xref: /dragonfly/libexec/rtld-elf/rtld.c (revision 5dfd06ac)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/libexec/rtld-elf/rtld.c,v 1.43.2.15 2003/02/20 20:42:46 kan Exp $
27  * $DragonFly: src/libexec/rtld-elf/rtld.c,v 1.26 2007/01/15 14:38:22 corecode Exp $
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/resident.h>
44 #include <sys/tls.h>
45 
46 #include <machine/tls.h>
47 
48 #include <dlfcn.h>
49 #include <err.h>
50 #include <errno.h>
51 #include <fcntl.h>
52 #include <stdarg.h>
53 #include <stdio.h>
54 #include <stdlib.h>
55 #include <string.h>
56 #include <unistd.h>
57 
58 #include "debug.h"
59 #include "rtld.h"
60 
61 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
62 #define LD_ARY_CACHE	16
63 
64 /* Types. */
65 typedef void (*func_ptr_type)();
66 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
67 
68 /*
69  * This structure provides a reentrant way to keep a list of objects and
70  * check which ones have already been processed in some way.
71  */
72 typedef struct Struct_DoneList {
73     const Obj_Entry **objs;		/* Array of object pointers */
74     unsigned int num_alloc;		/* Allocated size of the array */
75     unsigned int num_used;		/* Number of array slots used */
76 } DoneList;
77 
78 /*
79  * Function declarations.
80  */
81 static void die(void);
82 static void digest_dynamic(Obj_Entry *, int);
83 static const char *_getenv_ld(const char *id);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
87 static bool donelist_check(DoneList *, const Obj_Entry *);
88 static void errmsg_restore(char *);
89 static char *errmsg_save(void);
90 static void *fill_search_info(const char *, size_t, void *);
91 static char *find_library(const char *, const Obj_Entry *);
92 static Obj_Entry *find_object(const char *);
93 static Obj_Entry *find_object2(const char *, int *, struct stat *);
94 static const char *gethints(void);
95 static void init_dag(Obj_Entry *);
96 static void init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *);
97 static void init_rtld(caddr_t);
98 static void initlist_add_neededs(Needed_Entry *needed, Objlist *list);
99 static void initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail,
100   Objlist *list);
101 static bool is_exported(const Elf_Sym *);
102 static void linkmap_add(Obj_Entry *);
103 static void linkmap_delete(Obj_Entry *);
104 static int load_needed_objects(Obj_Entry *);
105 static int load_preload_objects(void);
106 static Obj_Entry *load_object(char *);
107 static void lock_check(void);
108 static Obj_Entry *obj_from_addr(const void *);
109 static void objlist_call_fini(Objlist *);
110 static void objlist_call_init(Objlist *);
111 static void objlist_clear(Objlist *);
112 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
113 static void objlist_init(Objlist *);
114 static void objlist_push_head(Objlist *, Obj_Entry *);
115 static void objlist_push_tail(Objlist *, Obj_Entry *);
116 static void objlist_remove(Objlist *, Obj_Entry *);
117 static void objlist_remove_unref(Objlist *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
120 static int rtld_dirname(const char *, char *);
121 static void rtld_exit(void);
122 static char *search_library_path(const char *, const char *);
123 static const void **get_program_var_addr(const char *name);
124 static void set_program_var(const char *, const void *);
125 static const Elf_Sym *symlook_default(const char *, unsigned long hash,
126   const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt);
127 static const Elf_Sym *symlook_list(const char *, unsigned long,
128   const Objlist *, const Obj_Entry **, bool in_plt, DoneList *);
129 static void trace_loaded_objects(Obj_Entry *obj);
130 static void unlink_object(Obj_Entry *);
131 static void unload_object(Obj_Entry *);
132 static void unref_dag(Obj_Entry *);
133 
134 void r_debug_state(struct r_debug*, struct link_map*);
135 
136 /*
137  * Data declarations.
138  */
139 static char *error_message;	/* Message for dlerror(), or NULL */
140 struct r_debug r_debug;		/* for GDB; */
141 static bool trust;		/* False for setuid and setgid programs */
142 static const char *ld_bind_now;	/* Environment variable for immediate binding */
143 static const char *ld_debug;	/* Environment variable for debugging */
144 static const char *ld_library_path; /* Environment variable for search path */
145 static char *ld_preload;	/* Environment variable for libraries to
146 				   load first */
147 static const char *ld_tracing;	/* Called from ldd(1) to print libs */
148 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
149 static Obj_Entry **obj_tail;	/* Link field of last object in list */
150 static Obj_Entry **preload_tail;
151 static Obj_Entry *obj_main;	/* The main program shared object */
152 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
153 static unsigned int obj_count;	/* Number of objects in obj_list */
154 static int	ld_resident;	/* Non-zero if resident */
155 static const char *ld_ary[LD_ARY_CACHE];
156 static int	ld_index;
157 static Objlist initlist;
158 
159 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
160   STAILQ_HEAD_INITIALIZER(list_global);
161 static Objlist list_main =	/* Objects loaded at program startup */
162   STAILQ_HEAD_INITIALIZER(list_main);
163 static Objlist list_fini =	/* Objects needing fini() calls */
164   STAILQ_HEAD_INITIALIZER(list_fini);
165 
166 static LockInfo lockinfo;
167 
168 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
169 
170 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
171 
172 extern Elf_Dyn _DYNAMIC;
173 #pragma weak _DYNAMIC
174 
175 /*
176  * These are the functions the dynamic linker exports to application
177  * programs.  They are the only symbols the dynamic linker is willing
178  * to export from itself.
179  */
180 static func_ptr_type exports[] = {
181     (func_ptr_type) &_rtld_error,
182     (func_ptr_type) &dlclose,
183     (func_ptr_type) &dlerror,
184     (func_ptr_type) &dlopen,
185     (func_ptr_type) &dlsym,
186     (func_ptr_type) &dladdr,
187     (func_ptr_type) &dlinfo,
188 #ifdef __i386__
189     (func_ptr_type) &___tls_get_addr,
190 #endif
191     (func_ptr_type) &__tls_get_addr,
192     (func_ptr_type) &__tls_get_addr_tcb,
193     (func_ptr_type) &_rtld_allocate_tls,
194     (func_ptr_type) &_rtld_free_tls,
195     (func_ptr_type) &_rtld_call_init,
196     NULL
197 };
198 
199 /*
200  * Global declarations normally provided by crt1.  The dynamic linker is
201  * not built with crt1, so we have to provide them ourselves.
202  */
203 char *__progname;
204 char **environ;
205 
206 /*
207  * Globals to control TLS allocation.
208  */
209 size_t tls_last_offset;		/* Static TLS offset of last module */
210 size_t tls_last_size;		/* Static TLS size of last module */
211 size_t tls_static_space;	/* Static TLS space allocated */
212 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
213 int tls_max_index = 1;		/* Largest module index allocated */
214 
215 /*
216  * Fill in a DoneList with an allocation large enough to hold all of
217  * the currently-loaded objects.  Keep this as a macro since it calls
218  * alloca and we want that to occur within the scope of the caller.
219  */
220 #define donelist_init(dlp)					\
221     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
222     assert((dlp)->objs != NULL),				\
223     (dlp)->num_alloc = obj_count,				\
224     (dlp)->num_used = 0)
225 
226 static __inline void
227 rlock_acquire(void)
228 {
229     lockinfo.rlock_acquire(lockinfo.thelock);
230     atomic_incr_int(&lockinfo.rcount);
231     lock_check();
232 }
233 
234 static __inline void
235 wlock_acquire(void)
236 {
237     lockinfo.wlock_acquire(lockinfo.thelock);
238     atomic_incr_int(&lockinfo.wcount);
239     lock_check();
240 }
241 
242 static __inline void
243 rlock_release(void)
244 {
245     atomic_decr_int(&lockinfo.rcount);
246     lockinfo.rlock_release(lockinfo.thelock);
247 }
248 
249 static __inline void
250 wlock_release(void)
251 {
252     atomic_decr_int(&lockinfo.wcount);
253     lockinfo.wlock_release(lockinfo.thelock);
254 }
255 
256 /*
257  * Main entry point for dynamic linking.  The first argument is the
258  * stack pointer.  The stack is expected to be laid out as described
259  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
260  * Specifically, the stack pointer points to a word containing
261  * ARGC.  Following that in the stack is a null-terminated sequence
262  * of pointers to argument strings.  Then comes a null-terminated
263  * sequence of pointers to environment strings.  Finally, there is a
264  * sequence of "auxiliary vector" entries.
265  *
266  * The second argument points to a place to store the dynamic linker's
267  * exit procedure pointer and the third to a place to store the main
268  * program's object.
269  *
270  * The return value is the main program's entry point.
271  */
272 
273 func_ptr_type
274 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
275 {
276     Elf_Auxinfo *aux_info[AT_COUNT];
277     int i;
278     int argc;
279     char **argv;
280     char **env;
281     Elf_Auxinfo *aux;
282     Elf_Auxinfo *auxp;
283     const char *argv0;
284     Objlist_Entry *entry;
285     Obj_Entry *obj;
286 
287     ld_index = 0;	/* don't use old env cache in case we are resident */
288 
289     /*
290      * On entry, the dynamic linker itself has not been relocated yet.
291      * Be very careful not to reference any global data until after
292      * init_rtld has returned.  It is OK to reference file-scope statics
293      * and string constants, and to call static and global functions.
294      */
295 
296     /* Find the auxiliary vector on the stack. */
297     argc = *sp++;
298     argv = (char **) sp;
299     sp += argc + 1;	/* Skip over arguments and NULL terminator */
300     env = (char **) sp;
301 
302     /*
303      * If we aren't already resident we have to dig out some more info.
304      * Note that auxinfo does not exist when we are resident.
305      */
306     if (ld_resident == 0) {
307 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
308 	    ;
309 	aux = (Elf_Auxinfo *) sp;
310 
311 	/* Digest the auxiliary vector. */
312 	for (i = 0;  i < AT_COUNT;  i++)
313 	    aux_info[i] = NULL;
314 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
315 	    if (auxp->a_type < AT_COUNT)
316 		aux_info[auxp->a_type] = auxp;
317 	}
318 
319 	/* Initialize and relocate ourselves. */
320 	assert(aux_info[AT_BASE] != NULL);
321 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
322     }
323 
324     __progname = obj_rtld.path;
325     argv0 = argv[0] != NULL ? argv[0] : "(null)";
326     environ = env;
327 
328     trust = (geteuid() == getuid()) && (getegid() == getgid());
329 
330     ld_bind_now = _getenv_ld("LD_BIND_NOW");
331     if (trust) {
332 	ld_debug = _getenv_ld("LD_DEBUG");
333 	ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
334 	ld_preload = (char *)_getenv_ld("LD_PRELOAD");
335     }
336     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
337 
338     if (ld_debug != NULL && *ld_debug != '\0')
339 	debug = 1;
340     dbg("%s is initialized, base address = %p", __progname,
341 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
342     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
343     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
344 
345     /*
346      * If we are resident we can skip work that we have already done.
347      * Note that the stack is reset and there is no Elf_Auxinfo
348      * when running from a resident image, and the static globals setup
349      * between here and resident_skip will have already been setup.
350      */
351     if (ld_resident)
352 	goto resident_skip1;
353 
354     /*
355      * Load the main program, or process its program header if it is
356      * already loaded.
357      */
358     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
359 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
360 	dbg("loading main program");
361 	obj_main = map_object(fd, argv0, NULL);
362 	close(fd);
363 	if (obj_main == NULL)
364 	    die();
365     } else {				/* Main program already loaded. */
366 	const Elf_Phdr *phdr;
367 	int phnum;
368 	caddr_t entry;
369 
370 	dbg("processing main program's program header");
371 	assert(aux_info[AT_PHDR] != NULL);
372 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
373 	assert(aux_info[AT_PHNUM] != NULL);
374 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
375 	assert(aux_info[AT_PHENT] != NULL);
376 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
377 	assert(aux_info[AT_ENTRY] != NULL);
378 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
379 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
380 	    die();
381     }
382 
383     obj_main->path = xstrdup(argv0);
384     obj_main->mainprog = true;
385 
386     /*
387      * Get the actual dynamic linker pathname from the executable if
388      * possible.  (It should always be possible.)  That ensures that
389      * gdb will find the right dynamic linker even if a non-standard
390      * one is being used.
391      */
392     if (obj_main->interp != NULL &&
393       strcmp(obj_main->interp, obj_rtld.path) != 0) {
394 	free(obj_rtld.path);
395 	obj_rtld.path = xstrdup(obj_main->interp);
396 	__progname = obj_rtld.path;
397     }
398 
399     digest_dynamic(obj_main, 0);
400 
401     linkmap_add(obj_main);
402     linkmap_add(&obj_rtld);
403 
404     /* Link the main program into the list of objects. */
405     *obj_tail = obj_main;
406     obj_tail = &obj_main->next;
407     obj_count++;
408     obj_main->refcount++;
409     /* Make sure we don't call the main program's init and fini functions. */
410     obj_main->init = obj_main->fini = NULL;
411 
412     /* Initialize a fake symbol for resolving undefined weak references. */
413     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
414     sym_zero.st_shndx = SHN_ABS;
415 
416     dbg("loading LD_PRELOAD libraries");
417     if (load_preload_objects() == -1)
418 	die();
419     preload_tail = obj_tail;
420 
421     dbg("loading needed objects");
422     if (load_needed_objects(obj_main) == -1)
423 	die();
424 
425     /* Make a list of all objects loaded at startup. */
426     for (obj = obj_list;  obj != NULL;  obj = obj->next)
427 	objlist_push_tail(&list_main, obj);
428 
429 resident_skip1:
430 
431     if (ld_tracing) {		/* We're done */
432 	trace_loaded_objects(obj_main);
433 	exit(0);
434     }
435 
436     if (ld_resident)		/* XXX clean this up! */
437 	goto resident_skip2;
438 
439     if (getenv("LD_DUMP_REL_PRE") != NULL) {
440        dump_relocations(obj_main);
441        exit (0);
442     }
443 
444     /* setup TLS for main thread */
445     dbg("initializing initial thread local storage");
446     STAILQ_FOREACH(entry, &list_main, link) {
447 	/*
448 	 * Allocate all the initial objects out of the static TLS
449 	 * block even if they didn't ask for it.
450 	 */
451 	allocate_tls_offset(entry->obj);
452     }
453 
454     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
455 
456     /*
457      * Do not try to allocate the TLS here, let libc do it itself.
458      * (crt1 for the program will call _init_tls())
459      */
460 
461     if (relocate_objects(obj_main,
462 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
463 	die();
464 
465     dbg("doing copy relocations");
466     if (do_copy_relocations(obj_main) == -1)
467 	die();
468 
469 resident_skip2:
470 
471     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
472 	if (exec_sys_unregister(-1) < 0) {
473 	    dbg("exec_sys_unregister failed %d\n", errno);
474 	    exit(errno);
475 	}
476 	dbg("exec_sys_unregister success\n");
477 	exit(0);
478     }
479 
480     if (getenv("LD_DUMP_REL_POST") != NULL) {
481        dump_relocations(obj_main);
482        exit (0);
483     }
484 
485     dbg("initializing key program variables");
486     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
487     set_program_var("environ", env);
488 
489     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
490 	extern void resident_start(void);
491 	ld_resident = 1;
492 	if (exec_sys_register(resident_start) < 0) {
493 	    dbg("exec_sys_register failed %d\n", errno);
494 	    exit(errno);
495 	}
496 	dbg("exec_sys_register success\n");
497 	exit(0);
498     }
499 
500     dbg("initializing thread locks");
501     lockdflt_init(&lockinfo);
502     lockinfo.thelock = lockinfo.lock_create(lockinfo.context);
503 
504     /* Make a list of init functions to call. */
505     objlist_init(&initlist);
506     initlist_add_objects(obj_list, preload_tail, &initlist);
507 
508     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
509 
510     /*
511      * Do NOT call the initlist here, give libc a chance to set up
512      * the initial TLS segment.  crt1 will then call _rtld_call_init().
513      */
514 
515     dbg("transferring control to program entry point = %p", obj_main->entry);
516 
517     /* Return the exit procedure and the program entry point. */
518     *exit_proc = rtld_exit;
519     *objp = obj_main;
520     return (func_ptr_type) obj_main->entry;
521 }
522 
523 /*
524  * Call the initialization list for dynamically loaded libraries.
525  * (called from crt1.c).
526  */
527 void
528 _rtld_call_init(void)
529 {
530     objlist_call_init(&initlist);
531     wlock_acquire();
532     objlist_clear(&initlist);
533     wlock_release();
534 }
535 
536 Elf_Addr
537 _rtld_bind(Obj_Entry *obj, Elf_Word reloff)
538 {
539     const Elf_Rel *rel;
540     const Elf_Sym *def;
541     const Obj_Entry *defobj;
542     Elf_Addr *where;
543     Elf_Addr target;
544 
545     rlock_acquire();
546     if (obj->pltrel)
547 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
548     else
549 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
550 
551     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
552     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
553     if (def == NULL)
554 	die();
555 
556     target = (Elf_Addr)(defobj->relocbase + def->st_value);
557 
558     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
559       defobj->strtab + def->st_name, basename(obj->path),
560       (void *)target, basename(defobj->path));
561 
562     reloc_jmpslot(where, target);
563     rlock_release();
564     return target;
565 }
566 
567 /*
568  * Error reporting function.  Use it like printf.  If formats the message
569  * into a buffer, and sets things up so that the next call to dlerror()
570  * will return the message.
571  */
572 void
573 _rtld_error(const char *fmt, ...)
574 {
575     static char buf[512];
576     va_list ap;
577 
578     va_start(ap, fmt);
579     vsnprintf(buf, sizeof buf, fmt, ap);
580     error_message = buf;
581     va_end(ap);
582 }
583 
584 /*
585  * Return a dynamically-allocated copy of the current error message, if any.
586  */
587 static char *
588 errmsg_save(void)
589 {
590     return error_message == NULL ? NULL : xstrdup(error_message);
591 }
592 
593 /*
594  * Restore the current error message from a copy which was previously saved
595  * by errmsg_save().  The copy is freed.
596  */
597 static void
598 errmsg_restore(char *saved_msg)
599 {
600     if (saved_msg == NULL)
601 	error_message = NULL;
602     else {
603 	_rtld_error("%s", saved_msg);
604 	free(saved_msg);
605     }
606 }
607 
608 const char *
609 basename(const char *name)
610 {
611     const char *p = strrchr(name, '/');
612     return p != NULL ? p + 1 : name;
613 }
614 
615 static void
616 die(void)
617 {
618     const char *msg = dlerror();
619 
620     if (msg == NULL)
621 	msg = "Fatal error";
622     errx(1, "%s", msg);
623 }
624 
625 /*
626  * Process a shared object's DYNAMIC section, and save the important
627  * information in its Obj_Entry structure.
628  */
629 static void
630 digest_dynamic(Obj_Entry *obj, int early)
631 {
632     const Elf_Dyn *dynp;
633     Needed_Entry **needed_tail = &obj->needed;
634     const Elf_Dyn *dyn_rpath = NULL;
635     int plttype = DT_REL;
636 
637     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
638 	switch (dynp->d_tag) {
639 
640 	case DT_REL:
641 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
642 	    break;
643 
644 	case DT_RELSZ:
645 	    obj->relsize = dynp->d_un.d_val;
646 	    break;
647 
648 	case DT_RELENT:
649 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
650 	    break;
651 
652 	case DT_JMPREL:
653 	    obj->pltrel = (const Elf_Rel *)
654 	      (obj->relocbase + dynp->d_un.d_ptr);
655 	    break;
656 
657 	case DT_PLTRELSZ:
658 	    obj->pltrelsize = dynp->d_un.d_val;
659 	    break;
660 
661 	case DT_RELA:
662 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
663 	    break;
664 
665 	case DT_RELASZ:
666 	    obj->relasize = dynp->d_un.d_val;
667 	    break;
668 
669 	case DT_RELAENT:
670 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
671 	    break;
672 
673 	case DT_PLTREL:
674 	    plttype = dynp->d_un.d_val;
675 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
676 	    break;
677 
678 	case DT_SYMTAB:
679 	    obj->symtab = (const Elf_Sym *)
680 	      (obj->relocbase + dynp->d_un.d_ptr);
681 	    break;
682 
683 	case DT_SYMENT:
684 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
685 	    break;
686 
687 	case DT_STRTAB:
688 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
689 	    break;
690 
691 	case DT_STRSZ:
692 	    obj->strsize = dynp->d_un.d_val;
693 	    break;
694 
695 	case DT_HASH:
696 	    {
697 		const Elf_Addr *hashtab = (const Elf_Addr *)
698 		  (obj->relocbase + dynp->d_un.d_ptr);
699 		obj->nbuckets = hashtab[0];
700 		obj->nchains = hashtab[1];
701 		obj->buckets = hashtab + 2;
702 		obj->chains = obj->buckets + obj->nbuckets;
703 	    }
704 	    break;
705 
706 	case DT_NEEDED:
707 	    if (!obj->rtld) {
708 		Needed_Entry *nep = NEW(Needed_Entry);
709 		nep->name = dynp->d_un.d_val;
710 		nep->obj = NULL;
711 		nep->next = NULL;
712 
713 		*needed_tail = nep;
714 		needed_tail = &nep->next;
715 	    }
716 	    break;
717 
718 	case DT_PLTGOT:
719 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
720 	    break;
721 
722 	case DT_TEXTREL:
723 	    obj->textrel = true;
724 	    break;
725 
726 	case DT_SYMBOLIC:
727 	    obj->symbolic = true;
728 	    break;
729 
730 	case DT_RPATH:
731 	case DT_RUNPATH:	/* XXX: process separately */
732 	    /*
733 	     * We have to wait until later to process this, because we
734 	     * might not have gotten the address of the string table yet.
735 	     */
736 	    dyn_rpath = dynp;
737 	    break;
738 
739 	case DT_SONAME:
740 	    /* Not used by the dynamic linker. */
741 	    break;
742 
743 	case DT_INIT:
744 	    obj->init = (InitFunc) (obj->relocbase + dynp->d_un.d_ptr);
745 	    break;
746 
747 	case DT_FINI:
748 	    obj->fini = (InitFunc) (obj->relocbase + dynp->d_un.d_ptr);
749 	    break;
750 
751 	case DT_DEBUG:
752 	    /* XXX - not implemented yet */
753 	    if (!early)
754 		dbg("Filling in DT_DEBUG entry");
755 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
756 	    break;
757 
758 	case DT_FLAGS:
759 		if (dynp->d_un.d_val & DF_ORIGIN) {
760 		    obj->origin_path = xmalloc(PATH_MAX);
761 		    if (rtld_dirname(obj->path, obj->origin_path) == -1)
762 			die();
763 		}
764 		if (dynp->d_un.d_val & DF_SYMBOLIC)
765 		    obj->symbolic = true;
766 		if (dynp->d_un.d_val & DF_TEXTREL)
767 		    obj->textrel = true;
768 		if (dynp->d_un.d_val & DF_BIND_NOW)
769 		    obj->bind_now = true;
770 		if (dynp->d_un.d_val & DF_STATIC_TLS)
771 		    ;
772 	    break;
773 
774 	default:
775 	    if (!early)
776 		dbg("Ignoring d_tag %d = %#x", dynp->d_tag, dynp->d_tag);
777 	    break;
778 	}
779     }
780 
781     obj->traced = false;
782 
783     if (plttype == DT_RELA) {
784 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
785 	obj->pltrel = NULL;
786 	obj->pltrelasize = obj->pltrelsize;
787 	obj->pltrelsize = 0;
788     }
789 
790     if (dyn_rpath != NULL)
791 	obj->rpath = obj->strtab + dyn_rpath->d_un.d_val;
792 }
793 
794 /*
795  * Process a shared object's program header.  This is used only for the
796  * main program, when the kernel has already loaded the main program
797  * into memory before calling the dynamic linker.  It creates and
798  * returns an Obj_Entry structure.
799  */
800 static Obj_Entry *
801 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
802 {
803     Obj_Entry *obj;
804     const Elf_Phdr *phlimit = phdr + phnum;
805     const Elf_Phdr *ph;
806     int nsegs = 0;
807 
808     obj = obj_new();
809     for (ph = phdr;  ph < phlimit;  ph++) {
810 	switch (ph->p_type) {
811 
812 	case PT_PHDR:
813 	    if ((const Elf_Phdr *)ph->p_vaddr != phdr) {
814 		_rtld_error("%s: invalid PT_PHDR", path);
815 		return NULL;
816 	    }
817 	    obj->phdr = (const Elf_Phdr *) ph->p_vaddr;
818 	    obj->phsize = ph->p_memsz;
819 	    break;
820 
821 	case PT_INTERP:
822 	    obj->interp = (const char *) ph->p_vaddr;
823 	    break;
824 
825 	case PT_LOAD:
826 	    if (nsegs == 0) {	/* First load segment */
827 		obj->vaddrbase = trunc_page(ph->p_vaddr);
828 		obj->mapbase = (caddr_t) obj->vaddrbase;
829 		obj->relocbase = obj->mapbase - obj->vaddrbase;
830 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
831 		  obj->vaddrbase;
832 	    } else {		/* Last load segment */
833 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
834 		  obj->vaddrbase;
835 	    }
836 	    nsegs++;
837 	    break;
838 
839 	case PT_DYNAMIC:
840 	    obj->dynamic = (const Elf_Dyn *) ph->p_vaddr;
841 	    break;
842 
843 	case PT_TLS:
844 	    obj->tlsindex = 1;
845 	    obj->tlssize = ph->p_memsz;
846 	    obj->tlsalign = ph->p_align;
847 	    obj->tlsinitsize = ph->p_filesz;
848 	    obj->tlsinit = (void*) ph->p_vaddr;
849 	    break;
850 	}
851     }
852     if (nsegs < 1) {
853 	_rtld_error("%s: too few PT_LOAD segments", path);
854 	return NULL;
855     }
856 
857     obj->entry = entry;
858     return obj;
859 }
860 
861 static Obj_Entry *
862 dlcheck(void *handle)
863 {
864     Obj_Entry *obj;
865 
866     for (obj = obj_list;  obj != NULL;  obj = obj->next)
867 	if (obj == (Obj_Entry *) handle)
868 	    break;
869 
870     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
871 	_rtld_error("Invalid shared object handle %p", handle);
872 	return NULL;
873     }
874     return obj;
875 }
876 
877 /*
878  * If the given object is already in the donelist, return true.  Otherwise
879  * add the object to the list and return false.
880  */
881 static bool
882 donelist_check(DoneList *dlp, const Obj_Entry *obj)
883 {
884     unsigned int i;
885 
886     for (i = 0;  i < dlp->num_used;  i++)
887 	if (dlp->objs[i] == obj)
888 	    return true;
889     /*
890      * Our donelist allocation should always be sufficient.  But if
891      * our threads locking isn't working properly, more shared objects
892      * could have been loaded since we allocated the list.  That should
893      * never happen, but we'll handle it properly just in case it does.
894      */
895     if (dlp->num_used < dlp->num_alloc)
896 	dlp->objs[dlp->num_used++] = obj;
897     return false;
898 }
899 
900 /*
901  * Hash function for symbol table lookup.  Don't even think about changing
902  * this.  It is specified by the System V ABI.
903  */
904 unsigned long
905 elf_hash(const char *name)
906 {
907     const unsigned char *p = (const unsigned char *) name;
908     unsigned long h = 0;
909     unsigned long g;
910 
911     while (*p != '\0') {
912 	h = (h << 4) + *p++;
913 	if ((g = h & 0xf0000000) != 0)
914 	    h ^= g >> 24;
915 	h &= ~g;
916     }
917     return h;
918 }
919 
920 /*
921  * Find the library with the given name, and return its full pathname.
922  * The returned string is dynamically allocated.  Generates an error
923  * message and returns NULL if the library cannot be found.
924  *
925  * If the second argument is non-NULL, then it refers to an already-
926  * loaded shared object, whose library search path will be searched.
927  *
928  * The search order is:
929  *   LD_LIBRARY_PATH
930  *   rpath in the referencing file
931  *   ldconfig hints
932  *   /usr/lib
933  */
934 static char *
935 find_library(const char *name, const Obj_Entry *refobj)
936 {
937     char *pathname;
938 
939     if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
940 	if (name[0] != '/' && !trust) {
941 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
942 	      name);
943 	    return NULL;
944 	}
945 	return xstrdup(name);
946     }
947 
948     dbg(" Searching for \"%s\"", name);
949 
950     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
951       (refobj != NULL &&
952       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
953       (pathname = search_library_path(name, gethints())) != NULL ||
954       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
955 	return pathname;
956 
957     if(refobj != NULL && refobj->path != NULL) {
958 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
959 	  name, basename(refobj->path));
960     } else {
961 	_rtld_error("Shared object \"%s\" not found", name);
962     }
963     return NULL;
964 }
965 
966 /*
967  * Given a symbol number in a referencing object, find the corresponding
968  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
969  * no definition was found.  Returns a pointer to the Obj_Entry of the
970  * defining object via the reference parameter DEFOBJ_OUT.
971  */
972 const Elf_Sym *
973 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
974     const Obj_Entry **defobj_out, bool in_plt, SymCache *cache)
975 {
976     const Elf_Sym *ref;
977     const Elf_Sym *def;
978     const Obj_Entry *defobj;
979     const char *name;
980     unsigned long hash;
981 
982     /*
983      * If we have already found this symbol, get the information from
984      * the cache.
985      */
986     if (symnum >= refobj->nchains)
987 	return NULL;	/* Bad object */
988     if (cache != NULL && cache[symnum].sym != NULL) {
989 	*defobj_out = cache[symnum].obj;
990 	return cache[symnum].sym;
991     }
992 
993     ref = refobj->symtab + symnum;
994     name = refobj->strtab + ref->st_name;
995     defobj = NULL;
996 
997     /*
998      * We don't have to do a full scale lookup if the symbol is local.
999      * We know it will bind to the instance in this load module; to
1000      * which we already have a pointer (ie ref). By not doing a lookup,
1001      * we not only improve performance, but it also avoids unresolvable
1002      * symbols when local symbols are not in the hash table.
1003      *
1004      * This might occur for TLS module relocations, which simply use
1005      * symbol 0.
1006      */
1007     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1008 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1009 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1010 		symnum);
1011 	}
1012 	hash = elf_hash(name);
1013 	def = symlook_default(name, hash, refobj, &defobj, in_plt);
1014     } else {
1015 	def = ref;
1016 	defobj = refobj;
1017     }
1018 
1019     /*
1020      * If we found no definition and the reference is weak, treat the
1021      * symbol as having the value zero.
1022      */
1023     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1024 	def = &sym_zero;
1025 	defobj = obj_main;
1026     }
1027 
1028     if (def != NULL) {
1029 	*defobj_out = defobj;
1030 	/* Record the information in the cache to avoid subsequent lookups. */
1031 	if (cache != NULL) {
1032 	    cache[symnum].sym = def;
1033 	    cache[symnum].obj = defobj;
1034 	}
1035     } else
1036 	_rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1037     return def;
1038 }
1039 
1040 /*
1041  * Return the search path from the ldconfig hints file, reading it if
1042  * necessary.  Returns NULL if there are problems with the hints file,
1043  * or if the search path there is empty.
1044  */
1045 static const char *
1046 gethints(void)
1047 {
1048     static char *hints;
1049 
1050     if (hints == NULL) {
1051 	int fd;
1052 	struct elfhints_hdr hdr;
1053 	char *p;
1054 
1055 	/* Keep from trying again in case the hints file is bad. */
1056 	hints = "";
1057 
1058 	if ((fd = open(_PATH_ELF_HINTS, O_RDONLY)) == -1)
1059 	    return NULL;
1060 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1061 	  hdr.magic != ELFHINTS_MAGIC ||
1062 	  hdr.version != 1) {
1063 	    close(fd);
1064 	    return NULL;
1065 	}
1066 	p = xmalloc(hdr.dirlistlen + 1);
1067 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1068 	  read(fd, p, hdr.dirlistlen + 1) != hdr.dirlistlen + 1) {
1069 	    free(p);
1070 	    close(fd);
1071 	    return NULL;
1072 	}
1073 	hints = p;
1074 	close(fd);
1075     }
1076     return hints[0] != '\0' ? hints : NULL;
1077 }
1078 
1079 static void
1080 init_dag(Obj_Entry *root)
1081 {
1082     DoneList donelist;
1083 
1084     donelist_init(&donelist);
1085     init_dag1(root, root, &donelist);
1086 }
1087 
1088 static void
1089 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1090 {
1091     const Needed_Entry *needed;
1092 
1093     if (donelist_check(dlp, obj))
1094 	return;
1095     objlist_push_tail(&obj->dldags, root);
1096     objlist_push_tail(&root->dagmembers, obj);
1097     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1098 	if (needed->obj != NULL)
1099 	    init_dag1(root, needed->obj, dlp);
1100 }
1101 
1102 /*
1103  * Initialize the dynamic linker.  The argument is the address at which
1104  * the dynamic linker has been mapped into memory.  The primary task of
1105  * this function is to relocate the dynamic linker.
1106  */
1107 static void
1108 init_rtld(caddr_t mapbase)
1109 {
1110     Obj_Entry objtmp;	/* Temporary rtld object */
1111 
1112     /*
1113      * Conjure up an Obj_Entry structure for the dynamic linker.
1114      *
1115      * The "path" member can't be initialized yet because string constatns
1116      * cannot yet be acessed. Below we will set it correctly.
1117      */
1118     objtmp.path = NULL;
1119     objtmp.rtld = true;
1120     objtmp.mapbase = mapbase;
1121 #ifdef PIC
1122     objtmp.relocbase = mapbase;
1123 #endif
1124     if (&_DYNAMIC != 0) {
1125 	objtmp.dynamic = rtld_dynamic(&objtmp);
1126 	digest_dynamic(&objtmp, 1);
1127 	assert(objtmp.needed == NULL);
1128 	assert(!objtmp.textrel);
1129 
1130 	/*
1131 	 * Temporarily put the dynamic linker entry into the object list, so
1132 	 * that symbols can be found.
1133 	 */
1134 
1135 	relocate_objects(&objtmp, true, &objtmp);
1136     }
1137 
1138     /* Initialize the object list. */
1139     obj_tail = &obj_list;
1140 
1141     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1142     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1143 
1144     /* Replace the path with a dynamically allocated copy. */
1145     obj_rtld.path = xstrdup(PATH_RTLD);
1146 
1147     r_debug.r_brk = r_debug_state;
1148     r_debug.r_state = RT_CONSISTENT;
1149 }
1150 
1151 /*
1152  * Add the init functions from a needed object list (and its recursive
1153  * needed objects) to "list".  This is not used directly; it is a helper
1154  * function for initlist_add_objects().  The write lock must be held
1155  * when this function is called.
1156  */
1157 static void
1158 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1159 {
1160     /* Recursively process the successor needed objects. */
1161     if (needed->next != NULL)
1162 	initlist_add_neededs(needed->next, list);
1163 
1164     /* Process the current needed object. */
1165     if (needed->obj != NULL)
1166 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1167 }
1168 
1169 /*
1170  * Scan all of the DAGs rooted in the range of objects from "obj" to
1171  * "tail" and add their init functions to "list".  This recurses over
1172  * the DAGs and ensure the proper init ordering such that each object's
1173  * needed libraries are initialized before the object itself.  At the
1174  * same time, this function adds the objects to the global finalization
1175  * list "list_fini" in the opposite order.  The write lock must be
1176  * held when this function is called.
1177  */
1178 static void
1179 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1180 {
1181     if (obj->init_done)
1182 	return;
1183     obj->init_done = true;
1184 
1185     /* Recursively process the successor objects. */
1186     if (&obj->next != tail)
1187 	initlist_add_objects(obj->next, tail, list);
1188 
1189     /* Recursively process the needed objects. */
1190     if (obj->needed != NULL)
1191 	initlist_add_neededs(obj->needed, list);
1192 
1193     /* Add the object to the init list. */
1194     if (obj->init != NULL)
1195 	objlist_push_tail(list, obj);
1196 
1197     /* Add the object to the global fini list in the reverse order. */
1198     if (obj->fini != NULL)
1199 	objlist_push_head(&list_fini, obj);
1200 }
1201 
1202 static bool
1203 is_exported(const Elf_Sym *def)
1204 {
1205     func_ptr_type value;
1206     const func_ptr_type *p;
1207 
1208     value = (func_ptr_type)(obj_rtld.relocbase + def->st_value);
1209     for (p = exports;  *p != NULL;  p++)
1210 	if (*p == value)
1211 	    return true;
1212     return false;
1213 }
1214 
1215 /*
1216  * Given a shared object, traverse its list of needed objects, and load
1217  * each of them.  Returns 0 on success.  Generates an error message and
1218  * returns -1 on failure.
1219  */
1220 static int
1221 load_needed_objects(Obj_Entry *first)
1222 {
1223     Obj_Entry *obj;
1224 
1225     for (obj = first;  obj != NULL;  obj = obj->next) {
1226 	Needed_Entry *needed;
1227 
1228 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1229 	    const char *name = obj->strtab + needed->name;
1230 	    char *path = find_library(name, obj);
1231 
1232 	    needed->obj = NULL;
1233 	    if (path == NULL && !ld_tracing)
1234 		return -1;
1235 
1236 	    if (path) {
1237 		needed->obj = load_object(path);
1238 		if (needed->obj == NULL && !ld_tracing)
1239 		    return -1;		/* XXX - cleanup */
1240 	    }
1241 	}
1242     }
1243 
1244     return 0;
1245 }
1246 
1247 static int
1248 load_preload_objects(void)
1249 {
1250     char *p = ld_preload;
1251     static const char delim[] = " \t:;";
1252 
1253     if (p == NULL)
1254 	return NULL;
1255 
1256     p += strspn(p, delim);
1257     while (*p != '\0') {
1258 	size_t len = strcspn(p, delim);
1259 	char *path;
1260 	char savech;
1261 
1262 	savech = p[len];
1263 	p[len] = '\0';
1264 	if ((path = find_library(p, NULL)) == NULL)
1265 	    return -1;
1266 	if (load_object(path) == NULL)
1267 	    return -1;	/* XXX - cleanup */
1268 	p[len] = savech;
1269 	p += len;
1270 	p += strspn(p, delim);
1271     }
1272     return 0;
1273 }
1274 
1275 /*
1276  * Returns a pointer to the Obj_Entry for the object with the given path.
1277  * Returns NULL if no matching object was found.
1278  */
1279 static Obj_Entry *
1280 find_object(const char *path)
1281 {
1282     Obj_Entry *obj;
1283 
1284     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1285 	if (strcmp(obj->path, path) == 0)
1286 	    return(obj);
1287     }
1288     return(NULL);
1289 }
1290 
1291 /*
1292  * Returns a pointer to the Obj_Entry for the object matching device and
1293  * inode of the given path. If no matching object was found, the descriptor
1294  * is returned in fd.
1295  * Returns with obj == NULL && fd == -1 on error.
1296  */
1297 static Obj_Entry *
1298 find_object2(const char *path, int *fd, struct stat *sb)
1299 {
1300     Obj_Entry *obj;
1301 
1302     if ((*fd = open(path, O_RDONLY)) == -1) {
1303 	_rtld_error("Cannot open \"%s\"", path);
1304 	return(NULL);
1305     }
1306 
1307     if (fstat(*fd, sb) == -1) {
1308 	_rtld_error("Cannot fstat \"%s\"", path);
1309 	close(*fd);
1310 	*fd = -1;
1311 	return NULL;
1312     }
1313 
1314     for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
1315 	if (obj->ino == sb->st_ino && obj->dev == sb->st_dev) {
1316 	    close(*fd);
1317 	    break;
1318 	}
1319     }
1320 
1321     return(obj);
1322 }
1323 
1324 /*
1325  * Load a shared object into memory, if it is not already loaded.  The
1326  * argument must be a string allocated on the heap.  This function assumes
1327  * responsibility for freeing it when necessary.
1328  *
1329  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1330  * on failure.
1331  */
1332 static Obj_Entry *
1333 load_object(char *path)
1334 {
1335     Obj_Entry *obj;
1336     int fd = -1;
1337     struct stat sb;
1338 
1339     obj = find_object(path);
1340     if (obj != NULL) {
1341 	obj->refcount++;
1342 	free(path);
1343 	return(obj);
1344     }
1345 
1346     obj = find_object2(path, &fd, &sb);
1347     if (obj != NULL) {
1348 	obj->refcount++;
1349 	free(path);
1350 	return(obj);
1351     } else if (fd == -1) {
1352 	free(path);
1353 	return(NULL);
1354     }
1355 
1356     dbg("loading \"%s\"", path);
1357     obj = map_object(fd, path, &sb);
1358     close(fd);
1359     if (obj == NULL) {
1360 	free(path);
1361         return NULL;
1362     }
1363 
1364     obj->path = path;
1365     digest_dynamic(obj, 0);
1366 
1367     *obj_tail = obj;
1368     obj_tail = &obj->next;
1369     obj_count++;
1370     linkmap_add(obj);	/* for GDB & dlinfo() */
1371 
1372     dbg("  %p .. %p: %s", obj->mapbase, obj->mapbase + obj->mapsize - 1,
1373 	obj->path);
1374     if (obj->textrel)
1375         dbg("  WARNING: %s has impure text", obj->path);
1376 
1377     obj->refcount++;
1378     return obj;
1379 }
1380 
1381 /*
1382  * Check for locking violations and die if one is found.
1383  */
1384 static void
1385 lock_check(void)
1386 {
1387     int rcount, wcount;
1388 
1389     rcount = lockinfo.rcount;
1390     wcount = lockinfo.wcount;
1391     assert(rcount >= 0);
1392     assert(wcount >= 0);
1393     if (wcount > 1 || (wcount != 0 && rcount != 0)) {
1394 	_rtld_error("Application locking error: %d readers and %d writers"
1395 	  " in dynamic linker.  See DLLOCKINIT(3) in manual pages.",
1396 	  rcount, wcount);
1397 	die();
1398     }
1399 }
1400 
1401 static Obj_Entry *
1402 obj_from_addr(const void *addr)
1403 {
1404     Obj_Entry *obj;
1405 
1406     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1407 	if (addr < (void *) obj->mapbase)
1408 	    continue;
1409 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1410 	    return obj;
1411     }
1412     return NULL;
1413 }
1414 
1415 /*
1416  * Call the finalization functions for each of the objects in "list"
1417  * which are unreferenced.  All of the objects are expected to have
1418  * non-NULL fini functions.
1419  */
1420 static void
1421 objlist_call_fini(Objlist *list)
1422 {
1423     Objlist_Entry *elm;
1424     char *saved_msg;
1425 
1426     /*
1427      * Preserve the current error message since a fini function might
1428      * call into the dynamic linker and overwrite it.
1429      */
1430     saved_msg = errmsg_save();
1431     STAILQ_FOREACH(elm, list, link) {
1432 	if (elm->obj->refcount == 0) {
1433 	    dbg("calling fini function for %s", elm->obj->path);
1434 	    (*elm->obj->fini)();
1435 	}
1436     }
1437     errmsg_restore(saved_msg);
1438 }
1439 
1440 /*
1441  * Call the initialization functions for each of the objects in
1442  * "list".  All of the objects are expected to have non-NULL init
1443  * functions.
1444  */
1445 static void
1446 objlist_call_init(Objlist *list)
1447 {
1448     Objlist_Entry *elm;
1449     char *saved_msg;
1450 
1451     /*
1452      * Preserve the current error message since an init function might
1453      * call into the dynamic linker and overwrite it.
1454      */
1455     saved_msg = errmsg_save();
1456     STAILQ_FOREACH(elm, list, link) {
1457 	dbg("calling init function for %s", elm->obj->path);
1458 	(*elm->obj->init)();
1459     }
1460     errmsg_restore(saved_msg);
1461 }
1462 
1463 static void
1464 objlist_clear(Objlist *list)
1465 {
1466     Objlist_Entry *elm;
1467 
1468     while (!STAILQ_EMPTY(list)) {
1469 	elm = STAILQ_FIRST(list);
1470 	STAILQ_REMOVE_HEAD(list, link);
1471 	free(elm);
1472     }
1473 }
1474 
1475 static Objlist_Entry *
1476 objlist_find(Objlist *list, const Obj_Entry *obj)
1477 {
1478     Objlist_Entry *elm;
1479 
1480     STAILQ_FOREACH(elm, list, link)
1481 	if (elm->obj == obj)
1482 	    return elm;
1483     return NULL;
1484 }
1485 
1486 static void
1487 objlist_init(Objlist *list)
1488 {
1489     STAILQ_INIT(list);
1490 }
1491 
1492 static void
1493 objlist_push_head(Objlist *list, Obj_Entry *obj)
1494 {
1495     Objlist_Entry *elm;
1496 
1497     elm = NEW(Objlist_Entry);
1498     elm->obj = obj;
1499     STAILQ_INSERT_HEAD(list, elm, link);
1500 }
1501 
1502 static void
1503 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1504 {
1505     Objlist_Entry *elm;
1506 
1507     elm = NEW(Objlist_Entry);
1508     elm->obj = obj;
1509     STAILQ_INSERT_TAIL(list, elm, link);
1510 }
1511 
1512 static void
1513 objlist_remove(Objlist *list, Obj_Entry *obj)
1514 {
1515     Objlist_Entry *elm;
1516 
1517     if ((elm = objlist_find(list, obj)) != NULL) {
1518 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1519 	free(elm);
1520     }
1521 }
1522 
1523 /*
1524  * Remove all of the unreferenced objects from "list".
1525  */
1526 static void
1527 objlist_remove_unref(Objlist *list)
1528 {
1529     Objlist newlist;
1530     Objlist_Entry *elm;
1531 
1532     STAILQ_INIT(&newlist);
1533     while (!STAILQ_EMPTY(list)) {
1534 	elm = STAILQ_FIRST(list);
1535 	STAILQ_REMOVE_HEAD(list, link);
1536 	if (elm->obj->refcount == 0)
1537 	    free(elm);
1538 	else
1539 	    STAILQ_INSERT_TAIL(&newlist, elm, link);
1540     }
1541     *list = newlist;
1542 }
1543 
1544 /*
1545  * Relocate newly-loaded shared objects.  The argument is a pointer to
1546  * the Obj_Entry for the first such object.  All objects from the first
1547  * to the end of the list of objects are relocated.  Returns 0 on success,
1548  * or -1 on failure.
1549  */
1550 static int
1551 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1552 {
1553     Obj_Entry *obj;
1554 
1555     for (obj = first;  obj != NULL;  obj = obj->next) {
1556 	if (obj != rtldobj)
1557 	    dbg("relocating \"%s\"", obj->path);
1558 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1559 	    obj->symtab == NULL || obj->strtab == NULL) {
1560 	    _rtld_error("%s: Shared object has no run-time symbol table",
1561 	      obj->path);
1562 	    return -1;
1563 	}
1564 
1565 	if (obj->textrel) {
1566 	    /* There are relocations to the write-protected text segment. */
1567 	    if (mprotect(obj->mapbase, obj->textsize,
1568 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1569 		_rtld_error("%s: Cannot write-enable text segment: %s",
1570 		  obj->path, strerror(errno));
1571 		return -1;
1572 	    }
1573 	}
1574 
1575 	/* Process the non-PLT relocations. */
1576 	if (reloc_non_plt(obj, rtldobj))
1577 		return -1;
1578 
1579 	/*
1580 	 * Reprotect the text segment.  Make sure it is included in the
1581 	 * core dump since we modified it.  This unfortunately causes the
1582 	 * entire text segment to core-out but we don't have much of a
1583 	 * choice.  We could try to only reenable core dumps on pages
1584 	 * in which relocations occured but that is likely most of the text
1585 	 * pages anyway, and even that would not work because the rest of
1586 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
1587 	 * (created due to our modifications) backed by the original OBJT_VNODE
1588 	 * object, and the ELF coredump code is currently only able to dump
1589 	 * vnode records for pure vnode-backed mappings, not vnode backings
1590 	 * to memory objects.
1591 	 */
1592 	if (obj->textrel) {
1593 	    madvise(obj->mapbase, obj->textsize, MADV_CORE);
1594 	    if (mprotect(obj->mapbase, obj->textsize,
1595 	      PROT_READ|PROT_EXEC) == -1) {
1596 		_rtld_error("%s: Cannot write-protect text segment: %s",
1597 		  obj->path, strerror(errno));
1598 		return -1;
1599 	    }
1600 	}
1601 
1602 	/* Process the PLT relocations. */
1603 	if (reloc_plt(obj) == -1)
1604 	    return -1;
1605 	/* Relocate the jump slots if we are doing immediate binding. */
1606 	if (obj->bind_now || bind_now)
1607 	    if (reloc_jmpslots(obj) == -1)
1608 		return -1;
1609 
1610 
1611 	/*
1612 	 * Set up the magic number and version in the Obj_Entry.  These
1613 	 * were checked in the crt1.o from the original ElfKit, so we
1614 	 * set them for backward compatibility.
1615 	 */
1616 	obj->magic = RTLD_MAGIC;
1617 	obj->version = RTLD_VERSION;
1618 
1619 	/* Set the special PLT or GOT entries. */
1620 	init_pltgot(obj);
1621     }
1622 
1623     return 0;
1624 }
1625 
1626 /*
1627  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1628  * before the process exits.
1629  */
1630 static void
1631 rtld_exit(void)
1632 {
1633     Obj_Entry *obj;
1634 
1635     dbg("rtld_exit()");
1636     /* Clear all the reference counts so the fini functions will be called. */
1637     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1638 	obj->refcount = 0;
1639     objlist_call_fini(&list_fini);
1640     /* No need to remove the items from the list, since we are exiting. */
1641 }
1642 
1643 static void *
1644 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1645 {
1646     if (path == NULL)
1647 	return (NULL);
1648 
1649     path += strspn(path, ":;");
1650     while (*path != '\0') {
1651 	size_t len;
1652 	char  *res;
1653 
1654 	len = strcspn(path, ":;");
1655 	res = callback(path, len, arg);
1656 
1657 	if (res != NULL)
1658 	    return (res);
1659 
1660 	path += len;
1661 	path += strspn(path, ":;");
1662     }
1663 
1664     return (NULL);
1665 }
1666 
1667 struct try_library_args {
1668     const char	*name;
1669     size_t	 namelen;
1670     char	*buffer;
1671     size_t	 buflen;
1672 };
1673 
1674 static void *
1675 try_library_path(const char *dir, size_t dirlen, void *param)
1676 {
1677     struct try_library_args *arg;
1678 
1679     arg = param;
1680     if (*dir == '/' || trust) {
1681 	char *pathname;
1682 
1683 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
1684 		return (NULL);
1685 
1686 	pathname = arg->buffer;
1687 	strncpy(pathname, dir, dirlen);
1688 	pathname[dirlen] = '/';
1689 	strcpy(pathname + dirlen + 1, arg->name);
1690 
1691 	dbg("  Trying \"%s\"", pathname);
1692 	if (access(pathname, F_OK) == 0) {		/* We found it */
1693 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
1694 	    strcpy(pathname, arg->buffer);
1695 	    return (pathname);
1696 	}
1697     }
1698     return (NULL);
1699 }
1700 
1701 static char *
1702 search_library_path(const char *name, const char *path)
1703 {
1704     char *p;
1705     struct try_library_args arg;
1706 
1707     if (path == NULL)
1708 	return NULL;
1709 
1710     arg.name = name;
1711     arg.namelen = strlen(name);
1712     arg.buffer = xmalloc(PATH_MAX);
1713     arg.buflen = PATH_MAX;
1714 
1715     p = path_enumerate(path, try_library_path, &arg);
1716 
1717     free(arg.buffer);
1718 
1719     return (p);
1720 }
1721 
1722 int
1723 dlclose(void *handle)
1724 {
1725     Obj_Entry *root;
1726 
1727     wlock_acquire();
1728     root = dlcheck(handle);
1729     if (root == NULL) {
1730 	wlock_release();
1731 	return -1;
1732     }
1733 
1734     /* Unreference the object and its dependencies. */
1735     root->dl_refcount--;
1736     unref_dag(root);
1737 
1738     if (root->refcount == 0) {
1739 	/*
1740 	 * The object is no longer referenced, so we must unload it.
1741 	 * First, call the fini functions with no locks held.
1742 	 */
1743 	wlock_release();
1744 	objlist_call_fini(&list_fini);
1745 	wlock_acquire();
1746 	objlist_remove_unref(&list_fini);
1747 
1748 	/* Finish cleaning up the newly-unreferenced objects. */
1749 	GDB_STATE(RT_DELETE,&root->linkmap);
1750 	unload_object(root);
1751 	GDB_STATE(RT_CONSISTENT,NULL);
1752     }
1753     wlock_release();
1754     return 0;
1755 }
1756 
1757 const char *
1758 dlerror(void)
1759 {
1760     char *msg = error_message;
1761     error_message = NULL;
1762     return msg;
1763 }
1764 
1765 void *
1766 dlopen(const char *name, int mode)
1767 {
1768     Obj_Entry **old_obj_tail;
1769     Obj_Entry *obj;
1770     Objlist initlist;
1771     int result;
1772 
1773     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
1774     if (ld_tracing != NULL)
1775 	environ = (char **)*get_program_var_addr("environ");
1776 
1777     objlist_init(&initlist);
1778 
1779     wlock_acquire();
1780     GDB_STATE(RT_ADD,NULL);
1781 
1782     old_obj_tail = obj_tail;
1783     obj = NULL;
1784     if (name == NULL) {
1785 	obj = obj_main;
1786 	obj->refcount++;
1787     } else {
1788 	char *path = find_library(name, obj_main);
1789 	if (path != NULL)
1790 	    obj = load_object(path);
1791     }
1792 
1793     if (obj) {
1794 	obj->dl_refcount++;
1795 	if ((mode & RTLD_GLOBAL) && objlist_find(&list_global, obj) == NULL)
1796 	    objlist_push_tail(&list_global, obj);
1797 	mode &= RTLD_MODEMASK;
1798 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
1799 	    assert(*old_obj_tail == obj);
1800 
1801 	    result = load_needed_objects(obj);
1802 	    if (result != -1 && ld_tracing)
1803 		goto trace;
1804 
1805 	    if (result == -1 ||
1806 	      (init_dag(obj), relocate_objects(obj, mode == RTLD_NOW,
1807 	       &obj_rtld)) == -1) {
1808 		obj->dl_refcount--;
1809 		unref_dag(obj);
1810 		if (obj->refcount == 0)
1811 		    unload_object(obj);
1812 		obj = NULL;
1813 	    } else {
1814 		/* Make list of init functions to call. */
1815 		initlist_add_objects(obj, &obj->next, &initlist);
1816 	    }
1817 	} else if (ld_tracing)
1818 	    goto trace;
1819     }
1820 
1821     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
1822 
1823     /* Call the init functions with no locks held. */
1824     wlock_release();
1825     objlist_call_init(&initlist);
1826     wlock_acquire();
1827     objlist_clear(&initlist);
1828     wlock_release();
1829     return obj;
1830 trace:
1831     trace_loaded_objects(obj);
1832     wlock_release();
1833     exit(0);
1834 }
1835 
1836 void *
1837 dlsym(void *handle, const char *name)
1838 {
1839     const Obj_Entry *obj;
1840     unsigned long hash;
1841     const Elf_Sym *def;
1842     const Obj_Entry *defobj;
1843 
1844     hash = elf_hash(name);
1845     def = NULL;
1846     defobj = NULL;
1847 
1848     rlock_acquire();
1849     if (handle == NULL || handle == RTLD_NEXT ||
1850 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
1851 	void *retaddr;
1852 
1853 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1854 	if ((obj = obj_from_addr(retaddr)) == NULL) {
1855 	    _rtld_error("Cannot determine caller's shared object");
1856 	    rlock_release();
1857 	    return NULL;
1858 	}
1859 	if (handle == NULL) {	/* Just the caller's shared object. */
1860 	    def = symlook_obj(name, hash, obj, true);
1861 	    defobj = obj;
1862 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
1863 		   handle == RTLD_SELF) { /* ... caller included */
1864 	    if (handle == RTLD_NEXT)
1865 		obj = obj->next;
1866 	    for (; obj != NULL; obj = obj->next) {
1867 		if ((def = symlook_obj(name, hash, obj, true)) != NULL) {
1868 		    defobj = obj;
1869 		    break;
1870 		}
1871 	    }
1872 	} else {
1873 	    assert(handle == RTLD_DEFAULT);
1874 	    def = symlook_default(name, hash, obj, &defobj, true);
1875 	}
1876     } else {
1877 	DoneList donelist;
1878 
1879 	if ((obj = dlcheck(handle)) == NULL) {
1880 	    rlock_release();
1881 	    return NULL;
1882 	}
1883 
1884 	donelist_init(&donelist);
1885 	if (obj->mainprog) {
1886 	    /* Search main program and all libraries loaded by it. */
1887 	    def = symlook_list(name, hash, &list_main, &defobj, true,
1888 	      &donelist);
1889 	} else {
1890 	    def = symlook_list(name, hash, &(obj->dagmembers), &defobj, true,
1891 	      &donelist);
1892 	}
1893     }
1894 
1895     if (def != NULL) {
1896 	rlock_release();
1897 	return defobj->relocbase + def->st_value;
1898     }
1899 
1900     _rtld_error("Undefined symbol \"%s\"", name);
1901     rlock_release();
1902     return NULL;
1903 }
1904 
1905 int
1906 dladdr(const void *addr, Dl_info *info)
1907 {
1908     const Obj_Entry *obj;
1909     const Elf_Sym *def;
1910     void *symbol_addr;
1911     unsigned long symoffset;
1912 
1913     rlock_acquire();
1914     obj = obj_from_addr(addr);
1915     if (obj == NULL) {
1916         _rtld_error("No shared object contains address");
1917 	rlock_release();
1918         return 0;
1919     }
1920     info->dli_fname = obj->path;
1921     info->dli_fbase = obj->mapbase;
1922     info->dli_saddr = (void *)0;
1923     info->dli_sname = NULL;
1924 
1925     /*
1926      * Walk the symbol list looking for the symbol whose address is
1927      * closest to the address sent in.
1928      */
1929     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
1930         def = obj->symtab + symoffset;
1931 
1932         /*
1933          * For skip the symbol if st_shndx is either SHN_UNDEF or
1934          * SHN_COMMON.
1935          */
1936         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
1937             continue;
1938 
1939         /*
1940          * If the symbol is greater than the specified address, or if it
1941          * is further away from addr than the current nearest symbol,
1942          * then reject it.
1943          */
1944         symbol_addr = obj->relocbase + def->st_value;
1945         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
1946             continue;
1947 
1948         /* Update our idea of the nearest symbol. */
1949         info->dli_sname = obj->strtab + def->st_name;
1950         info->dli_saddr = symbol_addr;
1951 
1952         /* Exact match? */
1953         if (info->dli_saddr == addr)
1954             break;
1955     }
1956     rlock_release();
1957     return 1;
1958 }
1959 
1960 int
1961 dlinfo(void *handle, int request, void *p)
1962 {
1963     const Obj_Entry *obj;
1964     int error;
1965 
1966     rlock_acquire();
1967 
1968     if (handle == NULL || handle == RTLD_SELF) {
1969 	void *retaddr;
1970 
1971 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
1972 	if ((obj = obj_from_addr(retaddr)) == NULL)
1973 	    _rtld_error("Cannot determine caller's shared object");
1974     } else
1975 	obj = dlcheck(handle);
1976 
1977     if (obj == NULL) {
1978 	rlock_release();
1979 	return (-1);
1980     }
1981 
1982     error = 0;
1983     switch (request) {
1984     case RTLD_DI_LINKMAP:
1985 	*((struct link_map const **)p) = &obj->linkmap;
1986 	break;
1987     case RTLD_DI_ORIGIN:
1988 	error = rtld_dirname(obj->path, p);
1989 	break;
1990 
1991     case RTLD_DI_SERINFOSIZE:
1992     case RTLD_DI_SERINFO:
1993 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
1994 	break;
1995 
1996     default:
1997 	_rtld_error("Invalid request %d passed to dlinfo()", request);
1998 	error = -1;
1999     }
2000 
2001     rlock_release();
2002 
2003     return (error);
2004 }
2005 
2006 struct fill_search_info_args {
2007     int		 request;
2008     unsigned int flags;
2009     Dl_serinfo  *serinfo;
2010     Dl_serpath  *serpath;
2011     char	*strspace;
2012 };
2013 
2014 static void *
2015 fill_search_info(const char *dir, size_t dirlen, void *param)
2016 {
2017     struct fill_search_info_args *arg;
2018 
2019     arg = param;
2020 
2021     if (arg->request == RTLD_DI_SERINFOSIZE) {
2022 	arg->serinfo->dls_cnt ++;
2023 	arg->serinfo->dls_size += dirlen + 1;
2024     } else {
2025 	struct dl_serpath *s_entry;
2026 
2027 	s_entry = arg->serpath;
2028 	s_entry->dls_name  = arg->strspace;
2029 	s_entry->dls_flags = arg->flags;
2030 
2031 	strncpy(arg->strspace, dir, dirlen);
2032 	arg->strspace[dirlen] = '\0';
2033 
2034 	arg->strspace += dirlen + 1;
2035 	arg->serpath++;
2036     }
2037 
2038     return (NULL);
2039 }
2040 
2041 static int
2042 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2043 {
2044     struct dl_serinfo _info;
2045     struct fill_search_info_args args;
2046 
2047     args.request = RTLD_DI_SERINFOSIZE;
2048     args.serinfo = &_info;
2049 
2050     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2051     _info.dls_cnt  = 0;
2052 
2053     path_enumerate(ld_library_path, fill_search_info, &args);
2054     path_enumerate(obj->rpath, fill_search_info, &args);
2055     path_enumerate(gethints(), fill_search_info, &args);
2056     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2057 
2058 
2059     if (request == RTLD_DI_SERINFOSIZE) {
2060 	info->dls_size = _info.dls_size;
2061 	info->dls_cnt = _info.dls_cnt;
2062 	return (0);
2063     }
2064 
2065     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2066 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2067 	return (-1);
2068     }
2069 
2070     args.request  = RTLD_DI_SERINFO;
2071     args.serinfo  = info;
2072     args.serpath  = &info->dls_serpath[0];
2073     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2074 
2075     args.flags = LA_SER_LIBPATH;
2076     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2077 	return (-1);
2078 
2079     args.flags = LA_SER_RUNPATH;
2080     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2081 	return (-1);
2082 
2083     args.flags = LA_SER_CONFIG;
2084     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2085 	return (-1);
2086 
2087     args.flags = LA_SER_DEFAULT;
2088     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2089 	return (-1);
2090     return (0);
2091 }
2092 
2093 static int
2094 rtld_dirname(const char *path, char *bname)
2095 {
2096     const char *endp;
2097 
2098     /* Empty or NULL string gets treated as "." */
2099     if (path == NULL || *path == '\0') {
2100 	bname[0] = '.';
2101 	bname[1] = '\0';
2102 	return (0);
2103     }
2104 
2105     /* Strip trailing slashes */
2106     endp = path + strlen(path) - 1;
2107     while (endp > path && *endp == '/')
2108 	endp--;
2109 
2110     /* Find the start of the dir */
2111     while (endp > path && *endp != '/')
2112 	endp--;
2113 
2114     /* Either the dir is "/" or there are no slashes */
2115     if (endp == path) {
2116 	bname[0] = *endp == '/' ? '/' : '.';
2117 	bname[1] = '\0';
2118 	return (0);
2119     } else {
2120 	do {
2121 	    endp--;
2122 	} while (endp > path && *endp == '/');
2123     }
2124 
2125     if (endp - path + 2 > PATH_MAX)
2126     {
2127 	_rtld_error("Filename is too long: %s", path);
2128 	return(-1);
2129     }
2130 
2131     strncpy(bname, path, endp - path + 1);
2132     bname[endp - path + 1] = '\0';
2133     return (0);
2134 }
2135 
2136 static void
2137 linkmap_add(Obj_Entry *obj)
2138 {
2139     struct link_map *l = &obj->linkmap;
2140     struct link_map *prev;
2141 
2142     obj->linkmap.l_name = obj->path;
2143     obj->linkmap.l_addr = obj->mapbase;
2144     obj->linkmap.l_ld = obj->dynamic;
2145 #ifdef __mips__
2146     /* GDB needs load offset on MIPS to use the symbols */
2147     obj->linkmap.l_offs = obj->relocbase;
2148 #endif
2149 
2150     if (r_debug.r_map == NULL) {
2151 	r_debug.r_map = l;
2152 	return;
2153     }
2154 
2155     /*
2156      * Scan to the end of the list, but not past the entry for the
2157      * dynamic linker, which we want to keep at the very end.
2158      */
2159     for (prev = r_debug.r_map;
2160       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2161       prev = prev->l_next)
2162 	;
2163 
2164     /* Link in the new entry. */
2165     l->l_prev = prev;
2166     l->l_next = prev->l_next;
2167     if (l->l_next != NULL)
2168 	l->l_next->l_prev = l;
2169     prev->l_next = l;
2170 }
2171 
2172 static void
2173 linkmap_delete(Obj_Entry *obj)
2174 {
2175     struct link_map *l = &obj->linkmap;
2176 
2177     if (l->l_prev == NULL) {
2178 	if ((r_debug.r_map = l->l_next) != NULL)
2179 	    l->l_next->l_prev = NULL;
2180 	return;
2181     }
2182 
2183     if ((l->l_prev->l_next = l->l_next) != NULL)
2184 	l->l_next->l_prev = l->l_prev;
2185 }
2186 
2187 /*
2188  * Function for the debugger to set a breakpoint on to gain control.
2189  *
2190  * The two parameters allow the debugger to easily find and determine
2191  * what the runtime loader is doing and to whom it is doing it.
2192  *
2193  * When the loadhook trap is hit (r_debug_state, set at program
2194  * initialization), the arguments can be found on the stack:
2195  *
2196  *  +8   struct link_map *m
2197  *  +4   struct r_debug  *rd
2198  *  +0   RetAddr
2199  */
2200 void
2201 r_debug_state(struct r_debug* rd, struct link_map *m)
2202 {
2203 }
2204 
2205 /*
2206  * Get address of the pointer variable in the main program.
2207  */
2208 static const void **
2209 get_program_var_addr(const char *name)
2210 {
2211     const Obj_Entry *obj;
2212     unsigned long hash;
2213 
2214     hash = elf_hash(name);
2215     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2216 	const Elf_Sym *def;
2217 
2218 	if ((def = symlook_obj(name, hash, obj, false)) != NULL) {
2219 	    const void **addr;
2220 
2221 	    addr = (const void **)(obj->relocbase + def->st_value);
2222 	    return addr;
2223 	}
2224     }
2225     return NULL;
2226 }
2227 
2228 /*
2229  * Set a pointer variable in the main program to the given value.  This
2230  * is used to set key variables such as "environ" before any of the
2231  * init functions are called.
2232  */
2233 static void
2234 set_program_var(const char *name, const void *value)
2235 {
2236     const void **addr;
2237 
2238     if ((addr = get_program_var_addr(name)) != NULL) {
2239 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2240 	*addr = value;
2241     }
2242 }
2243 
2244 /*
2245  * This is a special version of getenv which is far more efficient
2246  * at finding LD_ environment vars.
2247  */
2248 static
2249 const char *
2250 _getenv_ld(const char *id)
2251 {
2252     const char *envp;
2253     int i, j;
2254     int idlen = strlen(id);
2255 
2256     if (ld_index == LD_ARY_CACHE)
2257 	return(getenv(id));
2258     if (ld_index == 0) {
2259 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
2260 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
2261 		ld_ary[j++] = envp;
2262 	}
2263 	if (j == 0)
2264 		ld_ary[j++] = "";
2265 	ld_index = j;
2266     }
2267     for (i = ld_index - 1; i >= 0; --i) {
2268 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
2269 	    return(ld_ary[i] + idlen + 1);
2270     }
2271     return(NULL);
2272 }
2273 
2274 /*
2275  * Given a symbol name in a referencing object, find the corresponding
2276  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2277  * no definition was found.  Returns a pointer to the Obj_Entry of the
2278  * defining object via the reference parameter DEFOBJ_OUT.
2279  */
2280 static const Elf_Sym *
2281 symlook_default(const char *name, unsigned long hash,
2282     const Obj_Entry *refobj, const Obj_Entry **defobj_out, bool in_plt)
2283 {
2284     DoneList donelist;
2285     const Elf_Sym *def;
2286     const Elf_Sym *symp;
2287     const Obj_Entry *obj;
2288     const Obj_Entry *defobj;
2289     const Objlist_Entry *elm;
2290     def = NULL;
2291     defobj = NULL;
2292     donelist_init(&donelist);
2293 
2294     /* Look first in the referencing object if linked symbolically. */
2295     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2296 	symp = symlook_obj(name, hash, refobj, in_plt);
2297 	if (symp != NULL) {
2298 	    def = symp;
2299 	    defobj = refobj;
2300 	}
2301     }
2302 
2303     /* Search all objects loaded at program start up. */
2304     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2305 	symp = symlook_list(name, hash, &list_main, &obj, in_plt, &donelist);
2306 	if (symp != NULL &&
2307 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2308 	    def = symp;
2309 	    defobj = obj;
2310 	}
2311     }
2312 
2313     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2314     STAILQ_FOREACH(elm, &list_global, link) {
2315        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2316            break;
2317        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2318          &donelist);
2319 	if (symp != NULL &&
2320 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2321 	    def = symp;
2322 	    defobj = obj;
2323 	}
2324     }
2325 
2326     /* Search all dlopened DAGs containing the referencing object. */
2327     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2328 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2329 	    break;
2330 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, in_plt,
2331 	  &donelist);
2332 	if (symp != NULL &&
2333 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2334 	    def = symp;
2335 	    defobj = obj;
2336 	}
2337     }
2338 
2339     /*
2340      * Search the dynamic linker itself, and possibly resolve the
2341      * symbol from there.  This is how the application links to
2342      * dynamic linker services such as dlopen.  Only the values listed
2343      * in the "exports" array can be resolved from the dynamic linker.
2344      */
2345     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2346 	symp = symlook_obj(name, hash, &obj_rtld, in_plt);
2347 	if (symp != NULL && is_exported(symp)) {
2348 	    def = symp;
2349 	    defobj = &obj_rtld;
2350 	}
2351     }
2352 
2353     if (def != NULL)
2354 	*defobj_out = defobj;
2355     return def;
2356 }
2357 
2358 static const Elf_Sym *
2359 symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2360   const Obj_Entry **defobj_out, bool in_plt, DoneList *dlp)
2361 {
2362     const Elf_Sym *symp;
2363     const Elf_Sym *def;
2364     const Obj_Entry *defobj;
2365     const Objlist_Entry *elm;
2366 
2367     def = NULL;
2368     defobj = NULL;
2369     STAILQ_FOREACH(elm, objlist, link) {
2370 	if (donelist_check(dlp, elm->obj))
2371 	    continue;
2372 	if ((symp = symlook_obj(name, hash, elm->obj, in_plt)) != NULL) {
2373 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2374 		def = symp;
2375 		defobj = elm->obj;
2376 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2377 		    break;
2378 	    }
2379 	}
2380     }
2381     if (def != NULL)
2382 	*defobj_out = defobj;
2383     return def;
2384 }
2385 
2386 /*
2387  * Search the symbol table of a single shared object for a symbol of
2388  * the given name.  Returns a pointer to the symbol, or NULL if no
2389  * definition was found.
2390  *
2391  * The symbol's hash value is passed in for efficiency reasons; that
2392  * eliminates many recomputations of the hash value.
2393  */
2394 const Elf_Sym *
2395 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2396   bool in_plt)
2397 {
2398     if (obj->buckets != NULL) {
2399 	unsigned long symnum = obj->buckets[hash % obj->nbuckets];
2400 
2401 	while (symnum != STN_UNDEF) {
2402 	    const Elf_Sym *symp;
2403 	    const char *strp;
2404 
2405 	    if (symnum >= obj->nchains)
2406 		return NULL;	/* Bad object */
2407 	    symp = obj->symtab + symnum;
2408 	    strp = obj->strtab + symp->st_name;
2409 
2410 	    if (name[0] == strp[0] && strcmp(name, strp) == 0)
2411 		return symp->st_shndx != SHN_UNDEF ||
2412 		  (!in_plt && symp->st_value != 0 &&
2413 		  ELF_ST_TYPE(symp->st_info) == STT_FUNC) ? symp : NULL;
2414 
2415 	    symnum = obj->chains[symnum];
2416 	}
2417     }
2418     return NULL;
2419 }
2420 
2421 static void
2422 trace_loaded_objects(Obj_Entry *obj)
2423 {
2424     const char *fmt1, *fmt2, *fmt, *main_local;
2425     int		c;
2426 
2427     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
2428 	main_local = "";
2429 
2430     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
2431 	fmt1 = "\t%o => %p (%x)\n";
2432 
2433     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
2434 	fmt2 = "\t%o (%x)\n";
2435 
2436     for (; obj; obj = obj->next) {
2437 	Needed_Entry		*needed;
2438 	char			*name, *path;
2439 	bool			is_lib;
2440 
2441 	for (needed = obj->needed; needed; needed = needed->next) {
2442 	    if (needed->obj != NULL) {
2443 		if (needed->obj->traced)
2444 		    continue;
2445 		needed->obj->traced = true;
2446 		path = needed->obj->path;
2447 	    } else
2448 		path = "not found";
2449 
2450 	    name = (char *)obj->strtab + needed->name;
2451 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
2452 
2453 	    fmt = is_lib ? fmt1 : fmt2;
2454 	    while ((c = *fmt++) != '\0') {
2455 		switch (c) {
2456 		default:
2457 		    putchar(c);
2458 		    continue;
2459 		case '\\':
2460 		    switch (c = *fmt) {
2461 		    case '\0':
2462 			continue;
2463 		    case 'n':
2464 			putchar('\n');
2465 			break;
2466 		    case 't':
2467 			putchar('\t');
2468 			break;
2469 		    }
2470 		    break;
2471 		case '%':
2472 		    switch (c = *fmt) {
2473 		    case '\0':
2474 			continue;
2475 		    case '%':
2476 		    default:
2477 			putchar(c);
2478 			break;
2479 		    case 'A':
2480 			printf("%s", main_local);
2481 			break;
2482 		    case 'a':
2483 			printf("%s", obj_main->path);
2484 			break;
2485 		    case 'o':
2486 			printf("%s", name);
2487 			break;
2488 #if 0
2489 		    case 'm':
2490 			printf("%d", sodp->sod_major);
2491 			break;
2492 		    case 'n':
2493 			printf("%d", sodp->sod_minor);
2494 			break;
2495 #endif
2496 		    case 'p':
2497 			printf("%s", path);
2498 			break;
2499 		    case 'x':
2500 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
2501 			break;
2502 		    }
2503 		    break;
2504 		}
2505 		++fmt;
2506 	    }
2507 	}
2508     }
2509 }
2510 
2511 /*
2512  * Unload a dlopened object and its dependencies from memory and from
2513  * our data structures.  It is assumed that the DAG rooted in the
2514  * object has already been unreferenced, and that the object has a
2515  * reference count of 0.
2516  */
2517 static void
2518 unload_object(Obj_Entry *root)
2519 {
2520     Obj_Entry *obj;
2521     Obj_Entry **linkp;
2522 
2523     assert(root->refcount == 0);
2524 
2525     /*
2526      * Pass over the DAG removing unreferenced objects from
2527      * appropriate lists.
2528      */
2529     unlink_object(root);
2530 
2531     /* Unmap all objects that are no longer referenced. */
2532     linkp = &obj_list->next;
2533     while ((obj = *linkp) != NULL) {
2534 	if (obj->refcount == 0) {
2535 	    dbg("unloading \"%s\"", obj->path);
2536 	    munmap(obj->mapbase, obj->mapsize);
2537 	    linkmap_delete(obj);
2538 	    *linkp = obj->next;
2539 	    obj_count--;
2540 	    obj_free(obj);
2541 	} else
2542 	    linkp = &obj->next;
2543     }
2544     obj_tail = linkp;
2545 }
2546 
2547 static void
2548 unlink_object(Obj_Entry *root)
2549 {
2550     const Needed_Entry *needed;
2551     Objlist_Entry *elm;
2552 
2553     if (root->refcount == 0) {
2554 	/* Remove the object from the RTLD_GLOBAL list. */
2555 	objlist_remove(&list_global, root);
2556 
2557     	/* Remove the object from all objects' DAG lists. */
2558     	STAILQ_FOREACH(elm, &root->dagmembers , link)
2559 	    objlist_remove(&elm->obj->dldags, root);
2560     }
2561 
2562     for (needed = root->needed;  needed != NULL;  needed = needed->next)
2563 	if (needed->obj != NULL)
2564 	    unlink_object(needed->obj);
2565 }
2566 
2567 static void
2568 unref_dag(Obj_Entry *root)
2569 {
2570     const Needed_Entry *needed;
2571 
2572     if (root->refcount == 0)
2573 	return;
2574     root->refcount--;
2575     if (root->refcount == 0)
2576 	for (needed = root->needed;  needed != NULL;  needed = needed->next)
2577 	    if (needed->obj != NULL)
2578 		unref_dag(needed->obj);
2579 }
2580 
2581 /*
2582  * Common code for MD __tls_get_addr().
2583  */
2584 void *
2585 tls_get_addr_common(void **dtvp, int index, size_t offset)
2586 {
2587     Elf_Addr* dtv = *dtvp;
2588 
2589     /* Check dtv generation in case new modules have arrived */
2590     if (dtv[0] != tls_dtv_generation) {
2591 	Elf_Addr* newdtv;
2592 	int to_copy;
2593 
2594 	wlock_acquire();
2595 
2596 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
2597 	to_copy = dtv[1];
2598 	if (to_copy > tls_max_index)
2599 	    to_copy = tls_max_index;
2600 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
2601 	newdtv[0] = tls_dtv_generation;
2602 	newdtv[1] = tls_max_index;
2603 	free(dtv);
2604 	*dtvp = newdtv;
2605 
2606 	wlock_release();
2607     }
2608 
2609     /* Dynamically allocate module TLS if necessary */
2610     if (!dtv[index + 1]) {
2611 	/* XXX
2612 	 * here we should avoid to be re-entered by signal handler
2613 	 * code, I assume wlock_acquire will masked all signals,
2614 	 * otherwise there is race and dead lock thread itself.
2615 	 */
2616 	wlock_acquire();
2617     	if (!dtv[index + 1])
2618 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
2619 	wlock_release();
2620     }
2621 
2622     return (void*) (dtv[index + 1] + offset);
2623 }
2624 
2625 #if defined(RTLD_STATIC_TLS_VARIANT_II)
2626 
2627 /*
2628  * Allocate the static TLS area.  Return a pointer to the TCB.  The
2629  * static area is based on negative offsets relative to the tcb.
2630  *
2631  * The TCB contains an errno pointer for the system call layer, but because
2632  * we are the RTLD we really have no idea how the caller was compiled so
2633  * the information has to be passed in.  errno can either be:
2634  *
2635  *	type 0	errno is a simple non-TLS global pointer.
2636  *		(special case for e.g. libc_rtld)
2637  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
2638  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
2639  */
2640 struct tls_tcb *
2641 allocate_tls(Obj_Entry *objs)
2642 {
2643     Obj_Entry *obj;
2644     size_t data_size;
2645     size_t dtv_size;
2646     struct tls_tcb *tcb;
2647     Elf_Addr *dtv;
2648     Elf_Addr addr;
2649 
2650     /*
2651      * Allocate the new TCB.  static TLS storage is placed just before the
2652      * TCB to support the %gs:OFFSET (negative offset) model.
2653      */
2654     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
2655 		~RTLD_STATIC_TLS_ALIGN_MASK;
2656     tcb = malloc(data_size + sizeof(*tcb));
2657     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
2658 
2659     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
2660     dtv = malloc(dtv_size);
2661     bzero(dtv, dtv_size);
2662 
2663 #ifdef RTLD_TCB_HAS_SELF_POINTER
2664     tcb->tcb_self = tcb;
2665 #endif
2666     tcb->tcb_dtv = dtv;
2667     tcb->tcb_pthread = NULL;
2668 
2669     dtv[0] = tls_dtv_generation;
2670     dtv[1] = tls_max_index;
2671 
2672     for (obj = objs; obj; obj = obj->next) {
2673 	if (obj->tlsoffset) {
2674 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
2675 	    memset((void *)(addr + obj->tlsinitsize),
2676 		   0, obj->tlssize - obj->tlsinitsize);
2677 	    if (obj->tlsinit)
2678 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
2679 	    dtv[obj->tlsindex + 1] = addr;
2680 	}
2681     }
2682     return(tcb);
2683 }
2684 
2685 void
2686 free_tls(struct tls_tcb *tcb)
2687 {
2688     Elf_Addr *dtv;
2689     int dtv_size, i;
2690     Elf_Addr tls_start, tls_end;
2691     size_t data_size;
2692 
2693     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
2694 		~RTLD_STATIC_TLS_ALIGN_MASK;
2695     dtv = tcb->tcb_dtv;
2696     dtv_size = dtv[1];
2697     tls_end = (Elf_Addr)tcb;
2698     tls_start = (Elf_Addr)tcb - data_size;
2699     for (i = 0; i < dtv_size; i++) {
2700 	if (dtv[i+2] != NULL && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
2701 	    free((void *)dtv[i+2]);
2702 	}
2703     }
2704     free((void *)tls_start);
2705 }
2706 
2707 #else
2708 #error "Unsupported TLS layout"
2709 #endif
2710 
2711 /*
2712  * Allocate TLS block for module with given index.
2713  */
2714 void *
2715 allocate_module_tls(int index)
2716 {
2717     Obj_Entry* obj;
2718     char* p;
2719 
2720     for (obj = obj_list; obj; obj = obj->next) {
2721 	if (obj->tlsindex == index)
2722 	    break;
2723     }
2724     if (!obj) {
2725 	_rtld_error("Can't find module with TLS index %d", index);
2726 	die();
2727     }
2728 
2729     p = malloc(obj->tlssize);
2730     memcpy(p, obj->tlsinit, obj->tlsinitsize);
2731     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
2732 
2733     return p;
2734 }
2735 
2736 bool
2737 allocate_tls_offset(Obj_Entry *obj)
2738 {
2739     size_t off;
2740 
2741     if (obj->tls_done)
2742 	return true;
2743 
2744     if (obj->tlssize == 0) {
2745 	obj->tls_done = true;
2746 	return true;
2747     }
2748 
2749     if (obj->tlsindex == 1)
2750 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
2751     else
2752 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
2753 				   obj->tlssize, obj->tlsalign);
2754 
2755     /*
2756      * If we have already fixed the size of the static TLS block, we
2757      * must stay within that size. When allocating the static TLS, we
2758      * leave a small amount of space spare to be used for dynamically
2759      * loading modules which use static TLS.
2760      */
2761     if (tls_static_space) {
2762 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
2763 	    return false;
2764     }
2765 
2766     tls_last_offset = obj->tlsoffset = off;
2767     tls_last_size = obj->tlssize;
2768     obj->tls_done = true;
2769 
2770     return true;
2771 }
2772 
2773 void
2774 free_tls_offset(Obj_Entry *obj)
2775 {
2776 #ifdef RTLD_STATIC_TLS_VARIANT_II
2777     /*
2778      * If we were the last thing to allocate out of the static TLS
2779      * block, we give our space back to the 'allocator'. This is a
2780      * simplistic workaround to allow libGL.so.1 to be loaded and
2781      * unloaded multiple times. We only handle the Variant II
2782      * mechanism for now - this really needs a proper allocator.
2783      */
2784     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
2785 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
2786 	tls_last_offset -= obj->tlssize;
2787 	tls_last_size = 0;
2788     }
2789 #endif
2790 }
2791 
2792 struct tls_tcb *
2793 _rtld_allocate_tls(void)
2794 {
2795     struct tls_tcb *new_tcb;
2796 
2797     wlock_acquire();
2798     new_tcb = allocate_tls(obj_list);
2799     wlock_release();
2800 
2801     return (new_tcb);
2802 }
2803 
2804 void
2805 _rtld_free_tls(struct tls_tcb *tcb)
2806 {
2807     wlock_acquire();
2808     free_tls(tcb);
2809     wlock_release();
2810 }
2811 
2812