xref: /dragonfly/libexec/rtld-elf/rtld.c (revision 88ed2a5c)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 #include <sys/resident.h>
50 #include <sys/tls.h>
51 
52 #include <machine/tls.h>
53 
54 #include <dlfcn.h>
55 #include <err.h>
56 #include <errno.h>
57 #include <fcntl.h>
58 #include <stdarg.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <unistd.h>
63 
64 #include "debug.h"
65 #include "rtld.h"
66 #include "libmap.h"
67 #include "rtld_printf.h"
68 #include "notes.h"
69 
70 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
71 #define LD_ARY_CACHE	16
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *_getenv_ld(const char *id);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static void distribute_static_tls(Objlist *, RtldLockState *);
89 static Obj_Entry *dlcheck(void *);
90 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
91     int lo_flags, int mode, RtldLockState *lockstate);
92 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
93 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
94 static bool donelist_check(DoneList *, const Obj_Entry *);
95 static void errmsg_restore(char *);
96 static char *errmsg_save(void);
97 static void *fill_search_info(const char *, size_t, void *);
98 static char *find_library(const char *, const Obj_Entry *, int *);
99 static const char *gethints(bool);
100 static void init_dag(Obj_Entry *);
101 static void init_rtld(caddr_t, Elf_Auxinfo **);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static Obj_Entry *obj_from_addr(const void *);
113 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114 static void objlist_call_init(Objlist *, RtldLockState *);
115 static void objlist_clear(Objlist *);
116 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117 static void objlist_init(Objlist *);
118 static void objlist_push_head(Objlist *, Obj_Entry *);
119 static void objlist_push_tail(Objlist *, Obj_Entry *);
120 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
121 static void objlist_remove(Objlist *, Obj_Entry *);
122 static int parse_libdir(const char *);
123 static void *path_enumerate(const char *, path_enum_proc, void *);
124 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
125     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
126 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
127     int flags, RtldLockState *lockstate);
128 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
129     RtldLockState *);
130 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
131     int flags, RtldLockState *lockstate);
132 static int rtld_dirname(const char *, char *);
133 static int rtld_dirname_abs(const char *, char *);
134 static void *rtld_dlopen(const char *name, int fd, int mode);
135 static void rtld_exit(void);
136 static char *search_library_path(const char *, const char *);
137 static char *search_library_pathfds(const char *, const char *, int *);
138 static const void **get_program_var_addr(const char *, RtldLockState *);
139 static void set_program_var(const char *, const void *);
140 static int symlook_default(SymLook *, const Obj_Entry *refobj);
141 static int symlook_global(SymLook *, DoneList *);
142 static void symlook_init_from_req(SymLook *, const SymLook *);
143 static int symlook_list(SymLook *, const Objlist *, DoneList *);
144 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
145 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
146 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
147 static void trace_loaded_objects(Obj_Entry *);
148 static void unlink_object(Obj_Entry *);
149 static void unload_object(Obj_Entry *);
150 static void unref_dag(Obj_Entry *);
151 static void ref_dag(Obj_Entry *);
152 static char *origin_subst_one(char *, const char *, const char *, bool);
153 static char *origin_subst(char *, const char *);
154 static void preinit_main(void);
155 static int  rtld_verify_versions(const Objlist *);
156 static int  rtld_verify_object_versions(Obj_Entry *);
157 static void object_add_name(Obj_Entry *, const char *);
158 static int  object_match_name(const Obj_Entry *, const char *);
159 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
160 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
161     struct dl_phdr_info *phdr_info);
162 static uint_fast32_t gnu_hash (const char *);
163 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
164     const unsigned long);
165 
166 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
167 void _r_debug_postinit(struct link_map *) __noinline;
168 
169 /*
170  * Data declarations.
171  */
172 static char *error_message;	/* Message for dlerror(), or NULL */
173 struct r_debug r_debug;		/* for GDB; */
174 static bool libmap_disable;	/* Disable libmap */
175 static bool ld_loadfltr;	/* Immediate filters processing */
176 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
177 static bool trust;		/* False for setuid and setgid programs */
178 static bool dangerous_ld_env;	/* True if environment variables have been
179 				   used to affect the libraries loaded */
180 static const char *ld_bind_now;	/* Environment variable for immediate binding */
181 static const char *ld_debug;	/* Environment variable for debugging */
182 static const char *ld_library_path;	/* Environment variable for search path */
183 static const char *ld_library_dirs;	/* Env variable for library descriptors */
184 static char *ld_preload;	/* Environment variable for libraries to
185 				   load first */
186 static const char *ld_elf_hints_path;	/* Env var. for alternative hints path */
187 static const char *ld_tracing;	/* Called from ldd to print libs */
188 static const char *ld_utrace;	/* Use utrace() to log events. */
189 static int (*rtld_functrace)(   /* Optional function call tracing hook */
190 	const char *caller_obj,
191 	const char *callee_obj,
192 	const char *callee_func,
193 	void *stack);
194 static const Obj_Entry *rtld_functrace_obj;	/* Object thereof */
195 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
196 static Obj_Entry **obj_tail;	/* Link field of last object in list */
197 static Obj_Entry **preload_tail;
198 static Obj_Entry *obj_main;	/* The main program shared object */
199 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
200 static unsigned int obj_count;	/* Number of objects in obj_list */
201 static unsigned int obj_loads;	/* Number of objects in obj_list */
202 
203 static int	ld_resident;	/* Non-zero if resident */
204 static const char *ld_ary[LD_ARY_CACHE];
205 static int	ld_index;
206 static Objlist initlist;
207 
208 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
209   STAILQ_HEAD_INITIALIZER(list_global);
210 static Objlist list_main =	/* Objects loaded at program startup */
211   STAILQ_HEAD_INITIALIZER(list_main);
212 static Objlist list_fini =	/* Objects needing fini() calls */
213   STAILQ_HEAD_INITIALIZER(list_fini);
214 
215 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
216 const char *__ld_sharedlib_base;
217 
218 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
219 
220 extern Elf_Dyn _DYNAMIC;
221 #pragma weak _DYNAMIC
222 #ifndef RTLD_IS_DYNAMIC
223 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
224 #endif
225 
226 #ifdef ENABLE_OSRELDATE
227 int osreldate;
228 #endif
229 
230 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
231 #if 0
232 static int max_stack_flags;
233 #endif
234 
235 /*
236  * Global declarations normally provided by crt1.  The dynamic linker is
237  * not built with crt1, so we have to provide them ourselves.
238  */
239 char *__progname;
240 char **environ;
241 
242 /*
243  * Used to pass argc, argv to init functions.
244  */
245 int main_argc;
246 char **main_argv;
247 
248 /*
249  * Globals to control TLS allocation.
250  */
251 size_t tls_last_offset;		/* Static TLS offset of last module */
252 size_t tls_last_size;		/* Static TLS size of last module */
253 size_t tls_static_space;	/* Static TLS space allocated */
254 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
255 int tls_max_index = 1;		/* Largest module index allocated */
256 
257 /*
258  * Fill in a DoneList with an allocation large enough to hold all of
259  * the currently-loaded objects.  Keep this as a macro since it calls
260  * alloca and we want that to occur within the scope of the caller.
261  */
262 #define donelist_init(dlp)					\
263     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
264     assert((dlp)->objs != NULL),				\
265     (dlp)->num_alloc = obj_count,				\
266     (dlp)->num_used = 0)
267 
268 #define	UTRACE_DLOPEN_START		1
269 #define	UTRACE_DLOPEN_STOP		2
270 #define	UTRACE_DLCLOSE_START		3
271 #define	UTRACE_DLCLOSE_STOP		4
272 #define	UTRACE_LOAD_OBJECT		5
273 #define	UTRACE_UNLOAD_OBJECT		6
274 #define	UTRACE_ADD_RUNDEP		7
275 #define	UTRACE_PRELOAD_FINISHED		8
276 #define	UTRACE_INIT_CALL		9
277 #define	UTRACE_FINI_CALL		10
278 
279 struct utrace_rtld {
280 	char sig[4];			/* 'RTLD' */
281 	int event;
282 	void *handle;
283 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
284 	size_t mapsize;
285 	int refcnt;			/* Used for 'mode' */
286 	char name[MAXPATHLEN];
287 };
288 
289 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
290 	if (ld_utrace != NULL)					\
291 		ld_utrace_log(e, h, mb, ms, r, n);		\
292 } while (0)
293 
294 static void
295 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
296     int refcnt, const char *name)
297 {
298 	struct utrace_rtld ut;
299 
300 	ut.sig[0] = 'R';
301 	ut.sig[1] = 'T';
302 	ut.sig[2] = 'L';
303 	ut.sig[3] = 'D';
304 	ut.event = event;
305 	ut.handle = handle;
306 	ut.mapbase = mapbase;
307 	ut.mapsize = mapsize;
308 	ut.refcnt = refcnt;
309 	bzero(ut.name, sizeof(ut.name));
310 	if (name)
311 		strlcpy(ut.name, name, sizeof(ut.name));
312 	utrace(&ut, sizeof(ut));
313 }
314 
315 /*
316  * Main entry point for dynamic linking.  The first argument is the
317  * stack pointer.  The stack is expected to be laid out as described
318  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
319  * Specifically, the stack pointer points to a word containing
320  * ARGC.  Following that in the stack is a null-terminated sequence
321  * of pointers to argument strings.  Then comes a null-terminated
322  * sequence of pointers to environment strings.  Finally, there is a
323  * sequence of "auxiliary vector" entries.
324  *
325  * The second argument points to a place to store the dynamic linker's
326  * exit procedure pointer and the third to a place to store the main
327  * program's object.
328  *
329  * The return value is the main program's entry point.
330  */
331 func_ptr_type
332 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
333 {
334     Elf_Auxinfo *aux_info[AT_COUNT];
335     int i;
336     int argc;
337     char **argv;
338     char **env;
339     Elf_Auxinfo *aux;
340     Elf_Auxinfo *auxp;
341     const char *argv0;
342     Objlist_Entry *entry;
343     Obj_Entry *obj;
344     Obj_Entry *last_interposer;
345 
346     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
347              Obj_Entry **preload_tail;
348              Objlist initlist;
349        from global to here.  It will break the DWARF2 unwind scheme.
350     */
351 
352     /*
353      * On entry, the dynamic linker itself has not been relocated yet.
354      * Be very careful not to reference any global data until after
355      * init_rtld has returned.  It is OK to reference file-scope statics
356      * and string constants, and to call static and global functions.
357      */
358 
359     /* Find the auxiliary vector on the stack. */
360     argc = *sp++;
361     argv = (char **) sp;
362     sp += argc + 1;	/* Skip over arguments and NULL terminator */
363     env = (char **) sp;
364 
365     /*
366      * If we aren't already resident we have to dig out some more info.
367      * Note that auxinfo does not exist when we are resident.
368      *
369      * I'm not sure about the ld_resident check.  It seems to read zero
370      * prior to relocation, which is what we want.  When running from a
371      * resident copy everything will be relocated so we are definitely
372      * good there.
373      */
374     if (ld_resident == 0)  {
375 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
376 	    ;
377 	aux = (Elf_Auxinfo *) sp;
378 
379 	/* Digest the auxiliary vector. */
380 	for (i = 0;  i < AT_COUNT;  i++)
381 	    aux_info[i] = NULL;
382 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
383 	    if (auxp->a_type < AT_COUNT)
384 		aux_info[auxp->a_type] = auxp;
385 	}
386 
387 	/* Initialize and relocate ourselves. */
388 	assert(aux_info[AT_BASE] != NULL);
389 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
390     }
391 
392     ld_index = 0;	/* don't use old env cache in case we are resident */
393     __progname = obj_rtld.path;
394     argv0 = argv[0] != NULL ? argv[0] : "(null)";
395     environ = env;
396     main_argc = argc;
397     main_argv = argv;
398 
399     trust = !issetugid();
400 
401     ld_bind_now = _getenv_ld("LD_BIND_NOW");
402     /*
403      * If the process is tainted, then we un-set the dangerous environment
404      * variables.  The process will be marked as tainted until setuid(2)
405      * is called.  If any child process calls setuid(2) we do not want any
406      * future processes to honor the potentially un-safe variables.
407      */
408     if (!trust) {
409 	if (   unsetenv("LD_DEBUG")
410 	    || unsetenv("LD_PRELOAD")
411 	    || unsetenv("LD_LIBRARY_PATH")
412 	    || unsetenv("LD_LIBRARY_PATH_FDS")
413 	    || unsetenv("LD_ELF_HINTS_PATH")
414 	    || unsetenv("LD_LIBMAP")
415 	    || unsetenv("LD_LIBMAP_DISABLE")
416 	    || unsetenv("LD_LOADFLTR")
417 	    || unsetenv("LD_SHAREDLIB_BASE")
418 	) {
419 		_rtld_error("environment corrupt; aborting");
420 		die();
421 	}
422     }
423     __ld_sharedlib_base = _getenv_ld("LD_SHAREDLIB_BASE");
424     ld_debug = _getenv_ld("LD_DEBUG");
425     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
426     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
427     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
428     ld_library_dirs = _getenv_ld("LD_LIBRARY_PATH_FDS");
429     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
430     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
431     ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
432     dangerous_ld_env = (ld_library_path != NULL)
433 			|| (ld_preload != NULL)
434 			|| (ld_elf_hints_path != NULL)
435 			|| ld_loadfltr
436 			|| (libmap_override != NULL)
437 			|| libmap_disable
438 			;
439     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
440     ld_utrace = _getenv_ld("LD_UTRACE");
441 
442     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
443 	ld_elf_hints_path = _PATH_ELF_HINTS;
444 
445     if (ld_debug != NULL && *ld_debug != '\0')
446 	debug = 1;
447     dbg("%s is initialized, base address = %p", __progname,
448 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
449     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
450     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
451 
452     dbg("initializing thread locks");
453     lockdflt_init();
454 
455     /*
456      * If we are resident we can skip work that we have already done.
457      * Note that the stack is reset and there is no Elf_Auxinfo
458      * when running from a resident image, and the static globals setup
459      * between here and resident_skip will have already been setup.
460      */
461     if (ld_resident)
462 	goto resident_skip1;
463 
464     /*
465      * Load the main program, or process its program header if it is
466      * already loaded.
467      */
468     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
469 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
470 	dbg("loading main program");
471 	obj_main = map_object(fd, argv0, NULL);
472 	close(fd);
473 	if (obj_main == NULL)
474 	    die();
475 #if 0
476 	max_stack_flags = obj_main->stack_flags;
477 #endif
478     } else {				/* Main program already loaded. */
479 	const Elf_Phdr *phdr;
480 	int phnum;
481 	caddr_t entry;
482 
483 	dbg("processing main program's program header");
484 	assert(aux_info[AT_PHDR] != NULL);
485 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
486 	assert(aux_info[AT_PHNUM] != NULL);
487 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
488 	assert(aux_info[AT_PHENT] != NULL);
489 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
490 	assert(aux_info[AT_ENTRY] != NULL);
491 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
492 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
493 	    die();
494     }
495 
496     char buf[MAXPATHLEN];
497     if (aux_info[AT_EXECPATH] != NULL) {
498 	char *kexecpath;
499 
500 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
501 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
502 	if (kexecpath[0] == '/')
503 		obj_main->path = kexecpath;
504 	else if (getcwd(buf, sizeof(buf)) == NULL ||
505 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
506 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
507 		obj_main->path = xstrdup(argv0);
508 	else
509 		obj_main->path = xstrdup(buf);
510     } else {
511 	char resolved[MAXPATHLEN];
512 	dbg("No AT_EXECPATH");
513 	if (argv0[0] == '/') {
514 		if (realpath(argv0, resolved) != NULL)
515 			obj_main->path = xstrdup(resolved);
516 		else
517 			obj_main->path = xstrdup(argv0);
518 	} else {
519 		if (getcwd(buf, sizeof(buf)) != NULL
520 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
521 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
522 		    && access(buf, R_OK) == 0
523 		    && realpath(buf, resolved) != NULL)
524 			obj_main->path = xstrdup(resolved);
525 		else
526 			obj_main->path = xstrdup(argv0);
527 	}
528     }
529     dbg("obj_main path %s", obj_main->path);
530     obj_main->mainprog = true;
531 
532     if (aux_info[AT_STACKPROT] != NULL &&
533       aux_info[AT_STACKPROT]->a_un.a_val != 0)
534 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
535 
536     /*
537      * Get the actual dynamic linker pathname from the executable if
538      * possible.  (It should always be possible.)  That ensures that
539      * gdb will find the right dynamic linker even if a non-standard
540      * one is being used.
541      */
542     if (obj_main->interp != NULL &&
543       strcmp(obj_main->interp, obj_rtld.path) != 0) {
544 	free(obj_rtld.path);
545 	obj_rtld.path = xstrdup(obj_main->interp);
546         __progname = obj_rtld.path;
547     }
548 
549     digest_dynamic(obj_main, 0);
550     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
551 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
552 	obj_main->dynsymcount);
553 
554     linkmap_add(obj_main);
555     linkmap_add(&obj_rtld);
556 
557     /* Link the main program into the list of objects. */
558     *obj_tail = obj_main;
559     obj_tail = &obj_main->next;
560     obj_count++;
561     obj_loads++;
562 
563     /* Initialize a fake symbol for resolving undefined weak references. */
564     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
565     sym_zero.st_shndx = SHN_UNDEF;
566     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
567 
568     if (!libmap_disable)
569         libmap_disable = (bool)lm_init(libmap_override);
570 
571     dbg("loading LD_PRELOAD libraries");
572     if (load_preload_objects() == -1)
573 	die();
574     preload_tail = obj_tail;
575 
576     dbg("loading needed objects");
577     if (load_needed_objects(obj_main, 0) == -1)
578 	die();
579 
580     /* Make a list of all objects loaded at startup. */
581     last_interposer = obj_main;
582     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
583 	if (obj->z_interpose && obj != obj_main) {
584 	    objlist_put_after(&list_main, last_interposer, obj);
585 	    last_interposer = obj;
586 	} else {
587 	    objlist_push_tail(&list_main, obj);
588 	}
589 	obj->refcount++;
590     }
591 
592     dbg("checking for required versions");
593     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
594 	die();
595 
596 resident_skip1:
597 
598     if (ld_tracing) {		/* We're done */
599 	trace_loaded_objects(obj_main);
600 	exit(0);
601     }
602 
603     if (ld_resident)		/* XXX clean this up! */
604 	goto resident_skip2;
605 
606     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
607        dump_relocations(obj_main);
608        exit (0);
609     }
610 
611     /* setup TLS for main thread */
612     dbg("initializing initial thread local storage");
613     STAILQ_FOREACH(entry, &list_main, link) {
614 	/*
615 	 * Allocate all the initial objects out of the static TLS
616 	 * block even if they didn't ask for it.
617 	 */
618 	allocate_tls_offset(entry->obj);
619     }
620 
621     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
622 
623     /*
624      * Do not try to allocate the TLS here, let libc do it itself.
625      * (crt1 for the program will call _init_tls())
626      */
627 
628     if (relocate_objects(obj_main,
629       ld_bind_now != NULL && *ld_bind_now != '\0',
630       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
631 	die();
632 
633     dbg("doing copy relocations");
634     if (do_copy_relocations(obj_main) == -1)
635 	die();
636 
637 resident_skip2:
638 
639     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
640 	if (exec_sys_unregister(-1) < 0) {
641 	    dbg("exec_sys_unregister failed %d\n", errno);
642 	    exit(errno);
643 	}
644 	dbg("exec_sys_unregister success\n");
645 	exit(0);
646     }
647 
648     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
649        dump_relocations(obj_main);
650        exit (0);
651     }
652 
653     dbg("initializing key program variables");
654     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
655     set_program_var("environ", env);
656     set_program_var("__elf_aux_vector", aux);
657 
658     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
659 	extern void resident_start(void);
660 	ld_resident = 1;
661 	if (exec_sys_register(resident_start) < 0) {
662 	    dbg("exec_sys_register failed %d\n", errno);
663 	    exit(errno);
664 	}
665 	dbg("exec_sys_register success\n");
666 	exit(0);
667     }
668 
669     /* Make a list of init functions to call. */
670     objlist_init(&initlist);
671     initlist_add_objects(obj_list, preload_tail, &initlist);
672 
673     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
674 
675     map_stacks_exec(NULL);
676 
677     dbg("resolving ifuncs");
678     {
679 	    RtldLockState lockstate;
680 
681 	    wlock_acquire(rtld_bind_lock, &lockstate);
682 	    if (resolve_objects_ifunc(
683 		    obj_main,
684 		    (ld_bind_now != NULL && *ld_bind_now != '\0'),
685 		    SYMLOOK_EARLY,
686 		    &lockstate) == -1) {
687 		    die();
688 	    }
689 	    lock_release(rtld_bind_lock, &lockstate);
690     }
691 
692     /*
693      * Do NOT call the initlist here, give libc a chance to set up
694      * the initial TLS segment.  crt1 will then call _rtld_call_init().
695      */
696 
697     dbg("transferring control to program entry point = %p", obj_main->entry);
698 
699     /* Return the exit procedure and the program entry point. */
700     *exit_proc = rtld_exit;
701     *objp = obj_main;
702     return (func_ptr_type) obj_main->entry;
703 }
704 
705 /*
706  * Call the initialization list for dynamically loaded libraries.
707  * (called from crt1.c).
708  */
709 void
710 _rtld_call_init(void)
711 {
712     RtldLockState lockstate;
713     Obj_Entry *obj;
714 
715     if (!obj_main->note_present && obj_main->valid_hash_gnu) {
716 	/*
717 	 * The use of a linker script with a PHDRS directive that does not include
718 	 * PT_NOTE will block the crt_no_init note.  In this case we'll look for the
719 	 * recently added GNU hash dynamic tag which gets built by default.  It is
720 	 * extremely unlikely to find a pre-3.1 binary without a PT_NOTE header and
721 	 * a gnu hash tag.  If gnu hash found, consider binary to use new crt code.
722 	 */
723 	obj_main->crt_no_init = true;
724 	dbg("Setting crt_no_init without presence of PT_NOTE header");
725     }
726 
727     wlock_acquire(rtld_bind_lock, &lockstate);
728     if (obj_main->crt_no_init)
729 	preinit_main();
730     else {
731 	/*
732 	 * Make sure we don't call the main program's init and fini functions
733 	 * for binaries linked with old crt1 which calls _init itself.
734 	 */
735 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
736 	obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL;
737     }
738     objlist_call_init(&initlist, &lockstate);
739     _r_debug_postinit(&obj_main->linkmap);
740     objlist_clear(&initlist);
741     dbg("loading filtees");
742     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
743 	if (ld_loadfltr || obj->z_loadfltr)
744 	    load_filtees(obj, 0, &lockstate);
745     }
746     lock_release(rtld_bind_lock, &lockstate);
747 }
748 
749 void *
750 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
751 {
752 	void *ptr;
753 	Elf_Addr target;
754 
755 	ptr = (void *)make_function_pointer(def, obj);
756 	target = ((Elf_Addr (*)(void))ptr)();
757 	return ((void *)target);
758 }
759 
760 Elf_Addr
761 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
762 {
763     const Elf_Rel *rel;
764     const Elf_Sym *def;
765     const Obj_Entry *defobj;
766     Elf_Addr *where;
767     Elf_Addr target;
768     RtldLockState lockstate;
769 
770     rlock_acquire(rtld_bind_lock, &lockstate);
771     if (sigsetjmp(lockstate.env, 0) != 0)
772 	    lock_upgrade(rtld_bind_lock, &lockstate);
773     if (obj->pltrel)
774 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
775     else
776 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
777 
778     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
779     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
780 	&lockstate);
781     if (def == NULL)
782 	die();
783     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
784 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
785     else
786 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
787 
788     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
789       defobj->strtab + def->st_name, basename(obj->path),
790       (void *)target, basename(defobj->path));
791 
792     /*
793      * If we have a function call tracing hook, and the
794      * hook would like to keep tracing this one function,
795      * prevent the relocation so we will wind up here
796      * the next time again.
797      *
798      * We don't want to functrace calls from the functracer
799      * to avoid recursive loops.
800      */
801     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
802 	if (rtld_functrace(obj->path,
803 			   defobj->path,
804 			   defobj->strtab + def->st_name,
805 			   stack)) {
806 	    lock_release(rtld_bind_lock, &lockstate);
807 	    return target;
808 	}
809     }
810 
811     /*
812      * Write the new contents for the jmpslot. Note that depending on
813      * architecture, the value which we need to return back to the
814      * lazy binding trampoline may or may not be the target
815      * address. The value returned from reloc_jmpslot() is the value
816      * that the trampoline needs.
817      */
818     target = reloc_jmpslot(where, target, defobj, obj, rel);
819     lock_release(rtld_bind_lock, &lockstate);
820     return target;
821 }
822 
823 /*
824  * Error reporting function.  Use it like printf.  If formats the message
825  * into a buffer, and sets things up so that the next call to dlerror()
826  * will return the message.
827  */
828 void
829 _rtld_error(const char *fmt, ...)
830 {
831     static char buf[512];
832     va_list ap;
833 
834     va_start(ap, fmt);
835     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
836     error_message = buf;
837     va_end(ap);
838 }
839 
840 /*
841  * Return a dynamically-allocated copy of the current error message, if any.
842  */
843 static char *
844 errmsg_save(void)
845 {
846     return error_message == NULL ? NULL : xstrdup(error_message);
847 }
848 
849 /*
850  * Restore the current error message from a copy which was previously saved
851  * by errmsg_save().  The copy is freed.
852  */
853 static void
854 errmsg_restore(char *saved_msg)
855 {
856     if (saved_msg == NULL)
857 	error_message = NULL;
858     else {
859 	_rtld_error("%s", saved_msg);
860 	free(saved_msg);
861     }
862 }
863 
864 const char *
865 basename(const char *name)
866 {
867     const char *p = strrchr(name, '/');
868     return p != NULL ? p + 1 : name;
869 }
870 
871 static struct utsname uts;
872 
873 static char *
874 origin_subst_one(char *real, const char *kw, const char *subst,
875     bool may_free)
876 {
877 	char *p, *p1, *res, *resp;
878 	int subst_len, kw_len, subst_count, old_len, new_len;
879 
880 	kw_len = strlen(kw);
881 
882 	/*
883 	 * First, count the number of the keyword occurrences, to
884 	 * preallocate the final string.
885 	 */
886 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
887 		p1 = strstr(p, kw);
888 		if (p1 == NULL)
889 			break;
890 	}
891 
892 	/*
893 	 * If the keyword is not found, just return.
894 	 */
895 	if (subst_count == 0)
896 		return (may_free ? real : xstrdup(real));
897 
898 	/*
899 	 * There is indeed something to substitute.  Calculate the
900 	 * length of the resulting string, and allocate it.
901 	 */
902 	subst_len = strlen(subst);
903 	old_len = strlen(real);
904 	new_len = old_len + (subst_len - kw_len) * subst_count;
905 	res = xmalloc(new_len + 1);
906 
907 	/*
908 	 * Now, execute the substitution loop.
909 	 */
910 	for (p = real, resp = res, *resp = '\0';;) {
911 		p1 = strstr(p, kw);
912 		if (p1 != NULL) {
913 			/* Copy the prefix before keyword. */
914 			memcpy(resp, p, p1 - p);
915 			resp += p1 - p;
916 			/* Keyword replacement. */
917 			memcpy(resp, subst, subst_len);
918 			resp += subst_len;
919 			*resp = '\0';
920 			p = p1 + kw_len;
921 		} else
922 			break;
923 	}
924 
925 	/* Copy to the end of string and finish. */
926 	strcat(resp, p);
927 	if (may_free)
928 		free(real);
929 	return (res);
930 }
931 
932 static char *
933 origin_subst(char *real, const char *origin_path)
934 {
935 	char *res1, *res2, *res3, *res4;
936 
937 	if (uts.sysname[0] == '\0') {
938 		if (uname(&uts) != 0) {
939 			_rtld_error("utsname failed: %d", errno);
940 			return (NULL);
941 		}
942 	}
943 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
944 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
945 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
946 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
947 	return (res4);
948 }
949 
950 static void
951 die(void)
952 {
953     const char *msg = dlerror();
954 
955     if (msg == NULL)
956 	msg = "Fatal error";
957     rtld_fdputstr(STDERR_FILENO, msg);
958     rtld_fdputchar(STDERR_FILENO, '\n');
959     _exit(1);
960 }
961 
962 /*
963  * Process a shared object's DYNAMIC section, and save the important
964  * information in its Obj_Entry structure.
965  */
966 static void
967 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
968     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
969 {
970     const Elf_Dyn *dynp;
971     Needed_Entry **needed_tail = &obj->needed;
972     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
973     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
974     const Elf_Hashelt *hashtab;
975     const Elf32_Word *hashval;
976     Elf32_Word bkt, nmaskwords;
977     int bloom_size32;
978     bool nmw_power2;
979     int plttype = DT_REL;
980 
981     *dyn_rpath = NULL;
982     *dyn_soname = NULL;
983     *dyn_runpath = NULL;
984 
985     obj->bind_now = false;
986     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
987 	switch (dynp->d_tag) {
988 
989 	case DT_REL:
990 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
991 	    break;
992 
993 	case DT_RELSZ:
994 	    obj->relsize = dynp->d_un.d_val;
995 	    break;
996 
997 	case DT_RELENT:
998 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
999 	    break;
1000 
1001 	case DT_JMPREL:
1002 	    obj->pltrel = (const Elf_Rel *)
1003 	      (obj->relocbase + dynp->d_un.d_ptr);
1004 	    break;
1005 
1006 	case DT_PLTRELSZ:
1007 	    obj->pltrelsize = dynp->d_un.d_val;
1008 	    break;
1009 
1010 	case DT_RELA:
1011 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1012 	    break;
1013 
1014 	case DT_RELASZ:
1015 	    obj->relasize = dynp->d_un.d_val;
1016 	    break;
1017 
1018 	case DT_RELAENT:
1019 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1020 	    break;
1021 
1022 	case DT_PLTREL:
1023 	    plttype = dynp->d_un.d_val;
1024 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1025 	    break;
1026 
1027 	case DT_SYMTAB:
1028 	    obj->symtab = (const Elf_Sym *)
1029 	      (obj->relocbase + dynp->d_un.d_ptr);
1030 	    break;
1031 
1032 	case DT_SYMENT:
1033 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1034 	    break;
1035 
1036 	case DT_STRTAB:
1037 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1038 	    break;
1039 
1040 	case DT_STRSZ:
1041 	    obj->strsize = dynp->d_un.d_val;
1042 	    break;
1043 
1044 	case DT_VERNEED:
1045 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1046 		dynp->d_un.d_val);
1047 	    break;
1048 
1049 	case DT_VERNEEDNUM:
1050 	    obj->verneednum = dynp->d_un.d_val;
1051 	    break;
1052 
1053 	case DT_VERDEF:
1054 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1055 		dynp->d_un.d_val);
1056 	    break;
1057 
1058 	case DT_VERDEFNUM:
1059 	    obj->verdefnum = dynp->d_un.d_val;
1060 	    break;
1061 
1062 	case DT_VERSYM:
1063 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1064 		dynp->d_un.d_val);
1065 	    break;
1066 
1067 	case DT_HASH:
1068 	    {
1069 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1070 		    dynp->d_un.d_ptr);
1071 		obj->nbuckets = hashtab[0];
1072 		obj->nchains = hashtab[1];
1073 		obj->buckets = hashtab + 2;
1074 		obj->chains = obj->buckets + obj->nbuckets;
1075 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1076 		  obj->buckets != NULL;
1077 	    }
1078 	    break;
1079 
1080 	case DT_GNU_HASH:
1081 	    {
1082 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1083 		    dynp->d_un.d_ptr);
1084 		obj->nbuckets_gnu = hashtab[0];
1085 		obj->symndx_gnu = hashtab[1];
1086 		nmaskwords = hashtab[2];
1087 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1088 		/* Number of bitmask words is required to be power of 2 */
1089 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
1090 		obj->maskwords_bm_gnu = nmaskwords - 1;
1091 		obj->shift2_gnu = hashtab[3];
1092 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1093 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1094 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1095 		  obj->symndx_gnu;
1096 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
1097 		  obj->buckets_gnu != NULL;
1098 	    }
1099 	    break;
1100 
1101 	case DT_NEEDED:
1102 	    if (!obj->rtld) {
1103 		Needed_Entry *nep = NEW(Needed_Entry);
1104 		nep->name = dynp->d_un.d_val;
1105 		nep->obj = NULL;
1106 		nep->next = NULL;
1107 
1108 		*needed_tail = nep;
1109 		needed_tail = &nep->next;
1110 	    }
1111 	    break;
1112 
1113 	case DT_FILTER:
1114 	    if (!obj->rtld) {
1115 		Needed_Entry *nep = NEW(Needed_Entry);
1116 		nep->name = dynp->d_un.d_val;
1117 		nep->obj = NULL;
1118 		nep->next = NULL;
1119 
1120 		*needed_filtees_tail = nep;
1121 		needed_filtees_tail = &nep->next;
1122 	    }
1123 	    break;
1124 
1125 	case DT_AUXILIARY:
1126 	    if (!obj->rtld) {
1127 		Needed_Entry *nep = NEW(Needed_Entry);
1128 		nep->name = dynp->d_un.d_val;
1129 		nep->obj = NULL;
1130 		nep->next = NULL;
1131 
1132 		*needed_aux_filtees_tail = nep;
1133 		needed_aux_filtees_tail = &nep->next;
1134 	    }
1135 	    break;
1136 
1137 	case DT_PLTGOT:
1138 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1139 	    break;
1140 
1141 	case DT_TEXTREL:
1142 	    obj->textrel = true;
1143 	    break;
1144 
1145 	case DT_SYMBOLIC:
1146 	    obj->symbolic = true;
1147 	    break;
1148 
1149 	case DT_RPATH:
1150 	    /*
1151 	     * We have to wait until later to process this, because we
1152 	     * might not have gotten the address of the string table yet.
1153 	     */
1154 	    *dyn_rpath = dynp;
1155 	    break;
1156 
1157 	case DT_SONAME:
1158 	    *dyn_soname = dynp;
1159 	    break;
1160 
1161 	case DT_RUNPATH:
1162 	    *dyn_runpath = dynp;
1163 	    break;
1164 
1165 	case DT_INIT:
1166 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1167 	    break;
1168 
1169 	case DT_PREINIT_ARRAY:
1170 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1171 	    break;
1172 
1173 	case DT_PREINIT_ARRAYSZ:
1174 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1175 	    break;
1176 
1177 	case DT_INIT_ARRAY:
1178 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1179 	    break;
1180 
1181 	case DT_INIT_ARRAYSZ:
1182 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1183 	    break;
1184 
1185 	case DT_FINI:
1186 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1187 	    break;
1188 
1189 	case DT_FINI_ARRAY:
1190 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1191 	    break;
1192 
1193 	case DT_FINI_ARRAYSZ:
1194 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1195 	    break;
1196 
1197 	case DT_DEBUG:
1198 	    /* XXX - not implemented yet */
1199 	    if (!early)
1200 		dbg("Filling in DT_DEBUG entry");
1201 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1202 	    break;
1203 
1204 	case DT_FLAGS:
1205 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1206 		    obj->z_origin = true;
1207 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1208 		    obj->symbolic = true;
1209 		if (dynp->d_un.d_val & DF_TEXTREL)
1210 		    obj->textrel = true;
1211 		if (dynp->d_un.d_val & DF_BIND_NOW)
1212 		    obj->bind_now = true;
1213 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1214 		    obj->static_tls = true;
1215 	    break;
1216 
1217 	case DT_FLAGS_1:
1218 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1219 		    obj->z_noopen = true;
1220 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1221 		    obj->z_origin = true;
1222 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1223 		    XXX ;*/
1224 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1225 		    obj->bind_now = true;
1226 		if (dynp->d_un.d_val & DF_1_NODELETE)
1227 		    obj->z_nodelete = true;
1228 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1229 		    obj->z_loadfltr = true;
1230 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1231 		    obj->z_interpose = true;
1232 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1233 		    obj->z_nodeflib = true;
1234 	    break;
1235 
1236 	default:
1237 	    if (!early) {
1238 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1239 		    (long)dynp->d_tag);
1240 	    }
1241 	    break;
1242 	}
1243     }
1244 
1245     obj->traced = false;
1246 
1247     if (plttype == DT_RELA) {
1248 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1249 	obj->pltrel = NULL;
1250 	obj->pltrelasize = obj->pltrelsize;
1251 	obj->pltrelsize = 0;
1252     }
1253 
1254     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1255     if (obj->valid_hash_sysv)
1256 	obj->dynsymcount = obj->nchains;
1257     else if (obj->valid_hash_gnu) {
1258 	obj->dynsymcount = 0;
1259 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1260 	    if (obj->buckets_gnu[bkt] == 0)
1261 		continue;
1262 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1263 	    do
1264 		obj->dynsymcount++;
1265 	    while ((*hashval++ & 1u) == 0);
1266 	}
1267 	obj->dynsymcount += obj->symndx_gnu;
1268     }
1269 }
1270 
1271 static void
1272 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1273     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1274 {
1275 
1276     if (obj->z_origin && obj->origin_path == NULL) {
1277 	obj->origin_path = xmalloc(PATH_MAX);
1278 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1279 	    die();
1280     }
1281 
1282     if (dyn_runpath != NULL) {
1283 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1284 	if (obj->z_origin)
1285 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1286     }
1287     else if (dyn_rpath != NULL) {
1288 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1289 	if (obj->z_origin)
1290 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1291     }
1292 
1293     if (dyn_soname != NULL)
1294 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1295 }
1296 
1297 static void
1298 digest_dynamic(Obj_Entry *obj, int early)
1299 {
1300 	const Elf_Dyn *dyn_rpath;
1301 	const Elf_Dyn *dyn_soname;
1302 	const Elf_Dyn *dyn_runpath;
1303 
1304 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1305 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1306 }
1307 
1308 /*
1309  * Process a shared object's program header.  This is used only for the
1310  * main program, when the kernel has already loaded the main program
1311  * into memory before calling the dynamic linker.  It creates and
1312  * returns an Obj_Entry structure.
1313  */
1314 static Obj_Entry *
1315 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1316 {
1317     Obj_Entry *obj;
1318     const Elf_Phdr *phlimit = phdr + phnum;
1319     const Elf_Phdr *ph;
1320     Elf_Addr note_start, note_end;
1321     int nsegs = 0;
1322 
1323     obj = obj_new();
1324     for (ph = phdr;  ph < phlimit;  ph++) {
1325 	if (ph->p_type != PT_PHDR)
1326 	    continue;
1327 
1328 	obj->phdr = phdr;
1329 	obj->phsize = ph->p_memsz;
1330 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1331 	break;
1332     }
1333 
1334     obj->stack_flags = PF_X | PF_R | PF_W;
1335 
1336     for (ph = phdr;  ph < phlimit;  ph++) {
1337 	switch (ph->p_type) {
1338 
1339 	case PT_INTERP:
1340 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1341 	    break;
1342 
1343 	case PT_LOAD:
1344 	    if (nsegs == 0) {	/* First load segment */
1345 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1346 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1347 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1348 		  obj->vaddrbase;
1349 	    } else {		/* Last load segment */
1350 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1351 		  obj->vaddrbase;
1352 	    }
1353 	    nsegs++;
1354 	    break;
1355 
1356 	case PT_DYNAMIC:
1357 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1358 	    break;
1359 
1360 	case PT_TLS:
1361 	    obj->tlsindex = 1;
1362 	    obj->tlssize = ph->p_memsz;
1363 	    obj->tlsalign = ph->p_align;
1364 	    obj->tlsinitsize = ph->p_filesz;
1365 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1366 	    break;
1367 
1368 	case PT_GNU_STACK:
1369 	    obj->stack_flags = ph->p_flags;
1370 	    break;
1371 
1372 	case PT_GNU_RELRO:
1373 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1374 	    obj->relro_size = round_page(ph->p_memsz);
1375 	    break;
1376 
1377 	case PT_NOTE:
1378 	    obj->note_present = true;
1379 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1380 	    note_end = note_start + ph->p_filesz;
1381 	    digest_notes(obj, note_start, note_end);
1382 	    break;
1383 	}
1384     }
1385     if (nsegs < 1) {
1386 	_rtld_error("%s: too few PT_LOAD segments", path);
1387 	return NULL;
1388     }
1389 
1390     obj->entry = entry;
1391     return obj;
1392 }
1393 
1394 void
1395 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1396 {
1397 	const Elf_Note *note;
1398 	const char *note_name;
1399 	uintptr_t p;
1400 
1401 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1402 	    note = (const Elf_Note *)((const char *)(note + 1) +
1403 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1404 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1405 		if (note->n_namesz != sizeof(NOTE_VENDOR) ||
1406 		    note->n_descsz != sizeof(int32_t))
1407 			continue;
1408 		if (note->n_type != ABI_NOTETYPE &&
1409 		    note->n_type != CRT_NOINIT_NOTETYPE)
1410 			continue;
1411 		note_name = (const char *)(note + 1);
1412 		if (strncmp(NOTE_VENDOR, note_name, sizeof(NOTE_VENDOR)) != 0)
1413 			continue;
1414 		switch (note->n_type) {
1415 		case ABI_NOTETYPE:
1416 			/* DragonFly osrel note */
1417 			p = (uintptr_t)(note + 1);
1418 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1419 			obj->osrel = *(const int32_t *)(p);
1420 			dbg("note osrel %d", obj->osrel);
1421 			break;
1422 		case CRT_NOINIT_NOTETYPE:
1423 			/* DragonFly 'crt does not call init' note */
1424 			obj->crt_no_init = true;
1425 			dbg("note crt_no_init");
1426 			break;
1427 		}
1428 	}
1429 }
1430 
1431 static Obj_Entry *
1432 dlcheck(void *handle)
1433 {
1434     Obj_Entry *obj;
1435 
1436     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1437 	if (obj == (Obj_Entry *) handle)
1438 	    break;
1439 
1440     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1441 	_rtld_error("Invalid shared object handle %p", handle);
1442 	return NULL;
1443     }
1444     return obj;
1445 }
1446 
1447 /*
1448  * If the given object is already in the donelist, return true.  Otherwise
1449  * add the object to the list and return false.
1450  */
1451 static bool
1452 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1453 {
1454     unsigned int i;
1455 
1456     for (i = 0;  i < dlp->num_used;  i++)
1457 	if (dlp->objs[i] == obj)
1458 	    return true;
1459     /*
1460      * Our donelist allocation should always be sufficient.  But if
1461      * our threads locking isn't working properly, more shared objects
1462      * could have been loaded since we allocated the list.  That should
1463      * never happen, but we'll handle it properly just in case it does.
1464      */
1465     if (dlp->num_used < dlp->num_alloc)
1466 	dlp->objs[dlp->num_used++] = obj;
1467     return false;
1468 }
1469 
1470 /*
1471  * Hash function for symbol table lookup.  Don't even think about changing
1472  * this.  It is specified by the System V ABI.
1473  */
1474 unsigned long
1475 elf_hash(const char *name)
1476 {
1477     const unsigned char *p = (const unsigned char *) name;
1478     unsigned long h = 0;
1479     unsigned long g;
1480 
1481     while (*p != '\0') {
1482 	h = (h << 4) + *p++;
1483 	if ((g = h & 0xf0000000) != 0)
1484 	    h ^= g >> 24;
1485 	h &= ~g;
1486     }
1487     return h;
1488 }
1489 
1490 /*
1491  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1492  * unsigned in case it's implemented with a wider type.
1493  */
1494 static uint_fast32_t
1495 gnu_hash(const char *s)
1496 {
1497 	uint_fast32_t h;
1498 	unsigned char c;
1499 
1500 	h = 5381;
1501 	for (c = *s; c != '\0'; c = *++s)
1502 		h = h * 33 + c;
1503 	return (h & 0xffffffff);
1504 }
1505 
1506 
1507 /*
1508  * Find the library with the given name, and return its full pathname.
1509  * The returned string is dynamically allocated.  Generates an error
1510  * message and returns NULL if the library cannot be found.
1511  *
1512  * If the second argument is non-NULL, then it refers to an already-
1513  * loaded shared object, whose library search path will be searched.
1514  *
1515  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1516  * descriptor (which is close-on-exec) will be passed out via the third
1517  * argument.
1518  *
1519  * The search order is:
1520  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1521  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1522  *   LD_LIBRARY_PATH
1523  *   DT_RUNPATH in the referencing file
1524  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1525  *	 from list)
1526  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1527  *
1528  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1529  */
1530 static char *
1531 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1532 {
1533     char *pathname;
1534     char *name;
1535     bool nodeflib, objgiven;
1536 
1537     objgiven = refobj != NULL;
1538     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1539 	if (xname[0] != '/' && !trust) {
1540 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1541 	      xname);
1542 	    return NULL;
1543 	}
1544 	if (objgiven && refobj->z_origin) {
1545 		return (origin_subst(__DECONST(char *, xname),
1546 		    refobj->origin_path));
1547 	} else {
1548 		return (xstrdup(xname));
1549 	}
1550     }
1551 
1552     if (libmap_disable || !objgiven ||
1553 	(name = lm_find(refobj->path, xname)) == NULL)
1554 	name = (char *)xname;
1555 
1556     dbg(" Searching for \"%s\"", name);
1557 
1558     nodeflib = objgiven ? refobj->z_nodeflib : false;
1559     if ((objgiven &&
1560       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1561       (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1562       (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1563       (pathname = search_library_path(name, ld_library_path)) != NULL ||
1564       (objgiven &&
1565       (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1566       (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1567       (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1568       (objgiven && !nodeflib &&
1569       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1570 	return (pathname);
1571 
1572     if (objgiven && refobj->path != NULL) {
1573 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1574 	  name, basename(refobj->path));
1575     } else {
1576 	_rtld_error("Shared object \"%s\" not found", name);
1577     }
1578     return NULL;
1579 }
1580 
1581 /*
1582  * Given a symbol number in a referencing object, find the corresponding
1583  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1584  * no definition was found.  Returns a pointer to the Obj_Entry of the
1585  * defining object via the reference parameter DEFOBJ_OUT.
1586  */
1587 const Elf_Sym *
1588 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1589     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1590     RtldLockState *lockstate)
1591 {
1592     const Elf_Sym *ref;
1593     const Elf_Sym *def;
1594     const Obj_Entry *defobj;
1595     SymLook req;
1596     const char *name;
1597     int res;
1598 
1599     /*
1600      * If we have already found this symbol, get the information from
1601      * the cache.
1602      */
1603     if (symnum >= refobj->dynsymcount)
1604 	return NULL;	/* Bad object */
1605     if (cache != NULL && cache[symnum].sym != NULL) {
1606 	*defobj_out = cache[symnum].obj;
1607 	return cache[symnum].sym;
1608     }
1609 
1610     ref = refobj->symtab + symnum;
1611     name = refobj->strtab + ref->st_name;
1612     def = NULL;
1613     defobj = NULL;
1614 
1615     /*
1616      * We don't have to do a full scale lookup if the symbol is local.
1617      * We know it will bind to the instance in this load module; to
1618      * which we already have a pointer (ie ref). By not doing a lookup,
1619      * we not only improve performance, but it also avoids unresolvable
1620      * symbols when local symbols are not in the hash table.
1621      *
1622      * This might occur for TLS module relocations, which simply use
1623      * symbol 0.
1624      */
1625     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1626 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1627 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1628 		symnum);
1629 	}
1630 	symlook_init(&req, name);
1631 	req.flags = flags;
1632 	req.ventry = fetch_ventry(refobj, symnum);
1633 	req.lockstate = lockstate;
1634 	res = symlook_default(&req, refobj);
1635 	if (res == 0) {
1636 	    def = req.sym_out;
1637 	    defobj = req.defobj_out;
1638 	}
1639     } else {
1640 	def = ref;
1641 	defobj = refobj;
1642     }
1643 
1644     /*
1645      * If we found no definition and the reference is weak, treat the
1646      * symbol as having the value zero.
1647      */
1648     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1649 	def = &sym_zero;
1650 	defobj = obj_main;
1651     }
1652 
1653     if (def != NULL) {
1654 	*defobj_out = defobj;
1655 	/* Record the information in the cache to avoid subsequent lookups. */
1656 	if (cache != NULL) {
1657 	    cache[symnum].sym = def;
1658 	    cache[symnum].obj = defobj;
1659 	}
1660     } else {
1661 	if (refobj != &obj_rtld)
1662 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1663     }
1664     return def;
1665 }
1666 
1667 /*
1668  * Return the search path from the ldconfig hints file, reading it if
1669  * necessary.  If nostdlib is true, then the default search paths are
1670  * not added to result.
1671  *
1672  * Returns NULL if there are problems with the hints file,
1673  * or if the search path there is empty.
1674  */
1675 static const char *
1676 gethints(bool nostdlib)
1677 {
1678 	static char *hints, *filtered_path;
1679 	struct elfhints_hdr hdr;
1680 	struct fill_search_info_args sargs, hargs;
1681 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1682 	struct dl_serpath *SLPpath, *hintpath;
1683 	char *p;
1684 	unsigned int SLPndx, hintndx, fndx, fcount;
1685 	int fd;
1686 	size_t flen;
1687 	bool skip;
1688 
1689 	/* First call, read the hints file */
1690 	if (hints == NULL) {
1691 		/* Keep from trying again in case the hints file is bad. */
1692 		hints = "";
1693 
1694 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1695 			return (NULL);
1696 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1697 		    hdr.magic != ELFHINTS_MAGIC ||
1698 		    hdr.version != 1) {
1699 			close(fd);
1700 			return (NULL);
1701 		}
1702 		p = xmalloc(hdr.dirlistlen + 1);
1703 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1704 		    read(fd, p, hdr.dirlistlen + 1) !=
1705 		    (ssize_t)hdr.dirlistlen + 1) {
1706 			free(p);
1707 			close(fd);
1708 			return (NULL);
1709 		}
1710 		hints = p;
1711 		close(fd);
1712 	}
1713 
1714 	/*
1715 	 * If caller agreed to receive list which includes the default
1716 	 * paths, we are done. Otherwise, if we still have not
1717 	 * calculated filtered result, do it now.
1718 	 */
1719 	if (!nostdlib)
1720 		return (hints[0] != '\0' ? hints : NULL);
1721 	if (filtered_path != NULL)
1722 		goto filt_ret;
1723 
1724 	/*
1725 	 * Obtain the list of all configured search paths, and the
1726 	 * list of the default paths.
1727 	 *
1728 	 * First estimate the size of the results.
1729 	 */
1730 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1731 	smeta.dls_cnt = 0;
1732 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1733 	hmeta.dls_cnt = 0;
1734 
1735 	sargs.request = RTLD_DI_SERINFOSIZE;
1736 	sargs.serinfo = &smeta;
1737 	hargs.request = RTLD_DI_SERINFOSIZE;
1738 	hargs.serinfo = &hmeta;
1739 
1740 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1741 	path_enumerate(p, fill_search_info, &hargs);
1742 
1743 	SLPinfo = xmalloc(smeta.dls_size);
1744 	hintinfo = xmalloc(hmeta.dls_size);
1745 
1746 	/*
1747 	 * Next fetch both sets of paths.
1748 	 */
1749 	sargs.request = RTLD_DI_SERINFO;
1750 	sargs.serinfo = SLPinfo;
1751 	sargs.serpath = &SLPinfo->dls_serpath[0];
1752 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1753 
1754 	hargs.request = RTLD_DI_SERINFO;
1755 	hargs.serinfo = hintinfo;
1756 	hargs.serpath = &hintinfo->dls_serpath[0];
1757 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1758 
1759 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1760 	path_enumerate(p, fill_search_info, &hargs);
1761 
1762 	/*
1763 	 * Now calculate the difference between two sets, by excluding
1764 	 * standard paths from the full set.
1765 	 */
1766 	fndx = 0;
1767 	fcount = 0;
1768 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1769 	hintpath = &hintinfo->dls_serpath[0];
1770 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1771 		skip = false;
1772 		SLPpath = &SLPinfo->dls_serpath[0];
1773 		/*
1774 		 * Check each standard path against current.
1775 		 */
1776 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1777 			/* matched, skip the path */
1778 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1779 				skip = true;
1780 				break;
1781 			}
1782 		}
1783 		if (skip)
1784 			continue;
1785 		/*
1786 		 * Not matched against any standard path, add the path
1787 		 * to result. Separate consecutive paths with ':'.
1788 		 */
1789 		if (fcount > 0) {
1790 			filtered_path[fndx] = ':';
1791 			fndx++;
1792 		}
1793 		fcount++;
1794 		flen = strlen(hintpath->dls_name);
1795 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1796 		fndx += flen;
1797 	}
1798 	filtered_path[fndx] = '\0';
1799 
1800 	free(SLPinfo);
1801 	free(hintinfo);
1802 
1803 filt_ret:
1804 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1805 }
1806 
1807 static void
1808 init_dag(Obj_Entry *root)
1809 {
1810     const Needed_Entry *needed;
1811     const Objlist_Entry *elm;
1812     DoneList donelist;
1813 
1814     if (root->dag_inited)
1815 	return;
1816     donelist_init(&donelist);
1817 
1818     /* Root object belongs to own DAG. */
1819     objlist_push_tail(&root->dldags, root);
1820     objlist_push_tail(&root->dagmembers, root);
1821     donelist_check(&donelist, root);
1822 
1823     /*
1824      * Add dependencies of root object to DAG in breadth order
1825      * by exploiting the fact that each new object get added
1826      * to the tail of the dagmembers list.
1827      */
1828     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1829 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1830 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1831 		continue;
1832 	    objlist_push_tail(&needed->obj->dldags, root);
1833 	    objlist_push_tail(&root->dagmembers, needed->obj);
1834 	}
1835     }
1836     root->dag_inited = true;
1837 }
1838 
1839 static void
1840 process_nodelete(Obj_Entry *root)
1841 {
1842 	const Objlist_Entry *elm;
1843 
1844 	/*
1845 	 * Walk over object DAG and process every dependent object that
1846 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1847 	 * which then should have its reference upped separately.
1848 	 */
1849 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1850 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1851 		    !elm->obj->ref_nodel) {
1852 			dbg("obj %s nodelete", elm->obj->path);
1853 			init_dag(elm->obj);
1854 			ref_dag(elm->obj);
1855 			elm->obj->ref_nodel = true;
1856 		}
1857 	}
1858 }
1859 
1860 /*
1861  * Initialize the dynamic linker.  The argument is the address at which
1862  * the dynamic linker has been mapped into memory.  The primary task of
1863  * this function is to relocate the dynamic linker.
1864  */
1865 static void
1866 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1867 {
1868     Obj_Entry objtmp;	/* Temporary rtld object */
1869     const Elf_Ehdr *ehdr;
1870     const Elf_Dyn *dyn_rpath;
1871     const Elf_Dyn *dyn_soname;
1872     const Elf_Dyn *dyn_runpath;
1873 
1874     /*
1875      * Conjure up an Obj_Entry structure for the dynamic linker.
1876      *
1877      * The "path" member can't be initialized yet because string constants
1878      * cannot yet be accessed. Below we will set it correctly.
1879      */
1880     memset(&objtmp, 0, sizeof(objtmp));
1881     objtmp.path = NULL;
1882     objtmp.rtld = true;
1883     objtmp.mapbase = mapbase;
1884 #ifdef PIC
1885     objtmp.relocbase = mapbase;
1886 #endif
1887     if (RTLD_IS_DYNAMIC()) {
1888 	objtmp.dynamic = rtld_dynamic(&objtmp);
1889 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1890 	assert(objtmp.needed == NULL);
1891 	assert(!objtmp.textrel);
1892 
1893 	/*
1894 	 * Temporarily put the dynamic linker entry into the object list, so
1895 	 * that symbols can be found.
1896 	 */
1897 
1898 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1899     }
1900     ehdr = (Elf_Ehdr *)mapbase;
1901     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1902     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1903 
1904     /* Initialize the object list. */
1905     obj_tail = &obj_list;
1906 
1907     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1908     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1909 
1910 #ifdef ENABLE_OSRELDATE
1911     if (aux_info[AT_OSRELDATE] != NULL)
1912 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1913 #endif
1914 
1915     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1916 
1917     /* Replace the path with a dynamically allocated copy. */
1918     obj_rtld.path = xstrdup(PATH_RTLD);
1919 
1920     r_debug.r_brk = r_debug_state;
1921     r_debug.r_state = RT_CONSISTENT;
1922 }
1923 
1924 /*
1925  * Add the init functions from a needed object list (and its recursive
1926  * needed objects) to "list".  This is not used directly; it is a helper
1927  * function for initlist_add_objects().  The write lock must be held
1928  * when this function is called.
1929  */
1930 static void
1931 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1932 {
1933     /* Recursively process the successor needed objects. */
1934     if (needed->next != NULL)
1935 	initlist_add_neededs(needed->next, list);
1936 
1937     /* Process the current needed object. */
1938     if (needed->obj != NULL)
1939 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1940 }
1941 
1942 /*
1943  * Scan all of the DAGs rooted in the range of objects from "obj" to
1944  * "tail" and add their init functions to "list".  This recurses over
1945  * the DAGs and ensure the proper init ordering such that each object's
1946  * needed libraries are initialized before the object itself.  At the
1947  * same time, this function adds the objects to the global finalization
1948  * list "list_fini" in the opposite order.  The write lock must be
1949  * held when this function is called.
1950  */
1951 static void
1952 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1953 {
1954 
1955     if (obj->init_scanned || obj->init_done)
1956 	return;
1957     obj->init_scanned = true;
1958 
1959     /* Recursively process the successor objects. */
1960     if (&obj->next != tail)
1961 	initlist_add_objects(obj->next, tail, list);
1962 
1963     /* Recursively process the needed objects. */
1964     if (obj->needed != NULL)
1965 	initlist_add_neededs(obj->needed, list);
1966     if (obj->needed_filtees != NULL)
1967 	initlist_add_neededs(obj->needed_filtees, list);
1968     if (obj->needed_aux_filtees != NULL)
1969 	initlist_add_neededs(obj->needed_aux_filtees, list);
1970 
1971     /* Add the object to the init list. */
1972     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1973       obj->init_array != (Elf_Addr)NULL)
1974 	objlist_push_tail(list, obj);
1975 
1976     /* Add the object to the global fini list in the reverse order. */
1977     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1978       && !obj->on_fini_list) {
1979 	objlist_push_head(&list_fini, obj);
1980 	obj->on_fini_list = true;
1981     }
1982 }
1983 
1984 #ifndef FPTR_TARGET
1985 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1986 #endif
1987 
1988 static void
1989 free_needed_filtees(Needed_Entry *n)
1990 {
1991     Needed_Entry *needed, *needed1;
1992 
1993     for (needed = n; needed != NULL; needed = needed->next) {
1994 	if (needed->obj != NULL) {
1995 	    dlclose(needed->obj);
1996 	    needed->obj = NULL;
1997 	}
1998     }
1999     for (needed = n; needed != NULL; needed = needed1) {
2000 	needed1 = needed->next;
2001 	free(needed);
2002     }
2003 }
2004 
2005 static void
2006 unload_filtees(Obj_Entry *obj)
2007 {
2008 
2009     free_needed_filtees(obj->needed_filtees);
2010     obj->needed_filtees = NULL;
2011     free_needed_filtees(obj->needed_aux_filtees);
2012     obj->needed_aux_filtees = NULL;
2013     obj->filtees_loaded = false;
2014 }
2015 
2016 static void
2017 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2018     RtldLockState *lockstate)
2019 {
2020 
2021     for (; needed != NULL; needed = needed->next) {
2022 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2023 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2024 	  RTLD_LOCAL, lockstate);
2025     }
2026 }
2027 
2028 static void
2029 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2030 {
2031 
2032     lock_restart_for_upgrade(lockstate);
2033     if (!obj->filtees_loaded) {
2034 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2035 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2036 	obj->filtees_loaded = true;
2037     }
2038 }
2039 
2040 static int
2041 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2042 {
2043     Obj_Entry *obj1;
2044 
2045     for (; needed != NULL; needed = needed->next) {
2046 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2047 	  flags & ~RTLD_LO_NOLOAD);
2048 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2049 	    return (-1);
2050     }
2051     return (0);
2052 }
2053 
2054 /*
2055  * Given a shared object, traverse its list of needed objects, and load
2056  * each of them.  Returns 0 on success.  Generates an error message and
2057  * returns -1 on failure.
2058  */
2059 static int
2060 load_needed_objects(Obj_Entry *first, int flags)
2061 {
2062     Obj_Entry *obj;
2063 
2064     for (obj = first;  obj != NULL;  obj = obj->next) {
2065 	if (process_needed(obj, obj->needed, flags) == -1)
2066 	    return (-1);
2067     }
2068     return (0);
2069 }
2070 
2071 static int
2072 load_preload_objects(void)
2073 {
2074     char *p = ld_preload;
2075     Obj_Entry *obj;
2076     static const char delim[] = " \t:;";
2077 
2078     if (p == NULL)
2079 	return 0;
2080 
2081     p += strspn(p, delim);
2082     while (*p != '\0') {
2083 	size_t len = strcspn(p, delim);
2084 	char savech;
2085 	SymLook req;
2086 	int res;
2087 
2088 	savech = p[len];
2089 	p[len] = '\0';
2090 	obj = load_object(p, -1, NULL, 0);
2091 	if (obj == NULL)
2092 	    return -1;	/* XXX - cleanup */
2093 	obj->z_interpose = true;
2094 	p[len] = savech;
2095 	p += len;
2096 	p += strspn(p, delim);
2097 
2098 	/* Check for the magic tracing function */
2099 	symlook_init(&req, RTLD_FUNCTRACE);
2100 	res = symlook_obj(&req, obj);
2101 	if (res == 0) {
2102 	    rtld_functrace = (void *)(req.defobj_out->relocbase +
2103 				      req.sym_out->st_value);
2104 	    rtld_functrace_obj = req.defobj_out;
2105 	}
2106     }
2107     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2108     return 0;
2109 }
2110 
2111 static const char *
2112 printable_path(const char *path)
2113 {
2114 
2115 	return (path == NULL ? "<unknown>" : path);
2116 }
2117 
2118 /*
2119  * Load a shared object into memory, if it is not already loaded.  The
2120  * object may be specified by name or by user-supplied file descriptor
2121  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2122  * duplicate is.
2123  *
2124  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2125  * on failure.
2126  */
2127 static Obj_Entry *
2128 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2129 {
2130     Obj_Entry *obj;
2131     int fd;
2132     struct stat sb;
2133     char *path;
2134 
2135     fd = -1;
2136     if (name != NULL) {
2137 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2138 	    if (object_match_name(obj, name))
2139 		return (obj);
2140 	}
2141 
2142 	path = find_library(name, refobj, &fd);
2143 	if (path == NULL)
2144 	    return (NULL);
2145     } else
2146 	path = NULL;
2147 
2148     if (fd >= 0) {
2149 	/*
2150 	 * search_library_pathfds() opens a fresh file descriptor for the
2151 	 * library, so there is no need to dup().
2152 	 */
2153     } else if (fd_u == -1) {
2154 	/*
2155 	 * If we didn't find a match by pathname, or the name is not
2156 	 * supplied, open the file and check again by device and inode.
2157 	 * This avoids false mismatches caused by multiple links or ".."
2158 	 * in pathnames.
2159 	 *
2160 	 * To avoid a race, we open the file and use fstat() rather than
2161 	 * using stat().
2162 	 */
2163 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2164 	    _rtld_error("Cannot open \"%s\"", path);
2165 	    free(path);
2166 	    return (NULL);
2167 	}
2168     } else {
2169 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2170 	if (fd == -1) {
2171 	    _rtld_error("Cannot dup fd");
2172 	    free(path);
2173 	    return (NULL);
2174 	}
2175     }
2176     if (fstat(fd, &sb) == -1) {
2177 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2178 	close(fd);
2179 	free(path);
2180 	return NULL;
2181     }
2182     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2183 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2184 	    break;
2185     if (obj != NULL && name != NULL) {
2186 	object_add_name(obj, name);
2187 	free(path);
2188 	close(fd);
2189 	return obj;
2190     }
2191     if (flags & RTLD_LO_NOLOAD) {
2192 	free(path);
2193 	close(fd);
2194 	return (NULL);
2195     }
2196 
2197     /* First use of this object, so we must map it in */
2198     obj = do_load_object(fd, name, path, &sb, flags);
2199     if (obj == NULL)
2200 	free(path);
2201     close(fd);
2202 
2203     return obj;
2204 }
2205 
2206 static Obj_Entry *
2207 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2208   int flags)
2209 {
2210     Obj_Entry *obj;
2211     struct statfs fs;
2212 
2213     /*
2214      * but first, make sure that environment variables haven't been
2215      * used to circumvent the noexec flag on a filesystem.
2216      */
2217     if (dangerous_ld_env) {
2218 	if (fstatfs(fd, &fs) != 0) {
2219 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2220 	    return NULL;
2221 	}
2222 	if (fs.f_flags & MNT_NOEXEC) {
2223 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2224 	    return NULL;
2225 	}
2226     }
2227     dbg("loading \"%s\"", printable_path(path));
2228     obj = map_object(fd, printable_path(path), sbp);
2229     if (obj == NULL)
2230         return NULL;
2231 
2232     /*
2233      * If DT_SONAME is present in the object, digest_dynamic2 already
2234      * added it to the object names.
2235      */
2236     if (name != NULL)
2237 	object_add_name(obj, name);
2238     obj->path = path;
2239     digest_dynamic(obj, 0);
2240     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2241 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2242     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2243       RTLD_LO_DLOPEN) {
2244 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2245 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2246 	munmap(obj->mapbase, obj->mapsize);
2247 	obj_free(obj);
2248 	return (NULL);
2249     }
2250 
2251     *obj_tail = obj;
2252     obj_tail = &obj->next;
2253     obj_count++;
2254     obj_loads++;
2255     linkmap_add(obj);	/* for GDB & dlinfo() */
2256 #if 0
2257     max_stack_flags |= obj->stack_flags;
2258 #endif
2259 
2260     dbg("  %p .. %p: %s", obj->mapbase,
2261          obj->mapbase + obj->mapsize - 1, obj->path);
2262     if (obj->textrel)
2263 	dbg("  WARNING: %s has impure text", obj->path);
2264     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2265 	obj->path);
2266 
2267     return obj;
2268 }
2269 
2270 static Obj_Entry *
2271 obj_from_addr(const void *addr)
2272 {
2273     Obj_Entry *obj;
2274 
2275     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2276 	if (addr < (void *) obj->mapbase)
2277 	    continue;
2278 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2279 	    return obj;
2280     }
2281     return NULL;
2282 }
2283 
2284 /*
2285  * If the main program is defined with a .preinit_array section, call
2286  * each function in order.  This must occur before the initialization
2287  * of any shared object or the main program.
2288  */
2289 static void
2290 preinit_main(void)
2291 {
2292     Elf_Addr *preinit_addr;
2293     int index;
2294 
2295     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2296     if (preinit_addr == NULL)
2297 	return;
2298 
2299     for (index = 0; index < obj_main->preinit_array_num; index++) {
2300 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2301 	    dbg("calling preinit function for %s at %p", obj_main->path,
2302 	      (void *)preinit_addr[index]);
2303 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2304 	      0, 0, obj_main->path);
2305 	    call_init_pointer(obj_main, preinit_addr[index]);
2306 	}
2307     }
2308 }
2309 
2310 /*
2311  * Call the finalization functions for each of the objects in "list"
2312  * belonging to the DAG of "root" and referenced once. If NULL "root"
2313  * is specified, every finalization function will be called regardless
2314  * of the reference count and the list elements won't be freed. All of
2315  * the objects are expected to have non-NULL fini functions.
2316  */
2317 static void
2318 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2319 {
2320     Objlist_Entry *elm;
2321     char *saved_msg;
2322     Elf_Addr *fini_addr;
2323     int index;
2324 
2325     assert(root == NULL || root->refcount == 1);
2326 
2327     /*
2328      * Preserve the current error message since a fini function might
2329      * call into the dynamic linker and overwrite it.
2330      */
2331     saved_msg = errmsg_save();
2332     do {
2333 	STAILQ_FOREACH(elm, list, link) {
2334 	    if (root != NULL && (elm->obj->refcount != 1 ||
2335 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2336 		continue;
2337 
2338 	    /* Remove object from fini list to prevent recursive invocation. */
2339 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2340 	    /*
2341 	     * XXX: If a dlopen() call references an object while the
2342 	     * fini function is in progress, we might end up trying to
2343 	     * unload the referenced object in dlclose() or the object
2344 	     * won't be unloaded although its fini function has been
2345 	     * called.
2346 	     */
2347 	    lock_release(rtld_bind_lock, lockstate);
2348 
2349 	    /*
2350 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2351 	     * When this happens, DT_FINI_ARRAY is processed first.
2352 	     * It is also processed backwards.  It is possible to encounter
2353 	     * DT_FINI_ARRAY elements with values of 0 or 1, but they need
2354 	     * to be ignored.
2355 	     */
2356 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2357 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2358 		for (index = elm->obj->fini_array_num - 1; index >= 0; index--) {
2359 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2360 			dbg("calling fini array function for %s at %p",
2361 			    elm->obj->path, (void *)fini_addr[index]);
2362 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2363 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2364 			call_initfini_pointer(elm->obj, fini_addr[index]);
2365 		    }
2366 		}
2367 	    }
2368 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2369 		dbg("calling fini function for %s at %p", elm->obj->path,
2370 		    (void *)elm->obj->fini);
2371 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2372 		    0, 0, elm->obj->path);
2373 		call_initfini_pointer(elm->obj, elm->obj->fini);
2374 	    }
2375 	    wlock_acquire(rtld_bind_lock, lockstate);
2376 	    /* No need to free anything if process is going down. */
2377 	    if (root != NULL)
2378 		free(elm);
2379 	    /*
2380 	     * We must restart the list traversal after every fini call
2381 	     * because a dlclose() call from the fini function or from
2382 	     * another thread might have modified the reference counts.
2383 	     */
2384 	    break;
2385 	}
2386     } while (elm != NULL);
2387     errmsg_restore(saved_msg);
2388 }
2389 
2390 /*
2391  * Call the initialization functions for each of the objects in
2392  * "list".  All of the objects are expected to have non-NULL init
2393  * functions.
2394  */
2395 static void
2396 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2397 {
2398     Objlist_Entry *elm;
2399     Obj_Entry *obj;
2400     char *saved_msg;
2401     Elf_Addr *init_addr;
2402     int index;
2403 
2404     /*
2405      * Clean init_scanned flag so that objects can be rechecked and
2406      * possibly initialized earlier if any of vectors called below
2407      * cause the change by using dlopen.
2408      */
2409     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2410 	obj->init_scanned = false;
2411 
2412     /*
2413      * Preserve the current error message since an init function might
2414      * call into the dynamic linker and overwrite it.
2415      */
2416     saved_msg = errmsg_save();
2417     STAILQ_FOREACH(elm, list, link) {
2418 	if (elm->obj->init_done) /* Initialized early. */
2419 	    continue;
2420 
2421 	/*
2422 	 * Race: other thread might try to use this object before current
2423 	 * one completes the initilization. Not much can be done here
2424 	 * without better locking.
2425 	 */
2426 	elm->obj->init_done = true;
2427 	lock_release(rtld_bind_lock, lockstate);
2428 
2429         /*
2430          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2431          * When this happens, DT_INIT is processed first.
2432 	 * It is possible to encounter DT_INIT_ARRAY elements with values
2433 	 * of 0 or 1, but they need to be ignored.
2434          */
2435 	if (elm->obj->init != (Elf_Addr)NULL) {
2436 	    dbg("calling init function for %s at %p", elm->obj->path,
2437 	        (void *)elm->obj->init);
2438 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2439 	        0, 0, elm->obj->path);
2440 	    call_initfini_pointer(elm->obj, elm->obj->init);
2441 	}
2442 	init_addr = (Elf_Addr *)elm->obj->init_array;
2443 	if (init_addr != NULL) {
2444 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2445 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2446 		    dbg("calling init array function for %s at %p", elm->obj->path,
2447 			(void *)init_addr[index]);
2448 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2449 			(void *)init_addr[index], 0, 0, elm->obj->path);
2450 		    call_init_pointer(elm->obj, init_addr[index]);
2451 		}
2452 	    }
2453 	}
2454 	wlock_acquire(rtld_bind_lock, lockstate);
2455     }
2456     errmsg_restore(saved_msg);
2457 }
2458 
2459 static void
2460 objlist_clear(Objlist *list)
2461 {
2462     Objlist_Entry *elm;
2463 
2464     while (!STAILQ_EMPTY(list)) {
2465 	elm = STAILQ_FIRST(list);
2466 	STAILQ_REMOVE_HEAD(list, link);
2467 	free(elm);
2468     }
2469 }
2470 
2471 static Objlist_Entry *
2472 objlist_find(Objlist *list, const Obj_Entry *obj)
2473 {
2474     Objlist_Entry *elm;
2475 
2476     STAILQ_FOREACH(elm, list, link)
2477 	if (elm->obj == obj)
2478 	    return elm;
2479     return NULL;
2480 }
2481 
2482 static void
2483 objlist_init(Objlist *list)
2484 {
2485     STAILQ_INIT(list);
2486 }
2487 
2488 static void
2489 objlist_push_head(Objlist *list, Obj_Entry *obj)
2490 {
2491     Objlist_Entry *elm;
2492 
2493     elm = NEW(Objlist_Entry);
2494     elm->obj = obj;
2495     STAILQ_INSERT_HEAD(list, elm, link);
2496 }
2497 
2498 static void
2499 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2500 {
2501     Objlist_Entry *elm;
2502 
2503     elm = NEW(Objlist_Entry);
2504     elm->obj = obj;
2505     STAILQ_INSERT_TAIL(list, elm, link);
2506 }
2507 
2508 static void
2509 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2510 {
2511 	Objlist_Entry *elm, *listelm;
2512 
2513 	STAILQ_FOREACH(listelm, list, link) {
2514 		if (listelm->obj == listobj)
2515 			break;
2516 	}
2517 	elm = NEW(Objlist_Entry);
2518 	elm->obj = obj;
2519 	if (listelm != NULL)
2520 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2521 	else
2522 		STAILQ_INSERT_TAIL(list, elm, link);
2523 }
2524 
2525 static void
2526 objlist_remove(Objlist *list, Obj_Entry *obj)
2527 {
2528     Objlist_Entry *elm;
2529 
2530     if ((elm = objlist_find(list, obj)) != NULL) {
2531 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2532 	free(elm);
2533     }
2534 }
2535 
2536 /*
2537  * Relocate dag rooted in the specified object.
2538  * Returns 0 on success, or -1 on failure.
2539  */
2540 
2541 static int
2542 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2543     int flags, RtldLockState *lockstate)
2544 {
2545 	Objlist_Entry *elm;
2546 	int error;
2547 
2548 	error = 0;
2549 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2550 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2551 		    lockstate);
2552 		if (error == -1)
2553 			break;
2554 	}
2555 	return (error);
2556 }
2557 
2558 /*
2559  * Prepare for, or clean after, relocating an object marked with
2560  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2561  * segments are remapped read-write.  After relocations are done, the
2562  * segment's permissions are returned back to the modes specified in
2563  * the phdrs.  If any relocation happened, or always for wired
2564  * program, COW is triggered.
2565  */
2566 static int
2567 reloc_textrel_prot(Obj_Entry *obj, bool before)
2568 {
2569 	const Elf_Phdr *ph;
2570 	void *base;
2571 	size_t l, sz;
2572 	int prot;
2573 
2574 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2575 	    l--, ph++) {
2576 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2577 			continue;
2578 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2579 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2580 		    trunc_page(ph->p_vaddr);
2581 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2582 	/*
2583 	 * Make sure modified text segments are included in the
2584 	 * core dump since we modified it.  This unfortunately causes the
2585 	 * entire text segment to core-out but we don't have much of a
2586 	 * choice.  We could try to only reenable core dumps on pages
2587 	 * in which relocations occured but that is likely most of the text
2588 	 * pages anyway, and even that would not work because the rest of
2589 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
2590 	 * (created due to our modifications) backed by the original OBJT_VNODE
2591 	 * object, and the ELF coredump code is currently only able to dump
2592 	 * vnode records for pure vnode-backed mappings, not vnode backings
2593 	 * to memory objects.
2594 	 */
2595 		if (before == false)
2596 			madvise(base, sz, MADV_CORE);
2597 		if (mprotect(base, sz, prot) == -1) {
2598 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2599 			    obj->path, before ? "en" : "dis",
2600 			    rtld_strerror(errno));
2601 			return (-1);
2602 		}
2603 	}
2604 	return (0);
2605 }
2606 
2607 /*
2608  * Relocate single object.
2609  * Returns 0 on success, or -1 on failure.
2610  */
2611 static int
2612 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2613     int flags, RtldLockState *lockstate)
2614 {
2615 
2616 	if (obj->relocated)
2617 		return (0);
2618 	obj->relocated = true;
2619 	if (obj != rtldobj)
2620 		dbg("relocating \"%s\"", obj->path);
2621 
2622 	if (obj->symtab == NULL || obj->strtab == NULL ||
2623 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2624 		_rtld_error("%s: Shared object has no run-time symbol table",
2625 			    obj->path);
2626 		return (-1);
2627 	}
2628 
2629 	/* There are relocations to the write-protected text segment. */
2630 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2631 		return (-1);
2632 
2633 	/* Process the non-PLT non-IFUNC relocations. */
2634 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2635 		return (-1);
2636 
2637 	/* Re-protected the text segment. */
2638 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2639 		return (-1);
2640 
2641 	/* Set the special PLT or GOT entries. */
2642 	init_pltgot(obj);
2643 
2644 	/* Process the PLT relocations. */
2645 	if (reloc_plt(obj) == -1)
2646 		return (-1);
2647 	/* Relocate the jump slots if we are doing immediate binding. */
2648 	if (obj->bind_now || bind_now)
2649 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2650 			return (-1);
2651 
2652 	/*
2653 	 * Process the non-PLT IFUNC relocations.  The relocations are
2654 	 * processed in two phases, because IFUNC resolvers may
2655 	 * reference other symbols, which must be readily processed
2656 	 * before resolvers are called.
2657 	 */
2658 	if (obj->non_plt_gnu_ifunc &&
2659 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2660 		return (-1);
2661 
2662 	/*
2663 	 * Set up the magic number and version in the Obj_Entry.  These
2664 	 * were checked in the crt1.o from the original ElfKit, so we
2665 	 * set them for backward compatibility.
2666 	 */
2667 	obj->magic = RTLD_MAGIC;
2668 	obj->version = RTLD_VERSION;
2669 
2670 	/*
2671 	 * Set relocated data to read-only status if protection specified
2672 	 */
2673 
2674 	if (obj->relro_size) {
2675 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2676 		_rtld_error("%s: Cannot enforce relro relocation: %s",
2677 		  obj->path, rtld_strerror(errno));
2678 		return (-1);
2679 	    }
2680 	    obj->relro_protected = true;
2681 	}
2682 	return (0);
2683 }
2684 
2685 /*
2686  * Relocate newly-loaded shared objects.  The argument is a pointer to
2687  * the Obj_Entry for the first such object.  All objects from the first
2688  * to the end of the list of objects are relocated.  Returns 0 on success,
2689  * or -1 on failure.
2690  */
2691 static int
2692 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2693     int flags, RtldLockState *lockstate)
2694 {
2695 	Obj_Entry *obj;
2696 	int error;
2697 
2698 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2699 		error = relocate_object(obj, bind_now, rtldobj, flags,
2700 		    lockstate);
2701 		if (error == -1)
2702 			break;
2703 	}
2704 	return (error);
2705 }
2706 
2707 /*
2708  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2709  * referencing STT_GNU_IFUNC symbols is postponed till the other
2710  * relocations are done.  The indirect functions specified as
2711  * ifunc are allowed to call other symbols, so we need to have
2712  * objects relocated before asking for resolution from indirects.
2713  *
2714  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2715  * instead of the usual lazy handling of PLT slots.  It is
2716  * consistent with how GNU does it.
2717  */
2718 static int
2719 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2720     RtldLockState *lockstate)
2721 {
2722 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2723 		return (-1);
2724 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2725 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2726 		return (-1);
2727 	return (0);
2728 }
2729 
2730 static int
2731 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2732     RtldLockState *lockstate)
2733 {
2734 	Obj_Entry *obj;
2735 
2736 	for (obj = first;  obj != NULL;  obj = obj->next) {
2737 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2738 			return (-1);
2739 	}
2740 	return (0);
2741 }
2742 
2743 static int
2744 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2745     RtldLockState *lockstate)
2746 {
2747 	Objlist_Entry *elm;
2748 
2749 	STAILQ_FOREACH(elm, list, link) {
2750 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2751 		    lockstate) == -1)
2752 			return (-1);
2753 	}
2754 	return (0);
2755 }
2756 
2757 /*
2758  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2759  * before the process exits.
2760  */
2761 static void
2762 rtld_exit(void)
2763 {
2764     RtldLockState lockstate;
2765 
2766     wlock_acquire(rtld_bind_lock, &lockstate);
2767     dbg("rtld_exit()");
2768     objlist_call_fini(&list_fini, NULL, &lockstate);
2769     /* No need to remove the items from the list, since we are exiting. */
2770     if (!libmap_disable)
2771         lm_fini();
2772     lock_release(rtld_bind_lock, &lockstate);
2773 }
2774 
2775 /*
2776  * Iterate over a search path, translate each element, and invoke the
2777  * callback on the result.
2778  */
2779 static void *
2780 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2781 {
2782     const char *trans;
2783     if (path == NULL)
2784 	return (NULL);
2785 
2786     path += strspn(path, ":;");
2787     while (*path != '\0') {
2788 	size_t len;
2789 	char  *res;
2790 
2791 	len = strcspn(path, ":;");
2792 	trans = lm_findn(NULL, path, len);
2793 	if (trans)
2794 	    res = callback(trans, strlen(trans), arg);
2795 	else
2796 	    res = callback(path, len, arg);
2797 
2798 	if (res != NULL)
2799 	    return (res);
2800 
2801 	path += len;
2802 	path += strspn(path, ":;");
2803     }
2804 
2805     return (NULL);
2806 }
2807 
2808 struct try_library_args {
2809     const char	*name;
2810     size_t	 namelen;
2811     char	*buffer;
2812     size_t	 buflen;
2813 };
2814 
2815 static void *
2816 try_library_path(const char *dir, size_t dirlen, void *param)
2817 {
2818     struct try_library_args *arg;
2819 
2820     arg = param;
2821     if (*dir == '/' || trust) {
2822 	char *pathname;
2823 
2824 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2825 		return (NULL);
2826 
2827 	pathname = arg->buffer;
2828 	strncpy(pathname, dir, dirlen);
2829 	pathname[dirlen] = '/';
2830 	strcpy(pathname + dirlen + 1, arg->name);
2831 
2832 	dbg("  Trying \"%s\"", pathname);
2833 	if (access(pathname, F_OK) == 0) {		/* We found it */
2834 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2835 	    strcpy(pathname, arg->buffer);
2836 	    return (pathname);
2837 	}
2838     }
2839     return (NULL);
2840 }
2841 
2842 static char *
2843 search_library_path(const char *name, const char *path)
2844 {
2845     char *p;
2846     struct try_library_args arg;
2847 
2848     if (path == NULL)
2849 	return NULL;
2850 
2851     arg.name = name;
2852     arg.namelen = strlen(name);
2853     arg.buffer = xmalloc(PATH_MAX);
2854     arg.buflen = PATH_MAX;
2855 
2856     p = path_enumerate(path, try_library_path, &arg);
2857 
2858     free(arg.buffer);
2859 
2860     return (p);
2861 }
2862 
2863 
2864 /*
2865  * Finds the library with the given name using the directory descriptors
2866  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2867  *
2868  * Returns a freshly-opened close-on-exec file descriptor for the library,
2869  * or -1 if the library cannot be found.
2870  */
2871 static char *
2872 search_library_pathfds(const char *name, const char *path, int *fdp)
2873 {
2874 	char *envcopy, *fdstr, *found, *last_token;
2875 	size_t len;
2876 	int dirfd, fd;
2877 
2878 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2879 
2880 	/* Don't load from user-specified libdirs into setuid binaries. */
2881 	if (!trust)
2882 		return (NULL);
2883 
2884 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2885 	if (path == NULL)
2886 		return (NULL);
2887 
2888 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2889 	if (name[0] == '/') {
2890 		dbg("Absolute path (%s) passed to %s", name, __func__);
2891 		return (NULL);
2892 	}
2893 
2894 	/*
2895 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2896 	 * copy of the path, as strtok_r rewrites separator tokens
2897 	 * with '\0'.
2898 	 */
2899 	found = NULL;
2900 	envcopy = xstrdup(path);
2901 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2902 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2903 		dirfd = parse_libdir(fdstr);
2904 		if (dirfd < 0)
2905 			break;
2906 		fd = openat(dirfd, name, O_RDONLY | O_CLOEXEC);
2907 		if (fd >= 0) {
2908 			*fdp = fd;
2909 			len = strlen(fdstr) + strlen(name) + 3;
2910 			found = xmalloc(len);
2911 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2912 				_rtld_error("error generating '%d/%s'",
2913 				    dirfd, name);
2914 				die();
2915 			}
2916 			dbg("open('%s') => %d", found, fd);
2917 			break;
2918 		}
2919 	}
2920 	free(envcopy);
2921 
2922 	return (found);
2923 }
2924 
2925 
2926 int
2927 dlclose(void *handle)
2928 {
2929     Obj_Entry *root;
2930     RtldLockState lockstate;
2931 
2932     wlock_acquire(rtld_bind_lock, &lockstate);
2933     root = dlcheck(handle);
2934     if (root == NULL) {
2935 	lock_release(rtld_bind_lock, &lockstate);
2936 	return -1;
2937     }
2938     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2939 	root->path);
2940 
2941     /* Unreference the object and its dependencies. */
2942     root->dl_refcount--;
2943 
2944     if (root->refcount == 1) {
2945 	/*
2946 	 * The object will be no longer referenced, so we must unload it.
2947 	 * First, call the fini functions.
2948 	 */
2949 	objlist_call_fini(&list_fini, root, &lockstate);
2950 
2951 	unref_dag(root);
2952 
2953 	/* Finish cleaning up the newly-unreferenced objects. */
2954 	GDB_STATE(RT_DELETE,&root->linkmap);
2955 	unload_object(root);
2956 	GDB_STATE(RT_CONSISTENT,NULL);
2957     } else
2958 	unref_dag(root);
2959 
2960     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2961     lock_release(rtld_bind_lock, &lockstate);
2962     return 0;
2963 }
2964 
2965 char *
2966 dlerror(void)
2967 {
2968     char *msg = error_message;
2969     error_message = NULL;
2970     return msg;
2971 }
2972 
2973 void *
2974 dlopen(const char *name, int mode)
2975 {
2976 
2977 	return (rtld_dlopen(name, -1, mode));
2978 }
2979 
2980 void *
2981 fdlopen(int fd, int mode)
2982 {
2983 
2984 	return (rtld_dlopen(NULL, fd, mode));
2985 }
2986 
2987 static void *
2988 rtld_dlopen(const char *name, int fd, int mode)
2989 {
2990     RtldLockState lockstate;
2991     int lo_flags;
2992 
2993     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2994     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2995     if (ld_tracing != NULL) {
2996 	rlock_acquire(rtld_bind_lock, &lockstate);
2997 	if (sigsetjmp(lockstate.env, 0) != 0)
2998 	    lock_upgrade(rtld_bind_lock, &lockstate);
2999 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3000 	lock_release(rtld_bind_lock, &lockstate);
3001     }
3002     lo_flags = RTLD_LO_DLOPEN;
3003     if (mode & RTLD_NODELETE)
3004 	    lo_flags |= RTLD_LO_NODELETE;
3005     if (mode & RTLD_NOLOAD)
3006 	    lo_flags |= RTLD_LO_NOLOAD;
3007     if (ld_tracing != NULL)
3008 	    lo_flags |= RTLD_LO_TRACE;
3009 
3010     return (dlopen_object(name, fd, obj_main, lo_flags,
3011       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3012 }
3013 
3014 static void
3015 dlopen_cleanup(Obj_Entry *obj)
3016 {
3017 
3018 	obj->dl_refcount--;
3019 	unref_dag(obj);
3020 	if (obj->refcount == 0)
3021 		unload_object(obj);
3022 }
3023 
3024 static Obj_Entry *
3025 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3026     int mode, RtldLockState *lockstate)
3027 {
3028     Obj_Entry **old_obj_tail;
3029     Obj_Entry *obj;
3030     Objlist initlist;
3031     RtldLockState mlockstate;
3032     int result;
3033 
3034     objlist_init(&initlist);
3035 
3036     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3037 	wlock_acquire(rtld_bind_lock, &mlockstate);
3038 	lockstate = &mlockstate;
3039     }
3040     GDB_STATE(RT_ADD,NULL);
3041 
3042     old_obj_tail = obj_tail;
3043     obj = NULL;
3044     if (name == NULL && fd == -1) {
3045 	obj = obj_main;
3046 	obj->refcount++;
3047     } else {
3048 	obj = load_object(name, fd, refobj, lo_flags);
3049     }
3050 
3051     if (obj) {
3052 	obj->dl_refcount++;
3053 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3054 	    objlist_push_tail(&list_global, obj);
3055 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3056 	    assert(*old_obj_tail == obj);
3057 	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3058 		!allocate_tls_offset(obj)) {
3059 		    _rtld_error("%s: No space available "
3060 				"for static TLS",
3061 				obj->path);
3062 		    result = -1;
3063 	    } else {
3064 		    result = 0;
3065 	    }
3066 	    if (result == 0) {
3067 		result = load_needed_objects(
3068 			    obj,
3069 			    lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3070 	    }
3071 	    init_dag(obj);
3072 	    ref_dag(obj);
3073 	    if (result != -1)
3074 		result = rtld_verify_versions(&obj->dagmembers);
3075 	    if (result != -1 && ld_tracing)
3076 		goto trace;
3077 	    if (result == -1 || relocate_object_dag(obj,
3078 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3079 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3080 	      lockstate) == -1) {
3081 		dlopen_cleanup(obj);
3082 		obj = NULL;
3083 	    } else if (lo_flags & RTLD_LO_EARLY) {
3084 		/*
3085 		 * Do not call the init functions for early loaded
3086 		 * filtees.  The image is still not initialized enough
3087 		 * for them to work.
3088 		 *
3089 		 * Our object is found by the global object list and
3090 		 * will be ordered among all init calls done right
3091 		 * before transferring control to main.
3092 		 */
3093 	    } else {
3094 		/* Make list of init functions to call. */
3095 		initlist_add_objects(obj, &obj->next, &initlist);
3096 	    }
3097 	    /*
3098 	     * Process all no_delete objects here, given them own
3099 	     * DAGs to prevent their dependencies from being unloaded.
3100 	     * This has to be done after we have loaded all of the
3101 	     * dependencies, so that we do not miss any.
3102 	     */
3103 	    if (obj != NULL)
3104 		process_nodelete(obj);
3105 	} else {
3106 	    /*
3107 	     * Bump the reference counts for objects on this DAG.  If
3108 	     * this is the first dlopen() call for the object that was
3109 	     * already loaded as a dependency, initialize the dag
3110 	     * starting at it.
3111 	     */
3112 	    init_dag(obj);
3113 	    ref_dag(obj);
3114 
3115 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3116 		goto trace;
3117 	}
3118 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3119 	  obj->z_nodelete) && !obj->ref_nodel) {
3120 	    dbg("obj %s nodelete", obj->path);
3121 	    ref_dag(obj);
3122 	    obj->z_nodelete = obj->ref_nodel = true;
3123 	}
3124     }
3125 
3126     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3127 	name);
3128     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3129 
3130     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3131 	map_stacks_exec(lockstate);
3132 	if (obj)
3133 	    distribute_static_tls(&initlist, lockstate);
3134     }
3135 
3136     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3137       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3138       lockstate) == -1) {
3139 	objlist_clear(&initlist);
3140 	dlopen_cleanup(obj);
3141 	if (lockstate == &mlockstate)
3142 	    lock_release(rtld_bind_lock, lockstate);
3143 	return (NULL);
3144     }
3145 
3146     if (!(lo_flags & RTLD_LO_EARLY)) {
3147 	/* Call the init functions. */
3148 	objlist_call_init(&initlist, lockstate);
3149     }
3150     objlist_clear(&initlist);
3151     if (lockstate == &mlockstate)
3152 	lock_release(rtld_bind_lock, lockstate);
3153     return obj;
3154 trace:
3155     trace_loaded_objects(obj);
3156     if (lockstate == &mlockstate)
3157 	lock_release(rtld_bind_lock, lockstate);
3158     exit(0);
3159 }
3160 
3161 static void *
3162 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3163     int flags)
3164 {
3165     DoneList donelist;
3166     const Obj_Entry *obj, *defobj;
3167     const Elf_Sym *def;
3168     SymLook req;
3169     RtldLockState lockstate;
3170     tls_index ti;
3171     int res;
3172 
3173     def = NULL;
3174     defobj = NULL;
3175     symlook_init(&req, name);
3176     req.ventry = ve;
3177     req.flags = flags | SYMLOOK_IN_PLT;
3178     req.lockstate = &lockstate;
3179 
3180     rlock_acquire(rtld_bind_lock, &lockstate);
3181     if (sigsetjmp(lockstate.env, 0) != 0)
3182 	    lock_upgrade(rtld_bind_lock, &lockstate);
3183     if (handle == NULL || handle == RTLD_NEXT ||
3184 	handle == RTLD_DEFAULT || handle == RTLD_SELF ||
3185 	handle == RTLD_ALL) {
3186 
3187 	if (handle != RTLD_ALL) {
3188 		if ((obj = obj_from_addr(retaddr)) == NULL) {
3189 		    _rtld_error("Cannot determine caller's shared object");
3190 		    lock_release(rtld_bind_lock, &lockstate);
3191 		    return NULL;
3192 		}
3193 	} else {
3194 		obj = obj_list;
3195 	}
3196 	if (handle == NULL) {	/* Just the caller's shared object. */
3197 	    res = symlook_obj(&req, obj);
3198 	    if (res == 0) {
3199 		def = req.sym_out;
3200 		defobj = req.defobj_out;
3201 	    }
3202 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3203 		   handle == RTLD_SELF || /* ... caller included */
3204 		   handle == RTLD_ALL) {  /* All Objects */
3205 	    if (handle == RTLD_NEXT)
3206 		obj = obj->next;
3207 	    for (; obj != NULL; obj = obj->next) {
3208 		res = symlook_obj(&req, obj);
3209 		if (res == 0) {
3210 		    if (def == NULL ||
3211 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3212 			def = req.sym_out;
3213 			defobj = req.defobj_out;
3214 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3215 			    break;
3216 		    }
3217 		}
3218 	    }
3219 	    /*
3220 	     * Search the dynamic linker itself, and possibly resolve the
3221 	     * symbol from there.  This is how the application links to
3222 	     * dynamic linker services such as dlopen.
3223 	     */
3224 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3225 		res = symlook_obj(&req, &obj_rtld);
3226 		if (res == 0) {
3227 		    def = req.sym_out;
3228 		    defobj = req.defobj_out;
3229 		}
3230 	    }
3231 	} else {
3232 	    assert(handle == RTLD_DEFAULT);
3233 	    res = symlook_default(&req, obj);
3234 	    if (res == 0) {
3235 		defobj = req.defobj_out;
3236 		def = req.sym_out;
3237 	    }
3238 	}
3239     } else {
3240 	if ((obj = dlcheck(handle)) == NULL) {
3241 	    lock_release(rtld_bind_lock, &lockstate);
3242 	    return NULL;
3243 	}
3244 
3245 	donelist_init(&donelist);
3246 	if (obj->mainprog) {
3247             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3248 	    res = symlook_global(&req, &donelist);
3249 	    if (res == 0) {
3250 		def = req.sym_out;
3251 		defobj = req.defobj_out;
3252 	    }
3253 	    /*
3254 	     * Search the dynamic linker itself, and possibly resolve the
3255 	     * symbol from there.  This is how the application links to
3256 	     * dynamic linker services such as dlopen.
3257 	     */
3258 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3259 		res = symlook_obj(&req, &obj_rtld);
3260 		if (res == 0) {
3261 		    def = req.sym_out;
3262 		    defobj = req.defobj_out;
3263 		}
3264 	    }
3265 	}
3266 	else {
3267 	    /* Search the whole DAG rooted at the given object. */
3268 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3269 	    if (res == 0) {
3270 		def = req.sym_out;
3271 		defobj = req.defobj_out;
3272 	    }
3273 	}
3274     }
3275 
3276     if (def != NULL) {
3277 	lock_release(rtld_bind_lock, &lockstate);
3278 
3279 	/*
3280 	 * The value required by the caller is derived from the value
3281 	 * of the symbol. this is simply the relocated value of the
3282 	 * symbol.
3283 	 */
3284 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3285 	    return (make_function_pointer(def, defobj));
3286 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3287 	    return (rtld_resolve_ifunc(defobj, def));
3288 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3289 	    ti.ti_module = defobj->tlsindex;
3290 	    ti.ti_offset = def->st_value;
3291 	    return (__tls_get_addr(&ti));
3292 	} else
3293 	    return (defobj->relocbase + def->st_value);
3294     }
3295 
3296     _rtld_error("Undefined symbol \"%s\"", name);
3297     lock_release(rtld_bind_lock, &lockstate);
3298     return NULL;
3299 }
3300 
3301 void *
3302 dlsym(void *handle, const char *name)
3303 {
3304 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3305 	    SYMLOOK_DLSYM);
3306 }
3307 
3308 dlfunc_t
3309 dlfunc(void *handle, const char *name)
3310 {
3311 	union {
3312 		void *d;
3313 		dlfunc_t f;
3314 	} rv;
3315 
3316 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3317 	    SYMLOOK_DLSYM);
3318 	return (rv.f);
3319 }
3320 
3321 void *
3322 dlvsym(void *handle, const char *name, const char *version)
3323 {
3324 	Ver_Entry ventry;
3325 
3326 	ventry.name = version;
3327 	ventry.file = NULL;
3328 	ventry.hash = elf_hash(version);
3329 	ventry.flags= 0;
3330 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3331 	    SYMLOOK_DLSYM);
3332 }
3333 
3334 int
3335 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3336 {
3337     const Obj_Entry *obj;
3338     RtldLockState lockstate;
3339 
3340     rlock_acquire(rtld_bind_lock, &lockstate);
3341     obj = obj_from_addr(addr);
3342     if (obj == NULL) {
3343         _rtld_error("No shared object contains address");
3344 	lock_release(rtld_bind_lock, &lockstate);
3345         return (0);
3346     }
3347     rtld_fill_dl_phdr_info(obj, phdr_info);
3348     lock_release(rtld_bind_lock, &lockstate);
3349     return (1);
3350 }
3351 
3352 int
3353 dladdr(const void *addr, Dl_info *info)
3354 {
3355     const Obj_Entry *obj;
3356     const Elf_Sym *def;
3357     void *symbol_addr;
3358     unsigned long symoffset;
3359     RtldLockState lockstate;
3360 
3361     rlock_acquire(rtld_bind_lock, &lockstate);
3362     obj = obj_from_addr(addr);
3363     if (obj == NULL) {
3364         _rtld_error("No shared object contains address");
3365 	lock_release(rtld_bind_lock, &lockstate);
3366         return 0;
3367     }
3368     info->dli_fname = obj->path;
3369     info->dli_fbase = obj->mapbase;
3370     info->dli_saddr = NULL;
3371     info->dli_sname = NULL;
3372 
3373     /*
3374      * Walk the symbol list looking for the symbol whose address is
3375      * closest to the address sent in.
3376      */
3377     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3378         def = obj->symtab + symoffset;
3379 
3380         /*
3381          * For skip the symbol if st_shndx is either SHN_UNDEF or
3382          * SHN_COMMON.
3383          */
3384         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3385             continue;
3386 
3387         /*
3388          * If the symbol is greater than the specified address, or if it
3389          * is further away from addr than the current nearest symbol,
3390          * then reject it.
3391          */
3392         symbol_addr = obj->relocbase + def->st_value;
3393         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3394             continue;
3395 
3396         /* Update our idea of the nearest symbol. */
3397         info->dli_sname = obj->strtab + def->st_name;
3398         info->dli_saddr = symbol_addr;
3399 
3400         /* Exact match? */
3401         if (info->dli_saddr == addr)
3402             break;
3403     }
3404     lock_release(rtld_bind_lock, &lockstate);
3405     return 1;
3406 }
3407 
3408 int
3409 dlinfo(void *handle, int request, void *p)
3410 {
3411     const Obj_Entry *obj;
3412     RtldLockState lockstate;
3413     int error;
3414 
3415     rlock_acquire(rtld_bind_lock, &lockstate);
3416 
3417     if (handle == NULL || handle == RTLD_SELF) {
3418 	void *retaddr;
3419 
3420 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3421 	if ((obj = obj_from_addr(retaddr)) == NULL)
3422 	    _rtld_error("Cannot determine caller's shared object");
3423     } else
3424 	obj = dlcheck(handle);
3425 
3426     if (obj == NULL) {
3427 	lock_release(rtld_bind_lock, &lockstate);
3428 	return (-1);
3429     }
3430 
3431     error = 0;
3432     switch (request) {
3433     case RTLD_DI_LINKMAP:
3434 	*((struct link_map const **)p) = &obj->linkmap;
3435 	break;
3436     case RTLD_DI_ORIGIN:
3437 	error = rtld_dirname(obj->path, p);
3438 	break;
3439 
3440     case RTLD_DI_SERINFOSIZE:
3441     case RTLD_DI_SERINFO:
3442 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3443 	break;
3444 
3445     default:
3446 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3447 	error = -1;
3448     }
3449 
3450     lock_release(rtld_bind_lock, &lockstate);
3451 
3452     return (error);
3453 }
3454 
3455 static void
3456 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3457 {
3458 
3459 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3460 	phdr_info->dlpi_name = obj->path;
3461 	phdr_info->dlpi_phdr = obj->phdr;
3462 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3463 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3464 	phdr_info->dlpi_tls_data = obj->tlsinit;
3465 	phdr_info->dlpi_adds = obj_loads;
3466 	phdr_info->dlpi_subs = obj_loads - obj_count;
3467 }
3468 
3469 int
3470 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3471 {
3472     struct dl_phdr_info phdr_info;
3473     const Obj_Entry *obj;
3474     RtldLockState bind_lockstate, phdr_lockstate;
3475     int error;
3476 
3477     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3478     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3479 
3480     error = 0;
3481 
3482     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3483 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3484 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3485 		break;
3486 
3487     }
3488     if (error == 0) {
3489 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3490 	error = callback(&phdr_info, sizeof(phdr_info), param);
3491     }
3492 
3493     lock_release(rtld_bind_lock, &bind_lockstate);
3494     lock_release(rtld_phdr_lock, &phdr_lockstate);
3495 
3496     return (error);
3497 }
3498 
3499 static void *
3500 fill_search_info(const char *dir, size_t dirlen, void *param)
3501 {
3502     struct fill_search_info_args *arg;
3503 
3504     arg = param;
3505 
3506     if (arg->request == RTLD_DI_SERINFOSIZE) {
3507 	arg->serinfo->dls_cnt ++;
3508 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3509     } else {
3510 	struct dl_serpath *s_entry;
3511 
3512 	s_entry = arg->serpath;
3513 	s_entry->dls_name  = arg->strspace;
3514 	s_entry->dls_flags = arg->flags;
3515 
3516 	strncpy(arg->strspace, dir, dirlen);
3517 	arg->strspace[dirlen] = '\0';
3518 
3519 	arg->strspace += dirlen + 1;
3520 	arg->serpath++;
3521     }
3522 
3523     return (NULL);
3524 }
3525 
3526 static int
3527 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3528 {
3529     struct dl_serinfo _info;
3530     struct fill_search_info_args args;
3531 
3532     args.request = RTLD_DI_SERINFOSIZE;
3533     args.serinfo = &_info;
3534 
3535     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3536     _info.dls_cnt  = 0;
3537 
3538     path_enumerate(obj->rpath, fill_search_info, &args);
3539     path_enumerate(ld_library_path, fill_search_info, &args);
3540     path_enumerate(obj->runpath, fill_search_info, &args);
3541     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3542     if (!obj->z_nodeflib)
3543       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3544 
3545 
3546     if (request == RTLD_DI_SERINFOSIZE) {
3547 	info->dls_size = _info.dls_size;
3548 	info->dls_cnt = _info.dls_cnt;
3549 	return (0);
3550     }
3551 
3552     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3553 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3554 	return (-1);
3555     }
3556 
3557     args.request  = RTLD_DI_SERINFO;
3558     args.serinfo  = info;
3559     args.serpath  = &info->dls_serpath[0];
3560     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3561 
3562     args.flags = LA_SER_RUNPATH;
3563     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3564 	return (-1);
3565 
3566     args.flags = LA_SER_LIBPATH;
3567     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3568 	return (-1);
3569 
3570     args.flags = LA_SER_RUNPATH;
3571     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3572 	return (-1);
3573 
3574     args.flags = LA_SER_CONFIG;
3575     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3576       != NULL)
3577 	return (-1);
3578 
3579     args.flags = LA_SER_DEFAULT;
3580     if (!obj->z_nodeflib &&
3581       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3582 	return (-1);
3583     return (0);
3584 }
3585 
3586 static int
3587 rtld_dirname(const char *path, char *bname)
3588 {
3589     const char *endp;
3590 
3591     /* Empty or NULL string gets treated as "." */
3592     if (path == NULL || *path == '\0') {
3593 	bname[0] = '.';
3594 	bname[1] = '\0';
3595 	return (0);
3596     }
3597 
3598     /* Strip trailing slashes */
3599     endp = path + strlen(path) - 1;
3600     while (endp > path && *endp == '/')
3601 	endp--;
3602 
3603     /* Find the start of the dir */
3604     while (endp > path && *endp != '/')
3605 	endp--;
3606 
3607     /* Either the dir is "/" or there are no slashes */
3608     if (endp == path) {
3609 	bname[0] = *endp == '/' ? '/' : '.';
3610 	bname[1] = '\0';
3611 	return (0);
3612     } else {
3613 	do {
3614 	    endp--;
3615 	} while (endp > path && *endp == '/');
3616     }
3617 
3618     if (endp - path + 2 > PATH_MAX)
3619     {
3620 	_rtld_error("Filename is too long: %s", path);
3621 	return(-1);
3622     }
3623 
3624     strncpy(bname, path, endp - path + 1);
3625     bname[endp - path + 1] = '\0';
3626     return (0);
3627 }
3628 
3629 static int
3630 rtld_dirname_abs(const char *path, char *base)
3631 {
3632 	char base_rel[PATH_MAX];
3633 
3634 	if (rtld_dirname(path, base) == -1)
3635 		return (-1);
3636 	if (base[0] == '/')
3637 		return (0);
3638 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3639 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3640 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3641 		return (-1);
3642 	strcpy(base, base_rel);
3643 	return (0);
3644 }
3645 
3646 static void
3647 linkmap_add(Obj_Entry *obj)
3648 {
3649     struct link_map *l = &obj->linkmap;
3650     struct link_map *prev;
3651 
3652     obj->linkmap.l_name = obj->path;
3653     obj->linkmap.l_addr = obj->mapbase;
3654     obj->linkmap.l_ld = obj->dynamic;
3655 
3656     if (r_debug.r_map == NULL) {
3657 	r_debug.r_map = l;
3658 	return;
3659     }
3660 
3661     /*
3662      * Scan to the end of the list, but not past the entry for the
3663      * dynamic linker, which we want to keep at the very end.
3664      */
3665     for (prev = r_debug.r_map;
3666       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3667       prev = prev->l_next)
3668 	;
3669 
3670     /* Link in the new entry. */
3671     l->l_prev = prev;
3672     l->l_next = prev->l_next;
3673     if (l->l_next != NULL)
3674 	l->l_next->l_prev = l;
3675     prev->l_next = l;
3676 }
3677 
3678 static void
3679 linkmap_delete(Obj_Entry *obj)
3680 {
3681     struct link_map *l = &obj->linkmap;
3682 
3683     if (l->l_prev == NULL) {
3684 	if ((r_debug.r_map = l->l_next) != NULL)
3685 	    l->l_next->l_prev = NULL;
3686 	return;
3687     }
3688 
3689     if ((l->l_prev->l_next = l->l_next) != NULL)
3690 	l->l_next->l_prev = l->l_prev;
3691 }
3692 
3693 /*
3694  * Function for the debugger to set a breakpoint on to gain control.
3695  *
3696  * The two parameters allow the debugger to easily find and determine
3697  * what the runtime loader is doing and to whom it is doing it.
3698  *
3699  * When the loadhook trap is hit (r_debug_state, set at program
3700  * initialization), the arguments can be found on the stack:
3701  *
3702  *  +8   struct link_map *m
3703  *  +4   struct r_debug  *rd
3704  *  +0   RetAddr
3705  */
3706 void
3707 r_debug_state(struct r_debug* rd, struct link_map *m)
3708 {
3709     /*
3710      * The following is a hack to force the compiler to emit calls to
3711      * this function, even when optimizing.  If the function is empty,
3712      * the compiler is not obliged to emit any code for calls to it,
3713      * even when marked __noinline.  However, gdb depends on those
3714      * calls being made.
3715      */
3716     __asm __volatile("" : : : "memory");
3717 }
3718 
3719 /*
3720  * A function called after init routines have completed. This can be used to
3721  * break before a program's entry routine is called, and can be used when
3722  * main is not available in the symbol table.
3723  */
3724 void
3725 _r_debug_postinit(struct link_map *m)
3726 {
3727 
3728 	/* See r_debug_state(). */
3729 	__asm __volatile("" : : : "memory");
3730 }
3731 
3732 /*
3733  * Get address of the pointer variable in the main program.
3734  * Prefer non-weak symbol over the weak one.
3735  */
3736 static const void **
3737 get_program_var_addr(const char *name, RtldLockState *lockstate)
3738 {
3739     SymLook req;
3740     DoneList donelist;
3741 
3742     symlook_init(&req, name);
3743     req.lockstate = lockstate;
3744     donelist_init(&donelist);
3745     if (symlook_global(&req, &donelist) != 0)
3746 	return (NULL);
3747     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3748 	return ((const void **)make_function_pointer(req.sym_out,
3749 	  req.defobj_out));
3750     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3751 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3752     else
3753 	return ((const void **)(req.defobj_out->relocbase +
3754 	  req.sym_out->st_value));
3755 }
3756 
3757 /*
3758  * Set a pointer variable in the main program to the given value.  This
3759  * is used to set key variables such as "environ" before any of the
3760  * init functions are called.
3761  */
3762 static void
3763 set_program_var(const char *name, const void *value)
3764 {
3765     const void **addr;
3766 
3767     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3768 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3769 	*addr = value;
3770     }
3771 }
3772 
3773 /*
3774  * Search the global objects, including dependencies and main object,
3775  * for the given symbol.
3776  */
3777 static int
3778 symlook_global(SymLook *req, DoneList *donelist)
3779 {
3780     SymLook req1;
3781     const Objlist_Entry *elm;
3782     int res;
3783 
3784     symlook_init_from_req(&req1, req);
3785 
3786     /* Search all objects loaded at program start up. */
3787     if (req->defobj_out == NULL ||
3788       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3789 	res = symlook_list(&req1, &list_main, donelist);
3790 	if (res == 0 && (req->defobj_out == NULL ||
3791 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3792 	    req->sym_out = req1.sym_out;
3793 	    req->defobj_out = req1.defobj_out;
3794 	    assert(req->defobj_out != NULL);
3795 	}
3796     }
3797 
3798     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3799     STAILQ_FOREACH(elm, &list_global, link) {
3800 	if (req->defobj_out != NULL &&
3801 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3802 	    break;
3803 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3804 	if (res == 0 && (req->defobj_out == NULL ||
3805 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3806 	    req->sym_out = req1.sym_out;
3807 	    req->defobj_out = req1.defobj_out;
3808 	    assert(req->defobj_out != NULL);
3809 	}
3810     }
3811 
3812     return (req->sym_out != NULL ? 0 : ESRCH);
3813 }
3814 
3815 /*
3816  * This is a special version of getenv which is far more efficient
3817  * at finding LD_ environment vars.
3818  */
3819 static
3820 const char *
3821 _getenv_ld(const char *id)
3822 {
3823     const char *envp;
3824     int i, j;
3825     int idlen = strlen(id);
3826 
3827     if (ld_index == LD_ARY_CACHE)
3828 	return(getenv(id));
3829     if (ld_index == 0) {
3830 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3831 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3832 		ld_ary[j++] = envp;
3833 	}
3834 	if (j == 0)
3835 		ld_ary[j++] = "";
3836 	ld_index = j;
3837     }
3838     for (i = ld_index - 1; i >= 0; --i) {
3839 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3840 	    return(ld_ary[i] + idlen + 1);
3841     }
3842     return(NULL);
3843 }
3844 
3845 /*
3846  * Given a symbol name in a referencing object, find the corresponding
3847  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3848  * no definition was found.  Returns a pointer to the Obj_Entry of the
3849  * defining object via the reference parameter DEFOBJ_OUT.
3850  */
3851 static int
3852 symlook_default(SymLook *req, const Obj_Entry *refobj)
3853 {
3854     DoneList donelist;
3855     const Objlist_Entry *elm;
3856     SymLook req1;
3857     int res;
3858 
3859     donelist_init(&donelist);
3860     symlook_init_from_req(&req1, req);
3861 
3862     /* Look first in the referencing object if linked symbolically. */
3863     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3864 	res = symlook_obj(&req1, refobj);
3865 	if (res == 0) {
3866 	    req->sym_out = req1.sym_out;
3867 	    req->defobj_out = req1.defobj_out;
3868 	    assert(req->defobj_out != NULL);
3869 	}
3870     }
3871 
3872     symlook_global(req, &donelist);
3873 
3874     /* Search all dlopened DAGs containing the referencing object. */
3875     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3876 	if (req->sym_out != NULL &&
3877 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3878 	    break;
3879 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3880 	if (res == 0 && (req->sym_out == NULL ||
3881 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3882 	    req->sym_out = req1.sym_out;
3883 	    req->defobj_out = req1.defobj_out;
3884 	    assert(req->defobj_out != NULL);
3885 	}
3886     }
3887 
3888     /*
3889      * Search the dynamic linker itself, and possibly resolve the
3890      * symbol from there.  This is how the application links to
3891      * dynamic linker services such as dlopen.
3892      */
3893     if (req->sym_out == NULL ||
3894       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3895 	res = symlook_obj(&req1, &obj_rtld);
3896 	if (res == 0) {
3897 	    req->sym_out = req1.sym_out;
3898 	    req->defobj_out = req1.defobj_out;
3899 	    assert(req->defobj_out != NULL);
3900 	}
3901     }
3902 
3903     return (req->sym_out != NULL ? 0 : ESRCH);
3904 }
3905 
3906 static int
3907 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3908 {
3909     const Elf_Sym *def;
3910     const Obj_Entry *defobj;
3911     const Objlist_Entry *elm;
3912     SymLook req1;
3913     int res;
3914 
3915     def = NULL;
3916     defobj = NULL;
3917     STAILQ_FOREACH(elm, objlist, link) {
3918 	if (donelist_check(dlp, elm->obj))
3919 	    continue;
3920 	symlook_init_from_req(&req1, req);
3921 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3922 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3923 		def = req1.sym_out;
3924 		defobj = req1.defobj_out;
3925 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3926 		    break;
3927 	    }
3928 	}
3929     }
3930     if (def != NULL) {
3931 	req->sym_out = def;
3932 	req->defobj_out = defobj;
3933 	return (0);
3934     }
3935     return (ESRCH);
3936 }
3937 
3938 /*
3939  * Search the chain of DAGS cointed to by the given Needed_Entry
3940  * for a symbol of the given name.  Each DAG is scanned completely
3941  * before advancing to the next one.  Returns a pointer to the symbol,
3942  * or NULL if no definition was found.
3943  */
3944 static int
3945 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3946 {
3947     const Elf_Sym *def;
3948     const Needed_Entry *n;
3949     const Obj_Entry *defobj;
3950     SymLook req1;
3951     int res;
3952 
3953     def = NULL;
3954     defobj = NULL;
3955     symlook_init_from_req(&req1, req);
3956     for (n = needed; n != NULL; n = n->next) {
3957 	if (n->obj == NULL ||
3958 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3959 	    continue;
3960 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3961 	    def = req1.sym_out;
3962 	    defobj = req1.defobj_out;
3963 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3964 		break;
3965 	}
3966     }
3967     if (def != NULL) {
3968 	req->sym_out = def;
3969 	req->defobj_out = defobj;
3970 	return (0);
3971     }
3972     return (ESRCH);
3973 }
3974 
3975 /*
3976  * Search the symbol table of a single shared object for a symbol of
3977  * the given name and version, if requested.  Returns a pointer to the
3978  * symbol, or NULL if no definition was found.  If the object is
3979  * filter, return filtered symbol from filtee.
3980  *
3981  * The symbol's hash value is passed in for efficiency reasons; that
3982  * eliminates many recomputations of the hash value.
3983  */
3984 int
3985 symlook_obj(SymLook *req, const Obj_Entry *obj)
3986 {
3987     DoneList donelist;
3988     SymLook req1;
3989     int flags, res, mres;
3990 
3991     /*
3992      * If there is at least one valid hash at this point, we prefer to
3993      * use the faster GNU version if available.
3994      */
3995     if (obj->valid_hash_gnu)
3996 	mres = symlook_obj1_gnu(req, obj);
3997     else if (obj->valid_hash_sysv)
3998 	mres = symlook_obj1_sysv(req, obj);
3999     else
4000 	return (EINVAL);
4001 
4002     if (mres == 0) {
4003 	if (obj->needed_filtees != NULL) {
4004 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4005 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4006 	    donelist_init(&donelist);
4007 	    symlook_init_from_req(&req1, req);
4008 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4009 	    if (res == 0) {
4010 		req->sym_out = req1.sym_out;
4011 		req->defobj_out = req1.defobj_out;
4012 	    }
4013 	    return (res);
4014 	}
4015 	if (obj->needed_aux_filtees != NULL) {
4016 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4017 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4018 	    donelist_init(&donelist);
4019 	    symlook_init_from_req(&req1, req);
4020 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4021 	    if (res == 0) {
4022 		req->sym_out = req1.sym_out;
4023 		req->defobj_out = req1.defobj_out;
4024 		return (res);
4025 	    }
4026 	}
4027     }
4028     return (mres);
4029 }
4030 
4031 /* Symbol match routine common to both hash functions */
4032 static bool
4033 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4034     const unsigned long symnum)
4035 {
4036 	Elf_Versym verndx;
4037 	const Elf_Sym *symp;
4038 	const char *strp;
4039 
4040 	symp = obj->symtab + symnum;
4041 	strp = obj->strtab + symp->st_name;
4042 
4043 	switch (ELF_ST_TYPE(symp->st_info)) {
4044 	case STT_FUNC:
4045 	case STT_NOTYPE:
4046 	case STT_OBJECT:
4047 	case STT_COMMON:
4048 	case STT_GNU_IFUNC:
4049 		if (symp->st_value == 0)
4050 			return (false);
4051 		/* fallthrough */
4052 	case STT_TLS:
4053 		if (symp->st_shndx != SHN_UNDEF)
4054 			break;
4055 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4056 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4057 			break;
4058 		/* fallthrough */
4059 	default:
4060 		return (false);
4061 	}
4062 	if (strcmp(req->name, strp) != 0)
4063 		return (false);
4064 
4065 	if (req->ventry == NULL) {
4066 		if (obj->versyms != NULL) {
4067 			verndx = VER_NDX(obj->versyms[symnum]);
4068 			if (verndx > obj->vernum) {
4069 				_rtld_error(
4070 				    "%s: symbol %s references wrong version %d",
4071 				    obj->path, obj->strtab + symnum, verndx);
4072 				return (false);
4073 			}
4074 			/*
4075 			 * If we are not called from dlsym (i.e. this
4076 			 * is a normal relocation from unversioned
4077 			 * binary), accept the symbol immediately if
4078 			 * it happens to have first version after this
4079 			 * shared object became versioned.  Otherwise,
4080 			 * if symbol is versioned and not hidden,
4081 			 * remember it. If it is the only symbol with
4082 			 * this name exported by the shared object, it
4083 			 * will be returned as a match by the calling
4084 			 * function. If symbol is global (verndx < 2)
4085 			 * accept it unconditionally.
4086 			 */
4087 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4088 			    verndx == VER_NDX_GIVEN) {
4089 				result->sym_out = symp;
4090 				return (true);
4091 			}
4092 			else if (verndx >= VER_NDX_GIVEN) {
4093 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4094 				    == 0) {
4095 					if (result->vsymp == NULL)
4096 						result->vsymp = symp;
4097 					result->vcount++;
4098 				}
4099 				return (false);
4100 			}
4101 		}
4102 		result->sym_out = symp;
4103 		return (true);
4104 	}
4105 	if (obj->versyms == NULL) {
4106 		if (object_match_name(obj, req->ventry->name)) {
4107 			_rtld_error("%s: object %s should provide version %s "
4108 			    "for symbol %s", obj_rtld.path, obj->path,
4109 			    req->ventry->name, obj->strtab + symnum);
4110 			return (false);
4111 		}
4112 	} else {
4113 		verndx = VER_NDX(obj->versyms[symnum]);
4114 		if (verndx > obj->vernum) {
4115 			_rtld_error("%s: symbol %s references wrong version %d",
4116 			    obj->path, obj->strtab + symnum, verndx);
4117 			return (false);
4118 		}
4119 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4120 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4121 			/*
4122 			 * Version does not match. Look if this is a
4123 			 * global symbol and if it is not hidden. If
4124 			 * global symbol (verndx < 2) is available,
4125 			 * use it. Do not return symbol if we are
4126 			 * called by dlvsym, because dlvsym looks for
4127 			 * a specific version and default one is not
4128 			 * what dlvsym wants.
4129 			 */
4130 			if ((req->flags & SYMLOOK_DLSYM) ||
4131 			    (verndx >= VER_NDX_GIVEN) ||
4132 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4133 				return (false);
4134 		}
4135 	}
4136 	result->sym_out = symp;
4137 	return (true);
4138 }
4139 
4140 /*
4141  * Search for symbol using SysV hash function.
4142  * obj->buckets is known not to be NULL at this point; the test for this was
4143  * performed with the obj->valid_hash_sysv assignment.
4144  */
4145 static int
4146 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4147 {
4148 	unsigned long symnum;
4149 	Sym_Match_Result matchres;
4150 
4151 	matchres.sym_out = NULL;
4152 	matchres.vsymp = NULL;
4153 	matchres.vcount = 0;
4154 
4155 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4156 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4157 		if (symnum >= obj->nchains)
4158 			return (ESRCH);	/* Bad object */
4159 
4160 		if (matched_symbol(req, obj, &matchres, symnum)) {
4161 			req->sym_out = matchres.sym_out;
4162 			req->defobj_out = obj;
4163 			return (0);
4164 		}
4165 	}
4166 	if (matchres.vcount == 1) {
4167 		req->sym_out = matchres.vsymp;
4168 		req->defobj_out = obj;
4169 		return (0);
4170 	}
4171 	return (ESRCH);
4172 }
4173 
4174 /* Search for symbol using GNU hash function */
4175 static int
4176 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4177 {
4178 	Elf_Addr bloom_word;
4179 	const Elf32_Word *hashval;
4180 	Elf32_Word bucket;
4181 	Sym_Match_Result matchres;
4182 	unsigned int h1, h2;
4183 	unsigned long symnum;
4184 
4185 	matchres.sym_out = NULL;
4186 	matchres.vsymp = NULL;
4187 	matchres.vcount = 0;
4188 
4189 	/* Pick right bitmask word from Bloom filter array */
4190 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4191 	    obj->maskwords_bm_gnu];
4192 
4193 	/* Calculate modulus word size of gnu hash and its derivative */
4194 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4195 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4196 
4197 	/* Filter out the "definitely not in set" queries */
4198 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4199 		return (ESRCH);
4200 
4201 	/* Locate hash chain and corresponding value element*/
4202 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4203 	if (bucket == 0)
4204 		return (ESRCH);
4205 	hashval = &obj->chain_zero_gnu[bucket];
4206 	do {
4207 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4208 			symnum = hashval - obj->chain_zero_gnu;
4209 			if (matched_symbol(req, obj, &matchres, symnum)) {
4210 				req->sym_out = matchres.sym_out;
4211 				req->defobj_out = obj;
4212 				return (0);
4213 			}
4214 		}
4215 	} while ((*hashval++ & 1) == 0);
4216 	if (matchres.vcount == 1) {
4217 		req->sym_out = matchres.vsymp;
4218 		req->defobj_out = obj;
4219 		return (0);
4220 	}
4221 	return (ESRCH);
4222 }
4223 
4224 static void
4225 trace_loaded_objects(Obj_Entry *obj)
4226 {
4227     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4228     int		c;
4229 
4230     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4231 	main_local = "";
4232 
4233     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4234 	fmt1 = "\t%o => %p (%x)\n";
4235 
4236     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4237 	fmt2 = "\t%o (%x)\n";
4238 
4239     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
4240 
4241     for (; obj; obj = obj->next) {
4242 	Needed_Entry		*needed;
4243 	char			*name, *path;
4244 	bool			is_lib;
4245 
4246 	if (list_containers && obj->needed != NULL)
4247 	    rtld_printf("%s:\n", obj->path);
4248 	for (needed = obj->needed; needed; needed = needed->next) {
4249 	    if (needed->obj != NULL) {
4250 		if (needed->obj->traced && !list_containers)
4251 		    continue;
4252 		needed->obj->traced = true;
4253 		path = needed->obj->path;
4254 	    } else
4255 		path = "not found";
4256 
4257 	    name = (char *)obj->strtab + needed->name;
4258 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4259 
4260 	    fmt = is_lib ? fmt1 : fmt2;
4261 	    while ((c = *fmt++) != '\0') {
4262 		switch (c) {
4263 		default:
4264 		    rtld_putchar(c);
4265 		    continue;
4266 		case '\\':
4267 		    switch (c = *fmt) {
4268 		    case '\0':
4269 			continue;
4270 		    case 'n':
4271 			rtld_putchar('\n');
4272 			break;
4273 		    case 't':
4274 			rtld_putchar('\t');
4275 			break;
4276 		    }
4277 		    break;
4278 		case '%':
4279 		    switch (c = *fmt) {
4280 		    case '\0':
4281 			continue;
4282 		    case '%':
4283 		    default:
4284 			rtld_putchar(c);
4285 			break;
4286 		    case 'A':
4287 			rtld_putstr(main_local);
4288 			break;
4289 		    case 'a':
4290 			rtld_putstr(obj_main->path);
4291 			break;
4292 		    case 'o':
4293 			rtld_putstr(name);
4294 			break;
4295 		    case 'p':
4296 			rtld_putstr(path);
4297 			break;
4298 		    case 'x':
4299 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4300 			  0);
4301 			break;
4302 		    }
4303 		    break;
4304 		}
4305 		++fmt;
4306 	    }
4307 	}
4308     }
4309 }
4310 
4311 /*
4312  * Unload a dlopened object and its dependencies from memory and from
4313  * our data structures.  It is assumed that the DAG rooted in the
4314  * object has already been unreferenced, and that the object has a
4315  * reference count of 0.
4316  */
4317 static void
4318 unload_object(Obj_Entry *root)
4319 {
4320     Obj_Entry *obj;
4321     Obj_Entry **linkp;
4322 
4323     assert(root->refcount == 0);
4324 
4325     /*
4326      * Pass over the DAG removing unreferenced objects from
4327      * appropriate lists.
4328      */
4329     unlink_object(root);
4330 
4331     /* Unmap all objects that are no longer referenced. */
4332     linkp = &obj_list->next;
4333     while ((obj = *linkp) != NULL) {
4334 	if (obj->refcount == 0) {
4335 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4336 		obj->path);
4337 	    dbg("unloading \"%s\"", obj->path);
4338 	    unload_filtees(root);
4339 	    munmap(obj->mapbase, obj->mapsize);
4340 	    linkmap_delete(obj);
4341 	    *linkp = obj->next;
4342 	    obj_count--;
4343 	    obj_free(obj);
4344 	} else
4345 	    linkp = &obj->next;
4346     }
4347     obj_tail = linkp;
4348 }
4349 
4350 static void
4351 unlink_object(Obj_Entry *root)
4352 {
4353     Objlist_Entry *elm;
4354 
4355     if (root->refcount == 0) {
4356 	/* Remove the object from the RTLD_GLOBAL list. */
4357 	objlist_remove(&list_global, root);
4358 
4359     	/* Remove the object from all objects' DAG lists. */
4360 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4361 	    objlist_remove(&elm->obj->dldags, root);
4362 	    if (elm->obj != root)
4363 		unlink_object(elm->obj);
4364 	}
4365     }
4366 }
4367 
4368 static void
4369 ref_dag(Obj_Entry *root)
4370 {
4371     Objlist_Entry *elm;
4372 
4373     assert(root->dag_inited);
4374     STAILQ_FOREACH(elm, &root->dagmembers, link)
4375 	elm->obj->refcount++;
4376 }
4377 
4378 static void
4379 unref_dag(Obj_Entry *root)
4380 {
4381     Objlist_Entry *elm;
4382 
4383     assert(root->dag_inited);
4384     STAILQ_FOREACH(elm, &root->dagmembers, link)
4385 	elm->obj->refcount--;
4386 }
4387 
4388 /*
4389  * Common code for MD __tls_get_addr().
4390  */
4391 void *
4392 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
4393 {
4394     Elf_Addr* dtv = *dtvp;
4395     RtldLockState lockstate;
4396 
4397     /* Check dtv generation in case new modules have arrived */
4398     if (dtv[0] != tls_dtv_generation) {
4399 	Elf_Addr* newdtv;
4400 	int to_copy;
4401 
4402 	wlock_acquire(rtld_bind_lock, &lockstate);
4403 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4404 	to_copy = dtv[1];
4405 	if (to_copy > tls_max_index)
4406 	    to_copy = tls_max_index;
4407 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4408 	newdtv[0] = tls_dtv_generation;
4409 	newdtv[1] = tls_max_index;
4410 	free(dtv);
4411 	lock_release(rtld_bind_lock, &lockstate);
4412 	dtv = *dtvp = newdtv;
4413     }
4414 
4415     /* Dynamically allocate module TLS if necessary */
4416     if (!dtv[index + 1]) {
4417 	/* Signal safe, wlock will block out signals. */
4418 	wlock_acquire(rtld_bind_lock, &lockstate);
4419 	if (!dtv[index + 1])
4420 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4421 	lock_release(rtld_bind_lock, &lockstate);
4422     }
4423     return ((void *)(dtv[index + 1] + offset));
4424 }
4425 
4426 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4427 
4428 /*
4429  * Allocate the static TLS area.  Return a pointer to the TCB.  The
4430  * static area is based on negative offsets relative to the tcb.
4431  *
4432  * The TCB contains an errno pointer for the system call layer, but because
4433  * we are the RTLD we really have no idea how the caller was compiled so
4434  * the information has to be passed in.  errno can either be:
4435  *
4436  *	type 0	errno is a simple non-TLS global pointer.
4437  *		(special case for e.g. libc_rtld)
4438  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
4439  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
4440  */
4441 struct tls_tcb *
4442 allocate_tls(Obj_Entry *objs)
4443 {
4444     Obj_Entry *obj;
4445     size_t data_size;
4446     size_t dtv_size;
4447     struct tls_tcb *tcb;
4448     Elf_Addr *dtv;
4449     Elf_Addr addr;
4450 
4451     /*
4452      * Allocate the new TCB.  static TLS storage is placed just before the
4453      * TCB to support the %gs:OFFSET (negative offset) model.
4454      */
4455     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4456 		~RTLD_STATIC_TLS_ALIGN_MASK;
4457     tcb = malloc(data_size + sizeof(*tcb));
4458     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
4459 
4460     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
4461     dtv = malloc(dtv_size);
4462     bzero(dtv, dtv_size);
4463 
4464 #ifdef RTLD_TCB_HAS_SELF_POINTER
4465     tcb->tcb_self = tcb;
4466 #endif
4467     tcb->tcb_dtv = dtv;
4468     tcb->tcb_pthread = NULL;
4469 
4470     dtv[0] = tls_dtv_generation;
4471     dtv[1] = tls_max_index;
4472 
4473     for (obj = objs; obj; obj = obj->next) {
4474 	if (obj->tlsoffset) {
4475 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
4476 	    memset((void *)(addr + obj->tlsinitsize),
4477 		   0, obj->tlssize - obj->tlsinitsize);
4478 	    if (obj->tlsinit) {
4479 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4480 		obj->static_tls_copied = true;
4481 	    }
4482 	    dtv[obj->tlsindex + 1] = addr;
4483 	}
4484     }
4485     return(tcb);
4486 }
4487 
4488 void
4489 free_tls(struct tls_tcb *tcb)
4490 {
4491     Elf_Addr *dtv;
4492     int dtv_size, i;
4493     Elf_Addr tls_start, tls_end;
4494     size_t data_size;
4495 
4496     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4497 		~RTLD_STATIC_TLS_ALIGN_MASK;
4498 
4499     dtv = tcb->tcb_dtv;
4500     dtv_size = dtv[1];
4501     tls_end = (Elf_Addr)tcb;
4502     tls_start = (Elf_Addr)tcb - data_size;
4503     for (i = 0; i < dtv_size; i++) {
4504 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
4505 	    free((void *)dtv[i+2]);
4506 	}
4507     }
4508     free(dtv);
4509 
4510     free((void*) tls_start);
4511 }
4512 
4513 #else
4514 #error "Unsupported TLS layout"
4515 #endif
4516 
4517 /*
4518  * Allocate TLS block for module with given index.
4519  */
4520 void *
4521 allocate_module_tls(int index)
4522 {
4523     Obj_Entry* obj;
4524     char* p;
4525 
4526     for (obj = obj_list; obj; obj = obj->next) {
4527 	if (obj->tlsindex == index)
4528 	    break;
4529     }
4530     if (!obj) {
4531 	_rtld_error("Can't find module with TLS index %d", index);
4532 	die();
4533     }
4534 
4535     p = malloc(obj->tlssize);
4536     if (p == NULL) {
4537 	_rtld_error("Cannot allocate TLS block for index %d", index);
4538 	die();
4539     }
4540     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4541     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4542 
4543     return p;
4544 }
4545 
4546 bool
4547 allocate_tls_offset(Obj_Entry *obj)
4548 {
4549     size_t off;
4550 
4551     if (obj->tls_done)
4552 	return true;
4553 
4554     if (obj->tlssize == 0) {
4555 	obj->tls_done = true;
4556 	return true;
4557     }
4558 
4559     if (obj->tlsindex == 1)
4560 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4561     else
4562 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4563 				   obj->tlssize, obj->tlsalign);
4564 
4565     /*
4566      * If we have already fixed the size of the static TLS block, we
4567      * must stay within that size. When allocating the static TLS, we
4568      * leave a small amount of space spare to be used for dynamically
4569      * loading modules which use static TLS.
4570      */
4571     if (tls_static_space) {
4572 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4573 	    return false;
4574     }
4575 
4576     tls_last_offset = obj->tlsoffset = off;
4577     tls_last_size = obj->tlssize;
4578     obj->tls_done = true;
4579 
4580     return true;
4581 }
4582 
4583 void
4584 free_tls_offset(Obj_Entry *obj)
4585 {
4586 #ifdef RTLD_STATIC_TLS_VARIANT_II
4587     /*
4588      * If we were the last thing to allocate out of the static TLS
4589      * block, we give our space back to the 'allocator'. This is a
4590      * simplistic workaround to allow libGL.so.1 to be loaded and
4591      * unloaded multiple times. We only handle the Variant II
4592      * mechanism for now - this really needs a proper allocator.
4593      */
4594     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4595 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4596 	tls_last_offset -= obj->tlssize;
4597 	tls_last_size = 0;
4598     }
4599 #endif
4600 }
4601 
4602 struct tls_tcb *
4603 _rtld_allocate_tls(void)
4604 {
4605     struct tls_tcb *new_tcb;
4606     RtldLockState lockstate;
4607 
4608     wlock_acquire(rtld_bind_lock, &lockstate);
4609     new_tcb = allocate_tls(obj_list);
4610     lock_release(rtld_bind_lock, &lockstate);
4611 
4612     return (new_tcb);
4613 }
4614 
4615 void
4616 _rtld_free_tls(struct tls_tcb *tcb)
4617 {
4618     RtldLockState lockstate;
4619 
4620     wlock_acquire(rtld_bind_lock, &lockstate);
4621     free_tls(tcb);
4622     lock_release(rtld_bind_lock, &lockstate);
4623 }
4624 
4625 static void
4626 object_add_name(Obj_Entry *obj, const char *name)
4627 {
4628     Name_Entry *entry;
4629     size_t len;
4630 
4631     len = strlen(name);
4632     entry = malloc(sizeof(Name_Entry) + len);
4633 
4634     if (entry != NULL) {
4635 	strcpy(entry->name, name);
4636 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4637     }
4638 }
4639 
4640 static int
4641 object_match_name(const Obj_Entry *obj, const char *name)
4642 {
4643     Name_Entry *entry;
4644 
4645     STAILQ_FOREACH(entry, &obj->names, link) {
4646 	if (strcmp(name, entry->name) == 0)
4647 	    return (1);
4648     }
4649     return (0);
4650 }
4651 
4652 static Obj_Entry *
4653 locate_dependency(const Obj_Entry *obj, const char *name)
4654 {
4655     const Objlist_Entry *entry;
4656     const Needed_Entry *needed;
4657 
4658     STAILQ_FOREACH(entry, &list_main, link) {
4659 	if (object_match_name(entry->obj, name))
4660 	    return entry->obj;
4661     }
4662 
4663     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4664 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4665 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4666 	    /*
4667 	     * If there is DT_NEEDED for the name we are looking for,
4668 	     * we are all set.  Note that object might not be found if
4669 	     * dependency was not loaded yet, so the function can
4670 	     * return NULL here.  This is expected and handled
4671 	     * properly by the caller.
4672 	     */
4673 	    return (needed->obj);
4674 	}
4675     }
4676     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4677 	obj->path, name);
4678     die();
4679 }
4680 
4681 static int
4682 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4683     const Elf_Vernaux *vna)
4684 {
4685     const Elf_Verdef *vd;
4686     const char *vername;
4687 
4688     vername = refobj->strtab + vna->vna_name;
4689     vd = depobj->verdef;
4690     if (vd == NULL) {
4691 	_rtld_error("%s: version %s required by %s not defined",
4692 	    depobj->path, vername, refobj->path);
4693 	return (-1);
4694     }
4695     for (;;) {
4696 	if (vd->vd_version != VER_DEF_CURRENT) {
4697 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4698 		depobj->path, vd->vd_version);
4699 	    return (-1);
4700 	}
4701 	if (vna->vna_hash == vd->vd_hash) {
4702 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4703 		((char *)vd + vd->vd_aux);
4704 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4705 		return (0);
4706 	}
4707 	if (vd->vd_next == 0)
4708 	    break;
4709 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4710     }
4711     if (vna->vna_flags & VER_FLG_WEAK)
4712 	return (0);
4713     _rtld_error("%s: version %s required by %s not found",
4714 	depobj->path, vername, refobj->path);
4715     return (-1);
4716 }
4717 
4718 static int
4719 rtld_verify_object_versions(Obj_Entry *obj)
4720 {
4721     const Elf_Verneed *vn;
4722     const Elf_Verdef  *vd;
4723     const Elf_Verdaux *vda;
4724     const Elf_Vernaux *vna;
4725     const Obj_Entry *depobj;
4726     int maxvernum, vernum;
4727 
4728     if (obj->ver_checked)
4729 	return (0);
4730     obj->ver_checked = true;
4731 
4732     maxvernum = 0;
4733     /*
4734      * Walk over defined and required version records and figure out
4735      * max index used by any of them. Do very basic sanity checking
4736      * while there.
4737      */
4738     vn = obj->verneed;
4739     while (vn != NULL) {
4740 	if (vn->vn_version != VER_NEED_CURRENT) {
4741 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4742 		obj->path, vn->vn_version);
4743 	    return (-1);
4744 	}
4745 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4746 	for (;;) {
4747 	    vernum = VER_NEED_IDX(vna->vna_other);
4748 	    if (vernum > maxvernum)
4749 		maxvernum = vernum;
4750 	    if (vna->vna_next == 0)
4751 		 break;
4752 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4753 	}
4754 	if (vn->vn_next == 0)
4755 	    break;
4756 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4757     }
4758 
4759     vd = obj->verdef;
4760     while (vd != NULL) {
4761 	if (vd->vd_version != VER_DEF_CURRENT) {
4762 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4763 		obj->path, vd->vd_version);
4764 	    return (-1);
4765 	}
4766 	vernum = VER_DEF_IDX(vd->vd_ndx);
4767 	if (vernum > maxvernum)
4768 		maxvernum = vernum;
4769 	if (vd->vd_next == 0)
4770 	    break;
4771 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4772     }
4773 
4774     if (maxvernum == 0)
4775 	return (0);
4776 
4777     /*
4778      * Store version information in array indexable by version index.
4779      * Verify that object version requirements are satisfied along the
4780      * way.
4781      */
4782     obj->vernum = maxvernum + 1;
4783     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4784 
4785     vd = obj->verdef;
4786     while (vd != NULL) {
4787 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4788 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4789 	    assert(vernum <= maxvernum);
4790 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4791 	    obj->vertab[vernum].hash = vd->vd_hash;
4792 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4793 	    obj->vertab[vernum].file = NULL;
4794 	    obj->vertab[vernum].flags = 0;
4795 	}
4796 	if (vd->vd_next == 0)
4797 	    break;
4798 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4799     }
4800 
4801     vn = obj->verneed;
4802     while (vn != NULL) {
4803 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4804 	if (depobj == NULL)
4805 	    return (-1);
4806 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4807 	for (;;) {
4808 	    if (check_object_provided_version(obj, depobj, vna))
4809 		return (-1);
4810 	    vernum = VER_NEED_IDX(vna->vna_other);
4811 	    assert(vernum <= maxvernum);
4812 	    obj->vertab[vernum].hash = vna->vna_hash;
4813 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4814 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4815 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4816 		VER_INFO_HIDDEN : 0;
4817 	    if (vna->vna_next == 0)
4818 		 break;
4819 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4820 	}
4821 	if (vn->vn_next == 0)
4822 	    break;
4823 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4824     }
4825     return 0;
4826 }
4827 
4828 static int
4829 rtld_verify_versions(const Objlist *objlist)
4830 {
4831     Objlist_Entry *entry;
4832     int rc;
4833 
4834     rc = 0;
4835     STAILQ_FOREACH(entry, objlist, link) {
4836 	/*
4837 	 * Skip dummy objects or objects that have their version requirements
4838 	 * already checked.
4839 	 */
4840 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4841 	    continue;
4842 	if (rtld_verify_object_versions(entry->obj) == -1) {
4843 	    rc = -1;
4844 	    if (ld_tracing == NULL)
4845 		break;
4846 	}
4847     }
4848     if (rc == 0 || ld_tracing != NULL)
4849 	rc = rtld_verify_object_versions(&obj_rtld);
4850     return rc;
4851 }
4852 
4853 const Ver_Entry *
4854 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4855 {
4856     Elf_Versym vernum;
4857 
4858     if (obj->vertab) {
4859 	vernum = VER_NDX(obj->versyms[symnum]);
4860 	if (vernum >= obj->vernum) {
4861 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4862 		obj->path, obj->strtab + symnum, vernum);
4863 	} else if (obj->vertab[vernum].hash != 0) {
4864 	    return &obj->vertab[vernum];
4865 	}
4866     }
4867     return NULL;
4868 }
4869 
4870 int
4871 _rtld_get_stack_prot(void)
4872 {
4873 
4874 	return (stack_prot);
4875 }
4876 
4877 static void
4878 map_stacks_exec(RtldLockState *lockstate)
4879 {
4880 	return;
4881 	/*
4882 	 * Stack protection must be implemented in the kernel before the dynamic
4883 	 * linker can handle PT_GNU_STACK sections.
4884 	 * The following is the FreeBSD implementation of map_stacks_exec()
4885 	 * void (*thr_map_stacks_exec)(void);
4886 	 *
4887 	 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4888 	 *     return;
4889 	 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4890 	 *     get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4891 	 * if (thr_map_stacks_exec != NULL) {
4892 	 *     stack_prot |= PROT_EXEC;
4893 	 *     thr_map_stacks_exec();
4894 	 * }
4895 	 */
4896 }
4897 
4898 /*
4899  * Only called after all primary shared libraries are loaded (EARLY is
4900  * not set).  Resolves the static TLS distribution function at first-call.
4901  * This is typically a weak libc symbol that is overrideen by the threading
4902  * library.
4903  */
4904 static void
4905 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
4906 {
4907 	Objlist_Entry *elm;
4908 	Obj_Entry *obj;
4909 	static void (*dtlsfunc)(size_t, void *, size_t, size_t);
4910 
4911 	/*
4912 	 * First time, resolve "_pthread_distribute_static_tls".
4913 	 */
4914 	if (dtlsfunc == NULL) {
4915 		dtlsfunc = (void *)dlfunc(RTLD_ALL,
4916 					  "_pthread_distribute_static_tls");
4917 		if (dtlsfunc == NULL)
4918 			return;
4919 	}
4920 
4921 	/*
4922 	 * Initialize static TLS data for the object list using the callback
4923 	 * function (to either libc or pthreads).
4924 	 */
4925 	STAILQ_FOREACH(elm, list, link) {
4926 		obj = elm->obj;
4927 		if (/*obj->marker ||*/ !obj->tls_done || obj->static_tls_copied)
4928 			continue;
4929 		dtlsfunc(obj->tlsoffset, obj->tlsinit,
4930 			 obj->tlsinitsize, obj->tlssize);
4931 		obj->static_tls_copied = true;
4932 	}
4933 }
4934 
4935 void
4936 symlook_init(SymLook *dst, const char *name)
4937 {
4938 
4939 	bzero(dst, sizeof(*dst));
4940 	dst->name = name;
4941 	dst->hash = elf_hash(name);
4942 	dst->hash_gnu = gnu_hash(name);
4943 }
4944 
4945 static void
4946 symlook_init_from_req(SymLook *dst, const SymLook *src)
4947 {
4948 
4949 	dst->name = src->name;
4950 	dst->hash = src->hash;
4951 	dst->hash_gnu = src->hash_gnu;
4952 	dst->ventry = src->ventry;
4953 	dst->flags = src->flags;
4954 	dst->defobj_out = NULL;
4955 	dst->sym_out = NULL;
4956 	dst->lockstate = src->lockstate;
4957 }
4958 
4959 
4960 /*
4961  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4962  */
4963 static int
4964 parse_libdir(const char *str)
4965 {
4966 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
4967 	const char *orig;
4968 	int fd;
4969 	char c;
4970 
4971 	orig = str;
4972 	fd = 0;
4973 	for (c = *str; c != '\0'; c = *++str) {
4974 		if (c < '0' || c > '9')
4975 			return (-1);
4976 
4977 		fd *= RADIX;
4978 		fd += c - '0';
4979 	}
4980 
4981 	/* Make sure we actually parsed something. */
4982 	if (str == orig) {
4983 		_rtld_error("failed to parse directory FD from '%s'", str);
4984 		return (-1);
4985 	}
4986 	return (fd);
4987 }
4988 
4989 #ifdef ENABLE_OSRELDATE
4990 /*
4991  * Overrides for libc_pic-provided functions.
4992  */
4993 
4994 int
4995 __getosreldate(void)
4996 {
4997 	size_t len;
4998 	int oid[2];
4999 	int error, osrel;
5000 
5001 	if (osreldate != 0)
5002 		return (osreldate);
5003 
5004 	oid[0] = CTL_KERN;
5005 	oid[1] = KERN_OSRELDATE;
5006 	osrel = 0;
5007 	len = sizeof(osrel);
5008 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5009 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5010 		osreldate = osrel;
5011 	return (osreldate);
5012 }
5013 #endif
5014 
5015 /*
5016  * No unresolved symbols for rtld.
5017  */
5018 void
5019 __pthread_cxa_finalize(struct dl_phdr_info *a)
5020 {
5021 }
5022 
5023 const char *
5024 rtld_strerror(int errnum)
5025 {
5026 
5027 	if (errnum < 0 || errnum >= sys_nerr)
5028 		return ("Unknown error");
5029 	return (sys_errlist[errnum]);
5030 }
5031