL);
3622 	}
3623     }
3624 
3625     /*
3626      * Search the dynamic linker itself, and possibly resolve the
3627      * symbol from there.  This is how the application links to
3628      * dynamic linker services such as dlopen.  Only the values listed
3629      * in the "exports" array can be resolved from the dynamic linker.
3630      */
3631     if (req->sym_out == NULL ||
3632       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3633 	res = symlook_obj(&req1, &obj_rtld);
3634 	if (res == 0 && is_exported(req1.sym_out)) {
3635 	    req->sym_out = req1.sym_out;
3636 	    req->defobj_out = req1.defobj_out;
3637 	    assert(req->defobj_out != NULL);
3638 	}
3639     }
3640 
3641     return (req->sym_out != NULL ? 0 : ESRCH);
3642 }
3643 
3644 static int
3645 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3646 {
3647     const Elf_Sym *def;
3648     const Obj_Entry *defobj;
3649     const Objlist_Entry *elm;
3650     SymLook req1;
3651     int res;
3652 
3653     def = NULL;
3654     defobj = NULL;
3655     STAILQ_FOREACH(elm, objlist, link) {
3656 	if (donelist_check(dlp, elm->obj))
3657 	    continue;
3658 	symlook_init_from_req(&req1, req);
3659 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3660 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3661 		def = req1.sym_out;
3662 		defobj = req1.defobj_out;
3663 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3664 		    break;
3665 	    }
3666 	}
3667     }
3668     if (def != NULL) {
3669 	req->sym_out = def;
3670 	req->defobj_out = defobj;
3671 	return (0);
3672     }
3673     return (ESRCH);
3674 }
3675 
3676 /*
3677  * Search the chain of DAGS cointed to by the given Needed_Entry
3678  * for a symbol of the given name.  Each DAG is scanned completely
3679  * before advancing to the next one.  Returns a pointer to the symbol,
3680  * or NULL if no definition was found.
3681  */
3682 static int
3683 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3684 {
3685     const Elf_Sym *def;
3686     const Needed_Entry *n;
3687     const Obj_Entry *defobj;
3688     SymLook req1;
3689     int res;
3690 
3691     def = NULL;
3692     defobj = NULL;
3693     symlook_init_from_req(&req1, req);
3694     for (n = needed; n != NULL; n = n->next) {
3695 	if (n->obj == NULL ||
3696 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3697 	    continue;
3698 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3699 	def = req1.sym_out;
3700 	defobj = req1.defobj_out;
3701 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3702 		break;
3703 	}
3704     }
3705     if (def != NULL) {
3706 	req->sym_out = def;
3707 	req->defobj_out = defobj;
3708 	return (0);
3709     }
3710     return (ESRCH);
3711 }
3712 
3713 /*
3714  * Search the symbol table of a single shared object for a symbol of
3715  * the given name and version, if requested.  Returns a pointer to the
3716  * symbol, or NULL if no definition was found.  If the object is
3717  * filter, return filtered symbol from filtee.
3718  *
3719  * The symbol's hash value is passed in for efficiency reasons; that
3720  * eliminates many recomputations of the hash value.
3721  */
3722 int
3723 symlook_obj(SymLook *req, const Obj_Entry *obj)
3724 {
3725     DoneList donelist;
3726     SymLook req1;
3727     int flags, res, mres;
3728 
3729     /*
3730      * There is at least one valid hash at this point, and we prefer to use
3731      * the faster GNU version if available.
3732      */
3733     if (obj->valid_hash_gnu)
3734 	mres = symlook_obj1_gnu(req, obj);
3735     else
3736 	mres = symlook_obj1_sysv(req, obj);
3737 
3738     if (mres == 0) {
3739 	if (obj->needed_filtees != NULL) {
3740 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3741 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3742 	    donelist_init(&donelist);
3743 	    symlook_init_from_req(&req1, req);
3744 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3745 	    if (res == 0) {
3746 		req->sym_out = req1.sym_out;
3747 		req->defobj_out = req1.defobj_out;
3748 	    }
3749 	    return (res);
3750 	}
3751 	if (obj->needed_aux_filtees != NULL) {
3752 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3753 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3754 	    donelist_init(&donelist);
3755 	    symlook_init_from_req(&req1, req);
3756 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3757 	    if (res == 0) {
3758 		req->sym_out = req1.sym_out;
3759 		req->defobj_out = req1.defobj_out;
3760 		return (res);
3761 	    }
3762 	}
3763     }
3764     return (mres);
3765 }
3766 
3767 /* Symbol match routine common to both hash functions */
3768 static bool
3769 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3770 	const unsigned long symnum)
3771 {
3772 	Elf_Versym verndx;
3773 	const Elf_Sym *symp;
3774 	const char *strp;
3775 
3776 	symp = obj->symtab + symnum;
3777 	strp = obj->strtab + symp->st_name;
3778 
3779 	switch (ELF_ST_TYPE(symp->st_info)) {
3780 	case STT_FUNC:
3781 	case STT_NOTYPE:
3782 	case STT_OBJECT:
3783 	case STT_COMMON:
3784 	case STT_GNU_IFUNC:
3785 		if (symp->st_value == 0)
3786 			return (false);
3787 		/* fallthrough */
3788 	case STT_TLS:
3789 		if (symp->st_shndx != SHN_UNDEF)
3790 			break;
3791 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3792 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3793 			break;
3794 		/* fallthrough */
3795 	default:
3796 		return (false);
3797 	}
3798     if (strcmp(req->name, strp) != 0)
3799 	return (false);
3800 
3801 	if (req->ventry == NULL) {
3802 		if (obj->versyms != NULL) {
3803 			verndx = VER_NDX(obj->versyms[symnum]);
3804 			if (verndx > obj->vernum) {
3805 				_rtld_error(
3806 				    "%s: symbol %s references wrong version %d",
3807 				    obj->path, obj->strtab + symnum, verndx);
3808 				return (false);
3809 			}
3810 			/*
3811 			 * If we are not called from dlsym (i.e. this
3812 			 * is a normal relocation from unversioned
3813 			 * binary), accept the symbol immediately if
3814 			 * it happens to have first version after this
3815 			 * shared object became versioned.  Otherwise,
3816 			 * if symbol is versioned and not hidden,
3817 			 * remember it. If it is the only symbol with
3818 			 * this name exported by the shared object, it
3819 			 * will be returned as a match by the calling
3820 			 * function. If symbol is global (verndx < 2)
3821 			 * accept it unconditionally.
3822 			 */
3823 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3824 			    verndx == VER_NDX_GIVEN) {
3825 				result->sym_out = symp;
3826 				return (true);
3827 			}
3828 			else if (verndx >= VER_NDX_GIVEN) {
3829 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3830 				  == 0) {
3831 					if (result->vsymp == NULL)
3832 						result->vsymp = symp;
3833 					result->vcount++;
3834 				}
3835 				return (false);
3836 			}
3837 		}
3838 		result->sym_out = symp;
3839 		return (true);
3840 	}
3841 	if (obj->versyms == NULL) {
3842 		if (object_match_name(obj, req->ventry->name)) {
3843 			_rtld_error("%s: object %s should provide version %s "
3844 			    "for symbol %s", obj_rtld.path, obj->path,
3845 			    req->ventry->name, obj->strtab + symnum);
3846 			return (false);
3847 		}
3848 	} else {
3849 		verndx = VER_NDX(obj->versyms[symnum]);
3850 		if (verndx > obj->vernum) {
3851 			_rtld_error("%s: symbol %s references wrong version %d",
3852 			    obj->path, obj->strtab + symnum, verndx);
3853 			return (false);
3854 		}
3855 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3856 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3857 			/*
3858 			 * Version does not match. Look if this is a
3859 			 * global symbol and if it is not hidden. If
3860 			 * global symbol (verndx < 2) is available,
3861 			 * use it. Do not return symbol if we are
3862 			 * called by dlvsym, because dlvsym looks for
3863 			 * a specific version and default one is not
3864 			 * what dlvsym wants.
3865 			 */
3866 			if ((req->flags & SYMLOOK_DLSYM) ||
3867 			    (verndx >= VER_NDX_GIVEN) ||
3868 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3869 				return (false);
3870 		}
3871 	}
3872 	result->sym_out = symp;
3873 	return (true);
3874 }
3875 
3876 /*
3877  * Search for symbol using SysV hash function.
3878  * obj->buckets is known not to be NULL at this point; the test for this was
3879  * performed with the obj->valid_hash_sysv assignment.
3880  */
3881 static int
3882 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3883 {
3884 	unsigned long symnum;
3885 	Sym_Match_Result matchres;
3886 
3887 	matchres.sym_out = NULL;
3888 	matchres.vsymp = NULL;
3889 	matchres.vcount = 0;
3890 
3891 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3892 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3893 		if (symnum >= obj->nchains)
3894 			return (ESRCH);	/* Bad object */
3895 
3896 		if (matched_symbol(req, obj, &matchres, symnum)) {
3897 			req->sym_out = matchres.sym_out;
3898 			req->defobj_out = obj;
3899 			return (0);
3900 		}
3901 	}
3902 	if (matchres.vcount == 1) {
3903 		req->sym_out = matchres.vsymp;
3904 		req->defobj_out = obj;
3905 		return (0);
3906 	}
3907 	return (ESRCH);
3908 }
3909 
3910 /* Search for symbol using GNU hash function */
3911 static int
3912 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3913 {
3914 	Elf_Addr bloom_word;
3915 	const Elf32_Word *hashval;
3916 	Elf32_Word bucket;
3917 	Sym_Match_Result matchres;
3918 	unsigned int h1, h2;
3919 	unsigned long symnum;
3920 
3921 	matchres.sym_out = NULL;
3922 	matchres.vsymp = NULL;
3923 	matchres.vcount = 0;
3924 
3925 	/* Pick right bitmask word from Bloom filter array */
3926 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3927 	    obj->maskwords_bm_gnu];
3928 
3929 	/* Calculate modulus word size of gnu hash and its derivative */
3930 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3931 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3932 
3933 	/* Filter out the "definitely not in set" queries */
3934 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3935 		return (ESRCH);
3936 
3937 	/* Locate hash chain and corresponding value element*/
3938 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
3939 	if (bucket == 0)
3940 		return (ESRCH);
3941 	hashval = &obj->chain_zero_gnu[bucket];
3942 	do {
3943 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
3944 			symnum = hashval - obj->chain_zero_gnu;
3945 			if (matched_symbol(req, obj, &matchres, symnum)) {
3946 				req->sym_out = matchres.sym_out;
3947 				req->defobj_out = obj;
3948 				return (0);
3949 			}
3950 		}
3951 	} while ((*hashval++ & 1) == 0);
3952 	if (matchres.vcount == 1) {
3953 		req->sym_out = matchres.vsymp;
3954 		req->defobj_out = obj;
3955 		return (0);
3956 	}
3957 	return (ESRCH);
3958 }
3959 
3960 static void
3961 trace_loaded_objects(Obj_Entry *obj)
3962 {
3963     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
3964     int		c;
3965 
3966     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3967 	main_local = "";
3968 
3969     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3970 	fmt1 = "\t%o => %p (%x)\n";
3971 
3972     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3973 	fmt2 = "\t%o (%x)\n";
3974 
3975     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
3976 
3977     for (; obj; obj = obj->next) {
3978 	Needed_Entry		*needed;
3979 	char			*name, *path;
3980 	bool			is_lib;
3981 
3982 	if (list_containers && obj->needed != NULL)
3983 	    rtld_printf("%s:\n", obj->path);
3984 	for (needed = obj->needed; needed; needed = needed->next) {
3985 	    if (needed->obj != NULL) {
3986 		if (needed->obj->traced && !list_containers)
3987 		    continue;
3988 		needed->obj->traced = true;
3989 		path = needed->obj->path;
3990 	    } else
3991 		path = "not found";
3992 
3993 	    name = (char *)obj->strtab + needed->name;
3994 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3995 
3996 	    fmt = is_lib ? fmt1 : fmt2;
3997 	    while ((c = *fmt++) != '\0') {
3998 		switch (c) {
3999 		default:
4000 		    rtld_putchar(c);
4001 		    continue;
4002 		case '\\':
4003 		    switch (c = *fmt) {
4004 		    case '\0':
4005 			continue;
4006 		    case 'n':
4007 			rtld_putchar('\n');
4008 			break;
4009 		    case 't':
4010 			rtld_putchar('\t');
4011 			break;
4012 		    }
4013 		    break;
4014 		case '%':
4015 		    switch (c = *fmt) {
4016 		    case '\0':
4017 			continue;
4018 		    case '%':
4019 		    default:
4020 			rtld_putchar(c);
4021 			break;
4022 		    case 'A':
4023 			rtld_putstr(main_local);
4024 			break;
4025 		    case 'a':
4026 			rtld_putstr(obj_main->path);
4027 			break;
4028 		    case 'o':
4029 			rtld_putstr(name);
4030 			break;
4031 		    case 'p':
4032 			rtld_putstr(path);
4033 			break;
4034 		    case 'x':
4035 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4036 			  0);
4037 			break;
4038 		    }
4039 		    break;
4040 		}
4041 		++fmt;
4042 	    }
4043 	}
4044     }
4045 }
4046 
4047 /*
4048  * Unload a dlopened object and its dependencies from memory and from
4049  * our data structures.  It is assumed that the DAG rooted in the
4050  * object has already been unreferenced, and that the object has a
4051  * reference count of 0.
4052  */
4053 static void
4054 unload_object(Obj_Entry *root)
4055 {
4056     Obj_Entry *obj;
4057     Obj_Entry **linkp;
4058 
4059     assert(root->refcount == 0);
4060 
4061     /*
4062      * Pass over the DAG removing unreferenced objects from
4063      * appropriate lists.
4064      */
4065     unlink_object(root);
4066 
4067     /* Unmap all objects that are no longer referenced. */
4068     linkp = &obj_list->next;
4069     while ((obj = *linkp) != NULL) {
4070 	if (obj->refcount == 0) {
4071 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4072 		obj->path);
4073 	    dbg("unloading \"%s\"", obj->path);
4074 	    unload_filtees(root);
4075 	    munmap(obj->mapbase, obj->mapsize);
4076 	    linkmap_delete(obj);
4077 	    *linkp = obj->next;
4078 	    obj_count--;
4079 	    obj_free(obj);
4080 	} else
4081 	    linkp = &obj->next;
4082     }
4083     obj_tail = linkp;
4084 }
4085 
4086 static void
4087 unlink_object(Obj_Entry *root)
4088 {
4089     Objlist_Entry *elm;
4090 
4091     if (root->refcount == 0) {
4092 	/* Remove the object from the RTLD_GLOBAL list. */
4093 	objlist_remove(&list_global, root);
4094 
4095     	/* Remove the object from all objects' DAG lists. */
4096 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4097 	    objlist_remove(&elm->obj->dldags, root);
4098 	    if (elm->obj != root)
4099 		unlink_object(elm->obj);
4100 	}
4101     }
4102 }
4103 
4104 static void
4105 ref_dag(Obj_Entry *root)
4106 {
4107     Objlist_Entry *elm;
4108 
4109     assert(root->dag_inited);
4110     STAILQ_FOREACH(elm, &root->dagmembers, link)
4111 	elm->obj->refcount++;
4112 }
4113 
4114 static void
4115 unref_dag(Obj_Entry *root)
4116 {
4117     Objlist_Entry *elm;
4118 
4119     assert(root->dag_inited);
4120     STAILQ_FOREACH(elm, &root->dagmembers, link)
4121 	elm->obj->refcount--;
4122 }
4123 
4124 /*
4125  * Common code for MD __tls_get_addr().
4126  */
4127 void *
4128 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
4129 {
4130     Elf_Addr* dtv = *dtvp;
4131     RtldLockState lockstate;
4132 
4133     /* Check dtv generation in case new modules have arrived */
4134     if (dtv[0] != tls_dtv_generation) {
4135 	Elf_Addr* newdtv;
4136 	int to_copy;
4137 
4138 	wlock_acquire(rtld_bind_lock, &lockstate);
4139 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4140 	to_copy = dtv[1];
4141 	if (to_copy > tls_max_index)
4142 	    to_copy = tls_max_index;
4143 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4144 	newdtv[0] = tls_dtv_generation;
4145 	newdtv[1] = tls_max_index;
4146 	free(dtv);
4147 	lock_release(rtld_bind_lock, &lockstate);
4148 	dtv = *dtvp = newdtv;
4149     }
4150 
4151     /* Dynamically allocate module TLS if necessary */
4152     if (!dtv[index + 1]) {
4153 	/* Signal safe, wlock will block out signals. */
4154 	wlock_acquire(rtld_bind_lock, &lockstate);
4155 	if (!dtv[index + 1])
4156 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4157 	lock_release(rtld_bind_lock, &lockstate);
4158     }
4159     return (void*) (dtv[index + 1] + offset);
4160 }
4161 
4162 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4163 
4164 /*
4165  * Allocate the static TLS area.  Return a pointer to the TCB.  The
4166  * static area is based on negative offsets relative to the tcb.
4167  *
4168  * The TCB contains an errno pointer for the system call layer, but because
4169  * we are the RTLD we really have no idea how the caller was compiled so
4170  * the information has to be passed in.  errno can either be:
4171  *
4172  *	type 0	errno is a simple non-TLS global pointer.
4173  *		(special case for e.g. libc_rtld)
4174  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
4175  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
4176  */
4177 struct tls_tcb *
4178 allocate_tls(Obj_Entry *objs)
4179 {
4180     Obj_Entry *obj;
4181     size_t data_size;
4182     size_t dtv_size;
4183     struct tls_tcb *tcb;
4184     Elf_Addr *dtv;
4185     Elf_Addr addr;
4186 
4187     /*
4188      * Allocate the new TCB.  static TLS storage is placed just before the
4189      * TCB to support the %gs:OFFSET (negative offset) model.
4190      */
4191     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4192 		~RTLD_STATIC_TLS_ALIGN_MASK;
4193     tcb = malloc(data_size + sizeof(*tcb));
4194     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
4195 
4196     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
4197     dtv = malloc(dtv_size);
4198     bzero(dtv, dtv_size);
4199 
4200 #ifdef RTLD_TCB_HAS_SELF_POINTER
4201     tcb->tcb_self = tcb;
4202 #endif
4203     tcb->tcb_dtv = dtv;
4204     tcb->tcb_pthread = NULL;
4205 
4206     dtv[0] = tls_dtv_generation;
4207     dtv[1] = tls_max_index;
4208 
4209     for (obj = objs; obj; obj = obj->next) {
4210 	if (obj->tlsoffset) {
4211 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
4212 	    memset((void *)(addr + obj->tlsinitsize),
4213 		   0, obj->tlssize - obj->tlsinitsize);
4214 	    if (obj->tlsinit)
4215 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4216 	    dtv[obj->tlsindex + 1] = addr;
4217 	}
4218     }
4219     return(tcb);
4220 }
4221 
4222 void
4223 free_tls(struct tls_tcb *tcb)
4224 {
4225     Elf_Addr *dtv;
4226     int dtv_size, i;
4227     Elf_Addr tls_start, tls_end;
4228     size_t data_size;
4229 
4230     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4231 		~RTLD_STATIC_TLS_ALIGN_MASK;
4232 
4233     dtv = tcb->tcb_dtv;
4234     dtv_size = dtv[1];
4235     tls_end = (Elf_Addr)tcb;
4236     tls_start = (Elf_Addr)tcb - data_size;
4237     for (i = 0; i < dtv_size; i++) {
4238 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
4239 	    free((void *)dtv[i+2]);
4240 	}
4241     }
4242 
4243     free((void*) tls_start);
4244 }
4245 
4246 #else
4247 #error "Unsupported TLS layout"
4248 #endif
4249 
4250 /*
4251  * Allocate TLS block for module with given index.
4252  */
4253 void *
4254 allocate_module_tls(int index)
4255 {
4256     Obj_Entry* obj;
4257     char* p;
4258 
4259     for (obj = obj_list; obj; obj = obj->next) {
4260 	if (obj->tlsindex == index)
4261 	    break;
4262     }
4263     if (!obj) {
4264 	_rtld_error("Can't find module with TLS index %d", index);
4265 	die();
4266     }
4267 
4268     p = malloc(obj->tlssize);
4269     if (p == NULL) {
4270 	_rtld_error("Cannot allocate TLS block for index %d", index);
4271 	die();
4272     }
4273     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4274     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4275 
4276     return p;
4277 }
4278 
4279 bool
4280 allocate_tls_offset(Obj_Entry *obj)
4281 {
4282     size_t off;
4283 
4284     if (obj->tls_done)
4285 	return true;
4286 
4287     if (obj->tlssize == 0) {
4288 	obj->tls_done = true;
4289 	return true;
4290     }
4291 
4292     if (obj->tlsindex == 1)
4293 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4294     else
4295 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4296 				   obj->tlssize, obj->tlsalign);
4297 
4298     /*
4299      * If we have already fixed the size of the static TLS block, we
4300      * must stay within that size. When allocating the static TLS, we
4301      * leave a small amount of space spare to be used for dynamically
4302      * loading modules which use static TLS.
4303      */
4304     if (tls_static_space) {
4305 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4306 	    return false;
4307     }
4308 
4309     tls_last_offset = obj->tlsoffset = off;
4310     tls_last_size = obj->tlssize;
4311     obj->tls_done = true;
4312 
4313     return true;
4314 }
4315 
4316 void
4317 free_tls_offset(Obj_Entry *obj)
4318 {
4319 #ifdef RTLD_STATIC_TLS_VARIANT_II
4320     /*
4321      * If we were the last thing to allocate out of the static TLS
4322      * block, we give our space back to the 'allocator'. This is a
4323      * simplistic workaround to allow libGL.so.1 to be loaded and
4324      * unloaded multiple times. We only handle the Variant II
4325      * mechanism for now - this really needs a proper allocator.
4326      */
4327     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4328 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4329 	tls_last_offset -= obj->tlssize;
4330 	tls_last_size = 0;
4331     }
4332 #endif
4333 }
4334 
4335 struct tls_tcb *
4336 _rtld_allocate_tls(void)
4337 {
4338     struct tls_tcb *new_tcb;
4339     RtldLockState lockstate;
4340 
4341     wlock_acquire(rtld_bind_lock, &lockstate);
4342     new_tcb = allocate_tls(obj_list);
4343     lock_release(rtld_bind_lock, &lockstate);
4344     return (new_tcb);
4345 }
4346 
4347 void
4348 _rtld_free_tls(struct tls_tcb *tcb)
4349 {
4350     RtldLockState lockstate;
4351 
4352     wlock_acquire(rtld_bind_lock, &lockstate);
4353     free_tls(tcb);
4354     lock_release(rtld_bind_lock, &lockstate);
4355 }
4356 
4357 static void
4358 object_add_name(Obj_Entry *obj, const char *name)
4359 {
4360     Name_Entry *entry;
4361     size_t len;
4362 
4363     len = strlen(name);
4364     entry = malloc(sizeof(Name_Entry) + len);
4365 
4366     if (entry != NULL) {
4367 	strcpy(entry->name, name);
4368 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4369     }
4370 }
4371 
4372 static int
4373 object_match_name(const Obj_Entry *obj, const char *name)
4374 {
4375     Name_Entry *entry;
4376 
4377     STAILQ_FOREACH(entry, &obj->names, link) {
4378 	if (strcmp(name, entry->name) == 0)
4379 	    return (1);
4380     }
4381     return (0);
4382 }
4383 
4384 static Obj_Entry *
4385 locate_dependency(const Obj_Entry *obj, const char *name)
4386 {
4387     const Objlist_Entry *entry;
4388     const Needed_Entry *needed;
4389 
4390     STAILQ_FOREACH(entry, &list_main, link) {
4391 	if (object_match_name(entry->obj, name))
4392 	    return entry->obj;
4393     }
4394 
4395     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4396 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4397 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4398 	    /*
4399 	     * If there is DT_NEEDED for the name we are looking for,
4400 	     * we are all set.  Note that object might not be found if
4401 	     * dependency was not loaded yet, so the function can
4402 	     * return NULL here.  This is expected and handled
4403 	     * properly by the caller.
4404 	     */
4405 	    return (needed->obj);
4406 	}
4407     }
4408     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4409 	obj->path, name);
4410     die();
4411 }
4412 
4413 static int
4414 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4415     const Elf_Vernaux *vna)
4416 {
4417     const Elf_Verdef *vd;
4418     const char *vername;
4419 
4420     vername = refobj->strtab + vna->vna_name;
4421     vd = depobj->verdef;
4422     if (vd == NULL) {
4423 	_rtld_error("%s: version %s required by %s not defined",
4424 	    depobj->path, vername, refobj->path);
4425 	return (-1);
4426     }
4427     for (;;) {
4428 	if (vd->vd_version != VER_DEF_CURRENT) {
4429 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4430 		depobj->path, vd->vd_version);
4431 	    return (-1);
4432 	}
4433 	if (vna->vna_hash == vd->vd_hash) {
4434 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4435 		((char *)vd + vd->vd_aux);
4436 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4437 		return (0);
4438 	}
4439 	if (vd->vd_next == 0)
4440 	    break;
4441 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4442     }
4443     if (vna->vna_flags & VER_FLG_WEAK)
4444 	return (0);
4445     _rtld_error("%s: version %s required by %s not found",
4446 	depobj->path, vername, refobj->path);
4447     return (-1);
4448 }
4449 
4450 static int
4451 rtld_verify_object_versions(Obj_Entry *obj)
4452 {
4453     const Elf_Verneed *vn;
4454     const Elf_Verdef  *vd;
4455     const Elf_Verdaux *vda;
4456     const Elf_Vernaux *vna;
4457     const Obj_Entry *depobj;
4458     int maxvernum, vernum;
4459 
4460     if (obj->ver_checked)
4461 	return (0);
4462     obj->ver_checked = true;
4463 
4464     maxvernum = 0;
4465     /*
4466      * Walk over defined and required version records and figure out
4467      * max index used by any of them. Do very basic sanity checking
4468      * while there.
4469      */
4470     vn = obj->verneed;
4471     while (vn != NULL) {
4472 	if (vn->vn_version != VER_NEED_CURRENT) {
4473 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4474 		obj->path, vn->vn_version);
4475 	    return (-1);
4476 	}
4477 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4478 	for (;;) {
4479 	    vernum = VER_NEED_IDX(vna->vna_other);
4480 	    if (vernum > maxvernum)
4481 		maxvernum = vernum;
4482 	    if (vna->vna_next == 0)
4483 		 break;
4484 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4485 	}
4486 	if (vn->vn_next == 0)
4487 	    break;
4488 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4489     }
4490 
4491     vd = obj->verdef;
4492     while (vd != NULL) {
4493 	if (vd->vd_version != VER_DEF_CURRENT) {
4494 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4495 		obj->path, vd->vd_version);
4496 	    return (-1);
4497 	}
4498 	vernum = VER_DEF_IDX(vd->vd_ndx);
4499 	if (vernum > maxvernum)
4500 		maxvernum = vernum;
4501 	if (vd->vd_next == 0)
4502 	    break;
4503 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4504     }
4505 
4506     if (maxvernum == 0)
4507 	return (0);
4508 
4509     /*
4510      * Store version information in array indexable by version index.
4511      * Verify that object version requirements are satisfied along the
4512      * way.
4513      */
4514     obj->vernum = maxvernum + 1;
4515     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4516 
4517     vd = obj->verdef;
4518     while (vd != NULL) {
4519 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4520 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4521 	    assert(vernum <= maxvernum);
4522 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4523 	    obj->vertab[vernum].hash = vd->vd_hash;
4524 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4525 	    obj->vertab[vernum].file = NULL;
4526 	    obj->vertab[vernum].flags = 0;
4527 	}
4528 	if (vd->vd_next == 0)
4529 	    break;
4530 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4531     }
4532 
4533     vn = obj->verneed;
4534     while (vn != NULL) {
4535 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4536 	if (depobj == NULL)
4537 	    return (-1);
4538 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4539 	for (;;) {
4540 	    if (check_object_provided_version(obj, depobj, vna))
4541 		return (-1);
4542 	    vernum = VER_NEED_IDX(vna->vna_other);
4543 	    assert(vernum <= maxvernum);
4544 	    obj->vertab[vernum].hash = vna->vna_hash;
4545 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4546 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4547 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4548 		VER_INFO_HIDDEN : 0;
4549 	    if (vna->vna_next == 0)
4550 		 break;
4551 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4552 	}
4553 	if (vn->vn_next == 0)
4554 	    break;
4555 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4556     }
4557     return 0;
4558 }
4559 
4560 static int
4561 rtld_verify_versions(const Objlist *objlist)
4562 {
4563     Objlist_Entry *entry;
4564     int rc;
4565 
4566     rc = 0;
4567     STAILQ_FOREACH(entry, objlist, link) {
4568 	/*
4569 	 * Skip dummy objects or objects that have their version requirements
4570 	 * already checked.
4571 	 */
4572 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4573 	    continue;
4574 	if (rtld_verify_object_versions(entry->obj) == -1) {
4575 	    rc = -1;
4576 	    if (ld_tracing == NULL)
4577 		break;
4578 	}
4579     }
4580     if (rc == 0 || ld_tracing != NULL)
4581 	rc = rtld_verify_object_versions(&obj_rtld);
4582     return rc;
4583 }
4584 
4585 const Ver_Entry *
4586 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4587 {
4588     Elf_Versym vernum;
4589 
4590     if (obj->vertab) {
4591 	vernum = VER_NDX(obj->versyms[symnum]);
4592 	if (vernum >= obj->vernum) {
4593 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4594 		obj->path, obj->strtab + symnum, vernum);
4595 	} else if (obj->vertab[vernum].hash != 0) {
4596 	    return &obj->vertab[vernum];
4597 	}
4598     }
4599     return NULL;
4600 }
4601 
4602 int
4603 _rtld_get_stack_prot(void)
4604 {
4605 
4606 	return (stack_prot);
4607 }
4608 
4609 static void
4610 map_stacks_exec(RtldLockState *lockstate)
4611 {
4612 	return;
4613 	/*
4614 	 * Stack protection must be implemented in the kernel before the dynamic
4615 	 * linker can handle PT_GNU_STACK sections.
4616 	 * The following is the FreeBSD implementation of map_stacks_exec()
4617 	 * void (*thr_map_stacks_exec)(void);
4618 	 *
4619 	 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4620 	 *     return;
4621 	 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4622 	 *     get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4623 	 * if (thr_map_stacks_exec != NULL) {
4624 	 *     stack_prot |= PROT_EXEC;
4625 	 *     thr_map_stacks_exec();
4626 	 * }
4627 	 */
4628 }
4629 
4630 void
4631 symlook_init(SymLook *dst, const char *name)
4632 {
4633 
4634 	bzero(dst, sizeof(*dst));
4635 	dst->name = name;
4636 	dst->hash = elf_hash(name);
4637 	dst->hash_gnu = gnu_hash(name);
4638 }
4639 
4640 static void
4641 symlook_init_from_req(SymLook *dst, const SymLook *src)
4642 {
4643 
4644 	dst->name = src->name;
4645 	dst->hash = src->hash;
4646 	dst->hash_gnu = src->hash_gnu;
4647 	dst->ventry = src->ventry;
4648 	dst->flags = src->flags;
4649 	dst->defobj_out = NULL;
4650 	dst->sym_out = NULL;
4651 	dst->lockstate = src->lockstate;
4652 }
4653 
4654 #ifdef ENABLE_OSRELDATE
4655 /*
4656  * Overrides for libc_pic-provided functions.
4657  */
4658 
4659 int
4660 __getosreldate(void)
4661 {
4662 	size_t len;
4663 	int oid[2];
4664 	int error, osrel;
4665 
4666 	if (osreldate != 0)
4667 		return (osreldate);
4668 
4669 	oid[0] = CTL_KERN;
4670 	oid[1] = KERN_OSRELDATE;
4671 	osrel = 0;
4672 	len = sizeof(osrel);
4673 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4674 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4675 		osreldate = osrel;
4676 	return (osreldate);
4677 }
4678 #endif
4679 
4680 /*
4681  * No unresolved symbols for rtld.
4682  */
4683 void
4684 __pthread_cxa_finalize(struct dl_phdr_info *a)
4685 {
4686 }
4687 
4688 const char *
4689 rtld_strerror(int errnum)
4690 {
4691 
4692 	if (errnum < 0 || errnum >= sys_nerr)
4693 		return ("Unknown error");
4694 	return (sys_errlist[errnum]);
4695 }
4696