xref: /dragonfly/libexec/rtld-elf/rtld.c (revision 650094e1)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD$
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/sysctl.h>
45 #include <sys/uio.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 #include <sys/resident.h>
49 #include <sys/tls.h>
50 
51 #include <machine/tls.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "rtld_printf.h"
67 
68 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
69 #define LD_ARY_CACHE	16
70 
71 /* Types. */
72 typedef void (*func_ptr_type)();
73 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
74 
75 /*
76  * Function declarations.
77  */
78 static const char *_getenv_ld(const char *id);
79 static void die(void) __dead2;
80 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
81     const Elf_Dyn **);
82 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *);
83 static void digest_dynamic(Obj_Entry *, int);
84 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
85 static Obj_Entry *dlcheck(void *);
86 static Obj_Entry *dlopen_object(const char *name, Obj_Entry *refobj,
87     int lo_flags, int mode);
88 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
89 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
90 static bool donelist_check(DoneList *, const Obj_Entry *);
91 static void errmsg_restore(char *);
92 static char *errmsg_save(void);
93 static void *fill_search_info(const char *, size_t, void *);
94 static char *find_library(const char *, const Obj_Entry *);
95 static const char *gethints(void);
96 static void init_dag(Obj_Entry *);
97 static void init_rtld(caddr_t, Elf_Auxinfo **);
98 static void initlist_add_neededs(Needed_Entry *, Objlist *);
99 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
100 static bool is_exported(const Elf_Sym *);
101 static void linkmap_add(Obj_Entry *);
102 static void linkmap_delete(Obj_Entry *);
103 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
104 static void unload_filtees(Obj_Entry *);
105 static int load_needed_objects(Obj_Entry *, int);
106 static int load_preload_objects(void);
107 static Obj_Entry *load_object(const char *, const Obj_Entry *, int);
108 static void map_stacks_exec(RtldLockState *);
109 static Obj_Entry *obj_from_addr(const void *);
110 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
111 static void objlist_call_init(Objlist *, RtldLockState *);
112 static void objlist_clear(Objlist *);
113 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
114 static void objlist_init(Objlist *);
115 static void objlist_push_head(Objlist *, Obj_Entry *);
116 static void objlist_push_tail(Objlist *, Obj_Entry *);
117 static void objlist_remove(Objlist *, Obj_Entry *);
118 static void *path_enumerate(const char *, path_enum_proc, void *);
119 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, RtldLockState *);
120 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
121     RtldLockState *lockstate);
122 static int rtld_dirname(const char *, char *);
123 static int rtld_dirname_abs(const char *, char *);
124 static void rtld_exit(void);
125 static char *search_library_path(const char *, const char *);
126 static const void **get_program_var_addr(const char *, RtldLockState *);
127 static void set_program_var(const char *, const void *);
128 static int symlook_default(SymLook *, const Obj_Entry *refobj);
129 static int symlook_global(SymLook *, DoneList *);
130 static void symlook_init_from_req(SymLook *, const SymLook *);
131 static int symlook_list(SymLook *, const Objlist *, DoneList *);
132 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
133 static int symlook_obj1(SymLook *, const Obj_Entry *);
134 static void trace_loaded_objects(Obj_Entry *);
135 static void unlink_object(Obj_Entry *);
136 static void unload_object(Obj_Entry *);
137 static void unref_dag(Obj_Entry *);
138 static void ref_dag(Obj_Entry *);
139 static int origin_subst_one(char **, const char *, const char *,
140   const char *, char *);
141 static char *origin_subst(const char *, const char *);
142 static int  rtld_verify_versions(const Objlist *);
143 static int  rtld_verify_object_versions(Obj_Entry *);
144 static void object_add_name(Obj_Entry *, const char *);
145 static int  object_match_name(const Obj_Entry *, const char *);
146 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
147 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
148     struct dl_phdr_info *phdr_info);
149 
150 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
151 
152 /*
153  * Data declarations.
154  */
155 static char *error_message;	/* Message for dlerror(), or NULL */
156 struct r_debug r_debug;		/* for GDB; */
157 static bool libmap_disable;	/* Disable libmap */
158 static bool ld_loadfltr;	/* Immediate filters processing */
159 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
160 static bool trust;		/* False for setuid and setgid programs */
161 static bool dangerous_ld_env;	/* True if environment variables have been
162 				   used to affect the libraries loaded */
163 static const char *ld_bind_now;	/* Environment variable for immediate binding */
164 static const char *ld_debug;	/* Environment variable for debugging */
165 static const char *ld_library_path; /* Environment variable for search path */
166 static char *ld_preload;	/* Environment variable for libraries to
167 				   load first */
168 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
169 static const char *ld_tracing;	/* Called from ldd to print libs */
170 static const char *ld_utrace;	/* Use utrace() to log events. */
171 static int (*rtld_functrace)(   /* Optional function call tracing hook */
172 	const char *caller_obj,
173 	const char *callee_obj,
174 	const char *callee_func,
175 	void *stack);
176 static const Obj_Entry *rtld_functrace_obj;	/* Object thereof */
177 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
178 static Obj_Entry **obj_tail;	/* Link field of last object in list */
179 static Obj_Entry **preload_tail;
180 static Obj_Entry *obj_main;	/* The main program shared object */
181 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
182 static unsigned int obj_count;	/* Number of objects in obj_list */
183 static unsigned int obj_loads;	/* Number of objects in obj_list */
184 
185 static int	ld_resident;	/* Non-zero if resident */
186 static const char *ld_ary[LD_ARY_CACHE];
187 static int	ld_index;
188 static Objlist initlist;
189 
190 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
191   STAILQ_HEAD_INITIALIZER(list_global);
192 static Objlist list_main =	/* Objects loaded at program startup */
193   STAILQ_HEAD_INITIALIZER(list_main);
194 static Objlist list_fini =	/* Objects needing fini() calls */
195   STAILQ_HEAD_INITIALIZER(list_fini);
196 
197 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
198 
199 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
200 
201 extern Elf_Dyn _DYNAMIC;
202 #pragma weak _DYNAMIC
203 #ifndef RTLD_IS_DYNAMIC
204 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
205 #endif
206 
207 #ifdef ENABLE_OSRELDATE
208 int osreldate;
209 #endif
210 
211 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
212 static int max_stack_flags;
213 
214 /*
215  * These are the functions the dynamic linker exports to application
216  * programs.  They are the only symbols the dynamic linker is willing
217  * to export from itself.
218  */
219 static func_ptr_type exports[] = {
220     (func_ptr_type) &_rtld_error,
221     (func_ptr_type) &dlclose,
222     (func_ptr_type) &dlerror,
223     (func_ptr_type) &dlopen,
224     (func_ptr_type) &dlfunc,
225     (func_ptr_type) &dlsym,
226     (func_ptr_type) &dlvsym,
227     (func_ptr_type) &dladdr,
228     (func_ptr_type) &dlinfo,
229     (func_ptr_type) &dl_iterate_phdr,
230 #ifdef __i386__
231     (func_ptr_type) &___tls_get_addr,
232 #endif
233     (func_ptr_type) &__tls_get_addr,
234     (func_ptr_type) &__tls_get_addr_tcb,
235     (func_ptr_type) &_rtld_allocate_tls,
236     (func_ptr_type) &_rtld_free_tls,
237     (func_ptr_type) &_rtld_call_init,
238     (func_ptr_type) &_rtld_thread_init,
239     (func_ptr_type) &_rtld_addr_phdr,
240     (func_ptr_type) &_rtld_get_stack_prot,
241     NULL
242 };
243 
244 /*
245  * Global declarations normally provided by crt1.  The dynamic linker is
246  * not built with crt1, so we have to provide them ourselves.
247  */
248 char *__progname;
249 char **environ;
250 
251 /*
252  * Globals to control TLS allocation.
253  */
254 size_t tls_last_offset;		/* Static TLS offset of last module */
255 size_t tls_last_size;		/* Static TLS size of last module */
256 size_t tls_static_space;	/* Static TLS space allocated */
257 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
258 int tls_max_index = 1;		/* Largest module index allocated */
259 
260 /*
261  * Fill in a DoneList with an allocation large enough to hold all of
262  * the currently-loaded objects.  Keep this as a macro since it calls
263  * alloca and we want that to occur within the scope of the caller.
264  */
265 #define donelist_init(dlp)					\
266     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
267     assert((dlp)->objs != NULL),				\
268     (dlp)->num_alloc = obj_count,				\
269     (dlp)->num_used = 0)
270 
271 #define	UTRACE_DLOPEN_START		1
272 #define	UTRACE_DLOPEN_STOP		2
273 #define	UTRACE_DLCLOSE_START		3
274 #define	UTRACE_DLCLOSE_STOP		4
275 #define	UTRACE_LOAD_OBJECT		5
276 #define	UTRACE_UNLOAD_OBJECT		6
277 #define	UTRACE_ADD_RUNDEP		7
278 #define	UTRACE_PRELOAD_FINISHED		8
279 #define	UTRACE_INIT_CALL		9
280 #define	UTRACE_FINI_CALL		10
281 
282 struct utrace_rtld {
283 	char sig[4];			/* 'RTLD' */
284 	int event;
285 	void *handle;
286 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
287 	size_t mapsize;
288 	int refcnt;			/* Used for 'mode' */
289 	char name[MAXPATHLEN];
290 };
291 
292 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
293 	if (ld_utrace != NULL)					\
294 		ld_utrace_log(e, h, mb, ms, r, n);		\
295 } while (0)
296 
297 static void
298 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
299     int refcnt, const char *name)
300 {
301 	struct utrace_rtld ut;
302 
303 	ut.sig[0] = 'R';
304 	ut.sig[1] = 'T';
305 	ut.sig[2] = 'L';
306 	ut.sig[3] = 'D';
307 	ut.event = event;
308 	ut.handle = handle;
309 	ut.mapbase = mapbase;
310 	ut.mapsize = mapsize;
311 	ut.refcnt = refcnt;
312 	bzero(ut.name, sizeof(ut.name));
313 	if (name)
314 		strlcpy(ut.name, name, sizeof(ut.name));
315 	utrace(&ut, sizeof(ut));
316 }
317 
318 /*
319  * Main entry point for dynamic linking.  The first argument is the
320  * stack pointer.  The stack is expected to be laid out as described
321  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
322  * Specifically, the stack pointer points to a word containing
323  * ARGC.  Following that in the stack is a null-terminated sequence
324  * of pointers to argument strings.  Then comes a null-terminated
325  * sequence of pointers to environment strings.  Finally, there is a
326  * sequence of "auxiliary vector" entries.
327  *
328  * The second argument points to a place to store the dynamic linker's
329  * exit procedure pointer and the third to a place to store the main
330  * program's object.
331  *
332  * The return value is the main program's entry point.
333  */
334 func_ptr_type
335 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
336 {
337     Elf_Auxinfo *aux_info[AT_COUNT];
338     int i;
339     int argc;
340     char **argv;
341     char **env;
342     Elf_Auxinfo *aux;
343     Elf_Auxinfo *auxp;
344     const char *argv0;
345     Objlist_Entry *entry;
346     Obj_Entry *obj;
347 
348     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
349              Obj_Entry **preload_tail;
350              Objlist initlist;
351        from global to here.  It will break the DWARF2 unwind scheme.
352        The system compilers were unaffected, but not gcc 4.6
353     */
354 
355     /*
356      * On entry, the dynamic linker itself has not been relocated yet.
357      * Be very careful not to reference any global data until after
358      * init_rtld has returned.  It is OK to reference file-scope statics
359      * and string constants, and to call static and global functions.
360      */
361 
362     /* Find the auxiliary vector on the stack. */
363     argc = *sp++;
364     argv = (char **) sp;
365     sp += argc + 1;	/* Skip over arguments and NULL terminator */
366     env = (char **) sp;
367 
368     /*
369      * If we aren't already resident we have to dig out some more info.
370      * Note that auxinfo does not exist when we are resident.
371      *
372      * I'm not sure about the ld_resident check.  It seems to read zero
373      * prior to relocation, which is what we want.  When running from a
374      * resident copy everything will be relocated so we are definitely
375      * good there.
376      */
377     if (ld_resident == 0)  {
378 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
379 	    ;
380 	aux = (Elf_Auxinfo *) sp;
381 
382 	/* Digest the auxiliary vector. */
383 	for (i = 0;  i < AT_COUNT;  i++)
384 	    aux_info[i] = NULL;
385 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
386 	    if (auxp->a_type < AT_COUNT)
387 		aux_info[auxp->a_type] = auxp;
388 	}
389 
390 	/* Initialize and relocate ourselves. */
391 	assert(aux_info[AT_BASE] != NULL);
392 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
393     }
394 
395     ld_index = 0;	/* don't use old env cache in case we are resident */
396     __progname = obj_rtld.path;
397     argv0 = argv[0] != NULL ? argv[0] : "(null)";
398     environ = env;
399 
400     trust = !issetugid();
401 
402     ld_bind_now = _getenv_ld("LD_BIND_NOW");
403     /*
404      * If the process is tainted, then we un-set the dangerous environment
405      * variables.  The process will be marked as tainted until setuid(2)
406      * is called.  If any child process calls setuid(2) we do not want any
407      * future processes to honor the potentially un-safe variables.
408      */
409     if (!trust) {
410 	if (   unsetenv("LD_DEBUG")
411 	    || unsetenv("LD_PRELOAD")
412 	    || unsetenv("LD_LIBRARY_PATH")
413 	    || unsetenv("LD_ELF_HINTS_PATH")
414 	    || unsetenv("LD_LIBMAP")
415 	    || unsetenv("LD_LIBMAP_DISABLE")
416 	    || unsetenv("LD_LOADFLTR")
417 	) {
418 	    _rtld_error("environment corrupt; aborting");
419 	    die();
420 	}
421     }
422     ld_debug = _getenv_ld("LD_DEBUG");
423     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
424     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
425     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
426     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
427     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
428     ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
429     dangerous_ld_env = (ld_library_path != NULL)
430 			|| (ld_preload != NULL)
431 			|| (ld_elf_hints_path != NULL)
432 			|| ld_loadfltr
433 			|| (libmap_override != NULL)
434 			|| libmap_disable
435 			;
436     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
437     ld_utrace = _getenv_ld("LD_UTRACE");
438 
439     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
440 	ld_elf_hints_path = _PATH_ELF_HINTS;
441 
442     if (ld_debug != NULL && *ld_debug != '\0')
443 	debug = 1;
444     dbg("%s is initialized, base address = %p", __progname,
445 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
446     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
447     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
448 
449     dbg("initializing thread locks");
450     lockdflt_init();
451 
452     /*
453      * If we are resident we can skip work that we have already done.
454      * Note that the stack is reset and there is no Elf_Auxinfo
455      * when running from a resident image, and the static globals setup
456      * between here and resident_skip will have already been setup.
457      */
458     if (ld_resident)
459 	goto resident_skip1;
460 
461     /*
462      * Load the main program, or process its program header if it is
463      * already loaded.
464      */
465     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
466 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
467 	dbg("loading main program");
468 	obj_main = map_object(fd, argv0, NULL);
469 	close(fd);
470 	if (obj_main == NULL)
471 	    die();
472 	max_stack_flags = obj->stack_flags;
473     } else {				/* Main program already loaded. */
474 	const Elf_Phdr *phdr;
475 	int phnum;
476 	caddr_t entry;
477 
478 	dbg("processing main program's program header");
479 	assert(aux_info[AT_PHDR] != NULL);
480 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
481 	assert(aux_info[AT_PHNUM] != NULL);
482 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
483 	assert(aux_info[AT_PHENT] != NULL);
484 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
485 	assert(aux_info[AT_ENTRY] != NULL);
486 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
487 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
488 	    die();
489     }
490 
491     char buf[MAXPATHLEN];
492     if (aux_info[AT_EXECPATH] != 0) {
493 	char *kexecpath;
494 
495 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
496 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
497 	if (kexecpath[0] == '/')
498 		obj_main->path = kexecpath;
499 	else if (getcwd(buf, sizeof(buf)) == NULL ||
500 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
501 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
502 		obj_main->path = xstrdup(argv0);
503 	else
504 		obj_main->path = xstrdup(buf);
505     } else {
506 	char resolved[MAXPATHLEN];
507 	dbg("No AT_EXECPATH");
508 	if (argv0[0] == '/') {
509 		if (realpath(argv0, resolved) != NULL)
510 			obj_main->path = xstrdup(resolved);
511 		else
512 			obj_main->path = xstrdup(argv0);
513 	} else {
514 		if (getcwd(buf, sizeof(buf)) != NULL
515 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
516 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
517 		    && access(buf, R_OK) == 0
518 		    && realpath(buf, resolved) != NULL)
519 			obj_main->path = xstrdup(resolved);
520 		else
521 			obj_main->path = xstrdup(argv0);
522 	}
523     }
524     dbg("obj_main path %s", obj_main->path);
525     obj_main->mainprog = true;
526 
527     if (aux_info[AT_STACKPROT] != NULL &&
528       aux_info[AT_STACKPROT]->a_un.a_val != 0)
529 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
530 
531     /*
532      * Get the actual dynamic linker pathname from the executable if
533      * possible.  (It should always be possible.)  That ensures that
534      * gdb will find the right dynamic linker even if a non-standard
535      * one is being used.
536      */
537     if (obj_main->interp != NULL &&
538       strcmp(obj_main->interp, obj_rtld.path) != 0) {
539 	free(obj_rtld.path);
540 	obj_rtld.path = xstrdup(obj_main->interp);
541 	__progname = obj_rtld.path;
542     }
543 
544     digest_dynamic(obj_main, 0);
545 
546     linkmap_add(obj_main);
547     linkmap_add(&obj_rtld);
548 
549     /* Link the main program into the list of objects. */
550     *obj_tail = obj_main;
551     obj_tail = &obj_main->next;
552     obj_count++;
553     obj_loads++;
554     /* Make sure we don't call the main program's init and fini functions. */
555     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
556 
557     /* Initialize a fake symbol for resolving undefined weak references. */
558     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
559     sym_zero.st_shndx = SHN_UNDEF;
560     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
561 
562     if (!libmap_disable)
563         libmap_disable = (bool)lm_init(libmap_override);
564 
565     dbg("loading LD_PRELOAD libraries");
566     if (load_preload_objects() == -1)
567 	die();
568     preload_tail = obj_tail;
569 
570     dbg("loading needed objects");
571     if (load_needed_objects(obj_main, 0) == -1)
572 	die();
573 
574     /* Make a list of all objects loaded at startup. */
575     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
576 	objlist_push_tail(&list_main, obj);
577 	obj->refcount++;
578     }
579 
580     dbg("checking for required versions");
581     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
582 	die();
583 
584 resident_skip1:
585 
586     if (ld_tracing) {		/* We're done */
587 	trace_loaded_objects(obj_main);
588 	exit(0);
589     }
590 
591     if (ld_resident)		/* XXX clean this up! */
592 	goto resident_skip2;
593 
594     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
595        dump_relocations(obj_main);
596        exit (0);
597     }
598 
599     /* setup TLS for main thread */
600     dbg("initializing initial thread local storage");
601     STAILQ_FOREACH(entry, &list_main, link) {
602 	/*
603 	 * Allocate all the initial objects out of the static TLS
604 	 * block even if they didn't ask for it.
605 	 */
606 	allocate_tls_offset(entry->obj);
607     }
608 
609     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
610 
611     /*
612      * Do not try to allocate the TLS here, let libc do it itself.
613      * (crt1 for the program will call _init_tls())
614      */
615 
616     if (relocate_objects(obj_main,
617       ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld, NULL) == -1)
618 	die();
619 
620     dbg("doing copy relocations");
621     if (do_copy_relocations(obj_main) == -1)
622 	die();
623 
624 resident_skip2:
625 
626     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
627 	if (exec_sys_unregister(-1) < 0) {
628 	    dbg("exec_sys_unregister failed %d\n", errno);
629 	    exit(errno);
630 	}
631 	dbg("exec_sys_unregister success\n");
632 	exit(0);
633     }
634 
635     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
636        dump_relocations(obj_main);
637        exit (0);
638     }
639 
640     dbg("initializing key program variables");
641     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
642     set_program_var("environ", env);
643     set_program_var("__elf_aux_vector", aux);
644 
645     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
646 	extern void resident_start(void);
647 	ld_resident = 1;
648 	if (exec_sys_register(resident_start) < 0) {
649 	    dbg("exec_sys_register failed %d\n", errno);
650 	    exit(errno);
651 	}
652 	dbg("exec_sys_register success\n");
653 	exit(0);
654     }
655 
656     /* Make a list of init functions to call. */
657     objlist_init(&initlist);
658     initlist_add_objects(obj_list, preload_tail, &initlist);
659 
660     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
661 
662     map_stacks_exec(NULL);
663 
664     dbg("resolving ifuncs");
665     if (resolve_objects_ifunc(obj_main,
666       ld_bind_now != NULL && *ld_bind_now != '\0', NULL) == -1)
667 	die();
668 
669     /*
670      * Do NOT call the initlist here, give libc a chance to set up
671      * the initial TLS segment.  crt1 will then call _rtld_call_init().
672      */
673 
674     dbg("transferring control to program entry point = %p", obj_main->entry);
675 
676     /* Return the exit procedure and the program entry point. */
677     *exit_proc = rtld_exit;
678     *objp = obj_main;
679     return (func_ptr_type) obj_main->entry;
680 }
681 
682 /*
683  * Call the initialization list for dynamically loaded libraries.
684  * (called from crt1.c).
685  */
686 void
687 _rtld_call_init(void)
688 {
689     RtldLockState lockstate;
690     Obj_Entry *obj;
691 
692     wlock_acquire(rtld_bind_lock, &lockstate);
693     objlist_call_init(&initlist, &lockstate);
694     objlist_clear(&initlist);
695     dbg("loading filtees");
696     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
697 	if (ld_loadfltr || obj->z_loadfltr)
698 	    load_filtees(obj, 0, &lockstate);
699     }
700     lock_release(rtld_bind_lock, &lockstate);
701 }
702 
703 void *
704 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
705 {
706 	void *ptr;
707 	Elf_Addr target;
708 
709 	ptr = (void *)make_function_pointer(def, obj);
710 	target = ((Elf_Addr (*)(void))ptr)();
711 	return ((void *)target);
712 }
713 
714 Elf_Addr
715 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
716 {
717     const Elf_Rel *rel;
718     const Elf_Sym *def;
719     const Obj_Entry *defobj;
720     Elf_Addr *where;
721     Elf_Addr target;
722     RtldLockState lockstate;
723 
724     rlock_acquire(rtld_bind_lock, &lockstate);
725     if (sigsetjmp(lockstate.env, 0) != 0)
726 	    lock_upgrade(rtld_bind_lock, &lockstate);
727     if (obj->pltrel)
728 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
729     else
730 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
731 
732     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
733     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
734 	&lockstate);
735     if (def == NULL)
736 	die();
737     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
738 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
739     else
740         target = (Elf_Addr)(defobj->relocbase + def->st_value);
741 
742     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
743       defobj->strtab + def->st_name, basename(obj->path),
744       (void *)target, basename(defobj->path));
745 
746     /*
747      * If we have a function call tracing hook, and the
748      * hook would like to keep tracing this one function,
749      * prevent the relocation so we will wind up here
750      * the next time again.
751      *
752      * We don't want to functrace calls from the functracer
753      * to avoid recursive loops.
754      */
755     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
756 	if (rtld_functrace(obj->path,
757 			   defobj->path,
758 			   defobj->strtab + def->st_name,
759 			   stack))
760 	lock_release(rtld_bind_lock, &lockstate);
761 	return target;
762     }
763 
764     /*
765      * Write the new contents for the jmpslot. Note that depending on
766      * architecture, the value which we need to return back to the
767      * lazy binding trampoline may or may not be the target
768      * address. The value returned from reloc_jmpslot() is the value
769      * that the trampoline needs.
770      */
771     target = reloc_jmpslot(where, target, defobj, obj, rel);
772     lock_release(rtld_bind_lock, &lockstate);
773     return target;
774 }
775 
776 /*
777  * Error reporting function.  Use it like printf.  If formats the message
778  * into a buffer, and sets things up so that the next call to dlerror()
779  * will return the message.
780  */
781 void
782 _rtld_error(const char *fmt, ...)
783 {
784     static char buf[512];
785     va_list ap;
786 
787     va_start(ap, fmt);
788     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
789     error_message = buf;
790     va_end(ap);
791 }
792 
793 /*
794  * Return a dynamically-allocated copy of the current error message, if any.
795  */
796 static char *
797 errmsg_save(void)
798 {
799     return error_message == NULL ? NULL : xstrdup(error_message);
800 }
801 
802 /*
803  * Restore the current error message from a copy which was previously saved
804  * by errmsg_save().  The copy is freed.
805  */
806 static void
807 errmsg_restore(char *saved_msg)
808 {
809     if (saved_msg == NULL)
810 	error_message = NULL;
811     else {
812 	_rtld_error("%s", saved_msg);
813 	free(saved_msg);
814     }
815 }
816 
817 const char *
818 basename(const char *name)
819 {
820     const char *p = strrchr(name, '/');
821     return p != NULL ? p + 1 : name;
822 }
823 
824 static struct utsname uts;
825 
826 static int
827 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
828     char *may_free)
829 {
830     const char *p, *p1;
831     char *res1;
832     int subst_len;
833     int kw_len;
834 
835     res1 = *res = NULL;
836     p = real;
837     subst_len = kw_len = 0;
838     for (;;) {
839 	 p1 = strstr(p, kw);
840 	 if (p1 != NULL) {
841 	     if (subst_len == 0) {
842 		 subst_len = strlen(subst);
843 		 kw_len = strlen(kw);
844 	     }
845 	     if (*res == NULL) {
846 		 *res = xmalloc(PATH_MAX);
847 		 res1 = *res;
848 	     }
849 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
850 		 _rtld_error("Substitution of %s in %s cannot be performed",
851 		     kw, real);
852 		 if (may_free != NULL)
853 		     free(may_free);
854 		 free(res);
855 		 return (false);
856 	     }
857 	     memcpy(res1, p, p1 - p);
858 	     res1 += p1 - p;
859 	     memcpy(res1, subst, subst_len);
860 	     res1 += subst_len;
861 	     p = p1 + kw_len;
862 	 } else {
863 	    if (*res == NULL) {
864 		if (may_free != NULL)
865 		    *res = may_free;
866 		else
867 		    *res = xstrdup(real);
868 		return (true);
869 	    }
870 	    *res1 = '\0';
871 	    if (may_free != NULL)
872 		free(may_free);
873 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
874 		free(res);
875 		return (false);
876 	    }
877 	    return (true);
878 	 }
879     }
880 }
881 
882 static char *
883 origin_subst(const char *real, const char *origin_path)
884 {
885     char *res1, *res2, *res3, *res4;
886 
887     if (uts.sysname[0] == '\0') {
888 	if (uname(&uts) != 0) {
889 	    _rtld_error("utsname failed: %d", errno);
890 	    return (NULL);
891 	}
892     }
893     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
894 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
895 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
896 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
897 	    return (NULL);
898     return (res4);
899 }
900 
901 static void
902 die(void)
903 {
904     const char *msg = dlerror();
905 
906     if (msg == NULL)
907 	msg = "Fatal error";
908     rtld_fdputstr(STDERR_FILENO, msg);
909     _exit(1);
910 }
911 
912 /*
913  * Process a shared object's DYNAMIC section, and save the important
914  * information in its Obj_Entry structure.
915  */
916 static void
917 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
918     const Elf_Dyn **dyn_soname)
919 {
920     const Elf_Dyn *dynp;
921     Needed_Entry **needed_tail = &obj->needed;
922     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
923     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
924     int plttype = DT_REL;
925 
926     *dyn_rpath = NULL;
927     *dyn_soname = NULL;
928 
929     obj->bind_now = false;
930     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
931 	switch (dynp->d_tag) {
932 
933 	case DT_REL:
934 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
935 	    break;
936 
937 	case DT_RELSZ:
938 	    obj->relsize = dynp->d_un.d_val;
939 	    break;
940 
941 	case DT_RELENT:
942 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
943 	    break;
944 
945 	case DT_JMPREL:
946 	    obj->pltrel = (const Elf_Rel *)
947 	      (obj->relocbase + dynp->d_un.d_ptr);
948 	    break;
949 
950 	case DT_PLTRELSZ:
951 	    obj->pltrelsize = dynp->d_un.d_val;
952 	    break;
953 
954 	case DT_RELA:
955 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
956 	    break;
957 
958 	case DT_RELASZ:
959 	    obj->relasize = dynp->d_un.d_val;
960 	    break;
961 
962 	case DT_RELAENT:
963 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
964 	    break;
965 
966 	case DT_PLTREL:
967 	    plttype = dynp->d_un.d_val;
968 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
969 	    break;
970 
971 	case DT_SYMTAB:
972 	    obj->symtab = (const Elf_Sym *)
973 	      (obj->relocbase + dynp->d_un.d_ptr);
974 	    break;
975 
976 	case DT_SYMENT:
977 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
978 	    break;
979 
980 	case DT_STRTAB:
981 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
982 	    break;
983 
984 	case DT_STRSZ:
985 	    obj->strsize = dynp->d_un.d_val;
986 	    break;
987 
988 	case DT_VERNEED:
989 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
990 		dynp->d_un.d_val);
991 	    break;
992 
993 	case DT_VERNEEDNUM:
994 	    obj->verneednum = dynp->d_un.d_val;
995 	    break;
996 
997 	case DT_VERDEF:
998 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
999 		dynp->d_un.d_val);
1000 	    break;
1001 
1002 	case DT_VERDEFNUM:
1003 	    obj->verdefnum = dynp->d_un.d_val;
1004 	    break;
1005 
1006 	case DT_VERSYM:
1007 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1008 		dynp->d_un.d_val);
1009 	    break;
1010 
1011 	case DT_HASH:
1012 	    {
1013 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
1014 		  (obj->relocbase + dynp->d_un.d_ptr);
1015 		obj->nbuckets = hashtab[0];
1016 		obj->nchains = hashtab[1];
1017 		obj->buckets = hashtab + 2;
1018 		obj->chains = obj->buckets + obj->nbuckets;
1019 	    }
1020 	    break;
1021 
1022 	case DT_NEEDED:
1023 	    if (!obj->rtld) {
1024 		Needed_Entry *nep = NEW(Needed_Entry);
1025 		nep->name = dynp->d_un.d_val;
1026 		nep->obj = NULL;
1027 		nep->next = NULL;
1028 
1029 		*needed_tail = nep;
1030 		needed_tail = &nep->next;
1031 	    }
1032 	    break;
1033 
1034 	case DT_FILTER:
1035 	    if (!obj->rtld) {
1036 		Needed_Entry *nep = NEW(Needed_Entry);
1037 		nep->name = dynp->d_un.d_val;
1038 		nep->obj = NULL;
1039 		nep->next = NULL;
1040 
1041 		*needed_filtees_tail = nep;
1042 		needed_filtees_tail = &nep->next;
1043 	    }
1044 	    break;
1045 
1046 	case DT_AUXILIARY:
1047 	    if (!obj->rtld) {
1048 		Needed_Entry *nep = NEW(Needed_Entry);
1049 		nep->name = dynp->d_un.d_val;
1050 		nep->obj = NULL;
1051 		nep->next = NULL;
1052 
1053 		*needed_aux_filtees_tail = nep;
1054 		needed_aux_filtees_tail = &nep->next;
1055 	    }
1056 	    break;
1057 
1058 	case DT_PLTGOT:
1059 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1060 	    break;
1061 
1062 	case DT_TEXTREL:
1063 	    obj->textrel = true;
1064 	    break;
1065 
1066 	case DT_SYMBOLIC:
1067 	    obj->symbolic = true;
1068 	    break;
1069 
1070 	case DT_RPATH:
1071 	case DT_RUNPATH:	/* XXX: process separately */
1072 	    /*
1073 	     * We have to wait until later to process this, because we
1074 	     * might not have gotten the address of the string table yet.
1075 	     */
1076 	    *dyn_rpath = dynp;
1077 	    break;
1078 
1079 	case DT_SONAME:
1080 	    *dyn_soname = dynp;
1081 	    break;
1082 
1083 	case DT_INIT:
1084 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1085 	    break;
1086 
1087 	case DT_FINI:
1088 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1089 	    break;
1090 
1091 	case DT_DEBUG:
1092 	    /* XXX - not implemented yet */
1093 	    if (!early)
1094 		dbg("Filling in DT_DEBUG entry");
1095 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1096 	    break;
1097 
1098 	case DT_FLAGS:
1099 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1100 		    obj->z_origin = true;
1101 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1102 		    obj->symbolic = true;
1103 		if (dynp->d_un.d_val & DF_TEXTREL)
1104 		    obj->textrel = true;
1105 		if (dynp->d_un.d_val & DF_BIND_NOW)
1106 		    obj->bind_now = true;
1107 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1108 		    ;*/
1109 	    break;
1110 
1111 	case DT_FLAGS_1:
1112 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1113 		    obj->z_noopen = true;
1114 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1115 		    obj->z_origin = true;
1116 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1117 		    XXX ;*/
1118 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1119 		    obj->bind_now = true;
1120 		if (dynp->d_un.d_val & DF_1_NODELETE)
1121 		    obj->z_nodelete = true;
1122 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1123 		    obj->z_loadfltr = true;
1124 	    break;
1125 
1126 	default:
1127 	    if (!early) {
1128 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1129 		    (long)dynp->d_tag);
1130 	    }
1131 	    break;
1132 	}
1133     }
1134 
1135     obj->traced = false;
1136 
1137     if (plttype == DT_RELA) {
1138 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1139 	obj->pltrel = NULL;
1140 	obj->pltrelasize = obj->pltrelsize;
1141 	obj->pltrelsize = 0;
1142     }
1143 }
1144 
1145 static void
1146 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1147     const Elf_Dyn *dyn_soname)
1148 {
1149 
1150     if (obj->z_origin && obj->origin_path == NULL) {
1151 	obj->origin_path = xmalloc(PATH_MAX);
1152 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1153 	    die();
1154     }
1155 
1156     if (dyn_rpath != NULL) {
1157 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1158 	if (obj->z_origin)
1159 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1160     }
1161 
1162     if (dyn_soname != NULL)
1163 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1164 }
1165 
1166 static void
1167 digest_dynamic(Obj_Entry *obj, int early)
1168 {
1169 	const Elf_Dyn *dyn_rpath;
1170 	const Elf_Dyn *dyn_soname;
1171 
1172 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname);
1173 	digest_dynamic2(obj, dyn_rpath, dyn_soname);
1174 }
1175 
1176 /*
1177  * Process a shared object's program header.  This is used only for the
1178  * main program, when the kernel has already loaded the main program
1179  * into memory before calling the dynamic linker.  It creates and
1180  * returns an Obj_Entry structure.
1181  */
1182 static Obj_Entry *
1183 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1184 {
1185     Obj_Entry *obj;
1186     const Elf_Phdr *phlimit = phdr + phnum;
1187     const Elf_Phdr *ph;
1188     int nsegs = 0;
1189 
1190     obj = obj_new();
1191     for (ph = phdr;  ph < phlimit;  ph++) {
1192 	if (ph->p_type != PT_PHDR)
1193 	    continue;
1194 
1195 	obj->phdr = phdr;
1196 	obj->phsize = ph->p_memsz;
1197 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1198 	break;
1199     }
1200 
1201     obj->stack_flags = PF_X | PF_R | PF_W;
1202 
1203     for (ph = phdr;  ph < phlimit;  ph++) {
1204 	switch (ph->p_type) {
1205 
1206 	case PT_INTERP:
1207 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1208 	    break;
1209 
1210 	case PT_LOAD:
1211 	    if (nsegs == 0) {	/* First load segment */
1212 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1213 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1214 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1215 		  obj->vaddrbase;
1216 	    } else {		/* Last load segment */
1217 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1218 		  obj->vaddrbase;
1219 	    }
1220 	    nsegs++;
1221 	    break;
1222 
1223 	case PT_DYNAMIC:
1224 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1225 	    break;
1226 
1227 	case PT_TLS:
1228 	    obj->tlsindex = 1;
1229 	    obj->tlssize = ph->p_memsz;
1230 	    obj->tlsalign = ph->p_align;
1231 	    obj->tlsinitsize = ph->p_filesz;
1232 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1233 	    break;
1234 
1235 	case PT_GNU_STACK:
1236 	    obj->stack_flags = ph->p_flags;
1237 	    break;
1238 
1239 	case PT_GNU_RELRO:
1240 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1241 	    obj->relro_size = round_page(ph->p_memsz);
1242 	    break;
1243 	}
1244     }
1245     if (nsegs < 1) {
1246 	_rtld_error("%s: too few PT_LOAD segments", path);
1247 	return NULL;
1248     }
1249 
1250     obj->entry = entry;
1251     return obj;
1252 }
1253 
1254 static Obj_Entry *
1255 dlcheck(void *handle)
1256 {
1257     Obj_Entry *obj;
1258 
1259     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1260 	if (obj == (Obj_Entry *) handle)
1261 	    break;
1262 
1263     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1264 	_rtld_error("Invalid shared object handle %p", handle);
1265 	return NULL;
1266     }
1267     return obj;
1268 }
1269 
1270 /*
1271  * If the given object is already in the donelist, return true.  Otherwise
1272  * add the object to the list and return false.
1273  */
1274 static bool
1275 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1276 {
1277     unsigned int i;
1278 
1279     for (i = 0;  i < dlp->num_used;  i++)
1280 	if (dlp->objs[i] == obj)
1281 	    return true;
1282     /*
1283      * Our donelist allocation should always be sufficient.  But if
1284      * our threads locking isn't working properly, more shared objects
1285      * could have been loaded since we allocated the list.  That should
1286      * never happen, but we'll handle it properly just in case it does.
1287      */
1288     if (dlp->num_used < dlp->num_alloc)
1289 	dlp->objs[dlp->num_used++] = obj;
1290     return false;
1291 }
1292 
1293 /*
1294  * Hash function for symbol table lookup.  Don't even think about changing
1295  * this.  It is specified by the System V ABI.
1296  */
1297 unsigned long
1298 elf_hash(const char *name)
1299 {
1300     const unsigned char *p = (const unsigned char *) name;
1301     unsigned long h = 0;
1302     unsigned long g;
1303 
1304     while (*p != '\0') {
1305 	h = (h << 4) + *p++;
1306 	if ((g = h & 0xf0000000) != 0)
1307 	    h ^= g >> 24;
1308 	h &= ~g;
1309     }
1310     return h;
1311 }
1312 
1313 /*
1314  * Find the library with the given name, and return its full pathname.
1315  * The returned string is dynamically allocated.  Generates an error
1316  * message and returns NULL if the library cannot be found.
1317  *
1318  * If the second argument is non-NULL, then it refers to an already-
1319  * loaded shared object, whose library search path will be searched.
1320  *
1321  * The search order is:
1322  *   LD_LIBRARY_PATH
1323  *   rpath in the referencing file
1324  *   ldconfig hints
1325  *   /usr/lib
1326  */
1327 static char *
1328 find_library(const char *xname, const Obj_Entry *refobj)
1329 {
1330     char *pathname;
1331     char *name;
1332 
1333     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1334 	if (xname[0] != '/' && !trust) {
1335 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1336 	      xname);
1337 	    return NULL;
1338 	}
1339 	if (refobj != NULL && refobj->z_origin)
1340 	    return origin_subst(xname, refobj->origin_path);
1341 	else
1342 	    return xstrdup(xname);
1343     }
1344 
1345     if (libmap_disable || (refobj == NULL) ||
1346 	(name = lm_find(refobj->path, xname)) == NULL)
1347 	name = (char *)xname;
1348 
1349     dbg(" Searching for \"%s\"", name);
1350 
1351     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1352       (refobj != NULL &&
1353       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1354       (pathname = search_library_path(name, gethints())) != NULL ||
1355       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1356 	return pathname;
1357 
1358     if(refobj != NULL && refobj->path != NULL) {
1359 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1360 	  name, basename(refobj->path));
1361     } else {
1362 	_rtld_error("Shared object \"%s\" not found", name);
1363     }
1364     return NULL;
1365 }
1366 
1367 /*
1368  * Given a symbol number in a referencing object, find the corresponding
1369  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1370  * no definition was found.  Returns a pointer to the Obj_Entry of the
1371  * defining object via the reference parameter DEFOBJ_OUT.
1372  */
1373 const Elf_Sym *
1374 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1375     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1376     RtldLockState *lockstate)
1377 {
1378     const Elf_Sym *ref;
1379     const Elf_Sym *def;
1380     const Obj_Entry *defobj;
1381     SymLook req;
1382     const char *name;
1383     int res;
1384 
1385     /*
1386      * If we have already found this symbol, get the information from
1387      * the cache.
1388      */
1389     if (symnum >= refobj->nchains)
1390 	return NULL;	/* Bad object */
1391     if (cache != NULL && cache[symnum].sym != NULL) {
1392 	*defobj_out = cache[symnum].obj;
1393 	return cache[symnum].sym;
1394     }
1395 
1396     ref = refobj->symtab + symnum;
1397     name = refobj->strtab + ref->st_name;
1398     def = NULL;
1399     defobj = NULL;
1400 
1401     /*
1402      * We don't have to do a full scale lookup if the symbol is local.
1403      * We know it will bind to the instance in this load module; to
1404      * which we already have a pointer (ie ref). By not doing a lookup,
1405      * we not only improve performance, but it also avoids unresolvable
1406      * symbols when local symbols are not in the hash table.
1407      *
1408      * This might occur for TLS module relocations, which simply use
1409      * symbol 0.
1410      */
1411     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1412 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1413 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1414 		symnum);
1415 	}
1416 	symlook_init(&req, name);
1417 	req.flags = flags;
1418 	req.ventry = fetch_ventry(refobj, symnum);
1419 	req.lockstate = lockstate;
1420 	res = symlook_default(&req, refobj);
1421 	if (res == 0) {
1422 	    def = req.sym_out;
1423 	    defobj = req.defobj_out;
1424 	}
1425     } else {
1426 	def = ref;
1427 	defobj = refobj;
1428     }
1429 
1430     /*
1431      * If we found no definition and the reference is weak, treat the
1432      * symbol as having the value zero.
1433      */
1434     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1435 	def = &sym_zero;
1436 	defobj = obj_main;
1437     }
1438 
1439     if (def != NULL) {
1440 	*defobj_out = defobj;
1441 	/* Record the information in the cache to avoid subsequent lookups. */
1442 	if (cache != NULL) {
1443 	    cache[symnum].sym = def;
1444 	    cache[symnum].obj = defobj;
1445 	}
1446     } else {
1447 	if (refobj != &obj_rtld)
1448 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1449     }
1450     return def;
1451 }
1452 
1453 /*
1454  * Return the search path from the ldconfig hints file, reading it if
1455  * necessary.  Returns NULL if there are problems with the hints file,
1456  * or if the search path there is empty.
1457  */
1458 static const char *
1459 gethints(void)
1460 {
1461     static char *hints;
1462 
1463     if (hints == NULL) {
1464 	int fd;
1465 	struct elfhints_hdr hdr;
1466 	char *p;
1467 
1468 	/* Keep from trying again in case the hints file is bad. */
1469 	hints = "";
1470 
1471 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1472 	    return NULL;
1473 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1474 	  hdr.magic != ELFHINTS_MAGIC ||
1475 	  hdr.version != 1) {
1476 	    close(fd);
1477 	    return NULL;
1478 	}
1479 	p = xmalloc(hdr.dirlistlen + 1);
1480 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1481 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1482 	    free(p);
1483 	    close(fd);
1484 	    return NULL;
1485 	}
1486 	hints = p;
1487 	close(fd);
1488     }
1489     return hints[0] != '\0' ? hints : NULL;
1490 }
1491 
1492 static void
1493 init_dag(Obj_Entry *root)
1494 {
1495     const Needed_Entry *needed;
1496     const Objlist_Entry *elm;
1497     DoneList donelist;
1498 
1499     if (root->dag_inited)
1500 	return;
1501     donelist_init(&donelist);
1502 
1503     /* Root object belongs to own DAG. */
1504     objlist_push_tail(&root->dldags, root);
1505     objlist_push_tail(&root->dagmembers, root);
1506     donelist_check(&donelist, root);
1507 
1508     /*
1509      * Add dependencies of root object to DAG in breadth order
1510      * by exploiting the fact that each new object get added
1511      * to the tail of the dagmembers list.
1512      */
1513     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1514 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1515 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1516 		continue;
1517 	    objlist_push_tail(&needed->obj->dldags, root);
1518 	    objlist_push_tail(&root->dagmembers, needed->obj);
1519 	}
1520     }
1521     root->dag_inited = true;
1522 }
1523 
1524 /*
1525  * Initialize the dynamic linker.  The argument is the address at which
1526  * the dynamic linker has been mapped into memory.  The primary task of
1527  * this function is to relocate the dynamic linker.
1528  */
1529 static void
1530 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1531 {
1532     Obj_Entry objtmp;	/* Temporary rtld object */
1533     const Elf_Dyn *dyn_rpath;
1534     const Elf_Dyn *dyn_soname;
1535 
1536     /*
1537      * Conjure up an Obj_Entry structure for the dynamic linker.
1538      *
1539      * The "path" member can't be initialized yet because string constants
1540      * cannot yet be accessed. Below we will set it correctly.
1541      */
1542     memset(&objtmp, 0, sizeof(objtmp));
1543     objtmp.path = NULL;
1544     objtmp.rtld = true;
1545     objtmp.mapbase = mapbase;
1546 #ifdef PIC
1547     objtmp.relocbase = mapbase;
1548 #endif
1549     if (RTLD_IS_DYNAMIC()) {
1550 	objtmp.dynamic = rtld_dynamic(&objtmp);
1551 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname);
1552 	assert(objtmp.needed == NULL);
1553 	assert(!objtmp.textrel);
1554 
1555 	/*
1556 	 * Temporarily put the dynamic linker entry into the object list, so
1557 	 * that symbols can be found.
1558 	 */
1559 
1560 	relocate_objects(&objtmp, true, &objtmp, NULL);
1561     }
1562 
1563     /* Initialize the object list. */
1564     obj_tail = &obj_list;
1565 
1566     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1567     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1568 
1569 #ifdef ENABLE_OSRELDATE
1570     if (aux_info[AT_OSRELDATE] != NULL)
1571 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1572 #endif
1573 
1574     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname);
1575 
1576     /* Replace the path with a dynamically allocated copy. */
1577     obj_rtld.path = xstrdup(PATH_RTLD);
1578 
1579     r_debug.r_brk = r_debug_state;
1580     r_debug.r_state = RT_CONSISTENT;
1581 }
1582 
1583 /*
1584  * Add the init functions from a needed object list (and its recursive
1585  * needed objects) to "list".  This is not used directly; it is a helper
1586  * function for initlist_add_objects().  The write lock must be held
1587  * when this function is called.
1588  */
1589 static void
1590 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1591 {
1592     /* Recursively process the successor needed objects. */
1593     if (needed->next != NULL)
1594 	initlist_add_neededs(needed->next, list);
1595 
1596     /* Process the current needed object. */
1597     if (needed->obj != NULL)
1598 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1599 }
1600 
1601 /*
1602  * Scan all of the DAGs rooted in the range of objects from "obj" to
1603  * "tail" and add their init functions to "list".  This recurses over
1604  * the DAGs and ensure the proper init ordering such that each object's
1605  * needed libraries are initialized before the object itself.  At the
1606  * same time, this function adds the objects to the global finalization
1607  * list "list_fini" in the opposite order.  The write lock must be
1608  * held when this function is called.
1609  */
1610 static void
1611 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1612 {
1613     if (obj->init_scanned || obj->init_done)
1614 	return;
1615     obj->init_scanned = true;
1616 
1617     /* Recursively process the successor objects. */
1618     if (&obj->next != tail)
1619 	initlist_add_objects(obj->next, tail, list);
1620 
1621     /* Recursively process the needed objects. */
1622     if (obj->needed != NULL)
1623 	initlist_add_neededs(obj->needed, list);
1624 
1625     /* Add the object to the init list. */
1626     if (obj->init != (Elf_Addr)NULL)
1627 	objlist_push_tail(list, obj);
1628 
1629     /* Add the object to the global fini list in the reverse order. */
1630     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1631 	objlist_push_head(&list_fini, obj);
1632 	obj->on_fini_list = true;
1633     }
1634 }
1635 
1636 #ifndef FPTR_TARGET
1637 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1638 #endif
1639 
1640 static bool
1641 is_exported(const Elf_Sym *def)
1642 {
1643     Elf_Addr value;
1644     const func_ptr_type *p;
1645 
1646     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1647     for (p = exports;  *p != NULL;  p++)
1648 	if (FPTR_TARGET(*p) == value)
1649 	    return true;
1650     return false;
1651 }
1652 
1653 static void
1654 free_needed_filtees(Needed_Entry *n)
1655 {
1656     Needed_Entry *needed, *needed1;
1657 
1658     for (needed = n; needed != NULL; needed = needed->next) {
1659 	if (needed->obj != NULL) {
1660 	    dlclose(needed->obj);
1661 	    needed->obj = NULL;
1662 	}
1663     }
1664     for (needed = n; needed != NULL; needed = needed1) {
1665 	needed1 = needed->next;
1666 	free(needed);
1667     }
1668 }
1669 
1670 static void
1671 unload_filtees(Obj_Entry *obj)
1672 {
1673 
1674     free_needed_filtees(obj->needed_filtees);
1675     obj->needed_filtees = NULL;
1676     free_needed_filtees(obj->needed_aux_filtees);
1677     obj->needed_aux_filtees = NULL;
1678     obj->filtees_loaded = false;
1679 }
1680 
1681 static void
1682 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags)
1683 {
1684 
1685     for (; needed != NULL; needed = needed->next) {
1686 	needed->obj = dlopen_object(obj->strtab + needed->name, obj,
1687 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1688 	  RTLD_LOCAL);
1689     }
1690 }
1691 
1692 static void
1693 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1694 {
1695 
1696     lock_restart_for_upgrade(lockstate);
1697     if (!obj->filtees_loaded) {
1698 	load_filtee1(obj, obj->needed_filtees, flags);
1699 	load_filtee1(obj, obj->needed_aux_filtees, flags);
1700 	obj->filtees_loaded = true;
1701     }
1702 }
1703 
1704 static int
1705 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
1706 {
1707     Obj_Entry *obj1;
1708 
1709     for (; needed != NULL; needed = needed->next) {
1710 	obj1 = needed->obj = load_object(obj->strtab + needed->name, obj,
1711 	  flags & ~RTLD_LO_NOLOAD);
1712 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
1713 	    return (-1);
1714 	if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1715 	    dbg("obj %s nodelete", obj1->path);
1716 	    init_dag(obj1);
1717 	    ref_dag(obj1);
1718 	    obj1->ref_nodel = true;
1719 	}
1720     }
1721     return (0);
1722 }
1723 
1724 /*
1725  * Given a shared object, traverse its list of needed objects, and load
1726  * each of them.  Returns 0 on success.  Generates an error message and
1727  * returns -1 on failure.
1728  */
1729 static int
1730 load_needed_objects(Obj_Entry *first, int flags)
1731 {
1732     Obj_Entry *obj;
1733 
1734     for (obj = first;  obj != NULL;  obj = obj->next) {
1735 	if (process_needed(obj, obj->needed, flags) == -1)
1736 	    return (-1);
1737     }
1738     return (0);
1739 }
1740 
1741 static int
1742 load_preload_objects(void)
1743 {
1744     char *p = ld_preload;
1745     static const char delim[] = " \t:;";
1746 
1747     if (p == NULL)
1748 	return 0;
1749 
1750     p += strspn(p, delim);
1751     while (*p != '\0') {
1752 	size_t len = strcspn(p, delim);
1753 	char savech;
1754 	Obj_Entry *obj;
1755 	SymLook req;
1756 	int res;
1757 
1758 	savech = p[len];
1759 	p[len] = '\0';
1760 	obj = load_object(p, NULL, 0);
1761 	if (obj == NULL)
1762 	    return -1;	/* XXX - cleanup */
1763 	p[len] = savech;
1764 	p += len;
1765 	p += strspn(p, delim);
1766 
1767 	/* Check for the magic tracing function */
1768 	symlook_init(&req, RTLD_FUNCTRACE);
1769 	res = symlook_obj(&req, obj);
1770 	if (res == 0) {
1771 	    rtld_functrace = (void *)(req.defobj_out->relocbase +
1772 				      req.sym_out->st_value);
1773 	    rtld_functrace_obj = req.defobj_out;
1774 	}
1775     }
1776     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1777     return 0;
1778 }
1779 
1780 /*
1781  * Load a shared object into memory, if it is not already loaded.
1782  *
1783  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1784  * on failure.
1785  */
1786 static Obj_Entry *
1787 load_object(const char *name, const Obj_Entry *refobj, int flags)
1788 {
1789     Obj_Entry *obj;
1790     int fd = -1;
1791     struct stat sb;
1792     char *path;
1793 
1794     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1795 	if (object_match_name(obj, name))
1796 	    return obj;
1797 
1798     path = find_library(name, refobj);
1799     if (path == NULL)
1800 	return NULL;
1801 
1802     /*
1803      * If we didn't find a match by pathname, open the file and check
1804      * again by device and inode.  This avoids false mismatches caused
1805      * by multiple links or ".." in pathnames.
1806      *
1807      * To avoid a race, we open the file and use fstat() rather than
1808      * using stat().
1809      */
1810     if ((fd = open(path, O_RDONLY)) == -1) {
1811 	_rtld_error("Cannot open \"%s\"", path);
1812 	free(path);
1813 	return NULL;
1814     }
1815     if (fstat(fd, &sb) == -1) {
1816 	_rtld_error("Cannot fstat \"%s\"", path);
1817 	close(fd);
1818 	free(path);
1819 	return NULL;
1820     }
1821     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1822 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1823 	    break;
1824     if (obj != NULL) {
1825 	object_add_name(obj, name);
1826 	free(path);
1827 	close(fd);
1828 	return obj;
1829     }
1830     if (flags & RTLD_LO_NOLOAD) {
1831 	free(path);
1832 	close(fd);
1833 	return (NULL);
1834     }
1835 
1836     /* First use of this object, so we must map it in */
1837     obj = do_load_object(fd, name, path, &sb, flags);
1838     if (obj == NULL)
1839 	free(path);
1840     close(fd);
1841 
1842     return obj;
1843 }
1844 
1845 static Obj_Entry *
1846 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1847   int flags)
1848 {
1849     Obj_Entry *obj;
1850     struct statfs fs;
1851 
1852     /*
1853      * but first, make sure that environment variables haven't been
1854      * used to circumvent the noexec flag on a filesystem.
1855      */
1856     if (dangerous_ld_env) {
1857 	if (fstatfs(fd, &fs) != 0) {
1858 	    _rtld_error("Cannot fstatfs \"%s\"", path);
1859 		return NULL;
1860 	}
1861 	if (fs.f_flags & MNT_NOEXEC) {
1862 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1863 	    return NULL;
1864 	}
1865     }
1866     dbg("loading \"%s\"", path);
1867     obj = map_object(fd, path, sbp);
1868     if (obj == NULL)
1869         return NULL;
1870 
1871     object_add_name(obj, name);
1872     obj->path = path;
1873     digest_dynamic(obj, 0);
1874     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1875       RTLD_LO_DLOPEN) {
1876 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1877 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1878 	munmap(obj->mapbase, obj->mapsize);
1879 	obj_free(obj);
1880 	return (NULL);
1881     }
1882 
1883     *obj_tail = obj;
1884     obj_tail = &obj->next;
1885     obj_count++;
1886     obj_loads++;
1887     linkmap_add(obj);	/* for GDB & dlinfo() */
1888     max_stack_flags |= obj->stack_flags;
1889 
1890     dbg("  %p .. %p: %s", obj->mapbase,
1891          obj->mapbase + obj->mapsize - 1, obj->path);
1892     if (obj->textrel)
1893 	dbg("  WARNING: %s has impure text", obj->path);
1894     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1895 	obj->path);
1896 
1897     return obj;
1898 }
1899 
1900 static Obj_Entry *
1901 obj_from_addr(const void *addr)
1902 {
1903     Obj_Entry *obj;
1904 
1905     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1906 	if (addr < (void *) obj->mapbase)
1907 	    continue;
1908 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1909 	    return obj;
1910     }
1911     return NULL;
1912 }
1913 
1914 /*
1915  * Call the finalization functions for each of the objects in "list"
1916  * belonging to the DAG of "root" and referenced once. If NULL "root"
1917  * is specified, every finalization function will be called regardless
1918  * of the reference count and the list elements won't be freed. All of
1919  * the objects are expected to have non-NULL fini functions.
1920  */
1921 static void
1922 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1923 {
1924     Objlist_Entry *elm;
1925     char *saved_msg;
1926 
1927     assert(root == NULL || root->refcount == 1);
1928 
1929     /*
1930      * Preserve the current error message since a fini function might
1931      * call into the dynamic linker and overwrite it.
1932      */
1933     saved_msg = errmsg_save();
1934     do {
1935 	STAILQ_FOREACH(elm, list, link) {
1936 	    if (root != NULL && (elm->obj->refcount != 1 ||
1937 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1938 		continue;
1939 	    dbg("calling fini function for %s at %p", elm->obj->path,
1940 	        (void *)elm->obj->fini);
1941 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1942 		elm->obj->path);
1943 	    /* Remove object from fini list to prevent recursive invocation. */
1944 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1945 	    /*
1946 	     * XXX: If a dlopen() call references an object while the
1947 	     * fini function is in progress, we might end up trying to
1948 	     * unload the referenced object in dlclose() or the object
1949 	     * won't be unloaded although its fini function has been
1950 	     * called.
1951 	     */
1952 	    lock_release(rtld_bind_lock, lockstate);
1953 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1954 	    wlock_acquire(rtld_bind_lock, lockstate);
1955 	    /* No need to free anything if process is going down. */
1956 	    if (root != NULL)
1957 		free(elm);
1958 	    /*
1959 	     * We must restart the list traversal after every fini call
1960 	     * because a dlclose() call from the fini function or from
1961 	     * another thread might have modified the reference counts.
1962 	     */
1963 	    break;
1964 	}
1965     } while (elm != NULL);
1966     errmsg_restore(saved_msg);
1967 }
1968 
1969 /*
1970  * Call the initialization functions for each of the objects in
1971  * "list".  All of the objects are expected to have non-NULL init
1972  * functions.
1973  */
1974 static void
1975 objlist_call_init(Objlist *list, RtldLockState *lockstate)
1976 {
1977     Objlist_Entry *elm;
1978     Obj_Entry *obj;
1979     char *saved_msg;
1980 
1981     /*
1982      * Clean init_scanned flag so that objects can be rechecked and
1983      * possibly initialized earlier if any of vectors called below
1984      * cause the change by using dlopen.
1985      */
1986     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1987 	obj->init_scanned = false;
1988 
1989     /*
1990      * Preserve the current error message since an init function might
1991      * call into the dynamic linker and overwrite it.
1992      */
1993     saved_msg = errmsg_save();
1994     STAILQ_FOREACH(elm, list, link) {
1995 	if (elm->obj->init_done) /* Initialized early. */
1996 	    continue;
1997 	dbg("calling init function for %s at %p", elm->obj->path,
1998 	    (void *)elm->obj->init);
1999 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
2000 	    elm->obj->path);
2001 	/*
2002 	 * Race: other thread might try to use this object before current
2003 	 * one completes the initilization. Not much can be done here
2004 	 * without better locking.
2005 	 */
2006 	elm->obj->init_done = true;
2007 	lock_release(rtld_bind_lock, lockstate);
2008 	call_initfini_pointer(elm->obj, elm->obj->init);
2009 	wlock_acquire(rtld_bind_lock, lockstate);
2010     }
2011     errmsg_restore(saved_msg);
2012 }
2013 
2014 static void
2015 objlist_clear(Objlist *list)
2016 {
2017     Objlist_Entry *elm;
2018 
2019     while (!STAILQ_EMPTY(list)) {
2020 	elm = STAILQ_FIRST(list);
2021 	STAILQ_REMOVE_HEAD(list, link);
2022 	free(elm);
2023     }
2024 }
2025 
2026 static Objlist_Entry *
2027 objlist_find(Objlist *list, const Obj_Entry *obj)
2028 {
2029     Objlist_Entry *elm;
2030 
2031     STAILQ_FOREACH(elm, list, link)
2032 	if (elm->obj == obj)
2033 	    return elm;
2034     return NULL;
2035 }
2036 
2037 static void
2038 objlist_init(Objlist *list)
2039 {
2040     STAILQ_INIT(list);
2041 }
2042 
2043 static void
2044 objlist_push_head(Objlist *list, Obj_Entry *obj)
2045 {
2046     Objlist_Entry *elm;
2047 
2048     elm = NEW(Objlist_Entry);
2049     elm->obj = obj;
2050     STAILQ_INSERT_HEAD(list, elm, link);
2051 }
2052 
2053 static void
2054 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2055 {
2056     Objlist_Entry *elm;
2057 
2058     elm = NEW(Objlist_Entry);
2059     elm->obj = obj;
2060     STAILQ_INSERT_TAIL(list, elm, link);
2061 }
2062 
2063 static void
2064 objlist_remove(Objlist *list, Obj_Entry *obj)
2065 {
2066     Objlist_Entry *elm;
2067 
2068     if ((elm = objlist_find(list, obj)) != NULL) {
2069 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2070 	free(elm);
2071     }
2072 }
2073 
2074 /*
2075  * Relocate newly-loaded shared objects.  The argument is a pointer to
2076  * the Obj_Entry for the first such object.  All objects from the first
2077  * to the end of the list of objects are relocated.  Returns 0 on success,
2078  * or -1 on failure.
2079  */
2080 static int
2081 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2082     RtldLockState *lockstate)
2083 {
2084     Obj_Entry *obj;
2085 
2086     for (obj = first;  obj != NULL;  obj = obj->next) {
2087 	if (obj != rtldobj)
2088 	    dbg("relocating \"%s\"", obj->path);
2089 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
2090 	    obj->symtab == NULL || obj->strtab == NULL) {
2091 	    _rtld_error("%s: Shared object has no run-time symbol table",
2092 	      obj->path);
2093 	    return -1;
2094 	}
2095 
2096 	if (obj->textrel) {
2097 	    /* There are relocations to the write-protected text segment. */
2098 	    if (mprotect(obj->mapbase, obj->textsize,
2099 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2100 		_rtld_error("%s: Cannot write-enable text segment: %s",
2101 		  obj->path, strerror(errno));
2102 		return -1;
2103 	    }
2104 	}
2105 
2106 	/* Process the non-PLT relocations. */
2107 	if (reloc_non_plt(obj, rtldobj, lockstate))
2108 		return -1;
2109 
2110 	/*
2111 	 * Reprotect the text segment.  Make sure it is included in the
2112 	 * core dump since we modified it.  This unfortunately causes the
2113 	 * entire text segment to core-out but we don't have much of a
2114 	 * choice.  We could try to only reenable core dumps on pages
2115 	 * in which relocations occured but that is likely most of the text
2116 	 * pages anyway, and even that would not work because the rest of
2117 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
2118 	 * (created due to our modifications) backed by the original OBJT_VNODE
2119 	 * object, and the ELF coredump code is currently only able to dump
2120 	 * vnode records for pure vnode-backed mappings, not vnode backings
2121 	 * to memory objects.
2122 	 */
2123 	if (obj->textrel) {
2124 	    madvise(obj->mapbase, obj->textsize, MADV_CORE);
2125 	    if (mprotect(obj->mapbase, obj->textsize,
2126 	      PROT_READ|PROT_EXEC) == -1) {
2127 		_rtld_error("%s: Cannot write-protect text segment: %s",
2128 		  obj->path, strerror(errno));
2129 		return -1;
2130 	    }
2131 	}
2132 
2133 
2134 	/* Set the special PLT or GOT entries. */
2135 	init_pltgot(obj);
2136 
2137 	/* Process the PLT relocations. */
2138 	if (reloc_plt(obj) == -1)
2139 	    return -1;
2140 	/* Relocate the jump slots if we are doing immediate binding. */
2141 	if (obj->bind_now || bind_now)
2142 	    if (reloc_jmpslots(obj, lockstate) == -1)
2143 		return -1;
2144 
2145 	/*
2146 	 * Set up the magic number and version in the Obj_Entry.  These
2147 	 * were checked in the crt1.o from the original ElfKit, so we
2148 	 * set them for backward compatibility.
2149 	 */
2150 	obj->magic = RTLD_MAGIC;
2151 	obj->version = RTLD_VERSION;
2152 
2153 	/*
2154 	 * Set relocated data to read-only status if protection specified
2155 	 */
2156 
2157 	if (obj->relro_size) {
2158 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2159 		_rtld_error("%s: Cannot enforce relro relocation: %s",
2160 		  obj->path, strerror(errno));
2161 		return -1;
2162 	    }
2163 	}
2164     }
2165 
2166     return (0);
2167 }
2168 
2169 /*
2170  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2171  * referencing STT_GNU_IFUNC symbols is postponed till the other
2172  * relocations are done.  The indirect functions specified as
2173  * ifunc are allowed to call other symbols, so we need to have
2174  * objects relocated before asking for resolution from indirects.
2175  *
2176  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2177  * instead of the usual lazy handling of PLT slots.  It is
2178  * consistent with how GNU does it.
2179  */
2180 static int
2181 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, RtldLockState *lockstate)
2182 {
2183 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2184 		return (-1);
2185 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2186 	    reloc_gnu_ifunc(obj, lockstate) == -1)
2187 		return (-1);
2188 	return (0);
2189 }
2190 
2191 static int
2192 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, RtldLockState *lockstate)
2193 {
2194 	Obj_Entry *obj;
2195 
2196 	for (obj = first;  obj != NULL;  obj = obj->next) {
2197 		if (resolve_object_ifunc(obj, bind_now, lockstate) == -1)
2198 			return (-1);
2199 	}
2200 	return (0);
2201 }
2202 
2203 static int
2204 initlist_objects_ifunc(Objlist *list, bool bind_now, RtldLockState *lockstate)
2205 {
2206 	Objlist_Entry *elm;
2207 
2208 	STAILQ_FOREACH(elm, list, link) {
2209 		if (resolve_object_ifunc(elm->obj, bind_now, lockstate) == -1)
2210 			return (-1);
2211 	}
2212 	return (0);
2213 }
2214 
2215 /*
2216  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2217  * before the process exits.
2218  */
2219 static void
2220 rtld_exit(void)
2221 {
2222     RtldLockState lockstate;
2223 
2224     wlock_acquire(rtld_bind_lock, &lockstate);
2225     dbg("rtld_exit()");
2226     objlist_call_fini(&list_fini, NULL, &lockstate);
2227     /* No need to remove the items from the list, since we are exiting. */
2228     if (!libmap_disable)
2229         lm_fini();
2230     lock_release(rtld_bind_lock, &lockstate);
2231 }
2232 
2233 static void *
2234 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2235 {
2236     if (path == NULL)
2237 	return (NULL);
2238 
2239     path += strspn(path, ":;");
2240     while (*path != '\0') {
2241 	size_t len;
2242 	char  *res;
2243 
2244 	len = strcspn(path, ":;");
2245 	res = callback(path, len, arg);
2246 
2247 	if (res != NULL)
2248 	    return (res);
2249 
2250 	path += len;
2251 	path += strspn(path, ":;");
2252     }
2253 
2254     return (NULL);
2255 }
2256 
2257 struct try_library_args {
2258     const char	*name;
2259     size_t	 namelen;
2260     char	*buffer;
2261     size_t	 buflen;
2262 };
2263 
2264 static void *
2265 try_library_path(const char *dir, size_t dirlen, void *param)
2266 {
2267     struct try_library_args *arg;
2268 
2269     arg = param;
2270     if (*dir == '/' || trust) {
2271 	char *pathname;
2272 
2273 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2274 		return (NULL);
2275 
2276 	pathname = arg->buffer;
2277 	strncpy(pathname, dir, dirlen);
2278 	pathname[dirlen] = '/';
2279 	strcpy(pathname + dirlen + 1, arg->name);
2280 
2281 	dbg("  Trying \"%s\"", pathname);
2282 	if (access(pathname, F_OK) == 0) {		/* We found it */
2283 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2284 	    strcpy(pathname, arg->buffer);
2285 	    return (pathname);
2286 	}
2287     }
2288     return (NULL);
2289 }
2290 
2291 static char *
2292 search_library_path(const char *name, const char *path)
2293 {
2294     char *p;
2295     struct try_library_args arg;
2296 
2297     if (path == NULL)
2298 	return NULL;
2299 
2300     arg.name = name;
2301     arg.namelen = strlen(name);
2302     arg.buffer = xmalloc(PATH_MAX);
2303     arg.buflen = PATH_MAX;
2304 
2305     p = path_enumerate(path, try_library_path, &arg);
2306 
2307     free(arg.buffer);
2308 
2309     return (p);
2310 }
2311 
2312 int
2313 dlclose(void *handle)
2314 {
2315     Obj_Entry *root;
2316     RtldLockState lockstate;
2317 
2318     wlock_acquire(rtld_bind_lock, &lockstate);
2319     root = dlcheck(handle);
2320     if (root == NULL) {
2321 	lock_release(rtld_bind_lock, &lockstate);
2322 	return -1;
2323     }
2324     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2325 	root->path);
2326 
2327     /* Unreference the object and its dependencies. */
2328     root->dl_refcount--;
2329 
2330     if (root->refcount == 1) {
2331 	/*
2332 	 * The object will be no longer referenced, so we must unload it.
2333 	 * First, call the fini functions.
2334 	 */
2335 	objlist_call_fini(&list_fini, root, &lockstate);
2336 
2337 	unref_dag(root);
2338 
2339 	/* Finish cleaning up the newly-unreferenced objects. */
2340 	GDB_STATE(RT_DELETE,&root->linkmap);
2341 	unload_object(root);
2342 	GDB_STATE(RT_CONSISTENT,NULL);
2343     } else
2344 	unref_dag(root);
2345 
2346     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2347     lock_release(rtld_bind_lock, &lockstate);
2348     return 0;
2349 }
2350 
2351 char *
2352 dlerror(void)
2353 {
2354     char *msg = error_message;
2355     error_message = NULL;
2356     return msg;
2357 }
2358 
2359 void *
2360 dlopen(const char *name, int mode)
2361 {
2362     RtldLockState lockstate;
2363     int lo_flags;
2364 
2365     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2366     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2367     if (ld_tracing != NULL) {
2368 	rlock_acquire(rtld_bind_lock, &lockstate);
2369 	if (sigsetjmp(lockstate.env, 0) != 0)
2370 	    lock_upgrade(rtld_bind_lock, &lockstate);
2371 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2372 	lock_release(rtld_bind_lock, &lockstate);
2373     }
2374     lo_flags = RTLD_LO_DLOPEN;
2375     if (mode & RTLD_NODELETE)
2376 	    lo_flags |= RTLD_LO_NODELETE;
2377     if (mode & RTLD_NOLOAD)
2378 	    lo_flags |= RTLD_LO_NOLOAD;
2379     if (ld_tracing != NULL)
2380 	    lo_flags |= RTLD_LO_TRACE;
2381 
2382     return (dlopen_object(name, obj_main, lo_flags,
2383       mode & (RTLD_MODEMASK | RTLD_GLOBAL)));
2384 }
2385 
2386 static void
2387 dlopen_cleanup(Obj_Entry *obj)
2388 {
2389 
2390 	obj->dl_refcount--;
2391 	unref_dag(obj);
2392 	if (obj->refcount == 0)
2393 		unload_object(obj);
2394 }
2395 
2396 static Obj_Entry *
2397 dlopen_object(const char *name, Obj_Entry *refobj, int lo_flags, int mode)
2398 {
2399     Obj_Entry **old_obj_tail;
2400     Obj_Entry *obj;
2401     Objlist initlist;
2402     RtldLockState lockstate;
2403     int result;
2404 
2405     objlist_init(&initlist);
2406 
2407     wlock_acquire(rtld_bind_lock, &lockstate);
2408     GDB_STATE(RT_ADD,NULL);
2409 
2410     old_obj_tail = obj_tail;
2411     obj = NULL;
2412     if (name == NULL) {
2413 	obj = obj_main;
2414 	obj->refcount++;
2415     } else {
2416 	obj = load_object(name, refobj, lo_flags);
2417     }
2418 
2419     if (obj) {
2420 	obj->dl_refcount++;
2421 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2422 	    objlist_push_tail(&list_global, obj);
2423 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2424 	    assert(*old_obj_tail == obj);
2425 	    result = load_needed_objects(obj, lo_flags & RTLD_LO_DLOPEN);
2426 	    init_dag(obj);
2427 	    ref_dag(obj);
2428 	    if (result != -1)
2429 		result = rtld_verify_versions(&obj->dagmembers);
2430 	    if (result != -1 && ld_tracing)
2431 		goto trace;
2432 	    if (result == -1 || (relocate_objects(obj, (mode & RTLD_MODEMASK)
2433 	      == RTLD_NOW, &obj_rtld, &lockstate)) == -1) {
2434 		dlopen_cleanup(obj);
2435 		obj = NULL;
2436 	    } else {
2437 		/* Make list of init functions to call. */
2438 		initlist_add_objects(obj, &obj->next, &initlist);
2439 	    }
2440 	} else {
2441 
2442 	    /*
2443 	     * Bump the reference counts for objects on this DAG.  If
2444 	     * this is the first dlopen() call for the object that was
2445 	     * already loaded as a dependency, initialize the dag
2446 	     * starting at it.
2447 	     */
2448 	    init_dag(obj);
2449 	    ref_dag(obj);
2450 
2451 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2452 		goto trace;
2453 	}
2454 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2455 	  obj->z_nodelete) && !obj->ref_nodel) {
2456 	    dbg("obj %s nodelete", obj->path);
2457 	    ref_dag(obj);
2458 	    obj->z_nodelete = obj->ref_nodel = true;
2459 	}
2460     }
2461 
2462     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2463 	name);
2464     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2465 
2466     map_stacks_exec(&lockstate);
2467 
2468     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2469       &lockstate) == -1) {
2470 	objlist_clear(&initlist);
2471 	dlopen_cleanup(obj);
2472 	lock_release(rtld_bind_lock, &lockstate);
2473 	return (NULL);
2474     }
2475 
2476     /* Call the init functions. */
2477     objlist_call_init(&initlist, &lockstate);
2478     objlist_clear(&initlist);
2479     lock_release(rtld_bind_lock, &lockstate);
2480     return obj;
2481 trace:
2482     trace_loaded_objects(obj);
2483     lock_release(rtld_bind_lock, &lockstate);
2484     exit(0);
2485 }
2486 
2487 static void *
2488 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2489     int flags)
2490 {
2491     DoneList donelist;
2492     const Obj_Entry *obj, *defobj;
2493     const Elf_Sym *def;
2494     SymLook req;
2495     RtldLockState lockstate;
2496     int res;
2497 
2498     def = NULL;
2499     defobj = NULL;
2500     symlook_init(&req, name);
2501     req.ventry = ve;
2502     req.flags = flags | SYMLOOK_IN_PLT;
2503     req.lockstate = &lockstate;
2504 
2505     rlock_acquire(rtld_bind_lock, &lockstate);
2506     if (sigsetjmp(lockstate.env, 0) != 0)
2507 	    lock_upgrade(rtld_bind_lock, &lockstate);
2508     if (handle == NULL || handle == RTLD_NEXT ||
2509 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2510 
2511 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2512 	    _rtld_error("Cannot determine caller's shared object");
2513 	    lock_release(rtld_bind_lock, &lockstate);
2514 	    return NULL;
2515 	}
2516 	if (handle == NULL) {	/* Just the caller's shared object. */
2517 	    res = symlook_obj(&req, obj);
2518 	    if (res == 0) {
2519 		def = req.sym_out;
2520 		defobj = req.defobj_out;
2521 	    }
2522 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2523 		   handle == RTLD_SELF) { /* ... caller included */
2524 	    if (handle == RTLD_NEXT)
2525 		obj = obj->next;
2526 	    for (; obj != NULL; obj = obj->next) {
2527 		res = symlook_obj(&req, obj);
2528 		if (res == 0) {
2529 		    if (def == NULL ||
2530 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
2531 			def = req.sym_out;
2532 			defobj = req.defobj_out;
2533 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2534 			    break;
2535 		    }
2536 		}
2537 	    }
2538 	    /*
2539 	     * Search the dynamic linker itself, and possibly resolve the
2540 	     * symbol from there.  This is how the application links to
2541 	     * dynamic linker services such as dlopen.
2542 	     */
2543 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2544 		res = symlook_obj(&req, &obj_rtld);
2545 		if (res == 0 && is_exported(req.sym_out)) {
2546 		    def = req.sym_out;
2547 		    defobj = req.defobj_out;
2548 		}
2549 	    }
2550 	} else {
2551 	    assert(handle == RTLD_DEFAULT);
2552 	    res = symlook_default(&req, obj);
2553 	    if (res == 0) {
2554 		defobj = req.defobj_out;
2555 		def = req.sym_out;
2556 	    }
2557 	}
2558     } else {
2559 	if ((obj = dlcheck(handle)) == NULL) {
2560 	    lock_release(rtld_bind_lock, &lockstate);
2561 	    return NULL;
2562 	}
2563 
2564 	donelist_init(&donelist);
2565 	if (obj->mainprog) {
2566             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
2567 	    res = symlook_global(&req, &donelist);
2568 	    if (res == 0) {
2569 		def = req.sym_out;
2570 		defobj = req.defobj_out;
2571 	    }
2572 	    /*
2573 	     * Search the dynamic linker itself, and possibly resolve the
2574 	     * symbol from there.  This is how the application links to
2575 	     * dynamic linker services such as dlopen.
2576 	     */
2577 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2578 		res = symlook_obj(&req, &obj_rtld);
2579 		if (res == 0) {
2580 		    def = req.sym_out;
2581 		    defobj = req.defobj_out;
2582 		}
2583 	    }
2584 	}
2585 	else {
2586 	    /* Search the whole DAG rooted at the given object. */
2587 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
2588 	    if (res == 0) {
2589 		def = req.sym_out;
2590 		defobj = req.defobj_out;
2591 	    }
2592 	}
2593     }
2594 
2595     if (def != NULL) {
2596 	lock_release(rtld_bind_lock, &lockstate);
2597 
2598 	/*
2599 	 * The value required by the caller is derived from the value
2600 	 * of the symbol. For the ia64 architecture, we need to
2601 	 * construct a function descriptor which the caller can use to
2602 	 * call the function with the right 'gp' value. For other
2603 	 * architectures and for non-functions, the value is simply
2604 	 * the relocated value of the symbol.
2605 	 */
2606 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2607 	    return (make_function_pointer(def, defobj));
2608 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
2609 	    return (rtld_resolve_ifunc(defobj, def));
2610 	else
2611 	    return (defobj->relocbase + def->st_value);
2612     }
2613 
2614     _rtld_error("Undefined symbol \"%s\"", name);
2615     lock_release(rtld_bind_lock, &lockstate);
2616     return NULL;
2617 }
2618 
2619 void *
2620 dlsym(void *handle, const char *name)
2621 {
2622 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2623 	    SYMLOOK_DLSYM);
2624 }
2625 
2626 dlfunc_t
2627 dlfunc(void *handle, const char *name)
2628 {
2629 	union {
2630 		void *d;
2631 		dlfunc_t f;
2632 	} rv;
2633 
2634 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2635 	    SYMLOOK_DLSYM);
2636 	return (rv.f);
2637 }
2638 
2639 void *
2640 dlvsym(void *handle, const char *name, const char *version)
2641 {
2642 	Ver_Entry ventry;
2643 
2644 	ventry.name = version;
2645 	ventry.file = NULL;
2646 	ventry.hash = elf_hash(version);
2647 	ventry.flags= 0;
2648 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2649 	    SYMLOOK_DLSYM);
2650 }
2651 
2652 int
2653 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2654 {
2655     const Obj_Entry *obj;
2656     RtldLockState lockstate;
2657 
2658     rlock_acquire(rtld_bind_lock, &lockstate);
2659     obj = obj_from_addr(addr);
2660     if (obj == NULL) {
2661         _rtld_error("No shared object contains address");
2662 	lock_release(rtld_bind_lock, &lockstate);
2663         return (0);
2664     }
2665     rtld_fill_dl_phdr_info(obj, phdr_info);
2666     lock_release(rtld_bind_lock, &lockstate);
2667     return (1);
2668 }
2669 
2670 int
2671 dladdr(const void *addr, Dl_info *info)
2672 {
2673     const Obj_Entry *obj;
2674     const Elf_Sym *def;
2675     void *symbol_addr;
2676     unsigned long symoffset;
2677     RtldLockState lockstate;
2678 
2679     rlock_acquire(rtld_bind_lock, &lockstate);
2680     obj = obj_from_addr(addr);
2681     if (obj == NULL) {
2682         _rtld_error("No shared object contains address");
2683 	lock_release(rtld_bind_lock, &lockstate);
2684         return 0;
2685     }
2686     info->dli_fname = obj->path;
2687     info->dli_fbase = obj->mapbase;
2688     info->dli_saddr = NULL;
2689     info->dli_sname = NULL;
2690 
2691     /*
2692      * Walk the symbol list looking for the symbol whose address is
2693      * closest to the address sent in.
2694      */
2695     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2696         def = obj->symtab + symoffset;
2697 
2698         /*
2699          * For skip the symbol if st_shndx is either SHN_UNDEF or
2700          * SHN_COMMON.
2701          */
2702         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2703             continue;
2704 
2705         /*
2706          * If the symbol is greater than the specified address, or if it
2707          * is further away from addr than the current nearest symbol,
2708          * then reject it.
2709          */
2710         symbol_addr = obj->relocbase + def->st_value;
2711         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2712             continue;
2713 
2714         /* Update our idea of the nearest symbol. */
2715         info->dli_sname = obj->strtab + def->st_name;
2716         info->dli_saddr = symbol_addr;
2717 
2718         /* Exact match? */
2719         if (info->dli_saddr == addr)
2720             break;
2721     }
2722     lock_release(rtld_bind_lock, &lockstate);
2723     return 1;
2724 }
2725 
2726 int
2727 dlinfo(void *handle, int request, void *p)
2728 {
2729     const Obj_Entry *obj;
2730     RtldLockState lockstate;
2731     int error;
2732 
2733     rlock_acquire(rtld_bind_lock, &lockstate);
2734 
2735     if (handle == NULL || handle == RTLD_SELF) {
2736 	void *retaddr;
2737 
2738 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2739 	if ((obj = obj_from_addr(retaddr)) == NULL)
2740 	    _rtld_error("Cannot determine caller's shared object");
2741     } else
2742 	obj = dlcheck(handle);
2743 
2744     if (obj == NULL) {
2745 	lock_release(rtld_bind_lock, &lockstate);
2746 	return (-1);
2747     }
2748 
2749     error = 0;
2750     switch (request) {
2751     case RTLD_DI_LINKMAP:
2752 	*((struct link_map const **)p) = &obj->linkmap;
2753 	break;
2754     case RTLD_DI_ORIGIN:
2755 	error = rtld_dirname(obj->path, p);
2756 	break;
2757 
2758     case RTLD_DI_SERINFOSIZE:
2759     case RTLD_DI_SERINFO:
2760 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2761 	break;
2762 
2763     default:
2764 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2765 	error = -1;
2766     }
2767 
2768     lock_release(rtld_bind_lock, &lockstate);
2769 
2770     return (error);
2771 }
2772 
2773 static void
2774 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2775 {
2776 
2777 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2778 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2779 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2780 	phdr_info->dlpi_phdr = obj->phdr;
2781 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2782 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2783 	phdr_info->dlpi_tls_data = obj->tlsinit;
2784 	phdr_info->dlpi_adds = obj_loads;
2785 	phdr_info->dlpi_subs = obj_loads - obj_count;
2786 }
2787 
2788 int
2789 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2790 {
2791     struct dl_phdr_info phdr_info;
2792     const Obj_Entry *obj;
2793     RtldLockState bind_lockstate, phdr_lockstate;
2794     int error;
2795 
2796     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2797     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2798 
2799     error = 0;
2800 
2801     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2802 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2803 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2804 		break;
2805 
2806     }
2807     lock_release(rtld_bind_lock, &bind_lockstate);
2808     lock_release(rtld_phdr_lock, &phdr_lockstate);
2809 
2810     return (error);
2811 }
2812 
2813 struct fill_search_info_args {
2814     int		 request;
2815     unsigned int flags;
2816     Dl_serinfo  *serinfo;
2817     Dl_serpath  *serpath;
2818     char	*strspace;
2819 };
2820 
2821 static void *
2822 fill_search_info(const char *dir, size_t dirlen, void *param)
2823 {
2824     struct fill_search_info_args *arg;
2825 
2826     arg = param;
2827 
2828     if (arg->request == RTLD_DI_SERINFOSIZE) {
2829 	arg->serinfo->dls_cnt ++;
2830 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2831     } else {
2832 	struct dl_serpath *s_entry;
2833 
2834 	s_entry = arg->serpath;
2835 	s_entry->dls_name  = arg->strspace;
2836 	s_entry->dls_flags = arg->flags;
2837 
2838 	strncpy(arg->strspace, dir, dirlen);
2839 	arg->strspace[dirlen] = '\0';
2840 
2841 	arg->strspace += dirlen + 1;
2842 	arg->serpath++;
2843     }
2844 
2845     return (NULL);
2846 }
2847 
2848 static int
2849 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2850 {
2851     struct dl_serinfo _info;
2852     struct fill_search_info_args args;
2853 
2854     args.request = RTLD_DI_SERINFOSIZE;
2855     args.serinfo = &_info;
2856 
2857     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2858     _info.dls_cnt  = 0;
2859 
2860     path_enumerate(ld_library_path, fill_search_info, &args);
2861     path_enumerate(obj->rpath, fill_search_info, &args);
2862     path_enumerate(gethints(), fill_search_info, &args);
2863     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2864 
2865 
2866     if (request == RTLD_DI_SERINFOSIZE) {
2867 	info->dls_size = _info.dls_size;
2868 	info->dls_cnt = _info.dls_cnt;
2869 	return (0);
2870     }
2871 
2872     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2873 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2874 	return (-1);
2875     }
2876 
2877     args.request  = RTLD_DI_SERINFO;
2878     args.serinfo  = info;
2879     args.serpath  = &info->dls_serpath[0];
2880     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2881 
2882     args.flags = LA_SER_LIBPATH;
2883     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2884 	return (-1);
2885 
2886     args.flags = LA_SER_RUNPATH;
2887     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2888 	return (-1);
2889 
2890     args.flags = LA_SER_CONFIG;
2891     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2892 	return (-1);
2893 
2894     args.flags = LA_SER_DEFAULT;
2895     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2896 	return (-1);
2897     return (0);
2898 }
2899 
2900 static int
2901 rtld_dirname(const char *path, char *bname)
2902 {
2903     const char *endp;
2904 
2905     /* Empty or NULL string gets treated as "." */
2906     if (path == NULL || *path == '\0') {
2907 	bname[0] = '.';
2908 	bname[1] = '\0';
2909 	return (0);
2910     }
2911 
2912     /* Strip trailing slashes */
2913     endp = path + strlen(path) - 1;
2914     while (endp > path && *endp == '/')
2915 	endp--;
2916 
2917     /* Find the start of the dir */
2918     while (endp > path && *endp != '/')
2919 	endp--;
2920 
2921     /* Either the dir is "/" or there are no slashes */
2922     if (endp == path) {
2923 	bname[0] = *endp == '/' ? '/' : '.';
2924 	bname[1] = '\0';
2925 	return (0);
2926     } else {
2927 	do {
2928 	    endp--;
2929 	} while (endp > path && *endp == '/');
2930     }
2931 
2932     if (endp - path + 2 > PATH_MAX)
2933     {
2934 	_rtld_error("Filename is too long: %s", path);
2935 	return(-1);
2936     }
2937 
2938     strncpy(bname, path, endp - path + 1);
2939     bname[endp - path + 1] = '\0';
2940     return (0);
2941 }
2942 
2943 static int
2944 rtld_dirname_abs(const char *path, char *base)
2945 {
2946 	char base_rel[PATH_MAX];
2947 
2948 	if (rtld_dirname(path, base) == -1)
2949 		return (-1);
2950 	if (base[0] == '/')
2951 		return (0);
2952 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2953 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2954 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2955 		return (-1);
2956 	strcpy(base, base_rel);
2957 	return (0);
2958 }
2959 
2960 static void
2961 linkmap_add(Obj_Entry *obj)
2962 {
2963     struct link_map *l = &obj->linkmap;
2964     struct link_map *prev;
2965 
2966     obj->linkmap.l_name = obj->path;
2967     obj->linkmap.l_addr = obj->mapbase;
2968     obj->linkmap.l_ld = obj->dynamic;
2969 #ifdef __mips__
2970     /* GDB needs load offset on MIPS to use the symbols */
2971     obj->linkmap.l_offs = obj->relocbase;
2972 #endif
2973 
2974     if (r_debug.r_map == NULL) {
2975 	r_debug.r_map = l;
2976 	return;
2977     }
2978 
2979     /*
2980      * Scan to the end of the list, but not past the entry for the
2981      * dynamic linker, which we want to keep at the very end.
2982      */
2983     for (prev = r_debug.r_map;
2984       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2985       prev = prev->l_next)
2986 	;
2987 
2988     /* Link in the new entry. */
2989     l->l_prev = prev;
2990     l->l_next = prev->l_next;
2991     if (l->l_next != NULL)
2992 	l->l_next->l_prev = l;
2993     prev->l_next = l;
2994 }
2995 
2996 static void
2997 linkmap_delete(Obj_Entry *obj)
2998 {
2999     struct link_map *l = &obj->linkmap;
3000 
3001     if (l->l_prev == NULL) {
3002 	if ((r_debug.r_map = l->l_next) != NULL)
3003 	    l->l_next->l_prev = NULL;
3004 	return;
3005     }
3006 
3007     if ((l->l_prev->l_next = l->l_next) != NULL)
3008 	l->l_next->l_prev = l->l_prev;
3009 }
3010 
3011 /*
3012  * Function for the debugger to set a breakpoint on to gain control.
3013  *
3014  * The two parameters allow the debugger to easily find and determine
3015  * what the runtime loader is doing and to whom it is doing it.
3016  *
3017  * When the loadhook trap is hit (r_debug_state, set at program
3018  * initialization), the arguments can be found on the stack:
3019  *
3020  *  +8   struct link_map *m
3021  *  +4   struct r_debug  *rd
3022  *  +0   RetAddr
3023  */
3024 void
3025 r_debug_state(struct r_debug* rd, struct link_map *m)
3026 {
3027     /*
3028      * The following is a hack to force the compiler to emit calls to
3029      * this function, even when optimizing.  If the function is empty,
3030      * the compiler is not obliged to emit any code for calls to it,
3031      * even when marked __noinline.  However, gdb depends on those
3032      * calls being made.
3033      */
3034     __asm __volatile("" : : : "memory");
3035 }
3036 
3037 /*
3038  * Get address of the pointer variable in the main program.
3039  * Prefer non-weak symbol over the weak one.
3040  */
3041 static const void **
3042 get_program_var_addr(const char *name, RtldLockState *lockstate)
3043 {
3044     SymLook req;
3045     DoneList donelist;
3046 
3047     symlook_init(&req, name);
3048     req.lockstate = lockstate;
3049     donelist_init(&donelist);
3050     if (symlook_global(&req, &donelist) != 0)
3051 	return (NULL);
3052     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3053 	return ((const void **)make_function_pointer(req.sym_out,
3054 	  req.defobj_out));
3055     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3056 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3057     else
3058 	    return ((const void **)(req.defobj_out->relocbase +
3059 	      req.sym_out->st_value));
3060 }
3061 
3062 /*
3063  * Set a pointer variable in the main program to the given value.  This
3064  * is used to set key variables such as "environ" before any of the
3065  * init functions are called.
3066  */
3067 static void
3068 set_program_var(const char *name, const void *value)
3069 {
3070     const void **addr;
3071 
3072     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3073 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3074 	*addr = value;
3075     }
3076 }
3077 
3078 /*
3079  * Search the global objects, including dependencies and main object,
3080  * for the given symbol.
3081  */
3082 static int
3083 symlook_global(SymLook *req, DoneList *donelist)
3084 {
3085     SymLook req1;
3086     const Objlist_Entry *elm;
3087     int res;
3088 
3089     symlook_init_from_req(&req1, req);
3090 
3091     /* Search all objects loaded at program start up. */
3092     if (req->defobj_out == NULL ||
3093       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3094 	res = symlook_list(&req1, &list_main, donelist);
3095 	if (res == 0 && (req->defobj_out == NULL ||
3096 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3097 	    req->sym_out = req1.sym_out;
3098 	    req->defobj_out = req1.defobj_out;
3099 	    assert(req->defobj_out != NULL);
3100 	}
3101     }
3102 
3103     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3104     STAILQ_FOREACH(elm, &list_global, link) {
3105 	if (req->defobj_out != NULL &&
3106 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3107 	    break;
3108 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3109 	if (res == 0 && (req->defobj_out == NULL ||
3110 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3111 	    req->sym_out = req1.sym_out;
3112 	    req->defobj_out = req1.defobj_out;
3113 	    assert(req->defobj_out != NULL);
3114 	}
3115     }
3116 
3117     return (req->sym_out != NULL ? 0 : ESRCH);
3118 }
3119 
3120 /*
3121  * This is a special version of getenv which is far more efficient
3122  * at finding LD_ environment vars.
3123  */
3124 static
3125 const char *
3126 _getenv_ld(const char *id)
3127 {
3128     const char *envp;
3129     int i, j;
3130     int idlen = strlen(id);
3131 
3132     if (ld_index == LD_ARY_CACHE)
3133 	return(getenv(id));
3134     if (ld_index == 0) {
3135 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3136 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3137 		ld_ary[j++] = envp;
3138 	}
3139 	if (j == 0)
3140 		ld_ary[j++] = "";
3141 	ld_index = j;
3142     }
3143     for (i = ld_index - 1; i >= 0; --i) {
3144 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3145 	    return(ld_ary[i] + idlen + 1);
3146     }
3147     return(NULL);
3148 }
3149 
3150 /*
3151  * Given a symbol name in a referencing object, find the corresponding
3152  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3153  * no definition was found.  Returns a pointer to the Obj_Entry of the
3154  * defining object via the reference parameter DEFOBJ_OUT.
3155  */
3156 static int
3157 symlook_default(SymLook *req, const Obj_Entry *refobj)
3158 {
3159     DoneList donelist;
3160     const Objlist_Entry *elm;
3161     SymLook req1;
3162     int res;
3163 
3164     donelist_init(&donelist);
3165     symlook_init_from_req(&req1, req);
3166 
3167     /* Look first in the referencing object if linked symbolically. */
3168     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3169 	res = symlook_obj(&req1, refobj);
3170 	if (res == 0) {
3171 	    req->sym_out = req1.sym_out;
3172 	    req->defobj_out = req1.defobj_out;
3173 	    assert(req->defobj_out != NULL);
3174 	}
3175     }
3176 
3177     symlook_global(req, &donelist);
3178 
3179     /* Search all dlopened DAGs containing the referencing object. */
3180     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3181 	if (req->sym_out != NULL &&
3182 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3183 	    break;
3184 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3185 	if (res == 0 && (req->sym_out == NULL ||
3186 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3187 	    req->sym_out = req1.sym_out;
3188 	    req->defobj_out = req1.defobj_out;
3189 	    assert(req->defobj_out != NULL);
3190 	}
3191     }
3192 
3193     /*
3194      * Search the dynamic linker itself, and possibly resolve the
3195      * symbol from there.  This is how the application links to
3196      * dynamic linker services such as dlopen.  Only the values listed
3197      * in the "exports" array can be resolved from the dynamic linker.
3198      */
3199     if (req->sym_out == NULL ||
3200       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3201 	res = symlook_obj(&req1, &obj_rtld);
3202 	if (res == 0 && is_exported(req1.sym_out)) {
3203 	    req->sym_out = req1.sym_out;
3204 	    req->defobj_out = req1.defobj_out;
3205 	    assert(req->defobj_out != NULL);
3206 	}
3207     }
3208 
3209     return (req->sym_out != NULL ? 0 : ESRCH);
3210 }
3211 
3212 static int
3213 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3214 {
3215     const Elf_Sym *def;
3216     const Obj_Entry *defobj;
3217     const Objlist_Entry *elm;
3218     SymLook req1;
3219     int res;
3220 
3221     def = NULL;
3222     defobj = NULL;
3223     STAILQ_FOREACH(elm, objlist, link) {
3224 	if (donelist_check(dlp, elm->obj))
3225 	    continue;
3226 	symlook_init_from_req(&req1, req);
3227 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3228 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3229 		def = req1.sym_out;
3230 		defobj = req1.defobj_out;
3231 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3232 		    break;
3233 	    }
3234 	}
3235     }
3236     if (def != NULL) {
3237 	req->sym_out = def;
3238 	req->defobj_out = defobj;
3239 	return (0);
3240     }
3241     return (ESRCH);
3242 }
3243 
3244 /*
3245  * Search the chain of DAGS cointed to by the given Needed_Entry
3246  * for a symbol of the given name.  Each DAG is scanned completely
3247  * before advancing to the next one.  Returns a pointer to the symbol,
3248  * or NULL if no definition was found.
3249  */
3250 static int
3251 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3252 {
3253     const Elf_Sym *def;
3254     const Needed_Entry *n;
3255     const Obj_Entry *defobj;
3256     SymLook req1;
3257     int res;
3258 
3259     def = NULL;
3260     defobj = NULL;
3261     symlook_init_from_req(&req1, req);
3262     for (n = needed; n != NULL; n = n->next) {
3263 	if (n->obj == NULL ||
3264 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3265 	    continue;
3266 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3267 	def = req1.sym_out;
3268 	defobj = req1.defobj_out;
3269 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3270 		break;
3271 	}
3272     }
3273     if (def != NULL) {
3274 	req->sym_out = def;
3275 	req->defobj_out = defobj;
3276 	return (0);
3277     }
3278     return (ESRCH);
3279 }
3280 
3281 /*
3282  * Search the symbol table of a single shared object for a symbol of
3283  * the given name and version, if requested.  Returns a pointer to the
3284  * symbol, or NULL if no definition was found.  If the object is
3285  * filter, return filtered symbol from filtee.
3286  *
3287  * The symbol's hash value is passed in for efficiency reasons; that
3288  * eliminates many recomputations of the hash value.
3289  */
3290 int
3291 symlook_obj(SymLook *req, const Obj_Entry *obj)
3292 {
3293     DoneList donelist;
3294     SymLook req1;
3295     int res, mres;
3296 
3297     mres = symlook_obj1(req, obj);
3298     if (mres == 0) {
3299 	if (obj->needed_filtees != NULL) {
3300 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3301 	    donelist_init(&donelist);
3302 	    symlook_init_from_req(&req1, req);
3303 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3304 	    if (res == 0) {
3305 		req->sym_out = req1.sym_out;
3306 		req->defobj_out = req1.defobj_out;
3307 	    }
3308 	    return (res);
3309 	}
3310 	if (obj->needed_aux_filtees != NULL) {
3311 	    load_filtees(__DECONST(Obj_Entry *, obj), 0, req->lockstate);
3312 	    donelist_init(&donelist);
3313 	    symlook_init_from_req(&req1, req);
3314 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3315 	    if (res == 0) {
3316 		req->sym_out = req1.sym_out;
3317 		req->defobj_out = req1.defobj_out;
3318 		return (res);
3319 	    }
3320 	}
3321     }
3322     return (mres);
3323 }
3324 
3325 static int
3326 symlook_obj1(SymLook *req, const Obj_Entry *obj)
3327 {
3328     unsigned long symnum;
3329     const Elf_Sym *vsymp;
3330     Elf_Versym verndx;
3331     int vcount;
3332 
3333     if (obj->buckets == NULL)
3334 	return (ESRCH);
3335 
3336     vsymp = NULL;
3337     vcount = 0;
3338     symnum = obj->buckets[req->hash % obj->nbuckets];
3339 
3340     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3341 	const Elf_Sym *symp;
3342 	const char *strp;
3343 
3344 	if (symnum >= obj->nchains)
3345 	    return (ESRCH);	/* Bad object */
3346 
3347 	symp = obj->symtab + symnum;
3348 	strp = obj->strtab + symp->st_name;
3349 
3350 	switch (ELF_ST_TYPE(symp->st_info)) {
3351 	case STT_FUNC:
3352 	case STT_NOTYPE:
3353 	case STT_OBJECT:
3354 	case STT_GNU_IFUNC:
3355 	    if (symp->st_value == 0)
3356 		continue;
3357 		/* fallthrough */
3358 	case STT_TLS:
3359 	    if (symp->st_shndx != SHN_UNDEF)
3360 		break;
3361 	    else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3362 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3363 		break;
3364 		/* fallthrough */
3365 	default:
3366 	    continue;
3367 	}
3368 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
3369 	    continue;
3370 
3371 	if (req->ventry == NULL) {
3372 	    if (obj->versyms != NULL) {
3373 		verndx = VER_NDX(obj->versyms[symnum]);
3374 		if (verndx > obj->vernum) {
3375 		    _rtld_error("%s: symbol %s references wrong version %d",
3376 			obj->path, obj->strtab + symnum, verndx);
3377 		    continue;
3378 		}
3379 		/*
3380 		 * If we are not called from dlsym (i.e. this is a normal
3381 		 * relocation from unversioned binary), accept the symbol
3382 		 * immediately if it happens to have first version after
3383 		 * this shared object became versioned. Otherwise, if
3384 		 * symbol is versioned and not hidden, remember it. If it
3385 		 * is the only symbol with this name exported by the
3386 		 * shared object, it will be returned as a match at the
3387 		 * end of the function. If symbol is global (verndx < 2)
3388 		 * accept it unconditionally.
3389 		 */
3390 		if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3391 		  verndx == VER_NDX_GIVEN) {
3392 		    req->sym_out = symp;
3393 		    req->defobj_out = obj;
3394 		    return (0);
3395 		}
3396 		else if (verndx >= VER_NDX_GIVEN) {
3397 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3398 			if (vsymp == NULL)
3399 			    vsymp = symp;
3400 			vcount ++;
3401 		    }
3402 		    continue;
3403 		}
3404 	    }
3405 	    req->sym_out = symp;
3406 	    req->defobj_out = obj;
3407 	    return (0);
3408 	} else {
3409 	    if (obj->versyms == NULL) {
3410 		if (object_match_name(obj, req->ventry->name)) {
3411 		    _rtld_error("%s: object %s should provide version %s for "
3412 			"symbol %s", obj_rtld.path, obj->path,
3413 			req->ventry->name, obj->strtab + symnum);
3414 		    continue;
3415 		}
3416 	    } else {
3417 		verndx = VER_NDX(obj->versyms[symnum]);
3418 		if (verndx > obj->vernum) {
3419 		    _rtld_error("%s: symbol %s references wrong version %d",
3420 			obj->path, obj->strtab + symnum, verndx);
3421 		    continue;
3422 		}
3423 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3424 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3425 		    /*
3426 		     * Version does not match. Look if this is a global symbol
3427 		     * and if it is not hidden. If global symbol (verndx < 2)
3428 		     * is available, use it. Do not return symbol if we are
3429 		     * called by dlvsym, because dlvsym looks for a specific
3430 		     * version and default one is not what dlvsym wants.
3431 		     */
3432 		    if ((req->flags & SYMLOOK_DLSYM) ||
3433 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3434 			(verndx >= VER_NDX_GIVEN))
3435 			continue;
3436 		}
3437 	    }
3438 	    req->sym_out = symp;
3439 	    req->defobj_out = obj;
3440 	    return (0);
3441 	}
3442     }
3443     if (vcount == 1) {
3444 	req->sym_out = vsymp;
3445 	req->defobj_out = obj;
3446 	return (0);
3447     }
3448     return (ESRCH);
3449 }
3450 
3451 static void
3452 trace_loaded_objects(Obj_Entry *obj)
3453 {
3454     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
3455     int		c;
3456 
3457     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3458 	main_local = "";
3459 
3460     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3461 	fmt1 = "\t%o => %p (%x)\n";
3462 
3463     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3464 	fmt2 = "\t%o (%x)\n";
3465 
3466     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
3467 
3468     for (; obj; obj = obj->next) {
3469 	Needed_Entry		*needed;
3470 	char			*name, *path;
3471 	bool			is_lib;
3472 
3473 	if (list_containers && obj->needed != NULL)
3474 	    rtld_printf("%s:\n", obj->path);
3475 	for (needed = obj->needed; needed; needed = needed->next) {
3476 	    if (needed->obj != NULL) {
3477 		if (needed->obj->traced && !list_containers)
3478 		    continue;
3479 		needed->obj->traced = true;
3480 		path = needed->obj->path;
3481 	    } else
3482 		path = "not found";
3483 
3484 	    name = (char *)obj->strtab + needed->name;
3485 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3486 
3487 	    fmt = is_lib ? fmt1 : fmt2;
3488 	    while ((c = *fmt++) != '\0') {
3489 		switch (c) {
3490 		default:
3491 		    rtld_putchar(c);
3492 		    continue;
3493 		case '\\':
3494 		    switch (c = *fmt) {
3495 		    case '\0':
3496 			continue;
3497 		    case 'n':
3498 			rtld_putchar('\n');
3499 			break;
3500 		    case 't':
3501 			rtld_putchar('\t');
3502 			break;
3503 		    }
3504 		    break;
3505 		case '%':
3506 		    switch (c = *fmt) {
3507 		    case '\0':
3508 			continue;
3509 		    case '%':
3510 		    default:
3511 			rtld_putchar(c);
3512 			break;
3513 		    case 'A':
3514 			rtld_putstr(main_local);
3515 			break;
3516 		    case 'a':
3517 			rtld_putstr(obj_main->path);
3518 			break;
3519 		    case 'o':
3520 			rtld_putstr(name);
3521 			break;
3522 		    case 'p':
3523 			rtld_putstr(path);
3524 			break;
3525 		    case 'x':
3526 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
3527 			  0);
3528 			break;
3529 		    }
3530 		    break;
3531 		}
3532 		++fmt;
3533 	    }
3534 	}
3535     }
3536 }
3537 
3538 /*
3539  * Unload a dlopened object and its dependencies from memory and from
3540  * our data structures.  It is assumed that the DAG rooted in the
3541  * object has already been unreferenced, and that the object has a
3542  * reference count of 0.
3543  */
3544 static void
3545 unload_object(Obj_Entry *root)
3546 {
3547     Obj_Entry *obj;
3548     Obj_Entry **linkp;
3549 
3550     assert(root->refcount == 0);
3551 
3552     /*
3553      * Pass over the DAG removing unreferenced objects from
3554      * appropriate lists.
3555      */
3556     unlink_object(root);
3557 
3558     /* Unmap all objects that are no longer referenced. */
3559     linkp = &obj_list->next;
3560     while ((obj = *linkp) != NULL) {
3561 	if (obj->refcount == 0) {
3562 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3563 		obj->path);
3564 	    dbg("unloading \"%s\"", obj->path);
3565 	    unload_filtees(root);
3566 	    munmap(obj->mapbase, obj->mapsize);
3567 	    linkmap_delete(obj);
3568 	    *linkp = obj->next;
3569 	    obj_count--;
3570 	    obj_free(obj);
3571 	} else
3572 	    linkp = &obj->next;
3573     }
3574     obj_tail = linkp;
3575 }
3576 
3577 static void
3578 unlink_object(Obj_Entry *root)
3579 {
3580     Objlist_Entry *elm;
3581 
3582     if (root->refcount == 0) {
3583 	/* Remove the object from the RTLD_GLOBAL list. */
3584 	objlist_remove(&list_global, root);
3585 
3586     	/* Remove the object from all objects' DAG lists. */
3587 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3588 	    objlist_remove(&elm->obj->dldags, root);
3589 	    if (elm->obj != root)
3590 		unlink_object(elm->obj);
3591 	}
3592     }
3593 }
3594 
3595 static void
3596 ref_dag(Obj_Entry *root)
3597 {
3598     Objlist_Entry *elm;
3599 
3600     assert(root->dag_inited);
3601     STAILQ_FOREACH(elm, &root->dagmembers, link)
3602 	elm->obj->refcount++;
3603 }
3604 
3605 static void
3606 unref_dag(Obj_Entry *root)
3607 {
3608     Objlist_Entry *elm;
3609 
3610     assert(root->dag_inited);
3611     STAILQ_FOREACH(elm, &root->dagmembers, link)
3612 	elm->obj->refcount--;
3613 }
3614 
3615 /*
3616  * Common code for MD __tls_get_addr().
3617  */
3618 void *
3619 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3620 {
3621     Elf_Addr* dtv = *dtvp;
3622     RtldLockState lockstate;
3623 
3624     /* Check dtv generation in case new modules have arrived */
3625     if (dtv[0] != tls_dtv_generation) {
3626 	Elf_Addr* newdtv;
3627 	int to_copy;
3628 
3629 	wlock_acquire(rtld_bind_lock, &lockstate);
3630 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3631 	to_copy = dtv[1];
3632 	if (to_copy > tls_max_index)
3633 	    to_copy = tls_max_index;
3634 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3635 	newdtv[0] = tls_dtv_generation;
3636 	newdtv[1] = tls_max_index;
3637 	free(dtv);
3638 	lock_release(rtld_bind_lock, &lockstate);
3639 	dtv = *dtvp = newdtv;
3640     }
3641 
3642     /* Dynamically allocate module TLS if necessary */
3643     if (!dtv[index + 1]) {
3644 	/* Signal safe, wlock will block out signals. */
3645 	wlock_acquire(rtld_bind_lock, &lockstate);
3646 	if (!dtv[index + 1])
3647 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3648 	lock_release(rtld_bind_lock, &lockstate);
3649     }
3650     return (void*) (dtv[index + 1] + offset);
3651 }
3652 
3653 #if defined(RTLD_STATIC_TLS_VARIANT_II)
3654 
3655 /*
3656  * Allocate the static TLS area.  Return a pointer to the TCB.  The
3657  * static area is based on negative offsets relative to the tcb.
3658  *
3659  * The TCB contains an errno pointer for the system call layer, but because
3660  * we are the RTLD we really have no idea how the caller was compiled so
3661  * the information has to be passed in.  errno can either be:
3662  *
3663  *	type 0	errno is a simple non-TLS global pointer.
3664  *		(special case for e.g. libc_rtld)
3665  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
3666  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
3667  */
3668 struct tls_tcb *
3669 allocate_tls(Obj_Entry *objs)
3670 {
3671     Obj_Entry *obj;
3672     size_t data_size;
3673     size_t dtv_size;
3674     struct tls_tcb *tcb;
3675     Elf_Addr *dtv;
3676     Elf_Addr addr;
3677 
3678     /*
3679      * Allocate the new TCB.  static TLS storage is placed just before the
3680      * TCB to support the %gs:OFFSET (negative offset) model.
3681      */
3682     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
3683 		~RTLD_STATIC_TLS_ALIGN_MASK;
3684     tcb = malloc(data_size + sizeof(*tcb));
3685     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
3686 
3687     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
3688     dtv = malloc(dtv_size);
3689     bzero(dtv, dtv_size);
3690 
3691 #ifdef RTLD_TCB_HAS_SELF_POINTER
3692     tcb->tcb_self = tcb;
3693 #endif
3694     tcb->tcb_dtv = dtv;
3695     tcb->tcb_pthread = NULL;
3696 
3697     dtv[0] = tls_dtv_generation;
3698     dtv[1] = tls_max_index;
3699 
3700     for (obj = objs; obj; obj = obj->next) {
3701 	if (obj->tlsoffset) {
3702 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
3703 	    memset((void *)(addr + obj->tlsinitsize),
3704 		   0, obj->tlssize - obj->tlsinitsize);
3705 	    if (obj->tlsinit)
3706 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3707 	    dtv[obj->tlsindex + 1] = addr;
3708 	}
3709     }
3710     return(tcb);
3711 }
3712 
3713 void
3714 free_tls(struct tls_tcb *tcb)
3715 {
3716     Elf_Addr *dtv;
3717     int dtv_size, i;
3718     Elf_Addr tls_start, tls_end;
3719     size_t data_size;
3720 
3721     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
3722 		~RTLD_STATIC_TLS_ALIGN_MASK;
3723 
3724     dtv = tcb->tcb_dtv;
3725     dtv_size = dtv[1];
3726     tls_end = (Elf_Addr)tcb;
3727     tls_start = (Elf_Addr)tcb - data_size;
3728     for (i = 0; i < dtv_size; i++) {
3729 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
3730 	    free((void *)dtv[i+2]);
3731 	}
3732     }
3733 
3734     free((void*) tls_start);
3735 }
3736 
3737 #else
3738 #error "Unsupported TLS layout"
3739 #endif
3740 
3741 /*
3742  * Allocate TLS block for module with given index.
3743  */
3744 void *
3745 allocate_module_tls(int index)
3746 {
3747     Obj_Entry* obj;
3748     char* p;
3749 
3750     for (obj = obj_list; obj; obj = obj->next) {
3751 	if (obj->tlsindex == index)
3752 	    break;
3753     }
3754     if (!obj) {
3755 	_rtld_error("Can't find module with TLS index %d", index);
3756 	die();
3757     }
3758 
3759     p = malloc(obj->tlssize);
3760     if (p == NULL) {
3761 	_rtld_error("Cannot allocate TLS block for index %d", index);
3762 	die();
3763     }
3764     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3765     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3766 
3767     return p;
3768 }
3769 
3770 bool
3771 allocate_tls_offset(Obj_Entry *obj)
3772 {
3773     size_t off;
3774 
3775     if (obj->tls_done)
3776 	return true;
3777 
3778     if (obj->tlssize == 0) {
3779 	obj->tls_done = true;
3780 	return true;
3781     }
3782 
3783     if (obj->tlsindex == 1)
3784 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3785     else
3786 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3787 				   obj->tlssize, obj->tlsalign);
3788 
3789     /*
3790      * If we have already fixed the size of the static TLS block, we
3791      * must stay within that size. When allocating the static TLS, we
3792      * leave a small amount of space spare to be used for dynamically
3793      * loading modules which use static TLS.
3794      */
3795     if (tls_static_space) {
3796 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3797 	    return false;
3798     }
3799 
3800     tls_last_offset = obj->tlsoffset = off;
3801     tls_last_size = obj->tlssize;
3802     obj->tls_done = true;
3803 
3804     return true;
3805 }
3806 
3807 void
3808 free_tls_offset(Obj_Entry *obj)
3809 {
3810 #ifdef RTLD_STATIC_TLS_VARIANT_II
3811     /*
3812      * If we were the last thing to allocate out of the static TLS
3813      * block, we give our space back to the 'allocator'. This is a
3814      * simplistic workaround to allow libGL.so.1 to be loaded and
3815      * unloaded multiple times. We only handle the Variant II
3816      * mechanism for now - this really needs a proper allocator.
3817      */
3818     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3819 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3820 	tls_last_offset -= obj->tlssize;
3821 	tls_last_size = 0;
3822     }
3823 #endif
3824 }
3825 
3826 struct tls_tcb *
3827 _rtld_allocate_tls(void)
3828 {
3829     struct tls_tcb *new_tcb;
3830     RtldLockState lockstate;
3831 
3832     wlock_acquire(rtld_bind_lock, &lockstate);
3833     new_tcb = allocate_tls(obj_list);
3834     lock_release(rtld_bind_lock, &lockstate);
3835     return (new_tcb);
3836 }
3837 
3838 void
3839 _rtld_free_tls(struct tls_tcb *tcb)
3840 {
3841     RtldLockState lockstate;
3842 
3843     wlock_acquire(rtld_bind_lock, &lockstate);
3844     free_tls(tcb);
3845     lock_release(rtld_bind_lock, &lockstate);
3846 }
3847 
3848 static void
3849 object_add_name(Obj_Entry *obj, const char *name)
3850 {
3851     Name_Entry *entry;
3852     size_t len;
3853 
3854     len = strlen(name);
3855     entry = malloc(sizeof(Name_Entry) + len);
3856 
3857     if (entry != NULL) {
3858 	strcpy(entry->name, name);
3859 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3860     }
3861 }
3862 
3863 static int
3864 object_match_name(const Obj_Entry *obj, const char *name)
3865 {
3866     Name_Entry *entry;
3867 
3868     STAILQ_FOREACH(entry, &obj->names, link) {
3869 	if (strcmp(name, entry->name) == 0)
3870 	    return (1);
3871     }
3872     return (0);
3873 }
3874 
3875 static Obj_Entry *
3876 locate_dependency(const Obj_Entry *obj, const char *name)
3877 {
3878     const Objlist_Entry *entry;
3879     const Needed_Entry *needed;
3880 
3881     STAILQ_FOREACH(entry, &list_main, link) {
3882 	if (object_match_name(entry->obj, name))
3883 	    return entry->obj;
3884     }
3885 
3886     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3887 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
3888 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
3889 	    /*
3890 	     * If there is DT_NEEDED for the name we are looking for,
3891 	     * we are all set.  Note that object might not be found if
3892 	     * dependency was not loaded yet, so the function can
3893 	     * return NULL here.  This is expected and handled
3894 	     * properly by the caller.
3895 	     */
3896 	    return (needed->obj);
3897 	}
3898     }
3899     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3900 	obj->path, name);
3901     die();
3902 }
3903 
3904 static int
3905 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3906     const Elf_Vernaux *vna)
3907 {
3908     const Elf_Verdef *vd;
3909     const char *vername;
3910 
3911     vername = refobj->strtab + vna->vna_name;
3912     vd = depobj->verdef;
3913     if (vd == NULL) {
3914 	_rtld_error("%s: version %s required by %s not defined",
3915 	    depobj->path, vername, refobj->path);
3916 	return (-1);
3917     }
3918     for (;;) {
3919 	if (vd->vd_version != VER_DEF_CURRENT) {
3920 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3921 		depobj->path, vd->vd_version);
3922 	    return (-1);
3923 	}
3924 	if (vna->vna_hash == vd->vd_hash) {
3925 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3926 		((char *)vd + vd->vd_aux);
3927 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3928 		return (0);
3929 	}
3930 	if (vd->vd_next == 0)
3931 	    break;
3932 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3933     }
3934     if (vna->vna_flags & VER_FLG_WEAK)
3935 	return (0);
3936     _rtld_error("%s: version %s required by %s not found",
3937 	depobj->path, vername, refobj->path);
3938     return (-1);
3939 }
3940 
3941 static int
3942 rtld_verify_object_versions(Obj_Entry *obj)
3943 {
3944     const Elf_Verneed *vn;
3945     const Elf_Verdef  *vd;
3946     const Elf_Verdaux *vda;
3947     const Elf_Vernaux *vna;
3948     const Obj_Entry *depobj;
3949     int maxvernum, vernum;
3950 
3951     maxvernum = 0;
3952     /*
3953      * Walk over defined and required version records and figure out
3954      * max index used by any of them. Do very basic sanity checking
3955      * while there.
3956      */
3957     vn = obj->verneed;
3958     while (vn != NULL) {
3959 	if (vn->vn_version != VER_NEED_CURRENT) {
3960 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3961 		obj->path, vn->vn_version);
3962 	    return (-1);
3963 	}
3964 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3965 	for (;;) {
3966 	    vernum = VER_NEED_IDX(vna->vna_other);
3967 	    if (vernum > maxvernum)
3968 		maxvernum = vernum;
3969 	    if (vna->vna_next == 0)
3970 		 break;
3971 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3972 	}
3973 	if (vn->vn_next == 0)
3974 	    break;
3975 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3976     }
3977 
3978     vd = obj->verdef;
3979     while (vd != NULL) {
3980 	if (vd->vd_version != VER_DEF_CURRENT) {
3981 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3982 		obj->path, vd->vd_version);
3983 	    return (-1);
3984 	}
3985 	vernum = VER_DEF_IDX(vd->vd_ndx);
3986 	if (vernum > maxvernum)
3987 		maxvernum = vernum;
3988 	if (vd->vd_next == 0)
3989 	    break;
3990 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3991     }
3992 
3993     if (maxvernum == 0)
3994 	return (0);
3995 
3996     /*
3997      * Store version information in array indexable by version index.
3998      * Verify that object version requirements are satisfied along the
3999      * way.
4000      */
4001     obj->vernum = maxvernum + 1;
4002     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
4003 
4004     vd = obj->verdef;
4005     while (vd != NULL) {
4006 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4007 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4008 	    assert(vernum <= maxvernum);
4009 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4010 	    obj->vertab[vernum].hash = vd->vd_hash;
4011 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4012 	    obj->vertab[vernum].file = NULL;
4013 	    obj->vertab[vernum].flags = 0;
4014 	}
4015 	if (vd->vd_next == 0)
4016 	    break;
4017 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4018     }
4019 
4020     vn = obj->verneed;
4021     while (vn != NULL) {
4022 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4023 	if (depobj == NULL)
4024 	    return (-1);
4025 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4026 	for (;;) {
4027 	    if (check_object_provided_version(obj, depobj, vna))
4028 		return (-1);
4029 	    vernum = VER_NEED_IDX(vna->vna_other);
4030 	    assert(vernum <= maxvernum);
4031 	    obj->vertab[vernum].hash = vna->vna_hash;
4032 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4033 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4034 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4035 		VER_INFO_HIDDEN : 0;
4036 	    if (vna->vna_next == 0)
4037 		 break;
4038 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4039 	}
4040 	if (vn->vn_next == 0)
4041 	    break;
4042 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4043     }
4044     return 0;
4045 }
4046 
4047 static int
4048 rtld_verify_versions(const Objlist *objlist)
4049 {
4050     Objlist_Entry *entry;
4051     int rc;
4052 
4053     rc = 0;
4054     STAILQ_FOREACH(entry, objlist, link) {
4055 	/*
4056 	 * Skip dummy objects or objects that have their version requirements
4057 	 * already checked.
4058 	 */
4059 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4060 	    continue;
4061 	if (rtld_verify_object_versions(entry->obj) == -1) {
4062 	    rc = -1;
4063 	    if (ld_tracing == NULL)
4064 		break;
4065 	}
4066     }
4067     if (rc == 0 || ld_tracing != NULL)
4068 	rc = rtld_verify_object_versions(&obj_rtld);
4069     return rc;
4070 }
4071 
4072 const Ver_Entry *
4073 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4074 {
4075     Elf_Versym vernum;
4076 
4077     if (obj->vertab) {
4078 	vernum = VER_NDX(obj->versyms[symnum]);
4079 	if (vernum >= obj->vernum) {
4080 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4081 		obj->path, obj->strtab + symnum, vernum);
4082 	} else if (obj->vertab[vernum].hash != 0) {
4083 	    return &obj->vertab[vernum];
4084 	}
4085     }
4086     return NULL;
4087 }
4088 
4089 int
4090 _rtld_get_stack_prot(void)
4091 {
4092 
4093 	return (stack_prot);
4094 }
4095 
4096 static void
4097 map_stacks_exec(RtldLockState *lockstate)
4098 {
4099 	return;
4100 	/*
4101 	 * Stack protection must be implemented in the kernel before the dynamic
4102 	 * linker can handle PT_GNU_STACK sections.
4103 	 * The following is the FreeBSD implementation of map_stacks_exec()
4104 	 * void (*thr_map_stacks_exec)(void);
4105 	 *
4106 	 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4107 	 *     return;
4108 	 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4109 	 *     get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4110 	 * if (thr_map_stacks_exec != NULL) {
4111 	 *     stack_prot |= PROT_EXEC;
4112 	 *     thr_map_stacks_exec();
4113 	 * }
4114 	 */
4115 }
4116 
4117 void
4118 symlook_init(SymLook *dst, const char *name)
4119 {
4120 
4121 	bzero(dst, sizeof(*dst));
4122 	dst->name = name;
4123 	dst->hash = elf_hash(name);
4124 }
4125 
4126 static void
4127 symlook_init_from_req(SymLook *dst, const SymLook *src)
4128 {
4129 
4130 	dst->name = src->name;
4131 	dst->hash = src->hash;
4132 	dst->ventry = src->ventry;
4133 	dst->flags = src->flags;
4134 	dst->defobj_out = NULL;
4135 	dst->sym_out = NULL;
4136 	dst->lockstate = src->lockstate;
4137 }
4138 
4139 #ifdef ENABLE_OSRELDATE
4140 /*
4141  * Overrides for libc_pic-provided functions.
4142  */
4143 
4144 int
4145 __getosreldate(void)
4146 {
4147 	size_t len;
4148 	int oid[2];
4149 	int error, osrel;
4150 
4151 	if (osreldate != 0)
4152 		return (osreldate);
4153 
4154 	oid[0] = CTL_KERN;
4155 	oid[1] = KERN_OSRELDATE;
4156 	osrel = 0;
4157 	len = sizeof(osrel);
4158 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4159 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4160 		osreldate = osrel;
4161 	return (osreldate);
4162 }
4163 #endif
4164 
4165 /*
4166  * No unresolved symbols for rtld.
4167  */
4168 void
4169 __pthread_cxa_finalize(struct dl_phdr_info *a)
4170 {
4171 }
4172