xref: /dragonfly/libexec/rtld-elf/rtld.c (revision a361ab31)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/utsname.h>
47 #include <sys/ktrace.h>
48 #include <sys/resident.h>
49 #include <sys/tls.h>
50 
51 #include <machine/tls.h>
52 
53 #include <dlfcn.h>
54 #include <err.h>
55 #include <errno.h>
56 #include <fcntl.h>
57 #include <stdarg.h>
58 #include <stdio.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <unistd.h>
62 
63 #include "debug.h"
64 #include "rtld.h"
65 #include "libmap.h"
66 #include "rtld_printf.h"
67 #include "notes.h"
68 
69 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
70 #define LD_ARY_CACHE	16
71 
72 /* Types. */
73 typedef void (*func_ptr_type)();
74 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
75 
76 /*
77  * Function declarations.
78  */
79 static int __getstatictlsextra(void);
80 static const char *_getenv_ld(const char *id);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static void distribute_static_tls(Objlist *, RtldLockState *);
89 static Obj_Entry *dlcheck(void *);
90 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
91     int lo_flags, int mode, RtldLockState *lockstate);
92 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
93 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
94 static bool donelist_check(DoneList *, const Obj_Entry *);
95 static void errmsg_restore(char *);
96 static char *errmsg_save(void);
97 static void *fill_search_info(const char *, size_t, void *);
98 static char *find_library(const char *, const Obj_Entry *, int *);
99 static const char *gethints(bool);
100 static void init_dag(Obj_Entry *);
101 static void init_rtld(caddr_t, Elf_Auxinfo **);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static Obj_Entry *obj_from_addr(const void *);
113 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114 static void objlist_call_init(Objlist *, RtldLockState *);
115 static void objlist_clear(Objlist *);
116 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117 static void objlist_init(Objlist *);
118 static void objlist_push_head(Objlist *, Obj_Entry *);
119 static void objlist_push_tail(Objlist *, Obj_Entry *);
120 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
121 static void objlist_remove(Objlist *, Obj_Entry *);
122 static int parse_libdir(const char *);
123 static void *path_enumerate(const char *, path_enum_proc, void *);
124 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
125     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
126 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
127     int flags, RtldLockState *lockstate);
128 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
129     RtldLockState *);
130 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
131     int flags, RtldLockState *lockstate);
132 static int rtld_dirname(const char *, char *);
133 static int rtld_dirname_abs(const char *, char *);
134 static void *rtld_dlopen(const char *name, int fd, int mode);
135 static void rtld_exit(void);
136 static char *search_library_path(const char *, const char *);
137 static char *search_library_pathfds(const char *, const char *, int *);
138 static const void **get_program_var_addr(const char *, RtldLockState *);
139 static void set_program_var(const char *, const void *);
140 static int symlook_default(SymLook *, const Obj_Entry *refobj);
141 static int symlook_global(SymLook *, DoneList *);
142 static void symlook_init_from_req(SymLook *, const SymLook *);
143 static int symlook_list(SymLook *, const Objlist *, DoneList *);
144 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
145 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
146 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
147 static void trace_loaded_objects(Obj_Entry *);
148 static void unlink_object(Obj_Entry *);
149 static void unload_object(Obj_Entry *);
150 static void unref_dag(Obj_Entry *);
151 static void ref_dag(Obj_Entry *);
152 static char *origin_subst_one(char *, const char *, const char *, bool);
153 static char *origin_subst(char *, const char *);
154 static void preinit_main(void);
155 static int  rtld_verify_versions(const Objlist *);
156 static int  rtld_verify_object_versions(Obj_Entry *);
157 static void object_add_name(Obj_Entry *, const char *);
158 static int  object_match_name(const Obj_Entry *, const char *);
159 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
160 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
161     struct dl_phdr_info *phdr_info);
162 static uint_fast32_t gnu_hash (const char *);
163 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
164     const unsigned long);
165 
166 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
167 void _r_debug_postinit(struct link_map *) __noinline;
168 
169 /*
170  * Data declarations.
171  */
172 static char *error_message;	/* Message for dlerror(), or NULL */
173 struct r_debug r_debug;		/* for GDB; */
174 static bool libmap_disable;	/* Disable libmap */
175 static bool ld_loadfltr;	/* Immediate filters processing */
176 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
177 static bool trust;		/* False for setuid and setgid programs */
178 static bool dangerous_ld_env;	/* True if environment variables have been
179 				   used to affect the libraries loaded */
180 static const char *ld_bind_now;	/* Environment variable for immediate binding */
181 static const char *ld_debug;	/* Environment variable for debugging */
182 static const char *ld_library_path;	/* Environment variable for search path */
183 static const char *ld_library_dirs;	/* Env variable for library descriptors */
184 static char *ld_preload;	/* Environment variable for libraries to
185 				   load first */
186 static const char *ld_elf_hints_path;	/* Env var. for alternative hints path */
187 static const char *ld_tracing;	/* Called from ldd to print libs */
188 static const char *ld_utrace;	/* Use utrace() to log events. */
189 static int (*rtld_functrace)(   /* Optional function call tracing hook */
190 	const char *caller_obj,
191 	const char *callee_obj,
192 	const char *callee_func,
193 	void *stack);
194 static const Obj_Entry *rtld_functrace_obj;	/* Object thereof */
195 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
196 static Obj_Entry **obj_tail;	/* Link field of last object in list */
197 static Obj_Entry **preload_tail;
198 static Obj_Entry *obj_main;	/* The main program shared object */
199 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
200 static unsigned int obj_count;	/* Number of objects in obj_list */
201 static unsigned int obj_loads;	/* Number of objects in obj_list */
202 
203 static int	ld_resident;	/* Non-zero if resident */
204 static const char *ld_ary[LD_ARY_CACHE];
205 static int	ld_index;
206 static Objlist initlist;
207 
208 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
209   STAILQ_HEAD_INITIALIZER(list_global);
210 static Objlist list_main =	/* Objects loaded at program startup */
211   STAILQ_HEAD_INITIALIZER(list_main);
212 static Objlist list_fini =	/* Objects needing fini() calls */
213   STAILQ_HEAD_INITIALIZER(list_fini);
214 
215 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
216 const char *__ld_sharedlib_base;
217 
218 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
219 
220 extern Elf_Dyn _DYNAMIC;
221 #pragma weak _DYNAMIC
222 #ifndef RTLD_IS_DYNAMIC
223 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
224 #endif
225 
226 #ifdef ENABLE_OSRELDATE
227 int osreldate;
228 #endif
229 
230 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
231 #if 0
232 static int max_stack_flags;
233 #endif
234 
235 /*
236  * Global declarations normally provided by crt1.  The dynamic linker is
237  * not built with crt1, so we have to provide them ourselves.
238  */
239 char *__progname;
240 char **environ;
241 
242 /*
243  * Used to pass argc, argv to init functions.
244  */
245 int main_argc;
246 char **main_argv;
247 
248 /*
249  * Globals to control TLS allocation.
250  */
251 size_t tls_last_offset;		/* Static TLS offset of last module */
252 size_t tls_last_size;		/* Static TLS size of last module */
253 size_t tls_static_space;	/* Static TLS space allocated */
254 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
255 int tls_max_index = 1;		/* Largest module index allocated */
256 
257 /*
258  * Fill in a DoneList with an allocation large enough to hold all of
259  * the currently-loaded objects.  Keep this as a macro since it calls
260  * alloca and we want that to occur within the scope of the caller.
261  */
262 #define donelist_init(dlp)					\
263     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
264     assert((dlp)->objs != NULL),				\
265     (dlp)->num_alloc = obj_count,				\
266     (dlp)->num_used = 0)
267 
268 #define	UTRACE_DLOPEN_START		1
269 #define	UTRACE_DLOPEN_STOP		2
270 #define	UTRACE_DLCLOSE_START		3
271 #define	UTRACE_DLCLOSE_STOP		4
272 #define	UTRACE_LOAD_OBJECT		5
273 #define	UTRACE_UNLOAD_OBJECT		6
274 #define	UTRACE_ADD_RUNDEP		7
275 #define	UTRACE_PRELOAD_FINISHED		8
276 #define	UTRACE_INIT_CALL		9
277 #define	UTRACE_FINI_CALL		10
278 
279 struct utrace_rtld {
280 	char sig[4];			/* 'RTLD' */
281 	int event;
282 	void *handle;
283 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
284 	size_t mapsize;
285 	int refcnt;			/* Used for 'mode' */
286 	char name[MAXPATHLEN];
287 };
288 
289 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
290 	if (ld_utrace != NULL)					\
291 		ld_utrace_log(e, h, mb, ms, r, n);		\
292 } while (0)
293 
294 static void
295 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
296     int refcnt, const char *name)
297 {
298 	struct utrace_rtld ut;
299 
300 	ut.sig[0] = 'R';
301 	ut.sig[1] = 'T';
302 	ut.sig[2] = 'L';
303 	ut.sig[3] = 'D';
304 	ut.event = event;
305 	ut.handle = handle;
306 	ut.mapbase = mapbase;
307 	ut.mapsize = mapsize;
308 	ut.refcnt = refcnt;
309 	bzero(ut.name, sizeof(ut.name));
310 	if (name)
311 		strlcpy(ut.name, name, sizeof(ut.name));
312 	utrace(&ut, sizeof(ut));
313 }
314 
315 /*
316  * Main entry point for dynamic linking.  The first argument is the
317  * stack pointer.  The stack is expected to be laid out as described
318  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
319  * Specifically, the stack pointer points to a word containing
320  * ARGC.  Following that in the stack is a null-terminated sequence
321  * of pointers to argument strings.  Then comes a null-terminated
322  * sequence of pointers to environment strings.  Finally, there is a
323  * sequence of "auxiliary vector" entries.
324  *
325  * The second argument points to a place to store the dynamic linker's
326  * exit procedure pointer and the third to a place to store the main
327  * program's object.
328  *
329  * The return value is the main program's entry point.
330  */
331 func_ptr_type
332 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
333 {
334     Elf_Auxinfo *aux_info[AT_COUNT];
335     int i;
336     int argc;
337     char **argv;
338     char **env;
339     Elf_Auxinfo *aux;
340     Elf_Auxinfo *auxp;
341     const char *argv0;
342     Objlist_Entry *entry;
343     Obj_Entry *obj;
344     Obj_Entry *last_interposer;
345 
346     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
347              Obj_Entry **preload_tail;
348              Objlist initlist;
349        from global to here.  It will break the DWARF2 unwind scheme.
350     */
351 
352     /*
353      * On entry, the dynamic linker itself has not been relocated yet.
354      * Be very careful not to reference any global data until after
355      * init_rtld has returned.  It is OK to reference file-scope statics
356      * and string constants, and to call static and global functions.
357      */
358 
359     /* Find the auxiliary vector on the stack. */
360     argc = *sp++;
361     argv = (char **) sp;
362     sp += argc + 1;	/* Skip over arguments and NULL terminator */
363     env = (char **) sp;
364 
365     /*
366      * If we aren't already resident we have to dig out some more info.
367      * Note that auxinfo does not exist when we are resident.
368      *
369      * I'm not sure about the ld_resident check.  It seems to read zero
370      * prior to relocation, which is what we want.  When running from a
371      * resident copy everything will be relocated so we are definitely
372      * good there.
373      */
374     if (ld_resident == 0)  {
375 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
376 	    ;
377 	aux = (Elf_Auxinfo *) sp;
378 
379 	/* Digest the auxiliary vector. */
380 	for (i = 0;  i < AT_COUNT;  i++)
381 	    aux_info[i] = NULL;
382 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
383 	    if (auxp->a_type < AT_COUNT)
384 		aux_info[auxp->a_type] = auxp;
385 	}
386 
387 	/* Initialize and relocate ourselves. */
388 	assert(aux_info[AT_BASE] != NULL);
389 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
390     }
391 
392     ld_index = 0;	/* don't use old env cache in case we are resident */
393     __progname = obj_rtld.path;
394     argv0 = argv[0] != NULL ? argv[0] : "(null)";
395     environ = env;
396     main_argc = argc;
397     main_argv = argv;
398 
399     trust = !issetugid();
400 
401     ld_bind_now = _getenv_ld("LD_BIND_NOW");
402     /*
403      * If the process is tainted, then we un-set the dangerous environment
404      * variables.  The process will be marked as tainted until setuid(2)
405      * is called.  If any child process calls setuid(2) we do not want any
406      * future processes to honor the potentially un-safe variables.
407      */
408     if (!trust) {
409 	if (   unsetenv("LD_DEBUG")
410 	    || unsetenv("LD_PRELOAD")
411 	    || unsetenv("LD_LIBRARY_PATH")
412 	    || unsetenv("LD_LIBRARY_PATH_FDS")
413 	    || unsetenv("LD_ELF_HINTS_PATH")
414 	    || unsetenv("LD_LIBMAP")
415 	    || unsetenv("LD_LIBMAP_DISABLE")
416 	    || unsetenv("LD_LOADFLTR")
417 	    || unsetenv("LD_SHAREDLIB_BASE")
418 	) {
419 		_rtld_error("environment corrupt; aborting");
420 		die();
421 	}
422     }
423     __ld_sharedlib_base = _getenv_ld("LD_SHAREDLIB_BASE");
424     ld_debug = _getenv_ld("LD_DEBUG");
425     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
426     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
427     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
428     ld_library_dirs = _getenv_ld("LD_LIBRARY_PATH_FDS");
429     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
430     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
431     ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
432     dangerous_ld_env = (ld_library_path != NULL)
433 			|| (ld_preload != NULL)
434 			|| (ld_elf_hints_path != NULL)
435 			|| ld_loadfltr
436 			|| (libmap_override != NULL)
437 			|| libmap_disable
438 			;
439     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
440     ld_utrace = _getenv_ld("LD_UTRACE");
441 
442     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
443 	ld_elf_hints_path = _PATH_ELF_HINTS;
444 
445     if (ld_debug != NULL && *ld_debug != '\0')
446 	debug = 1;
447     dbg("%s is initialized, base address = %p", __progname,
448 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
449     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
450     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
451 
452     dbg("initializing thread locks");
453     lockdflt_init();
454 
455     /*
456      * If we are resident we can skip work that we have already done.
457      * Note that the stack is reset and there is no Elf_Auxinfo
458      * when running from a resident image, and the static globals setup
459      * between here and resident_skip will have already been setup.
460      */
461     if (ld_resident)
462 	goto resident_skip1;
463 
464     /*
465      * Load the main program, or process its program header if it is
466      * already loaded.
467      */
468     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
469 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
470 	dbg("loading main program");
471 	obj_main = map_object(fd, argv0, NULL);
472 	close(fd);
473 	if (obj_main == NULL)
474 	    die();
475 #if 0
476 	max_stack_flags = obj_main->stack_flags;
477 #endif
478     } else {				/* Main program already loaded. */
479 	const Elf_Phdr *phdr;
480 	int phnum;
481 	caddr_t entry;
482 
483 	dbg("processing main program's program header");
484 	assert(aux_info[AT_PHDR] != NULL);
485 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
486 	assert(aux_info[AT_PHNUM] != NULL);
487 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
488 	assert(aux_info[AT_PHENT] != NULL);
489 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
490 	assert(aux_info[AT_ENTRY] != NULL);
491 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
492 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
493 	    die();
494     }
495 
496     char buf[MAXPATHLEN];
497     if (aux_info[AT_EXECPATH] != NULL) {
498 	char *kexecpath;
499 
500 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
501 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
502 	if (kexecpath[0] == '/')
503 		obj_main->path = kexecpath;
504 	else if (getcwd(buf, sizeof(buf)) == NULL ||
505 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
506 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
507 		obj_main->path = xstrdup(argv0);
508 	else
509 		obj_main->path = xstrdup(buf);
510     } else {
511 	char resolved[MAXPATHLEN];
512 	dbg("No AT_EXECPATH");
513 	if (argv0[0] == '/') {
514 		if (realpath(argv0, resolved) != NULL)
515 			obj_main->path = xstrdup(resolved);
516 		else
517 			obj_main->path = xstrdup(argv0);
518 	} else {
519 		if (getcwd(buf, sizeof(buf)) != NULL
520 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
521 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
522 		    && access(buf, R_OK) == 0
523 		    && realpath(buf, resolved) != NULL)
524 			obj_main->path = xstrdup(resolved);
525 		else
526 			obj_main->path = xstrdup(argv0);
527 	}
528     }
529     dbg("obj_main path %s", obj_main->path);
530     obj_main->mainprog = true;
531 
532     if (aux_info[AT_STACKPROT] != NULL &&
533       aux_info[AT_STACKPROT]->a_un.a_val != 0)
534 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
535 
536     /*
537      * Get the actual dynamic linker pathname from the executable if
538      * possible.  (It should always be possible.)  That ensures that
539      * gdb will find the right dynamic linker even if a non-standard
540      * one is being used.
541      */
542     if (obj_main->interp != NULL &&
543       strcmp(obj_main->interp, obj_rtld.path) != 0) {
544 	free(obj_rtld.path);
545 	obj_rtld.path = xstrdup(obj_main->interp);
546         __progname = obj_rtld.path;
547     }
548 
549     digest_dynamic(obj_main, 0);
550     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
551 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
552 	obj_main->dynsymcount);
553 
554     linkmap_add(obj_main);
555     linkmap_add(&obj_rtld);
556 
557     /* Link the main program into the list of objects. */
558     *obj_tail = obj_main;
559     obj_tail = &obj_main->next;
560     obj_count++;
561     obj_loads++;
562 
563     /* Initialize a fake symbol for resolving undefined weak references. */
564     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
565     sym_zero.st_shndx = SHN_UNDEF;
566     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
567 
568     if (!libmap_disable)
569         libmap_disable = (bool)lm_init(libmap_override);
570 
571     dbg("loading LD_PRELOAD libraries");
572     if (load_preload_objects() == -1)
573 	die();
574     preload_tail = obj_tail;
575 
576     dbg("loading needed objects");
577     if (load_needed_objects(obj_main, 0) == -1)
578 	die();
579 
580     /* Make a list of all objects loaded at startup. */
581     last_interposer = obj_main;
582     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
583 	if (obj->z_interpose && obj != obj_main) {
584 	    objlist_put_after(&list_main, last_interposer, obj);
585 	    last_interposer = obj;
586 	} else {
587 	    objlist_push_tail(&list_main, obj);
588 	}
589 	obj->refcount++;
590     }
591 
592     dbg("checking for required versions");
593     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
594 	die();
595 
596 resident_skip1:
597 
598     if (ld_tracing) {		/* We're done */
599 	trace_loaded_objects(obj_main);
600 	exit(0);
601     }
602 
603     if (ld_resident)		/* XXX clean this up! */
604 	goto resident_skip2;
605 
606     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
607        dump_relocations(obj_main);
608        exit (0);
609     }
610 
611     /* setup TLS for main thread */
612     dbg("initializing initial thread local storage");
613     STAILQ_FOREACH(entry, &list_main, link) {
614 	/*
615 	 * Allocate all the initial objects out of the static TLS
616 	 * block even if they didn't ask for it.
617 	 */
618 	allocate_tls_offset(entry->obj);
619     }
620 
621     /*
622      * Calculate the size of the TLS static segment.  This is allocated
623      * for every thread.  Generally make it page-aligned for efficiency,
624      * but take into account the fact that the actual allocation also
625      * includes room for the struct tls_tcb header.
626      */
627     {
628 	ssize_t space;
629 	ssize_t extra;
630 
631 	extra = __getstatictlsextra();
632 	space = tls_last_offset + extra + sizeof(struct tls_tcb);
633 	space = (space + PAGE_SIZE - 1) & ~((ssize_t)PAGE_SIZE - 1);
634 
635 	tls_static_space = (size_t)space - sizeof(struct tls_tcb);
636     }
637 
638     /*
639      * Do not try to allocate the TLS here, let libc do it itself.
640      * (crt1 for the program will call _init_tls())
641      */
642 
643     if (relocate_objects(obj_main,
644       ld_bind_now != NULL && *ld_bind_now != '\0',
645       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
646 	die();
647 
648     dbg("doing copy relocations");
649     if (do_copy_relocations(obj_main) == -1)
650 	die();
651 
652 resident_skip2:
653 
654     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
655 	if (exec_sys_unregister(-1) < 0) {
656 	    dbg("exec_sys_unregister failed %d\n", errno);
657 	    exit(errno);
658 	}
659 	dbg("exec_sys_unregister success\n");
660 	exit(0);
661     }
662 
663     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
664        dump_relocations(obj_main);
665        exit (0);
666     }
667 
668     dbg("initializing key program variables");
669     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
670     set_program_var("environ", env);
671     set_program_var("__elf_aux_vector", aux);
672 
673     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
674 	extern void resident_start(void);
675 	ld_resident = 1;
676 	if (exec_sys_register(resident_start) < 0) {
677 	    dbg("exec_sys_register failed %d\n", errno);
678 	    exit(errno);
679 	}
680 	dbg("exec_sys_register success\n");
681 	exit(0);
682     }
683 
684     /* Make a list of init functions to call. */
685     objlist_init(&initlist);
686     initlist_add_objects(obj_list, preload_tail, &initlist);
687 
688     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
689 
690     map_stacks_exec(NULL);
691 
692     dbg("resolving ifuncs");
693     {
694 	    RtldLockState lockstate;
695 
696 	    wlock_acquire(rtld_bind_lock, &lockstate);
697 	    if (resolve_objects_ifunc(
698 		    obj_main,
699 		    (ld_bind_now != NULL && *ld_bind_now != '\0'),
700 		    SYMLOOK_EARLY,
701 		    &lockstate) == -1) {
702 		    die();
703 	    }
704 	    lock_release(rtld_bind_lock, &lockstate);
705     }
706 
707     /*
708      * Do NOT call the initlist here, give libc a chance to set up
709      * the initial TLS segment.  crt1 will then call _rtld_call_init().
710      */
711 
712     dbg("transferring control to program entry point = %p", obj_main->entry);
713 
714     /* Return the exit procedure and the program entry point. */
715     *exit_proc = rtld_exit;
716     *objp = obj_main;
717     return (func_ptr_type) obj_main->entry;
718 }
719 
720 /*
721  * Call the initialization list for dynamically loaded libraries.
722  * (called from crt1.c).
723  */
724 void
725 _rtld_call_init(void)
726 {
727     RtldLockState lockstate;
728     Obj_Entry *obj;
729 
730     if (!obj_main->note_present && obj_main->valid_hash_gnu) {
731 	/*
732 	 * The use of a linker script with a PHDRS directive that does not include
733 	 * PT_NOTE will block the crt_no_init note.  In this case we'll look for the
734 	 * recently added GNU hash dynamic tag which gets built by default.  It is
735 	 * extremely unlikely to find a pre-3.1 binary without a PT_NOTE header and
736 	 * a gnu hash tag.  If gnu hash found, consider binary to use new crt code.
737 	 */
738 	obj_main->crt_no_init = true;
739 	dbg("Setting crt_no_init without presence of PT_NOTE header");
740     }
741 
742     wlock_acquire(rtld_bind_lock, &lockstate);
743     if (obj_main->crt_no_init)
744 	preinit_main();
745     else {
746 	/*
747 	 * Make sure we don't call the main program's init and fini functions
748 	 * for binaries linked with old crt1 which calls _init itself.
749 	 */
750 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
751 	obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL;
752     }
753     objlist_call_init(&initlist, &lockstate);
754     _r_debug_postinit(&obj_main->linkmap);
755     objlist_clear(&initlist);
756     dbg("loading filtees");
757     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
758 	if (ld_loadfltr || obj->z_loadfltr)
759 	    load_filtees(obj, 0, &lockstate);
760     }
761     lock_release(rtld_bind_lock, &lockstate);
762 }
763 
764 void *
765 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
766 {
767 	void *ptr;
768 	Elf_Addr target;
769 
770 	ptr = (void *)make_function_pointer(def, obj);
771 	target = ((Elf_Addr (*)(void))ptr)();
772 	return ((void *)target);
773 }
774 
775 Elf_Addr
776 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
777 {
778     const Elf_Rel *rel;
779     const Elf_Sym *def;
780     const Obj_Entry *defobj;
781     Elf_Addr *where;
782     Elf_Addr target;
783     RtldLockState lockstate;
784 
785     rlock_acquire(rtld_bind_lock, &lockstate);
786     if (sigsetjmp(lockstate.env, 0) != 0)
787 	    lock_upgrade(rtld_bind_lock, &lockstate);
788     if (obj->pltrel)
789 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
790     else
791 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
792 
793     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
794     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
795 	&lockstate);
796     if (def == NULL)
797 	die();
798     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
799 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
800     else
801 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
802 
803     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
804       defobj->strtab + def->st_name, basename(obj->path),
805       (void *)target, basename(defobj->path));
806 
807     /*
808      * If we have a function call tracing hook, and the
809      * hook would like to keep tracing this one function,
810      * prevent the relocation so we will wind up here
811      * the next time again.
812      *
813      * We don't want to functrace calls from the functracer
814      * to avoid recursive loops.
815      */
816     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
817 	if (rtld_functrace(obj->path,
818 			   defobj->path,
819 			   defobj->strtab + def->st_name,
820 			   stack)) {
821 	    lock_release(rtld_bind_lock, &lockstate);
822 	    return target;
823 	}
824     }
825 
826     /*
827      * Write the new contents for the jmpslot. Note that depending on
828      * architecture, the value which we need to return back to the
829      * lazy binding trampoline may or may not be the target
830      * address. The value returned from reloc_jmpslot() is the value
831      * that the trampoline needs.
832      */
833     target = reloc_jmpslot(where, target, defobj, obj, rel);
834     lock_release(rtld_bind_lock, &lockstate);
835     return target;
836 }
837 
838 /*
839  * Error reporting function.  Use it like printf.  If formats the message
840  * into a buffer, and sets things up so that the next call to dlerror()
841  * will return the message.
842  */
843 void
844 _rtld_error(const char *fmt, ...)
845 {
846     static char buf[512];
847     va_list ap;
848 
849     va_start(ap, fmt);
850     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
851     error_message = buf;
852     va_end(ap);
853 }
854 
855 /*
856  * Return a dynamically-allocated copy of the current error message, if any.
857  */
858 static char *
859 errmsg_save(void)
860 {
861     return error_message == NULL ? NULL : xstrdup(error_message);
862 }
863 
864 /*
865  * Restore the current error message from a copy which was previously saved
866  * by errmsg_save().  The copy is freed.
867  */
868 static void
869 errmsg_restore(char *saved_msg)
870 {
871     if (saved_msg == NULL)
872 	error_message = NULL;
873     else {
874 	_rtld_error("%s", saved_msg);
875 	free(saved_msg);
876     }
877 }
878 
879 const char *
880 basename(const char *name)
881 {
882     const char *p = strrchr(name, '/');
883     return p != NULL ? p + 1 : name;
884 }
885 
886 static struct utsname uts;
887 
888 static char *
889 origin_subst_one(char *real, const char *kw, const char *subst,
890     bool may_free)
891 {
892 	char *p, *p1, *res, *resp;
893 	int subst_len, kw_len, subst_count, old_len, new_len;
894 
895 	kw_len = strlen(kw);
896 
897 	/*
898 	 * First, count the number of the keyword occurrences, to
899 	 * preallocate the final string.
900 	 */
901 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
902 		p1 = strstr(p, kw);
903 		if (p1 == NULL)
904 			break;
905 	}
906 
907 	/*
908 	 * If the keyword is not found, just return.
909 	 */
910 	if (subst_count == 0)
911 		return (may_free ? real : xstrdup(real));
912 
913 	/*
914 	 * There is indeed something to substitute.  Calculate the
915 	 * length of the resulting string, and allocate it.
916 	 */
917 	subst_len = strlen(subst);
918 	old_len = strlen(real);
919 	new_len = old_len + (subst_len - kw_len) * subst_count;
920 	res = xmalloc(new_len + 1);
921 
922 	/*
923 	 * Now, execute the substitution loop.
924 	 */
925 	for (p = real, resp = res, *resp = '\0';;) {
926 		p1 = strstr(p, kw);
927 		if (p1 != NULL) {
928 			/* Copy the prefix before keyword. */
929 			memcpy(resp, p, p1 - p);
930 			resp += p1 - p;
931 			/* Keyword replacement. */
932 			memcpy(resp, subst, subst_len);
933 			resp += subst_len;
934 			*resp = '\0';
935 			p = p1 + kw_len;
936 		} else
937 			break;
938 	}
939 
940 	/* Copy to the end of string and finish. */
941 	strcat(resp, p);
942 	if (may_free)
943 		free(real);
944 	return (res);
945 }
946 
947 static char *
948 origin_subst(char *real, const char *origin_path)
949 {
950 	char *res1, *res2, *res3, *res4;
951 
952 	if (uts.sysname[0] == '\0') {
953 		if (uname(&uts) != 0) {
954 			_rtld_error("utsname failed: %d", errno);
955 			return (NULL);
956 		}
957 	}
958 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
959 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
960 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
961 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
962 	return (res4);
963 }
964 
965 static void
966 die(void)
967 {
968     const char *msg = dlerror();
969 
970     if (msg == NULL)
971 	msg = "Fatal error";
972     rtld_fdputstr(STDERR_FILENO, msg);
973     rtld_fdputchar(STDERR_FILENO, '\n');
974     _exit(1);
975 }
976 
977 /*
978  * Process a shared object's DYNAMIC section, and save the important
979  * information in its Obj_Entry structure.
980  */
981 static void
982 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
983     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
984 {
985     const Elf_Dyn *dynp;
986     Needed_Entry **needed_tail = &obj->needed;
987     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
988     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
989     const Elf_Hashelt *hashtab;
990     const Elf32_Word *hashval;
991     Elf32_Word bkt, nmaskwords;
992     int bloom_size32;
993     bool nmw_power2;
994     int plttype = DT_REL;
995 
996     *dyn_rpath = NULL;
997     *dyn_soname = NULL;
998     *dyn_runpath = NULL;
999 
1000     obj->bind_now = false;
1001     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
1002 	switch (dynp->d_tag) {
1003 
1004 	case DT_REL:
1005 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
1006 	    break;
1007 
1008 	case DT_RELSZ:
1009 	    obj->relsize = dynp->d_un.d_val;
1010 	    break;
1011 
1012 	case DT_RELENT:
1013 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1014 	    break;
1015 
1016 	case DT_JMPREL:
1017 	    obj->pltrel = (const Elf_Rel *)
1018 	      (obj->relocbase + dynp->d_un.d_ptr);
1019 	    break;
1020 
1021 	case DT_PLTRELSZ:
1022 	    obj->pltrelsize = dynp->d_un.d_val;
1023 	    break;
1024 
1025 	case DT_RELA:
1026 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1027 	    break;
1028 
1029 	case DT_RELASZ:
1030 	    obj->relasize = dynp->d_un.d_val;
1031 	    break;
1032 
1033 	case DT_RELAENT:
1034 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1035 	    break;
1036 
1037 	case DT_PLTREL:
1038 	    plttype = dynp->d_un.d_val;
1039 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1040 	    break;
1041 
1042 	case DT_SYMTAB:
1043 	    obj->symtab = (const Elf_Sym *)
1044 	      (obj->relocbase + dynp->d_un.d_ptr);
1045 	    break;
1046 
1047 	case DT_SYMENT:
1048 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1049 	    break;
1050 
1051 	case DT_STRTAB:
1052 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1053 	    break;
1054 
1055 	case DT_STRSZ:
1056 	    obj->strsize = dynp->d_un.d_val;
1057 	    break;
1058 
1059 	case DT_VERNEED:
1060 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1061 		dynp->d_un.d_val);
1062 	    break;
1063 
1064 	case DT_VERNEEDNUM:
1065 	    obj->verneednum = dynp->d_un.d_val;
1066 	    break;
1067 
1068 	case DT_VERDEF:
1069 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1070 		dynp->d_un.d_val);
1071 	    break;
1072 
1073 	case DT_VERDEFNUM:
1074 	    obj->verdefnum = dynp->d_un.d_val;
1075 	    break;
1076 
1077 	case DT_VERSYM:
1078 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1079 		dynp->d_un.d_val);
1080 	    break;
1081 
1082 	case DT_HASH:
1083 	    {
1084 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1085 		    dynp->d_un.d_ptr);
1086 		obj->nbuckets = hashtab[0];
1087 		obj->nchains = hashtab[1];
1088 		obj->buckets = hashtab + 2;
1089 		obj->chains = obj->buckets + obj->nbuckets;
1090 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1091 		  obj->buckets != NULL;
1092 	    }
1093 	    break;
1094 
1095 	case DT_GNU_HASH:
1096 	    {
1097 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1098 		    dynp->d_un.d_ptr);
1099 		obj->nbuckets_gnu = hashtab[0];
1100 		obj->symndx_gnu = hashtab[1];
1101 		nmaskwords = hashtab[2];
1102 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1103 		/* Number of bitmask words is required to be power of 2 */
1104 		nmw_power2 = powerof2(nmaskwords);
1105 		obj->maskwords_bm_gnu = nmaskwords - 1;
1106 		obj->shift2_gnu = hashtab[3];
1107 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1108 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1109 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1110 		  obj->symndx_gnu;
1111 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
1112 		  obj->buckets_gnu != NULL;
1113 	    }
1114 	    break;
1115 
1116 	case DT_NEEDED:
1117 	    if (!obj->rtld) {
1118 		Needed_Entry *nep = NEW(Needed_Entry);
1119 		nep->name = dynp->d_un.d_val;
1120 		nep->obj = NULL;
1121 		nep->next = NULL;
1122 
1123 		*needed_tail = nep;
1124 		needed_tail = &nep->next;
1125 	    }
1126 	    break;
1127 
1128 	case DT_FILTER:
1129 	    if (!obj->rtld) {
1130 		Needed_Entry *nep = NEW(Needed_Entry);
1131 		nep->name = dynp->d_un.d_val;
1132 		nep->obj = NULL;
1133 		nep->next = NULL;
1134 
1135 		*needed_filtees_tail = nep;
1136 		needed_filtees_tail = &nep->next;
1137 	    }
1138 	    break;
1139 
1140 	case DT_AUXILIARY:
1141 	    if (!obj->rtld) {
1142 		Needed_Entry *nep = NEW(Needed_Entry);
1143 		nep->name = dynp->d_un.d_val;
1144 		nep->obj = NULL;
1145 		nep->next = NULL;
1146 
1147 		*needed_aux_filtees_tail = nep;
1148 		needed_aux_filtees_tail = &nep->next;
1149 	    }
1150 	    break;
1151 
1152 	case DT_PLTGOT:
1153 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1154 	    break;
1155 
1156 	case DT_TEXTREL:
1157 	    obj->textrel = true;
1158 	    break;
1159 
1160 	case DT_SYMBOLIC:
1161 	    obj->symbolic = true;
1162 	    break;
1163 
1164 	case DT_RPATH:
1165 	    /*
1166 	     * We have to wait until later to process this, because we
1167 	     * might not have gotten the address of the string table yet.
1168 	     */
1169 	    *dyn_rpath = dynp;
1170 	    break;
1171 
1172 	case DT_SONAME:
1173 	    *dyn_soname = dynp;
1174 	    break;
1175 
1176 	case DT_RUNPATH:
1177 	    *dyn_runpath = dynp;
1178 	    break;
1179 
1180 	case DT_INIT:
1181 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1182 	    break;
1183 
1184 	case DT_PREINIT_ARRAY:
1185 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1186 	    break;
1187 
1188 	case DT_PREINIT_ARRAYSZ:
1189 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1190 	    break;
1191 
1192 	case DT_INIT_ARRAY:
1193 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1194 	    break;
1195 
1196 	case DT_INIT_ARRAYSZ:
1197 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1198 	    break;
1199 
1200 	case DT_FINI:
1201 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1202 	    break;
1203 
1204 	case DT_FINI_ARRAY:
1205 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1206 	    break;
1207 
1208 	case DT_FINI_ARRAYSZ:
1209 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1210 	    break;
1211 
1212 	case DT_DEBUG:
1213 	    /* XXX - not implemented yet */
1214 	    if (!early)
1215 		dbg("Filling in DT_DEBUG entry");
1216 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1217 	    break;
1218 
1219 	case DT_FLAGS:
1220 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1221 		    obj->z_origin = true;
1222 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1223 		    obj->symbolic = true;
1224 		if (dynp->d_un.d_val & DF_TEXTREL)
1225 		    obj->textrel = true;
1226 		if (dynp->d_un.d_val & DF_BIND_NOW)
1227 		    obj->bind_now = true;
1228 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1229 		    obj->static_tls = true;
1230 	    break;
1231 
1232 	case DT_FLAGS_1:
1233 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1234 		    obj->z_noopen = true;
1235 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1236 		    obj->z_origin = true;
1237 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1238 		    XXX ;*/
1239 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1240 		    obj->bind_now = true;
1241 		if (dynp->d_un.d_val & DF_1_NODELETE)
1242 		    obj->z_nodelete = true;
1243 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1244 		    obj->z_loadfltr = true;
1245 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1246 		    obj->z_interpose = true;
1247 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1248 		    obj->z_nodeflib = true;
1249 	    break;
1250 
1251 	default:
1252 	    if (!early) {
1253 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1254 		    (long)dynp->d_tag);
1255 	    }
1256 	    break;
1257 	}
1258     }
1259 
1260     obj->traced = false;
1261 
1262     if (plttype == DT_RELA) {
1263 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1264 	obj->pltrel = NULL;
1265 	obj->pltrelasize = obj->pltrelsize;
1266 	obj->pltrelsize = 0;
1267     }
1268 
1269     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1270     if (obj->valid_hash_sysv)
1271 	obj->dynsymcount = obj->nchains;
1272     else if (obj->valid_hash_gnu) {
1273 	obj->dynsymcount = 0;
1274 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1275 	    if (obj->buckets_gnu[bkt] == 0)
1276 		continue;
1277 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1278 	    do
1279 		obj->dynsymcount++;
1280 	    while ((*hashval++ & 1u) == 0);
1281 	}
1282 	obj->dynsymcount += obj->symndx_gnu;
1283     }
1284 }
1285 
1286 static void
1287 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1288     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1289 {
1290 
1291     if (obj->z_origin && obj->origin_path == NULL) {
1292 	obj->origin_path = xmalloc(PATH_MAX);
1293 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1294 	    die();
1295     }
1296 
1297     if (dyn_runpath != NULL) {
1298 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1299 	if (obj->z_origin)
1300 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1301     }
1302     else if (dyn_rpath != NULL) {
1303 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1304 	if (obj->z_origin)
1305 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1306     }
1307 
1308     if (dyn_soname != NULL)
1309 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1310 }
1311 
1312 static void
1313 digest_dynamic(Obj_Entry *obj, int early)
1314 {
1315 	const Elf_Dyn *dyn_rpath;
1316 	const Elf_Dyn *dyn_soname;
1317 	const Elf_Dyn *dyn_runpath;
1318 
1319 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1320 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1321 }
1322 
1323 /*
1324  * Process a shared object's program header.  This is used only for the
1325  * main program, when the kernel has already loaded the main program
1326  * into memory before calling the dynamic linker.  It creates and
1327  * returns an Obj_Entry structure.
1328  */
1329 static Obj_Entry *
1330 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1331 {
1332     Obj_Entry *obj;
1333     const Elf_Phdr *phlimit = phdr + phnum;
1334     const Elf_Phdr *ph;
1335     Elf_Addr note_start, note_end;
1336     int nsegs = 0;
1337 
1338     obj = obj_new();
1339     for (ph = phdr;  ph < phlimit;  ph++) {
1340 	if (ph->p_type != PT_PHDR)
1341 	    continue;
1342 
1343 	obj->phdr = phdr;
1344 	obj->phsize = ph->p_memsz;
1345 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1346 	break;
1347     }
1348 
1349     obj->stack_flags = PF_X | PF_R | PF_W;
1350 
1351     for (ph = phdr;  ph < phlimit;  ph++) {
1352 	switch (ph->p_type) {
1353 
1354 	case PT_INTERP:
1355 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1356 	    break;
1357 
1358 	case PT_LOAD:
1359 	    if (nsegs == 0) {	/* First load segment */
1360 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1361 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1362 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1363 		  obj->vaddrbase;
1364 	    } else {		/* Last load segment */
1365 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1366 		  obj->vaddrbase;
1367 	    }
1368 	    nsegs++;
1369 	    break;
1370 
1371 	case PT_DYNAMIC:
1372 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1373 	    break;
1374 
1375 	case PT_TLS:
1376 	    obj->tlsindex = 1;
1377 	    obj->tlssize = ph->p_memsz;
1378 	    obj->tlsalign = ph->p_align;
1379 	    obj->tlsinitsize = ph->p_filesz;
1380 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1381 	    break;
1382 
1383 	case PT_GNU_STACK:
1384 	    obj->stack_flags = ph->p_flags;
1385 	    break;
1386 
1387 	case PT_GNU_RELRO:
1388 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1389 	    obj->relro_size = round_page(ph->p_memsz);
1390 	    break;
1391 
1392 	case PT_NOTE:
1393 	    obj->note_present = true;
1394 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1395 	    note_end = note_start + ph->p_filesz;
1396 	    digest_notes(obj, note_start, note_end);
1397 	    break;
1398 	}
1399     }
1400     if (nsegs < 1) {
1401 	_rtld_error("%s: too few PT_LOAD segments", path);
1402 	return NULL;
1403     }
1404 
1405     obj->entry = entry;
1406     return obj;
1407 }
1408 
1409 void
1410 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1411 {
1412 	const Elf_Note *note;
1413 	const char *note_name;
1414 	uintptr_t p;
1415 
1416 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1417 	    note = (const Elf_Note *)((const char *)(note + 1) +
1418 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1419 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1420 		if (note->n_namesz != sizeof(NOTE_VENDOR) ||
1421 		    note->n_descsz != sizeof(int32_t))
1422 			continue;
1423 		if (note->n_type != ABI_NOTETYPE &&
1424 		    note->n_type != CRT_NOINIT_NOTETYPE)
1425 			continue;
1426 		note_name = (const char *)(note + 1);
1427 		if (strncmp(NOTE_VENDOR, note_name, sizeof(NOTE_VENDOR)) != 0)
1428 			continue;
1429 		switch (note->n_type) {
1430 		case ABI_NOTETYPE:
1431 			/* DragonFly osrel note */
1432 			p = (uintptr_t)(note + 1);
1433 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1434 			obj->osrel = *(const int32_t *)(p);
1435 			dbg("note osrel %d", obj->osrel);
1436 			break;
1437 		case CRT_NOINIT_NOTETYPE:
1438 			/* DragonFly 'crt does not call init' note */
1439 			obj->crt_no_init = true;
1440 			dbg("note crt_no_init");
1441 			break;
1442 		}
1443 	}
1444 }
1445 
1446 static Obj_Entry *
1447 dlcheck(void *handle)
1448 {
1449     Obj_Entry *obj;
1450 
1451     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1452 	if (obj == (Obj_Entry *) handle)
1453 	    break;
1454 
1455     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1456 	_rtld_error("Invalid shared object handle %p", handle);
1457 	return NULL;
1458     }
1459     return obj;
1460 }
1461 
1462 /*
1463  * If the given object is already in the donelist, return true.  Otherwise
1464  * add the object to the list and return false.
1465  */
1466 static bool
1467 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1468 {
1469     unsigned int i;
1470 
1471     for (i = 0;  i < dlp->num_used;  i++)
1472 	if (dlp->objs[i] == obj)
1473 	    return true;
1474     /*
1475      * Our donelist allocation should always be sufficient.  But if
1476      * our threads locking isn't working properly, more shared objects
1477      * could have been loaded since we allocated the list.  That should
1478      * never happen, but we'll handle it properly just in case it does.
1479      */
1480     if (dlp->num_used < dlp->num_alloc)
1481 	dlp->objs[dlp->num_used++] = obj;
1482     return false;
1483 }
1484 
1485 /*
1486  * Hash function for symbol table lookup.  Don't even think about changing
1487  * this.  It is specified by the System V ABI.
1488  */
1489 unsigned long
1490 elf_hash(const char *name)
1491 {
1492     const unsigned char *p = (const unsigned char *) name;
1493     unsigned long h = 0;
1494     unsigned long g;
1495 
1496     while (*p != '\0') {
1497 	h = (h << 4) + *p++;
1498 	if ((g = h & 0xf0000000) != 0)
1499 	    h ^= g >> 24;
1500 	h &= ~g;
1501     }
1502     return h;
1503 }
1504 
1505 /*
1506  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1507  * unsigned in case it's implemented with a wider type.
1508  */
1509 static uint_fast32_t
1510 gnu_hash(const char *s)
1511 {
1512 	uint_fast32_t h;
1513 	unsigned char c;
1514 
1515 	h = 5381;
1516 	for (c = *s; c != '\0'; c = *++s)
1517 		h = h * 33 + c;
1518 	return (h & 0xffffffff);
1519 }
1520 
1521 
1522 /*
1523  * Find the library with the given name, and return its full pathname.
1524  * The returned string is dynamically allocated.  Generates an error
1525  * message and returns NULL if the library cannot be found.
1526  *
1527  * If the second argument is non-NULL, then it refers to an already-
1528  * loaded shared object, whose library search path will be searched.
1529  *
1530  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1531  * descriptor (which is close-on-exec) will be passed out via the third
1532  * argument.
1533  *
1534  * The search order is:
1535  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1536  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1537  *   LD_LIBRARY_PATH
1538  *   DT_RUNPATH in the referencing file
1539  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1540  *	 from list)
1541  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1542  *
1543  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1544  */
1545 static char *
1546 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1547 {
1548     char *pathname;
1549     char *name;
1550     bool nodeflib, objgiven;
1551 
1552     objgiven = refobj != NULL;
1553     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1554 	if (xname[0] != '/' && !trust) {
1555 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1556 	      xname);
1557 	    return NULL;
1558 	}
1559 	if (objgiven && refobj->z_origin) {
1560 		return (origin_subst(__DECONST(char *, xname),
1561 		    refobj->origin_path));
1562 	} else {
1563 		return (xstrdup(xname));
1564 	}
1565     }
1566 
1567     if (libmap_disable || !objgiven ||
1568 	(name = lm_find(refobj->path, xname)) == NULL)
1569 	name = (char *)xname;
1570 
1571     dbg(" Searching for \"%s\"", name);
1572 
1573     nodeflib = objgiven ? refobj->z_nodeflib : false;
1574     if ((objgiven &&
1575       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1576       (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1577       (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1578       (pathname = search_library_path(name, ld_library_path)) != NULL ||
1579       (objgiven &&
1580       (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1581       (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1582       (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1583       (objgiven && !nodeflib &&
1584       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1585 	return (pathname);
1586 
1587     if (objgiven && refobj->path != NULL) {
1588 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1589 	  name, basename(refobj->path));
1590     } else {
1591 	_rtld_error("Shared object \"%s\" not found", name);
1592     }
1593     return NULL;
1594 }
1595 
1596 /*
1597  * Given a symbol number in a referencing object, find the corresponding
1598  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1599  * no definition was found.  Returns a pointer to the Obj_Entry of the
1600  * defining object via the reference parameter DEFOBJ_OUT.
1601  */
1602 const Elf_Sym *
1603 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1604     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1605     RtldLockState *lockstate)
1606 {
1607     const Elf_Sym *ref;
1608     const Elf_Sym *def;
1609     const Obj_Entry *defobj;
1610     SymLook req;
1611     const char *name;
1612     int res;
1613 
1614     /*
1615      * If we have already found this symbol, get the information from
1616      * the cache.
1617      */
1618     if (symnum >= refobj->dynsymcount)
1619 	return NULL;	/* Bad object */
1620     if (cache != NULL && cache[symnum].sym != NULL) {
1621 	*defobj_out = cache[symnum].obj;
1622 	return cache[symnum].sym;
1623     }
1624 
1625     ref = refobj->symtab + symnum;
1626     name = refobj->strtab + ref->st_name;
1627     def = NULL;
1628     defobj = NULL;
1629 
1630     /*
1631      * We don't have to do a full scale lookup if the symbol is local.
1632      * We know it will bind to the instance in this load module; to
1633      * which we already have a pointer (ie ref). By not doing a lookup,
1634      * we not only improve performance, but it also avoids unresolvable
1635      * symbols when local symbols are not in the hash table.
1636      *
1637      * This might occur for TLS module relocations, which simply use
1638      * symbol 0.
1639      */
1640     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1641 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1642 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1643 		symnum);
1644 	}
1645 	symlook_init(&req, name);
1646 	req.flags = flags;
1647 	req.ventry = fetch_ventry(refobj, symnum);
1648 	req.lockstate = lockstate;
1649 	res = symlook_default(&req, refobj);
1650 	if (res == 0) {
1651 	    def = req.sym_out;
1652 	    defobj = req.defobj_out;
1653 	}
1654     } else {
1655 	def = ref;
1656 	defobj = refobj;
1657     }
1658 
1659     /*
1660      * If we found no definition and the reference is weak, treat the
1661      * symbol as having the value zero.
1662      */
1663     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1664 	def = &sym_zero;
1665 	defobj = obj_main;
1666     }
1667 
1668     if (def != NULL) {
1669 	*defobj_out = defobj;
1670 	/* Record the information in the cache to avoid subsequent lookups. */
1671 	if (cache != NULL) {
1672 	    cache[symnum].sym = def;
1673 	    cache[symnum].obj = defobj;
1674 	}
1675     } else {
1676 	if (refobj != &obj_rtld)
1677 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1678     }
1679     return def;
1680 }
1681 
1682 /*
1683  * Return the search path from the ldconfig hints file, reading it if
1684  * necessary.  If nostdlib is true, then the default search paths are
1685  * not added to result.
1686  *
1687  * Returns NULL if there are problems with the hints file,
1688  * or if the search path there is empty.
1689  */
1690 static const char *
1691 gethints(bool nostdlib)
1692 {
1693 	static char *hints, *filtered_path;
1694 	struct elfhints_hdr hdr;
1695 	struct fill_search_info_args sargs, hargs;
1696 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1697 	struct dl_serpath *SLPpath, *hintpath;
1698 	char *p;
1699 	unsigned int SLPndx, hintndx, fndx, fcount;
1700 	int fd;
1701 	size_t flen;
1702 	bool skip;
1703 
1704 	/* First call, read the hints file */
1705 	if (hints == NULL) {
1706 		/* Keep from trying again in case the hints file is bad. */
1707 		hints = "";
1708 
1709 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1710 			return (NULL);
1711 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1712 		    hdr.magic != ELFHINTS_MAGIC ||
1713 		    hdr.version != 1) {
1714 			close(fd);
1715 			return (NULL);
1716 		}
1717 		p = xmalloc(hdr.dirlistlen + 1);
1718 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1719 		    read(fd, p, hdr.dirlistlen + 1) !=
1720 		    (ssize_t)hdr.dirlistlen + 1) {
1721 			free(p);
1722 			close(fd);
1723 			return (NULL);
1724 		}
1725 		hints = p;
1726 		close(fd);
1727 	}
1728 
1729 	/*
1730 	 * If caller agreed to receive list which includes the default
1731 	 * paths, we are done. Otherwise, if we still have not
1732 	 * calculated filtered result, do it now.
1733 	 */
1734 	if (!nostdlib)
1735 		return (hints[0] != '\0' ? hints : NULL);
1736 	if (filtered_path != NULL)
1737 		goto filt_ret;
1738 
1739 	/*
1740 	 * Obtain the list of all configured search paths, and the
1741 	 * list of the default paths.
1742 	 *
1743 	 * First estimate the size of the results.
1744 	 */
1745 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1746 	smeta.dls_cnt = 0;
1747 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1748 	hmeta.dls_cnt = 0;
1749 
1750 	sargs.request = RTLD_DI_SERINFOSIZE;
1751 	sargs.serinfo = &smeta;
1752 	hargs.request = RTLD_DI_SERINFOSIZE;
1753 	hargs.serinfo = &hmeta;
1754 
1755 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1756 	path_enumerate(p, fill_search_info, &hargs);
1757 
1758 	SLPinfo = xmalloc(smeta.dls_size);
1759 	hintinfo = xmalloc(hmeta.dls_size);
1760 
1761 	/*
1762 	 * Next fetch both sets of paths.
1763 	 */
1764 	sargs.request = RTLD_DI_SERINFO;
1765 	sargs.serinfo = SLPinfo;
1766 	sargs.serpath = &SLPinfo->dls_serpath[0];
1767 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1768 
1769 	hargs.request = RTLD_DI_SERINFO;
1770 	hargs.serinfo = hintinfo;
1771 	hargs.serpath = &hintinfo->dls_serpath[0];
1772 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1773 
1774 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1775 	path_enumerate(p, fill_search_info, &hargs);
1776 
1777 	/*
1778 	 * Now calculate the difference between two sets, by excluding
1779 	 * standard paths from the full set.
1780 	 */
1781 	fndx = 0;
1782 	fcount = 0;
1783 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1784 	hintpath = &hintinfo->dls_serpath[0];
1785 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1786 		skip = false;
1787 		SLPpath = &SLPinfo->dls_serpath[0];
1788 		/*
1789 		 * Check each standard path against current.
1790 		 */
1791 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1792 			/* matched, skip the path */
1793 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1794 				skip = true;
1795 				break;
1796 			}
1797 		}
1798 		if (skip)
1799 			continue;
1800 		/*
1801 		 * Not matched against any standard path, add the path
1802 		 * to result. Separate consecutive paths with ':'.
1803 		 */
1804 		if (fcount > 0) {
1805 			filtered_path[fndx] = ':';
1806 			fndx++;
1807 		}
1808 		fcount++;
1809 		flen = strlen(hintpath->dls_name);
1810 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1811 		fndx += flen;
1812 	}
1813 	filtered_path[fndx] = '\0';
1814 
1815 	free(SLPinfo);
1816 	free(hintinfo);
1817 
1818 filt_ret:
1819 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1820 }
1821 
1822 static void
1823 init_dag(Obj_Entry *root)
1824 {
1825     const Needed_Entry *needed;
1826     const Objlist_Entry *elm;
1827     DoneList donelist;
1828 
1829     if (root->dag_inited)
1830 	return;
1831     donelist_init(&donelist);
1832 
1833     /* Root object belongs to own DAG. */
1834     objlist_push_tail(&root->dldags, root);
1835     objlist_push_tail(&root->dagmembers, root);
1836     donelist_check(&donelist, root);
1837 
1838     /*
1839      * Add dependencies of root object to DAG in breadth order
1840      * by exploiting the fact that each new object get added
1841      * to the tail of the dagmembers list.
1842      */
1843     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1844 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1845 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1846 		continue;
1847 	    objlist_push_tail(&needed->obj->dldags, root);
1848 	    objlist_push_tail(&root->dagmembers, needed->obj);
1849 	}
1850     }
1851     root->dag_inited = true;
1852 }
1853 
1854 static void
1855 process_nodelete(Obj_Entry *root)
1856 {
1857 	const Objlist_Entry *elm;
1858 
1859 	/*
1860 	 * Walk over object DAG and process every dependent object that
1861 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1862 	 * which then should have its reference upped separately.
1863 	 */
1864 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1865 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1866 		    !elm->obj->ref_nodel) {
1867 			dbg("obj %s nodelete", elm->obj->path);
1868 			init_dag(elm->obj);
1869 			ref_dag(elm->obj);
1870 			elm->obj->ref_nodel = true;
1871 		}
1872 	}
1873 }
1874 
1875 /*
1876  * Initialize the dynamic linker.  The argument is the address at which
1877  * the dynamic linker has been mapped into memory.  The primary task of
1878  * this function is to relocate the dynamic linker.
1879  */
1880 static void
1881 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1882 {
1883     Obj_Entry objtmp;	/* Temporary rtld object */
1884     const Elf_Ehdr *ehdr;
1885     const Elf_Dyn *dyn_rpath;
1886     const Elf_Dyn *dyn_soname;
1887     const Elf_Dyn *dyn_runpath;
1888 
1889     /*
1890      * Conjure up an Obj_Entry structure for the dynamic linker.
1891      *
1892      * The "path" member can't be initialized yet because string constants
1893      * cannot yet be accessed. Below we will set it correctly.
1894      */
1895     memset(&objtmp, 0, sizeof(objtmp));
1896     objtmp.path = NULL;
1897     objtmp.rtld = true;
1898     objtmp.mapbase = mapbase;
1899 #ifdef PIC
1900     objtmp.relocbase = mapbase;
1901 #endif
1902     if (RTLD_IS_DYNAMIC()) {
1903 	objtmp.dynamic = rtld_dynamic(&objtmp);
1904 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1905 	assert(objtmp.needed == NULL);
1906 	assert(!objtmp.textrel);
1907 
1908 	/*
1909 	 * Temporarily put the dynamic linker entry into the object list, so
1910 	 * that symbols can be found.
1911 	 */
1912 
1913 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1914     }
1915     ehdr = (Elf_Ehdr *)mapbase;
1916     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1917     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1918 
1919     /* Initialize the object list. */
1920     obj_tail = &obj_list;
1921 
1922     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1923     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1924 
1925 #ifdef ENABLE_OSRELDATE
1926     if (aux_info[AT_OSRELDATE] != NULL)
1927 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1928 #endif
1929 
1930     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1931 
1932     /* Replace the path with a dynamically allocated copy. */
1933     obj_rtld.path = xstrdup(PATH_RTLD);
1934 
1935     r_debug.r_brk = r_debug_state;
1936     r_debug.r_state = RT_CONSISTENT;
1937 }
1938 
1939 /*
1940  * Add the init functions from a needed object list (and its recursive
1941  * needed objects) to "list".  This is not used directly; it is a helper
1942  * function for initlist_add_objects().  The write lock must be held
1943  * when this function is called.
1944  */
1945 static void
1946 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1947 {
1948     /* Recursively process the successor needed objects. */
1949     if (needed->next != NULL)
1950 	initlist_add_neededs(needed->next, list);
1951 
1952     /* Process the current needed object. */
1953     if (needed->obj != NULL)
1954 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1955 }
1956 
1957 /*
1958  * Scan all of the DAGs rooted in the range of objects from "obj" to
1959  * "tail" and add their init functions to "list".  This recurses over
1960  * the DAGs and ensure the proper init ordering such that each object's
1961  * needed libraries are initialized before the object itself.  At the
1962  * same time, this function adds the objects to the global finalization
1963  * list "list_fini" in the opposite order.  The write lock must be
1964  * held when this function is called.
1965  */
1966 static void
1967 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1968 {
1969 
1970     if (obj->init_scanned || obj->init_done)
1971 	return;
1972     obj->init_scanned = true;
1973 
1974     /* Recursively process the successor objects. */
1975     if (&obj->next != tail)
1976 	initlist_add_objects(obj->next, tail, list);
1977 
1978     /* Recursively process the needed objects. */
1979     if (obj->needed != NULL)
1980 	initlist_add_neededs(obj->needed, list);
1981     if (obj->needed_filtees != NULL)
1982 	initlist_add_neededs(obj->needed_filtees, list);
1983     if (obj->needed_aux_filtees != NULL)
1984 	initlist_add_neededs(obj->needed_aux_filtees, list);
1985 
1986     /* Add the object to the init list. */
1987     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1988       obj->init_array != (Elf_Addr)NULL)
1989 	objlist_push_tail(list, obj);
1990 
1991     /* Add the object to the global fini list in the reverse order. */
1992     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1993       && !obj->on_fini_list) {
1994 	objlist_push_head(&list_fini, obj);
1995 	obj->on_fini_list = true;
1996     }
1997 }
1998 
1999 #ifndef FPTR_TARGET
2000 #define FPTR_TARGET(f)	((Elf_Addr) (f))
2001 #endif
2002 
2003 static void
2004 free_needed_filtees(Needed_Entry *n)
2005 {
2006     Needed_Entry *needed, *needed1;
2007 
2008     for (needed = n; needed != NULL; needed = needed->next) {
2009 	if (needed->obj != NULL) {
2010 	    dlclose(needed->obj);
2011 	    needed->obj = NULL;
2012 	}
2013     }
2014     for (needed = n; needed != NULL; needed = needed1) {
2015 	needed1 = needed->next;
2016 	free(needed);
2017     }
2018 }
2019 
2020 static void
2021 unload_filtees(Obj_Entry *obj)
2022 {
2023 
2024     free_needed_filtees(obj->needed_filtees);
2025     obj->needed_filtees = NULL;
2026     free_needed_filtees(obj->needed_aux_filtees);
2027     obj->needed_aux_filtees = NULL;
2028     obj->filtees_loaded = false;
2029 }
2030 
2031 static void
2032 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2033     RtldLockState *lockstate)
2034 {
2035 
2036     for (; needed != NULL; needed = needed->next) {
2037 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2038 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2039 	  RTLD_LOCAL, lockstate);
2040     }
2041 }
2042 
2043 static void
2044 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2045 {
2046 
2047     lock_restart_for_upgrade(lockstate);
2048     if (!obj->filtees_loaded) {
2049 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2050 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2051 	obj->filtees_loaded = true;
2052     }
2053 }
2054 
2055 static int
2056 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2057 {
2058     Obj_Entry *obj1;
2059 
2060     for (; needed != NULL; needed = needed->next) {
2061 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2062 	  flags & ~RTLD_LO_NOLOAD);
2063 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2064 	    return (-1);
2065     }
2066     return (0);
2067 }
2068 
2069 /*
2070  * Given a shared object, traverse its list of needed objects, and load
2071  * each of them.  Returns 0 on success.  Generates an error message and
2072  * returns -1 on failure.
2073  */
2074 static int
2075 load_needed_objects(Obj_Entry *first, int flags)
2076 {
2077     Obj_Entry *obj;
2078 
2079     for (obj = first;  obj != NULL;  obj = obj->next) {
2080 	if (process_needed(obj, obj->needed, flags) == -1)
2081 	    return (-1);
2082     }
2083     return (0);
2084 }
2085 
2086 static int
2087 load_preload_objects(void)
2088 {
2089     char *p = ld_preload;
2090     Obj_Entry *obj;
2091     static const char delim[] = " \t:;";
2092 
2093     if (p == NULL)
2094 	return 0;
2095 
2096     p += strspn(p, delim);
2097     while (*p != '\0') {
2098 	size_t len = strcspn(p, delim);
2099 	char savech;
2100 	SymLook req;
2101 	int res;
2102 
2103 	savech = p[len];
2104 	p[len] = '\0';
2105 	obj = load_object(p, -1, NULL, 0);
2106 	if (obj == NULL)
2107 	    return -1;	/* XXX - cleanup */
2108 	obj->z_interpose = true;
2109 	p[len] = savech;
2110 	p += len;
2111 	p += strspn(p, delim);
2112 
2113 	/* Check for the magic tracing function */
2114 	symlook_init(&req, RTLD_FUNCTRACE);
2115 	res = symlook_obj(&req, obj);
2116 	if (res == 0) {
2117 	    rtld_functrace = (void *)(req.defobj_out->relocbase +
2118 				      req.sym_out->st_value);
2119 	    rtld_functrace_obj = req.defobj_out;
2120 	}
2121     }
2122     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2123     return 0;
2124 }
2125 
2126 static const char *
2127 printable_path(const char *path)
2128 {
2129 
2130 	return (path == NULL ? "<unknown>" : path);
2131 }
2132 
2133 /*
2134  * Load a shared object into memory, if it is not already loaded.  The
2135  * object may be specified by name or by user-supplied file descriptor
2136  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2137  * duplicate is.
2138  *
2139  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2140  * on failure.
2141  */
2142 static Obj_Entry *
2143 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2144 {
2145     Obj_Entry *obj;
2146     int fd;
2147     struct stat sb;
2148     char *path;
2149 
2150     fd = -1;
2151     if (name != NULL) {
2152 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2153 	    if (object_match_name(obj, name))
2154 		return (obj);
2155 	}
2156 
2157 	path = find_library(name, refobj, &fd);
2158 	if (path == NULL)
2159 	    return (NULL);
2160     } else
2161 	path = NULL;
2162 
2163     if (fd >= 0) {
2164 	/*
2165 	 * search_library_pathfds() opens a fresh file descriptor for the
2166 	 * library, so there is no need to dup().
2167 	 */
2168     } else if (fd_u == -1) {
2169 	/*
2170 	 * If we didn't find a match by pathname, or the name is not
2171 	 * supplied, open the file and check again by device and inode.
2172 	 * This avoids false mismatches caused by multiple links or ".."
2173 	 * in pathnames.
2174 	 *
2175 	 * To avoid a race, we open the file and use fstat() rather than
2176 	 * using stat().
2177 	 */
2178 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2179 	    _rtld_error("Cannot open \"%s\"", path);
2180 	    free(path);
2181 	    return (NULL);
2182 	}
2183     } else {
2184 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2185 	if (fd == -1) {
2186 	    _rtld_error("Cannot dup fd");
2187 	    free(path);
2188 	    return (NULL);
2189 	}
2190     }
2191     if (fstat(fd, &sb) == -1) {
2192 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2193 	close(fd);
2194 	free(path);
2195 	return NULL;
2196     }
2197     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2198 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2199 	    break;
2200     if (obj != NULL && name != NULL) {
2201 	object_add_name(obj, name);
2202 	free(path);
2203 	close(fd);
2204 	return obj;
2205     }
2206     if (flags & RTLD_LO_NOLOAD) {
2207 	free(path);
2208 	close(fd);
2209 	return (NULL);
2210     }
2211 
2212     /* First use of this object, so we must map it in */
2213     obj = do_load_object(fd, name, path, &sb, flags);
2214     if (obj == NULL)
2215 	free(path);
2216     close(fd);
2217 
2218     return obj;
2219 }
2220 
2221 static Obj_Entry *
2222 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2223   int flags)
2224 {
2225     Obj_Entry *obj;
2226     struct statfs fs;
2227 
2228     /*
2229      * but first, make sure that environment variables haven't been
2230      * used to circumvent the noexec flag on a filesystem.
2231      */
2232     if (dangerous_ld_env) {
2233 	if (fstatfs(fd, &fs) != 0) {
2234 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2235 	    return NULL;
2236 	}
2237 	if (fs.f_flags & MNT_NOEXEC) {
2238 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2239 	    return NULL;
2240 	}
2241     }
2242     dbg("loading \"%s\"", printable_path(path));
2243     obj = map_object(fd, printable_path(path), sbp);
2244     if (obj == NULL)
2245         return NULL;
2246 
2247     /*
2248      * If DT_SONAME is present in the object, digest_dynamic2 already
2249      * added it to the object names.
2250      */
2251     if (name != NULL)
2252 	object_add_name(obj, name);
2253     obj->path = path;
2254     digest_dynamic(obj, 0);
2255     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2256 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2257     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2258       RTLD_LO_DLOPEN) {
2259 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2260 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2261 	munmap(obj->mapbase, obj->mapsize);
2262 	obj_free(obj);
2263 	return (NULL);
2264     }
2265 
2266     *obj_tail = obj;
2267     obj_tail = &obj->next;
2268     obj_count++;
2269     obj_loads++;
2270     linkmap_add(obj);	/* for GDB & dlinfo() */
2271 #if 0
2272     max_stack_flags |= obj->stack_flags;
2273 #endif
2274 
2275     dbg("  %p .. %p: %s", obj->mapbase,
2276          obj->mapbase + obj->mapsize - 1, obj->path);
2277     if (obj->textrel)
2278 	dbg("  WARNING: %s has impure text", obj->path);
2279     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2280 	obj->path);
2281 
2282     return obj;
2283 }
2284 
2285 static Obj_Entry *
2286 obj_from_addr(const void *addr)
2287 {
2288     Obj_Entry *obj;
2289 
2290     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2291 	if (addr < (void *) obj->mapbase)
2292 	    continue;
2293 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2294 	    return obj;
2295     }
2296     return NULL;
2297 }
2298 
2299 /*
2300  * If the main program is defined with a .preinit_array section, call
2301  * each function in order.  This must occur before the initialization
2302  * of any shared object or the main program.
2303  */
2304 static void
2305 preinit_main(void)
2306 {
2307     Elf_Addr *preinit_addr;
2308     int index;
2309 
2310     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2311     if (preinit_addr == NULL)
2312 	return;
2313 
2314     for (index = 0; index < obj_main->preinit_array_num; index++) {
2315 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2316 	    dbg("calling preinit function for %s at %p", obj_main->path,
2317 	      (void *)preinit_addr[index]);
2318 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2319 	      0, 0, obj_main->path);
2320 	    call_init_pointer(obj_main, preinit_addr[index]);
2321 	}
2322     }
2323 }
2324 
2325 /*
2326  * Call the finalization functions for each of the objects in "list"
2327  * belonging to the DAG of "root" and referenced once. If NULL "root"
2328  * is specified, every finalization function will be called regardless
2329  * of the reference count and the list elements won't be freed. All of
2330  * the objects are expected to have non-NULL fini functions.
2331  */
2332 static void
2333 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2334 {
2335     Objlist_Entry *elm;
2336     char *saved_msg;
2337     Elf_Addr *fini_addr;
2338     int index;
2339 
2340     assert(root == NULL || root->refcount == 1);
2341 
2342     /*
2343      * Preserve the current error message since a fini function might
2344      * call into the dynamic linker and overwrite it.
2345      */
2346     saved_msg = errmsg_save();
2347     do {
2348 	STAILQ_FOREACH(elm, list, link) {
2349 	    if (root != NULL && (elm->obj->refcount != 1 ||
2350 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2351 		continue;
2352 
2353 	    /* Remove object from fini list to prevent recursive invocation. */
2354 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2355 	    /*
2356 	     * XXX: If a dlopen() call references an object while the
2357 	     * fini function is in progress, we might end up trying to
2358 	     * unload the referenced object in dlclose() or the object
2359 	     * won't be unloaded although its fini function has been
2360 	     * called.
2361 	     */
2362 	    lock_release(rtld_bind_lock, lockstate);
2363 
2364 	    /*
2365 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2366 	     * When this happens, DT_FINI_ARRAY is processed first.
2367 	     * It is also processed backwards.  It is possible to encounter
2368 	     * DT_FINI_ARRAY elements with values of 0 or 1, but they need
2369 	     * to be ignored.
2370 	     */
2371 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2372 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2373 		for (index = elm->obj->fini_array_num - 1; index >= 0; index--) {
2374 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2375 			dbg("calling fini array function for %s at %p",
2376 			    elm->obj->path, (void *)fini_addr[index]);
2377 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2378 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2379 			call_initfini_pointer(elm->obj, fini_addr[index]);
2380 		    }
2381 		}
2382 	    }
2383 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2384 		dbg("calling fini function for %s at %p", elm->obj->path,
2385 		    (void *)elm->obj->fini);
2386 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2387 		    0, 0, elm->obj->path);
2388 		call_initfini_pointer(elm->obj, elm->obj->fini);
2389 	    }
2390 	    wlock_acquire(rtld_bind_lock, lockstate);
2391 	    /* No need to free anything if process is going down. */
2392 	    if (root != NULL)
2393 		free(elm);
2394 	    /*
2395 	     * We must restart the list traversal after every fini call
2396 	     * because a dlclose() call from the fini function or from
2397 	     * another thread might have modified the reference counts.
2398 	     */
2399 	    break;
2400 	}
2401     } while (elm != NULL);
2402     errmsg_restore(saved_msg);
2403 }
2404 
2405 /*
2406  * Call the initialization functions for each of the objects in
2407  * "list".  All of the objects are expected to have non-NULL init
2408  * functions.
2409  */
2410 static void
2411 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2412 {
2413     Objlist_Entry *elm;
2414     Obj_Entry *obj;
2415     char *saved_msg;
2416     Elf_Addr *init_addr;
2417     int index;
2418 
2419     /*
2420      * Clean init_scanned flag so that objects can be rechecked and
2421      * possibly initialized earlier if any of vectors called below
2422      * cause the change by using dlopen.
2423      */
2424     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2425 	obj->init_scanned = false;
2426 
2427     /*
2428      * Preserve the current error message since an init function might
2429      * call into the dynamic linker and overwrite it.
2430      */
2431     saved_msg = errmsg_save();
2432     STAILQ_FOREACH(elm, list, link) {
2433 	if (elm->obj->init_done) /* Initialized early. */
2434 	    continue;
2435 
2436 	/*
2437 	 * Race: other thread might try to use this object before current
2438 	 * one completes the initilization. Not much can be done here
2439 	 * without better locking.
2440 	 */
2441 	elm->obj->init_done = true;
2442 	lock_release(rtld_bind_lock, lockstate);
2443 
2444         /*
2445          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2446          * When this happens, DT_INIT is processed first.
2447 	 * It is possible to encounter DT_INIT_ARRAY elements with values
2448 	 * of 0 or 1, but they need to be ignored.
2449          */
2450 	if (elm->obj->init != (Elf_Addr)NULL) {
2451 	    dbg("calling init function for %s at %p", elm->obj->path,
2452 	        (void *)elm->obj->init);
2453 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2454 	        0, 0, elm->obj->path);
2455 	    call_initfini_pointer(elm->obj, elm->obj->init);
2456 	}
2457 	init_addr = (Elf_Addr *)elm->obj->init_array;
2458 	if (init_addr != NULL) {
2459 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2460 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2461 		    dbg("calling init array function for %s at %p", elm->obj->path,
2462 			(void *)init_addr[index]);
2463 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2464 			(void *)init_addr[index], 0, 0, elm->obj->path);
2465 		    call_init_pointer(elm->obj, init_addr[index]);
2466 		}
2467 	    }
2468 	}
2469 	wlock_acquire(rtld_bind_lock, lockstate);
2470     }
2471     errmsg_restore(saved_msg);
2472 }
2473 
2474 static void
2475 objlist_clear(Objlist *list)
2476 {
2477     Objlist_Entry *elm;
2478 
2479     while (!STAILQ_EMPTY(list)) {
2480 	elm = STAILQ_FIRST(list);
2481 	STAILQ_REMOVE_HEAD(list, link);
2482 	free(elm);
2483     }
2484 }
2485 
2486 static Objlist_Entry *
2487 objlist_find(Objlist *list, const Obj_Entry *obj)
2488 {
2489     Objlist_Entry *elm;
2490 
2491     STAILQ_FOREACH(elm, list, link)
2492 	if (elm->obj == obj)
2493 	    return elm;
2494     return NULL;
2495 }
2496 
2497 static void
2498 objlist_init(Objlist *list)
2499 {
2500     STAILQ_INIT(list);
2501 }
2502 
2503 static void
2504 objlist_push_head(Objlist *list, Obj_Entry *obj)
2505 {
2506     Objlist_Entry *elm;
2507 
2508     elm = NEW(Objlist_Entry);
2509     elm->obj = obj;
2510     STAILQ_INSERT_HEAD(list, elm, link);
2511 }
2512 
2513 static void
2514 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2515 {
2516     Objlist_Entry *elm;
2517 
2518     elm = NEW(Objlist_Entry);
2519     elm->obj = obj;
2520     STAILQ_INSERT_TAIL(list, elm, link);
2521 }
2522 
2523 static void
2524 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2525 {
2526 	Objlist_Entry *elm, *listelm;
2527 
2528 	STAILQ_FOREACH(listelm, list, link) {
2529 		if (listelm->obj == listobj)
2530 			break;
2531 	}
2532 	elm = NEW(Objlist_Entry);
2533 	elm->obj = obj;
2534 	if (listelm != NULL)
2535 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2536 	else
2537 		STAILQ_INSERT_TAIL(list, elm, link);
2538 }
2539 
2540 static void
2541 objlist_remove(Objlist *list, Obj_Entry *obj)
2542 {
2543     Objlist_Entry *elm;
2544 
2545     if ((elm = objlist_find(list, obj)) != NULL) {
2546 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2547 	free(elm);
2548     }
2549 }
2550 
2551 /*
2552  * Relocate dag rooted in the specified object.
2553  * Returns 0 on success, or -1 on failure.
2554  */
2555 
2556 static int
2557 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2558     int flags, RtldLockState *lockstate)
2559 {
2560 	Objlist_Entry *elm;
2561 	int error;
2562 
2563 	error = 0;
2564 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2565 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2566 		    lockstate);
2567 		if (error == -1)
2568 			break;
2569 	}
2570 	return (error);
2571 }
2572 
2573 /*
2574  * Prepare for, or clean after, relocating an object marked with
2575  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2576  * segments are remapped read-write.  After relocations are done, the
2577  * segment's permissions are returned back to the modes specified in
2578  * the phdrs.  If any relocation happened, or always for wired
2579  * program, COW is triggered.
2580  */
2581 static int
2582 reloc_textrel_prot(Obj_Entry *obj, bool before)
2583 {
2584 	const Elf_Phdr *ph;
2585 	void *base;
2586 	size_t l, sz;
2587 	int prot;
2588 
2589 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2590 	    l--, ph++) {
2591 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2592 			continue;
2593 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2594 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2595 		    trunc_page(ph->p_vaddr);
2596 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2597 	/*
2598 	 * Make sure modified text segments are included in the
2599 	 * core dump since we modified it.  This unfortunately causes the
2600 	 * entire text segment to core-out but we don't have much of a
2601 	 * choice.  We could try to only reenable core dumps on pages
2602 	 * in which relocations occured but that is likely most of the text
2603 	 * pages anyway, and even that would not work because the rest of
2604 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
2605 	 * (created due to our modifications) backed by the original OBJT_VNODE
2606 	 * object, and the ELF coredump code is currently only able to dump
2607 	 * vnode records for pure vnode-backed mappings, not vnode backings
2608 	 * to memory objects.
2609 	 */
2610 		if (before == false)
2611 			madvise(base, sz, MADV_CORE);
2612 		if (mprotect(base, sz, prot) == -1) {
2613 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2614 			    obj->path, before ? "en" : "dis",
2615 			    rtld_strerror(errno));
2616 			return (-1);
2617 		}
2618 	}
2619 	return (0);
2620 }
2621 
2622 /*
2623  * Relocate single object.
2624  * Returns 0 on success, or -1 on failure.
2625  */
2626 static int
2627 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2628     int flags, RtldLockState *lockstate)
2629 {
2630 
2631 	if (obj->relocated)
2632 		return (0);
2633 	obj->relocated = true;
2634 	if (obj != rtldobj)
2635 		dbg("relocating \"%s\"", obj->path);
2636 
2637 	if (obj->symtab == NULL || obj->strtab == NULL ||
2638 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2639 		_rtld_error("%s: Shared object has no run-time symbol table",
2640 			    obj->path);
2641 		return (-1);
2642 	}
2643 
2644 	/* There are relocations to the write-protected text segment. */
2645 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2646 		return (-1);
2647 
2648 	/* Process the non-PLT non-IFUNC relocations. */
2649 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2650 		return (-1);
2651 
2652 	/* Re-protected the text segment. */
2653 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2654 		return (-1);
2655 
2656 	/* Set the special PLT or GOT entries. */
2657 	init_pltgot(obj);
2658 
2659 	/* Process the PLT relocations. */
2660 	if (reloc_plt(obj) == -1)
2661 		return (-1);
2662 	/* Relocate the jump slots if we are doing immediate binding. */
2663 	if (obj->bind_now || bind_now)
2664 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2665 			return (-1);
2666 
2667 	/*
2668 	 * Process the non-PLT IFUNC relocations.  The relocations are
2669 	 * processed in two phases, because IFUNC resolvers may
2670 	 * reference other symbols, which must be readily processed
2671 	 * before resolvers are called.
2672 	 */
2673 	if (obj->non_plt_gnu_ifunc &&
2674 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2675 		return (-1);
2676 
2677 	/*
2678 	 * Set up the magic number and version in the Obj_Entry.  These
2679 	 * were checked in the crt1.o from the original ElfKit, so we
2680 	 * set them for backward compatibility.
2681 	 */
2682 	obj->magic = RTLD_MAGIC;
2683 	obj->version = RTLD_VERSION;
2684 
2685 	/*
2686 	 * Set relocated data to read-only status if protection specified
2687 	 */
2688 
2689 	if (obj->relro_size) {
2690 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2691 		_rtld_error("%s: Cannot enforce relro relocation: %s",
2692 		  obj->path, rtld_strerror(errno));
2693 		return (-1);
2694 	    }
2695 	    obj->relro_protected = true;
2696 	}
2697 	return (0);
2698 }
2699 
2700 /*
2701  * Relocate newly-loaded shared objects.  The argument is a pointer to
2702  * the Obj_Entry for the first such object.  All objects from the first
2703  * to the end of the list of objects are relocated.  Returns 0 on success,
2704  * or -1 on failure.
2705  */
2706 static int
2707 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2708     int flags, RtldLockState *lockstate)
2709 {
2710 	Obj_Entry *obj;
2711 	int error;
2712 
2713 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2714 		error = relocate_object(obj, bind_now, rtldobj, flags,
2715 		    lockstate);
2716 		if (error == -1)
2717 			break;
2718 	}
2719 	return (error);
2720 }
2721 
2722 /*
2723  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2724  * referencing STT_GNU_IFUNC symbols is postponed till the other
2725  * relocations are done.  The indirect functions specified as
2726  * ifunc are allowed to call other symbols, so we need to have
2727  * objects relocated before asking for resolution from indirects.
2728  *
2729  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2730  * instead of the usual lazy handling of PLT slots.  It is
2731  * consistent with how GNU does it.
2732  */
2733 static int
2734 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2735     RtldLockState *lockstate)
2736 {
2737 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2738 		return (-1);
2739 	if (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
2740 	    lockstate) == -1)
2741 		return (-1);
2742 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2743 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2744 		return (-1);
2745 	return (0);
2746 }
2747 
2748 static int
2749 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2750     RtldLockState *lockstate)
2751 {
2752 	Obj_Entry *obj;
2753 
2754 	for (obj = first;  obj != NULL;  obj = obj->next) {
2755 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2756 			return (-1);
2757 	}
2758 	return (0);
2759 }
2760 
2761 static int
2762 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2763     RtldLockState *lockstate)
2764 {
2765 	Objlist_Entry *elm;
2766 
2767 	STAILQ_FOREACH(elm, list, link) {
2768 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2769 		    lockstate) == -1)
2770 			return (-1);
2771 	}
2772 	return (0);
2773 }
2774 
2775 /*
2776  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2777  * before the process exits.
2778  */
2779 static void
2780 rtld_exit(void)
2781 {
2782     RtldLockState lockstate;
2783 
2784     wlock_acquire(rtld_bind_lock, &lockstate);
2785     dbg("rtld_exit()");
2786     objlist_call_fini(&list_fini, NULL, &lockstate);
2787     /* No need to remove the items from the list, since we are exiting. */
2788     if (!libmap_disable)
2789         lm_fini();
2790     lock_release(rtld_bind_lock, &lockstate);
2791 }
2792 
2793 /*
2794  * Iterate over a search path, translate each element, and invoke the
2795  * callback on the result.
2796  */
2797 static void *
2798 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2799 {
2800     const char *trans;
2801     if (path == NULL)
2802 	return (NULL);
2803 
2804     path += strspn(path, ":;");
2805     while (*path != '\0') {
2806 	size_t len;
2807 	char  *res;
2808 
2809 	len = strcspn(path, ":;");
2810 	trans = lm_findn(NULL, path, len);
2811 	if (trans)
2812 	    res = callback(trans, strlen(trans), arg);
2813 	else
2814 	    res = callback(path, len, arg);
2815 
2816 	if (res != NULL)
2817 	    return (res);
2818 
2819 	path += len;
2820 	path += strspn(path, ":;");
2821     }
2822 
2823     return (NULL);
2824 }
2825 
2826 struct try_library_args {
2827     const char	*name;
2828     size_t	 namelen;
2829     char	*buffer;
2830     size_t	 buflen;
2831 };
2832 
2833 static void *
2834 try_library_path(const char *dir, size_t dirlen, void *param)
2835 {
2836     struct try_library_args *arg;
2837 
2838     arg = param;
2839     if (*dir == '/' || trust) {
2840 	char *pathname;
2841 
2842 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2843 		return (NULL);
2844 
2845 	pathname = arg->buffer;
2846 	strncpy(pathname, dir, dirlen);
2847 	pathname[dirlen] = '/';
2848 	strcpy(pathname + dirlen + 1, arg->name);
2849 
2850 	dbg("  Trying \"%s\"", pathname);
2851 	if (access(pathname, F_OK) == 0) {		/* We found it */
2852 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2853 	    strcpy(pathname, arg->buffer);
2854 	    return (pathname);
2855 	}
2856     }
2857     return (NULL);
2858 }
2859 
2860 static char *
2861 search_library_path(const char *name, const char *path)
2862 {
2863     char *p;
2864     struct try_library_args arg;
2865 
2866     if (path == NULL)
2867 	return NULL;
2868 
2869     arg.name = name;
2870     arg.namelen = strlen(name);
2871     arg.buffer = xmalloc(PATH_MAX);
2872     arg.buflen = PATH_MAX;
2873 
2874     p = path_enumerate(path, try_library_path, &arg);
2875 
2876     free(arg.buffer);
2877 
2878     return (p);
2879 }
2880 
2881 
2882 /*
2883  * Finds the library with the given name using the directory descriptors
2884  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2885  *
2886  * Returns a freshly-opened close-on-exec file descriptor for the library,
2887  * or -1 if the library cannot be found.
2888  */
2889 static char *
2890 search_library_pathfds(const char *name, const char *path, int *fdp)
2891 {
2892 	char *envcopy, *fdstr, *found, *last_token;
2893 	size_t len;
2894 	int dirfd, fd;
2895 
2896 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2897 
2898 	/* Don't load from user-specified libdirs into setuid binaries. */
2899 	if (!trust)
2900 		return (NULL);
2901 
2902 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2903 	if (path == NULL)
2904 		return (NULL);
2905 
2906 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2907 	if (name[0] == '/') {
2908 		dbg("Absolute path (%s) passed to %s", name, __func__);
2909 		return (NULL);
2910 	}
2911 
2912 	/*
2913 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2914 	 * copy of the path, as strtok_r rewrites separator tokens
2915 	 * with '\0'.
2916 	 *
2917 	 * NOTE: strtok() uses a __thread static and cannot be used by rtld.
2918 	 */
2919 	found = NULL;
2920 	envcopy = xstrdup(path);
2921 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2922 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2923 		dirfd = parse_libdir(fdstr);
2924 		if (dirfd < 0)
2925 			break;
2926 		fd = openat(dirfd, name, O_RDONLY | O_CLOEXEC);
2927 		if (fd >= 0) {
2928 			*fdp = fd;
2929 			len = strlen(fdstr) + strlen(name) + 3;
2930 			found = xmalloc(len);
2931 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2932 				_rtld_error("error generating '%d/%s'",
2933 				    dirfd, name);
2934 				die();
2935 			}
2936 			dbg("open('%s') => %d", found, fd);
2937 			break;
2938 		}
2939 	}
2940 	free(envcopy);
2941 
2942 	return (found);
2943 }
2944 
2945 
2946 int
2947 dlclose(void *handle)
2948 {
2949     Obj_Entry *root;
2950     RtldLockState lockstate;
2951 
2952     wlock_acquire(rtld_bind_lock, &lockstate);
2953     root = dlcheck(handle);
2954     if (root == NULL) {
2955 	lock_release(rtld_bind_lock, &lockstate);
2956 	return -1;
2957     }
2958     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2959 	root->path);
2960 
2961     /* Unreference the object and its dependencies. */
2962     root->dl_refcount--;
2963 
2964     if (root->refcount == 1) {
2965 	/*
2966 	 * The object will be no longer referenced, so we must unload it.
2967 	 * First, call the fini functions.
2968 	 */
2969 	objlist_call_fini(&list_fini, root, &lockstate);
2970 
2971 	unref_dag(root);
2972 
2973 	/* Finish cleaning up the newly-unreferenced objects. */
2974 	GDB_STATE(RT_DELETE,&root->linkmap);
2975 	unload_object(root);
2976 	GDB_STATE(RT_CONSISTENT,NULL);
2977     } else
2978 	unref_dag(root);
2979 
2980     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2981     lock_release(rtld_bind_lock, &lockstate);
2982     return 0;
2983 }
2984 
2985 char *
2986 dlerror(void)
2987 {
2988     char *msg = error_message;
2989     error_message = NULL;
2990     return msg;
2991 }
2992 
2993 void *
2994 dlopen(const char *name, int mode)
2995 {
2996 
2997 	return (rtld_dlopen(name, -1, mode));
2998 }
2999 
3000 void *
3001 fdlopen(int fd, int mode)
3002 {
3003 
3004 	return (rtld_dlopen(NULL, fd, mode));
3005 }
3006 
3007 static void *
3008 rtld_dlopen(const char *name, int fd, int mode)
3009 {
3010     RtldLockState lockstate;
3011     int lo_flags;
3012 
3013     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
3014     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
3015     if (ld_tracing != NULL) {
3016 	rlock_acquire(rtld_bind_lock, &lockstate);
3017 	if (sigsetjmp(lockstate.env, 0) != 0)
3018 	    lock_upgrade(rtld_bind_lock, &lockstate);
3019 	environ = (char **)*get_program_var_addr("environ", &lockstate);
3020 	lock_release(rtld_bind_lock, &lockstate);
3021     }
3022     lo_flags = RTLD_LO_DLOPEN;
3023     if (mode & RTLD_NODELETE)
3024 	    lo_flags |= RTLD_LO_NODELETE;
3025     if (mode & RTLD_NOLOAD)
3026 	    lo_flags |= RTLD_LO_NOLOAD;
3027     if (ld_tracing != NULL)
3028 	    lo_flags |= RTLD_LO_TRACE;
3029 
3030     return (dlopen_object(name, fd, obj_main, lo_flags,
3031       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3032 }
3033 
3034 static void
3035 dlopen_cleanup(Obj_Entry *obj)
3036 {
3037 
3038 	obj->dl_refcount--;
3039 	unref_dag(obj);
3040 	if (obj->refcount == 0)
3041 		unload_object(obj);
3042 }
3043 
3044 static Obj_Entry *
3045 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3046     int mode, RtldLockState *lockstate)
3047 {
3048     Obj_Entry **old_obj_tail;
3049     Obj_Entry *obj;
3050     Objlist initlist;
3051     RtldLockState mlockstate;
3052     int result;
3053 
3054     objlist_init(&initlist);
3055 
3056     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3057 	wlock_acquire(rtld_bind_lock, &mlockstate);
3058 	lockstate = &mlockstate;
3059     }
3060     GDB_STATE(RT_ADD,NULL);
3061 
3062     old_obj_tail = obj_tail;
3063     obj = NULL;
3064     if (name == NULL && fd == -1) {
3065 	obj = obj_main;
3066 	obj->refcount++;
3067     } else {
3068 	obj = load_object(name, fd, refobj, lo_flags);
3069     }
3070 
3071     if (obj) {
3072 	obj->dl_refcount++;
3073 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3074 	    objlist_push_tail(&list_global, obj);
3075 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3076 	    assert(*old_obj_tail == obj);
3077 	    if ((lo_flags & RTLD_LO_EARLY) == 0 && obj->static_tls &&
3078 		!allocate_tls_offset(obj)) {
3079 		    _rtld_error("%s: No space available "
3080 				"for static TLS",
3081 				obj->path);
3082 		    result = -1;
3083 	    } else {
3084 		    result = 0;
3085 	    }
3086 	    if (result == 0) {
3087 		result = load_needed_objects(
3088 			    obj,
3089 			    lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3090 	    }
3091 	    init_dag(obj);
3092 	    ref_dag(obj);
3093 	    if (result != -1)
3094 		result = rtld_verify_versions(&obj->dagmembers);
3095 	    if (result != -1 && ld_tracing)
3096 		goto trace;
3097 	    if (result == -1 || relocate_object_dag(obj,
3098 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3099 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3100 	      lockstate) == -1) {
3101 		dlopen_cleanup(obj);
3102 		obj = NULL;
3103 	    } else if (lo_flags & RTLD_LO_EARLY) {
3104 		/*
3105 		 * Do not call the init functions for early loaded
3106 		 * filtees.  The image is still not initialized enough
3107 		 * for them to work.
3108 		 *
3109 		 * Our object is found by the global object list and
3110 		 * will be ordered among all init calls done right
3111 		 * before transferring control to main.
3112 		 */
3113 	    } else {
3114 		/* Make list of init functions to call. */
3115 		initlist_add_objects(obj, &obj->next, &initlist);
3116 	    }
3117 	    /*
3118 	     * Process all no_delete objects here, given them own
3119 	     * DAGs to prevent their dependencies from being unloaded.
3120 	     * This has to be done after we have loaded all of the
3121 	     * dependencies, so that we do not miss any.
3122 	     */
3123 	    if (obj != NULL)
3124 		process_nodelete(obj);
3125 	} else {
3126 	    /*
3127 	     * Bump the reference counts for objects on this DAG.  If
3128 	     * this is the first dlopen() call for the object that was
3129 	     * already loaded as a dependency, initialize the dag
3130 	     * starting at it.
3131 	     */
3132 	    init_dag(obj);
3133 	    ref_dag(obj);
3134 
3135 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3136 		goto trace;
3137 	}
3138 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3139 	  obj->z_nodelete) && !obj->ref_nodel) {
3140 	    dbg("obj %s nodelete", obj->path);
3141 	    ref_dag(obj);
3142 	    obj->z_nodelete = obj->ref_nodel = true;
3143 	}
3144     }
3145 
3146     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3147 	name);
3148     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3149 
3150     if ((lo_flags & RTLD_LO_EARLY) == 0) {
3151 	map_stacks_exec(lockstate);
3152 	if (obj)
3153 	    distribute_static_tls(&initlist, lockstate);
3154     }
3155 
3156     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3157       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3158       lockstate) == -1) {
3159 	objlist_clear(&initlist);
3160 	dlopen_cleanup(obj);
3161 	if (lockstate == &mlockstate)
3162 	    lock_release(rtld_bind_lock, lockstate);
3163 	return (NULL);
3164     }
3165 
3166     if (!(lo_flags & RTLD_LO_EARLY)) {
3167 	/* Call the init functions. */
3168 	objlist_call_init(&initlist, lockstate);
3169     }
3170     objlist_clear(&initlist);
3171     if (lockstate == &mlockstate)
3172 	lock_release(rtld_bind_lock, lockstate);
3173     return obj;
3174 trace:
3175     trace_loaded_objects(obj);
3176     if (lockstate == &mlockstate)
3177 	lock_release(rtld_bind_lock, lockstate);
3178     exit(0);
3179 }
3180 
3181 static void *
3182 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3183     int flags)
3184 {
3185     DoneList donelist;
3186     const Obj_Entry *obj, *defobj;
3187     const Elf_Sym *def;
3188     SymLook req;
3189     RtldLockState lockstate;
3190     tls_index ti;
3191     int res;
3192 
3193     def = NULL;
3194     defobj = NULL;
3195     symlook_init(&req, name);
3196     req.ventry = ve;
3197     req.flags = flags | SYMLOOK_IN_PLT;
3198     req.lockstate = &lockstate;
3199 
3200     rlock_acquire(rtld_bind_lock, &lockstate);
3201     if (sigsetjmp(lockstate.env, 0) != 0)
3202 	    lock_upgrade(rtld_bind_lock, &lockstate);
3203     if (handle == NULL || handle == RTLD_NEXT ||
3204 	handle == RTLD_DEFAULT || handle == RTLD_SELF ||
3205 	handle == RTLD_ALL) {
3206 
3207 	if (handle != RTLD_ALL) {
3208 		if ((obj = obj_from_addr(retaddr)) == NULL) {
3209 		    _rtld_error("Cannot determine caller's shared object");
3210 		    lock_release(rtld_bind_lock, &lockstate);
3211 		    return NULL;
3212 		}
3213 	} else {
3214 		obj = obj_list;
3215 	}
3216 	if (handle == NULL) {	/* Just the caller's shared object. */
3217 	    res = symlook_obj(&req, obj);
3218 	    if (res == 0) {
3219 		def = req.sym_out;
3220 		defobj = req.defobj_out;
3221 	    }
3222 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3223 		   handle == RTLD_SELF || /* ... caller included */
3224 		   handle == RTLD_ALL) {  /* All Objects */
3225 	    if (handle == RTLD_NEXT)
3226 		obj = obj->next;
3227 	    for (; obj != NULL; obj = obj->next) {
3228 		res = symlook_obj(&req, obj);
3229 		if (res == 0) {
3230 		    if (def == NULL ||
3231 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3232 			def = req.sym_out;
3233 			defobj = req.defobj_out;
3234 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3235 			    break;
3236 		    }
3237 		}
3238 	    }
3239 	    /*
3240 	     * Search the dynamic linker itself, and possibly resolve the
3241 	     * symbol from there.  This is how the application links to
3242 	     * dynamic linker services such as dlopen.
3243 	     */
3244 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3245 		res = symlook_obj(&req, &obj_rtld);
3246 		if (res == 0) {
3247 		    def = req.sym_out;
3248 		    defobj = req.defobj_out;
3249 		}
3250 	    }
3251 	} else {
3252 	    assert(handle == RTLD_DEFAULT);
3253 	    res = symlook_default(&req, obj);
3254 	    if (res == 0) {
3255 		defobj = req.defobj_out;
3256 		def = req.sym_out;
3257 	    }
3258 	}
3259     } else {
3260 	if ((obj = dlcheck(handle)) == NULL) {
3261 	    lock_release(rtld_bind_lock, &lockstate);
3262 	    return NULL;
3263 	}
3264 
3265 	donelist_init(&donelist);
3266 	if (obj->mainprog) {
3267             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3268 	    res = symlook_global(&req, &donelist);
3269 	    if (res == 0) {
3270 		def = req.sym_out;
3271 		defobj = req.defobj_out;
3272 	    }
3273 	    /*
3274 	     * Search the dynamic linker itself, and possibly resolve the
3275 	     * symbol from there.  This is how the application links to
3276 	     * dynamic linker services such as dlopen.
3277 	     */
3278 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3279 		res = symlook_obj(&req, &obj_rtld);
3280 		if (res == 0) {
3281 		    def = req.sym_out;
3282 		    defobj = req.defobj_out;
3283 		}
3284 	    }
3285 	}
3286 	else {
3287 	    /* Search the whole DAG rooted at the given object. */
3288 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3289 	    if (res == 0) {
3290 		def = req.sym_out;
3291 		defobj = req.defobj_out;
3292 	    }
3293 	}
3294     }
3295 
3296     if (def != NULL) {
3297 	lock_release(rtld_bind_lock, &lockstate);
3298 
3299 	/*
3300 	 * The value required by the caller is derived from the value
3301 	 * of the symbol. this is simply the relocated value of the
3302 	 * symbol.
3303 	 */
3304 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3305 	    return (make_function_pointer(def, defobj));
3306 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3307 	    return (rtld_resolve_ifunc(defobj, def));
3308 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3309 	    ti.ti_module = defobj->tlsindex;
3310 	    ti.ti_offset = def->st_value;
3311 	    return (__tls_get_addr(&ti));
3312 	} else
3313 	    return (defobj->relocbase + def->st_value);
3314     }
3315 
3316     _rtld_error("Undefined symbol \"%s\"", name);
3317     lock_release(rtld_bind_lock, &lockstate);
3318     return NULL;
3319 }
3320 
3321 void *
3322 dlsym(void *handle, const char *name)
3323 {
3324 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3325 	    SYMLOOK_DLSYM);
3326 }
3327 
3328 dlfunc_t
3329 dlfunc(void *handle, const char *name)
3330 {
3331 	union {
3332 		void *d;
3333 		dlfunc_t f;
3334 	} rv;
3335 
3336 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3337 	    SYMLOOK_DLSYM);
3338 	return (rv.f);
3339 }
3340 
3341 void *
3342 dlvsym(void *handle, const char *name, const char *version)
3343 {
3344 	Ver_Entry ventry;
3345 
3346 	ventry.name = version;
3347 	ventry.file = NULL;
3348 	ventry.hash = elf_hash(version);
3349 	ventry.flags= 0;
3350 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3351 	    SYMLOOK_DLSYM);
3352 }
3353 
3354 int
3355 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3356 {
3357     const Obj_Entry *obj;
3358     RtldLockState lockstate;
3359 
3360     rlock_acquire(rtld_bind_lock, &lockstate);
3361     obj = obj_from_addr(addr);
3362     if (obj == NULL) {
3363         _rtld_error("No shared object contains address");
3364 	lock_release(rtld_bind_lock, &lockstate);
3365         return (0);
3366     }
3367     rtld_fill_dl_phdr_info(obj, phdr_info);
3368     lock_release(rtld_bind_lock, &lockstate);
3369     return (1);
3370 }
3371 
3372 int
3373 dladdr(const void *addr, Dl_info *info)
3374 {
3375     const Obj_Entry *obj;
3376     const Elf_Sym *def;
3377     void *symbol_addr;
3378     unsigned long symoffset;
3379     RtldLockState lockstate;
3380 
3381     rlock_acquire(rtld_bind_lock, &lockstate);
3382     obj = obj_from_addr(addr);
3383     if (obj == NULL) {
3384         _rtld_error("No shared object contains address");
3385 	lock_release(rtld_bind_lock, &lockstate);
3386         return 0;
3387     }
3388     info->dli_fname = obj->path;
3389     info->dli_fbase = obj->mapbase;
3390     info->dli_saddr = NULL;
3391     info->dli_sname = NULL;
3392 
3393     /*
3394      * Walk the symbol list looking for the symbol whose address is
3395      * closest to the address sent in.
3396      */
3397     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3398         def = obj->symtab + symoffset;
3399 
3400         /*
3401          * For skip the symbol if st_shndx is either SHN_UNDEF or
3402          * SHN_COMMON.
3403          */
3404         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3405             continue;
3406 
3407         /*
3408          * If the symbol is greater than the specified address, or if it
3409          * is further away from addr than the current nearest symbol,
3410          * then reject it.
3411          */
3412         symbol_addr = obj->relocbase + def->st_value;
3413         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3414             continue;
3415 
3416         /* Update our idea of the nearest symbol. */
3417         info->dli_sname = obj->strtab + def->st_name;
3418         info->dli_saddr = symbol_addr;
3419 
3420         /* Exact match? */
3421         if (info->dli_saddr == addr)
3422             break;
3423     }
3424     lock_release(rtld_bind_lock, &lockstate);
3425     return 1;
3426 }
3427 
3428 int
3429 dlinfo(void *handle, int request, void *p)
3430 {
3431     const Obj_Entry *obj;
3432     RtldLockState lockstate;
3433     int error;
3434 
3435     rlock_acquire(rtld_bind_lock, &lockstate);
3436 
3437     if (handle == NULL || handle == RTLD_SELF) {
3438 	void *retaddr;
3439 
3440 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3441 	if ((obj = obj_from_addr(retaddr)) == NULL)
3442 	    _rtld_error("Cannot determine caller's shared object");
3443     } else
3444 	obj = dlcheck(handle);
3445 
3446     if (obj == NULL) {
3447 	lock_release(rtld_bind_lock, &lockstate);
3448 	return (-1);
3449     }
3450 
3451     error = 0;
3452     switch (request) {
3453     case RTLD_DI_LINKMAP:
3454 	*((struct link_map const **)p) = &obj->linkmap;
3455 	break;
3456     case RTLD_DI_ORIGIN:
3457 	error = rtld_dirname(obj->path, p);
3458 	break;
3459 
3460     case RTLD_DI_SERINFOSIZE:
3461     case RTLD_DI_SERINFO:
3462 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3463 	break;
3464 
3465     default:
3466 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3467 	error = -1;
3468     }
3469 
3470     lock_release(rtld_bind_lock, &lockstate);
3471 
3472     return (error);
3473 }
3474 
3475 static void
3476 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3477 {
3478 
3479 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3480 	phdr_info->dlpi_name = obj->path;
3481 	phdr_info->dlpi_phdr = obj->phdr;
3482 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3483 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3484 	phdr_info->dlpi_tls_data = obj->tlsinit;
3485 	phdr_info->dlpi_adds = obj_loads;
3486 	phdr_info->dlpi_subs = obj_loads - obj_count;
3487 }
3488 
3489 int
3490 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3491 {
3492     struct dl_phdr_info phdr_info;
3493     const Obj_Entry *obj;
3494     RtldLockState bind_lockstate, phdr_lockstate;
3495     int error;
3496 
3497     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3498     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3499 
3500     error = 0;
3501 
3502     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3503 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3504 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3505 		break;
3506 
3507     }
3508     if (error == 0) {
3509 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3510 	error = callback(&phdr_info, sizeof(phdr_info), param);
3511     }
3512 
3513     lock_release(rtld_bind_lock, &bind_lockstate);
3514     lock_release(rtld_phdr_lock, &phdr_lockstate);
3515 
3516     return (error);
3517 }
3518 
3519 static void *
3520 fill_search_info(const char *dir, size_t dirlen, void *param)
3521 {
3522     struct fill_search_info_args *arg;
3523 
3524     arg = param;
3525 
3526     if (arg->request == RTLD_DI_SERINFOSIZE) {
3527 	arg->serinfo->dls_cnt ++;
3528 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3529     } else {
3530 	struct dl_serpath *s_entry;
3531 
3532 	s_entry = arg->serpath;
3533 	s_entry->dls_name  = arg->strspace;
3534 	s_entry->dls_flags = arg->flags;
3535 
3536 	strncpy(arg->strspace, dir, dirlen);
3537 	arg->strspace[dirlen] = '\0';
3538 
3539 	arg->strspace += dirlen + 1;
3540 	arg->serpath++;
3541     }
3542 
3543     return (NULL);
3544 }
3545 
3546 static int
3547 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3548 {
3549     struct dl_serinfo _info;
3550     struct fill_search_info_args args;
3551 
3552     args.request = RTLD_DI_SERINFOSIZE;
3553     args.serinfo = &_info;
3554 
3555     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3556     _info.dls_cnt  = 0;
3557 
3558     path_enumerate(obj->rpath, fill_search_info, &args);
3559     path_enumerate(ld_library_path, fill_search_info, &args);
3560     path_enumerate(obj->runpath, fill_search_info, &args);
3561     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3562     if (!obj->z_nodeflib)
3563       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3564 
3565 
3566     if (request == RTLD_DI_SERINFOSIZE) {
3567 	info->dls_size = _info.dls_size;
3568 	info->dls_cnt = _info.dls_cnt;
3569 	return (0);
3570     }
3571 
3572     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3573 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3574 	return (-1);
3575     }
3576 
3577     args.request  = RTLD_DI_SERINFO;
3578     args.serinfo  = info;
3579     args.serpath  = &info->dls_serpath[0];
3580     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3581 
3582     args.flags = LA_SER_RUNPATH;
3583     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3584 	return (-1);
3585 
3586     args.flags = LA_SER_LIBPATH;
3587     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3588 	return (-1);
3589 
3590     args.flags = LA_SER_RUNPATH;
3591     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3592 	return (-1);
3593 
3594     args.flags = LA_SER_CONFIG;
3595     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3596       != NULL)
3597 	return (-1);
3598 
3599     args.flags = LA_SER_DEFAULT;
3600     if (!obj->z_nodeflib &&
3601       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3602 	return (-1);
3603     return (0);
3604 }
3605 
3606 static int
3607 rtld_dirname(const char *path, char *bname)
3608 {
3609     const char *endp;
3610 
3611     /* Empty or NULL string gets treated as "." */
3612     if (path == NULL || *path == '\0') {
3613 	bname[0] = '.';
3614 	bname[1] = '\0';
3615 	return (0);
3616     }
3617 
3618     /* Strip trailing slashes */
3619     endp = path + strlen(path) - 1;
3620     while (endp > path && *endp == '/')
3621 	endp--;
3622 
3623     /* Find the start of the dir */
3624     while (endp > path && *endp != '/')
3625 	endp--;
3626 
3627     /* Either the dir is "/" or there are no slashes */
3628     if (endp == path) {
3629 	bname[0] = *endp == '/' ? '/' : '.';
3630 	bname[1] = '\0';
3631 	return (0);
3632     } else {
3633 	do {
3634 	    endp--;
3635 	} while (endp > path && *endp == '/');
3636     }
3637 
3638     if (endp - path + 2 > PATH_MAX)
3639     {
3640 	_rtld_error("Filename is too long: %s", path);
3641 	return(-1);
3642     }
3643 
3644     strncpy(bname, path, endp - path + 1);
3645     bname[endp - path + 1] = '\0';
3646     return (0);
3647 }
3648 
3649 static int
3650 rtld_dirname_abs(const char *path, char *base)
3651 {
3652 	char base_rel[PATH_MAX];
3653 
3654 	if (rtld_dirname(path, base) == -1)
3655 		return (-1);
3656 	if (base[0] == '/')
3657 		return (0);
3658 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3659 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3660 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3661 		return (-1);
3662 	strcpy(base, base_rel);
3663 	return (0);
3664 }
3665 
3666 static void
3667 linkmap_add(Obj_Entry *obj)
3668 {
3669     struct link_map *l = &obj->linkmap;
3670     struct link_map *prev;
3671 
3672     obj->linkmap.l_name = obj->path;
3673     obj->linkmap.l_addr = obj->mapbase;
3674     obj->linkmap.l_ld = obj->dynamic;
3675 
3676     if (r_debug.r_map == NULL) {
3677 	r_debug.r_map = l;
3678 	return;
3679     }
3680 
3681     /*
3682      * Scan to the end of the list, but not past the entry for the
3683      * dynamic linker, which we want to keep at the very end.
3684      */
3685     for (prev = r_debug.r_map;
3686       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3687       prev = prev->l_next)
3688 	;
3689 
3690     /* Link in the new entry. */
3691     l->l_prev = prev;
3692     l->l_next = prev->l_next;
3693     if (l->l_next != NULL)
3694 	l->l_next->l_prev = l;
3695     prev->l_next = l;
3696 }
3697 
3698 static void
3699 linkmap_delete(Obj_Entry *obj)
3700 {
3701     struct link_map *l = &obj->linkmap;
3702 
3703     if (l->l_prev == NULL) {
3704 	if ((r_debug.r_map = l->l_next) != NULL)
3705 	    l->l_next->l_prev = NULL;
3706 	return;
3707     }
3708 
3709     if ((l->l_prev->l_next = l->l_next) != NULL)
3710 	l->l_next->l_prev = l->l_prev;
3711 }
3712 
3713 /*
3714  * Function for the debugger to set a breakpoint on to gain control.
3715  *
3716  * The two parameters allow the debugger to easily find and determine
3717  * what the runtime loader is doing and to whom it is doing it.
3718  *
3719  * When the loadhook trap is hit (r_debug_state, set at program
3720  * initialization), the arguments can be found on the stack:
3721  *
3722  *  +8   struct link_map *m
3723  *  +4   struct r_debug  *rd
3724  *  +0   RetAddr
3725  */
3726 void
3727 r_debug_state(struct r_debug* rd, struct link_map *m)
3728 {
3729     /*
3730      * The following is a hack to force the compiler to emit calls to
3731      * this function, even when optimizing.  If the function is empty,
3732      * the compiler is not obliged to emit any code for calls to it,
3733      * even when marked __noinline.  However, gdb depends on those
3734      * calls being made.
3735      */
3736     __asm __volatile("" : : : "memory");
3737 }
3738 
3739 /*
3740  * A function called after init routines have completed. This can be used to
3741  * break before a program's entry routine is called, and can be used when
3742  * main is not available in the symbol table.
3743  */
3744 void
3745 _r_debug_postinit(struct link_map *m)
3746 {
3747 
3748 	/* See r_debug_state(). */
3749 	__asm __volatile("" : : : "memory");
3750 }
3751 
3752 /*
3753  * Get address of the pointer variable in the main program.
3754  * Prefer non-weak symbol over the weak one.
3755  */
3756 static const void **
3757 get_program_var_addr(const char *name, RtldLockState *lockstate)
3758 {
3759     SymLook req;
3760     DoneList donelist;
3761 
3762     symlook_init(&req, name);
3763     req.lockstate = lockstate;
3764     donelist_init(&donelist);
3765     if (symlook_global(&req, &donelist) != 0)
3766 	return (NULL);
3767     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3768 	return ((const void **)make_function_pointer(req.sym_out,
3769 	  req.defobj_out));
3770     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3771 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3772     else
3773 	return ((const void **)(req.defobj_out->relocbase +
3774 	  req.sym_out->st_value));
3775 }
3776 
3777 /*
3778  * Set a pointer variable in the main program to the given value.  This
3779  * is used to set key variables such as "environ" before any of the
3780  * init functions are called.
3781  */
3782 static void
3783 set_program_var(const char *name, const void *value)
3784 {
3785     const void **addr;
3786 
3787     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3788 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3789 	*addr = value;
3790     }
3791 }
3792 
3793 /*
3794  * Search the global objects, including dependencies and main object,
3795  * for the given symbol.
3796  */
3797 static int
3798 symlook_global(SymLook *req, DoneList *donelist)
3799 {
3800     SymLook req1;
3801     const Objlist_Entry *elm;
3802     int res;
3803 
3804     symlook_init_from_req(&req1, req);
3805 
3806     /* Search all objects loaded at program start up. */
3807     if (req->defobj_out == NULL ||
3808       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3809 	res = symlook_list(&req1, &list_main, donelist);
3810 	if (res == 0 && (req->defobj_out == NULL ||
3811 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3812 	    req->sym_out = req1.sym_out;
3813 	    req->defobj_out = req1.defobj_out;
3814 	    assert(req->defobj_out != NULL);
3815 	}
3816     }
3817 
3818     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3819     STAILQ_FOREACH(elm, &list_global, link) {
3820 	if (req->defobj_out != NULL &&
3821 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3822 	    break;
3823 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3824 	if (res == 0 && (req->defobj_out == NULL ||
3825 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3826 	    req->sym_out = req1.sym_out;
3827 	    req->defobj_out = req1.defobj_out;
3828 	    assert(req->defobj_out != NULL);
3829 	}
3830     }
3831 
3832     return (req->sym_out != NULL ? 0 : ESRCH);
3833 }
3834 
3835 /*
3836  * This is a special version of getenv which is far more efficient
3837  * at finding LD_ environment vars.
3838  */
3839 static
3840 const char *
3841 _getenv_ld(const char *id)
3842 {
3843     const char *envp;
3844     int i, j;
3845     int idlen = strlen(id);
3846 
3847     if (ld_index == LD_ARY_CACHE)
3848 	return(getenv(id));
3849     if (ld_index == 0) {
3850 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3851 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3852 		ld_ary[j++] = envp;
3853 	}
3854 	if (j == 0)
3855 		ld_ary[j++] = "";
3856 	ld_index = j;
3857     }
3858     for (i = ld_index - 1; i >= 0; --i) {
3859 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3860 	    return(ld_ary[i] + idlen + 1);
3861     }
3862     return(NULL);
3863 }
3864 
3865 /*
3866  * Given a symbol name in a referencing object, find the corresponding
3867  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3868  * no definition was found.  Returns a pointer to the Obj_Entry of the
3869  * defining object via the reference parameter DEFOBJ_OUT.
3870  */
3871 static int
3872 symlook_default(SymLook *req, const Obj_Entry *refobj)
3873 {
3874     DoneList donelist;
3875     const Objlist_Entry *elm;
3876     SymLook req1;
3877     int res;
3878 
3879     donelist_init(&donelist);
3880     symlook_init_from_req(&req1, req);
3881 
3882     /* Look first in the referencing object if linked symbolically. */
3883     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3884 	res = symlook_obj(&req1, refobj);
3885 	if (res == 0) {
3886 	    req->sym_out = req1.sym_out;
3887 	    req->defobj_out = req1.defobj_out;
3888 	    assert(req->defobj_out != NULL);
3889 	}
3890     }
3891 
3892     symlook_global(req, &donelist);
3893 
3894     /* Search all dlopened DAGs containing the referencing object. */
3895     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3896 	if (req->sym_out != NULL &&
3897 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3898 	    break;
3899 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3900 	if (res == 0 && (req->sym_out == NULL ||
3901 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3902 	    req->sym_out = req1.sym_out;
3903 	    req->defobj_out = req1.defobj_out;
3904 	    assert(req->defobj_out != NULL);
3905 	}
3906     }
3907 
3908     /*
3909      * Search the dynamic linker itself, and possibly resolve the
3910      * symbol from there.  This is how the application links to
3911      * dynamic linker services such as dlopen.
3912      */
3913     if (req->sym_out == NULL ||
3914       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3915 	res = symlook_obj(&req1, &obj_rtld);
3916 	if (res == 0) {
3917 	    req->sym_out = req1.sym_out;
3918 	    req->defobj_out = req1.defobj_out;
3919 	    assert(req->defobj_out != NULL);
3920 	}
3921     }
3922 
3923     return (req->sym_out != NULL ? 0 : ESRCH);
3924 }
3925 
3926 static int
3927 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3928 {
3929     const Elf_Sym *def;
3930     const Obj_Entry *defobj;
3931     const Objlist_Entry *elm;
3932     SymLook req1;
3933     int res;
3934 
3935     def = NULL;
3936     defobj = NULL;
3937     STAILQ_FOREACH(elm, objlist, link) {
3938 	if (donelist_check(dlp, elm->obj))
3939 	    continue;
3940 	symlook_init_from_req(&req1, req);
3941 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3942 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3943 		def = req1.sym_out;
3944 		defobj = req1.defobj_out;
3945 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3946 		    break;
3947 	    }
3948 	}
3949     }
3950     if (def != NULL) {
3951 	req->sym_out = def;
3952 	req->defobj_out = defobj;
3953 	return (0);
3954     }
3955     return (ESRCH);
3956 }
3957 
3958 /*
3959  * Search the chain of DAGS cointed to by the given Needed_Entry
3960  * for a symbol of the given name.  Each DAG is scanned completely
3961  * before advancing to the next one.  Returns a pointer to the symbol,
3962  * or NULL if no definition was found.
3963  */
3964 static int
3965 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3966 {
3967     const Elf_Sym *def;
3968     const Needed_Entry *n;
3969     const Obj_Entry *defobj;
3970     SymLook req1;
3971     int res;
3972 
3973     def = NULL;
3974     defobj = NULL;
3975     symlook_init_from_req(&req1, req);
3976     for (n = needed; n != NULL; n = n->next) {
3977 	if (n->obj == NULL ||
3978 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3979 	    continue;
3980 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3981 	    def = req1.sym_out;
3982 	    defobj = req1.defobj_out;
3983 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3984 		break;
3985 	}
3986     }
3987     if (def != NULL) {
3988 	req->sym_out = def;
3989 	req->defobj_out = defobj;
3990 	return (0);
3991     }
3992     return (ESRCH);
3993 }
3994 
3995 /*
3996  * Search the symbol table of a single shared object for a symbol of
3997  * the given name and version, if requested.  Returns a pointer to the
3998  * symbol, or NULL if no definition was found.  If the object is
3999  * filter, return filtered symbol from filtee.
4000  *
4001  * The symbol's hash value is passed in for efficiency reasons; that
4002  * eliminates many recomputations of the hash value.
4003  */
4004 int
4005 symlook_obj(SymLook *req, const Obj_Entry *obj)
4006 {
4007     DoneList donelist;
4008     SymLook req1;
4009     int flags, res, mres;
4010 
4011     /*
4012      * If there is at least one valid hash at this point, we prefer to
4013      * use the faster GNU version if available.
4014      */
4015     if (obj->valid_hash_gnu)
4016 	mres = symlook_obj1_gnu(req, obj);
4017     else if (obj->valid_hash_sysv)
4018 	mres = symlook_obj1_sysv(req, obj);
4019     else
4020 	return (EINVAL);
4021 
4022     if (mres == 0) {
4023 	if (obj->needed_filtees != NULL) {
4024 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4025 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4026 	    donelist_init(&donelist);
4027 	    symlook_init_from_req(&req1, req);
4028 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
4029 	    if (res == 0) {
4030 		req->sym_out = req1.sym_out;
4031 		req->defobj_out = req1.defobj_out;
4032 	    }
4033 	    return (res);
4034 	}
4035 	if (obj->needed_aux_filtees != NULL) {
4036 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
4037 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
4038 	    donelist_init(&donelist);
4039 	    symlook_init_from_req(&req1, req);
4040 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
4041 	    if (res == 0) {
4042 		req->sym_out = req1.sym_out;
4043 		req->defobj_out = req1.defobj_out;
4044 		return (res);
4045 	    }
4046 	}
4047     }
4048     return (mres);
4049 }
4050 
4051 /* Symbol match routine common to both hash functions */
4052 static bool
4053 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4054     const unsigned long symnum)
4055 {
4056 	Elf_Versym verndx;
4057 	const Elf_Sym *symp;
4058 	const char *strp;
4059 
4060 	symp = obj->symtab + symnum;
4061 	strp = obj->strtab + symp->st_name;
4062 
4063 	switch (ELF_ST_TYPE(symp->st_info)) {
4064 	case STT_FUNC:
4065 	case STT_NOTYPE:
4066 	case STT_OBJECT:
4067 	case STT_COMMON:
4068 	case STT_GNU_IFUNC:
4069 		if (symp->st_value == 0)
4070 			return (false);
4071 		/* fallthrough */
4072 	case STT_TLS:
4073 		if (symp->st_shndx != SHN_UNDEF)
4074 			break;
4075 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4076 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4077 			break;
4078 		/* fallthrough */
4079 	default:
4080 		return (false);
4081 	}
4082 	if (strcmp(req->name, strp) != 0)
4083 		return (false);
4084 
4085 	if (req->ventry == NULL) {
4086 		if (obj->versyms != NULL) {
4087 			verndx = VER_NDX(obj->versyms[symnum]);
4088 			if (verndx > obj->vernum) {
4089 				_rtld_error(
4090 				    "%s: symbol %s references wrong version %d",
4091 				    obj->path, obj->strtab + symnum, verndx);
4092 				return (false);
4093 			}
4094 			/*
4095 			 * If we are not called from dlsym (i.e. this
4096 			 * is a normal relocation from unversioned
4097 			 * binary), accept the symbol immediately if
4098 			 * it happens to have first version after this
4099 			 * shared object became versioned.  Otherwise,
4100 			 * if symbol is versioned and not hidden,
4101 			 * remember it. If it is the only symbol with
4102 			 * this name exported by the shared object, it
4103 			 * will be returned as a match by the calling
4104 			 * function. If symbol is global (verndx < 2)
4105 			 * accept it unconditionally.
4106 			 */
4107 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4108 			    verndx == VER_NDX_GIVEN) {
4109 				result->sym_out = symp;
4110 				return (true);
4111 			}
4112 			else if (verndx >= VER_NDX_GIVEN) {
4113 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4114 				    == 0) {
4115 					if (result->vsymp == NULL)
4116 						result->vsymp = symp;
4117 					result->vcount++;
4118 				}
4119 				return (false);
4120 			}
4121 		}
4122 		result->sym_out = symp;
4123 		return (true);
4124 	}
4125 	if (obj->versyms == NULL) {
4126 		if (object_match_name(obj, req->ventry->name)) {
4127 			_rtld_error("%s: object %s should provide version %s "
4128 			    "for symbol %s", obj_rtld.path, obj->path,
4129 			    req->ventry->name, obj->strtab + symnum);
4130 			return (false);
4131 		}
4132 	} else {
4133 		verndx = VER_NDX(obj->versyms[symnum]);
4134 		if (verndx > obj->vernum) {
4135 			_rtld_error("%s: symbol %s references wrong version %d",
4136 			    obj->path, obj->strtab + symnum, verndx);
4137 			return (false);
4138 		}
4139 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4140 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4141 			/*
4142 			 * Version does not match. Look if this is a
4143 			 * global symbol and if it is not hidden. If
4144 			 * global symbol (verndx < 2) is available,
4145 			 * use it. Do not return symbol if we are
4146 			 * called by dlvsym, because dlvsym looks for
4147 			 * a specific version and default one is not
4148 			 * what dlvsym wants.
4149 			 */
4150 			if ((req->flags & SYMLOOK_DLSYM) ||
4151 			    (verndx >= VER_NDX_GIVEN) ||
4152 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4153 				return (false);
4154 		}
4155 	}
4156 	result->sym_out = symp;
4157 	return (true);
4158 }
4159 
4160 /*
4161  * Search for symbol using SysV hash function.
4162  * obj->buckets is known not to be NULL at this point; the test for this was
4163  * performed with the obj->valid_hash_sysv assignment.
4164  */
4165 static int
4166 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4167 {
4168 	unsigned long symnum;
4169 	Sym_Match_Result matchres;
4170 
4171 	matchres.sym_out = NULL;
4172 	matchres.vsymp = NULL;
4173 	matchres.vcount = 0;
4174 
4175 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4176 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4177 		if (symnum >= obj->nchains)
4178 			return (ESRCH);	/* Bad object */
4179 
4180 		if (matched_symbol(req, obj, &matchres, symnum)) {
4181 			req->sym_out = matchres.sym_out;
4182 			req->defobj_out = obj;
4183 			return (0);
4184 		}
4185 	}
4186 	if (matchres.vcount == 1) {
4187 		req->sym_out = matchres.vsymp;
4188 		req->defobj_out = obj;
4189 		return (0);
4190 	}
4191 	return (ESRCH);
4192 }
4193 
4194 /* Search for symbol using GNU hash function */
4195 static int
4196 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4197 {
4198 	Elf_Addr bloom_word;
4199 	const Elf32_Word *hashval;
4200 	Elf32_Word bucket;
4201 	Sym_Match_Result matchres;
4202 	unsigned int h1, h2;
4203 	unsigned long symnum;
4204 
4205 	matchres.sym_out = NULL;
4206 	matchres.vsymp = NULL;
4207 	matchres.vcount = 0;
4208 
4209 	/* Pick right bitmask word from Bloom filter array */
4210 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4211 	    obj->maskwords_bm_gnu];
4212 
4213 	/* Calculate modulus word size of gnu hash and its derivative */
4214 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4215 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4216 
4217 	/* Filter out the "definitely not in set" queries */
4218 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4219 		return (ESRCH);
4220 
4221 	/* Locate hash chain and corresponding value element*/
4222 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4223 	if (bucket == 0)
4224 		return (ESRCH);
4225 	hashval = &obj->chain_zero_gnu[bucket];
4226 	do {
4227 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4228 			symnum = hashval - obj->chain_zero_gnu;
4229 			if (matched_symbol(req, obj, &matchres, symnum)) {
4230 				req->sym_out = matchres.sym_out;
4231 				req->defobj_out = obj;
4232 				return (0);
4233 			}
4234 		}
4235 	} while ((*hashval++ & 1) == 0);
4236 	if (matchres.vcount == 1) {
4237 		req->sym_out = matchres.vsymp;
4238 		req->defobj_out = obj;
4239 		return (0);
4240 	}
4241 	return (ESRCH);
4242 }
4243 
4244 static void
4245 trace_loaded_objects(Obj_Entry *obj)
4246 {
4247     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4248     int		c;
4249 
4250     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4251 	main_local = "";
4252 
4253     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4254 	fmt1 = "\t%o => %p (%x)\n";
4255 
4256     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4257 	fmt2 = "\t%o (%x)\n";
4258 
4259     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
4260 
4261     for (; obj; obj = obj->next) {
4262 	Needed_Entry		*needed;
4263 	char			*name, *path;
4264 	bool			is_lib;
4265 
4266 	if (list_containers && obj->needed != NULL)
4267 	    rtld_printf("%s:\n", obj->path);
4268 	for (needed = obj->needed; needed; needed = needed->next) {
4269 	    if (needed->obj != NULL) {
4270 		if (needed->obj->traced && !list_containers)
4271 		    continue;
4272 		needed->obj->traced = true;
4273 		path = needed->obj->path;
4274 	    } else
4275 		path = "not found";
4276 
4277 	    name = (char *)obj->strtab + needed->name;
4278 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4279 
4280 	    fmt = is_lib ? fmt1 : fmt2;
4281 	    while ((c = *fmt++) != '\0') {
4282 		switch (c) {
4283 		default:
4284 		    rtld_putchar(c);
4285 		    continue;
4286 		case '\\':
4287 		    switch (c = *fmt) {
4288 		    case '\0':
4289 			continue;
4290 		    case 'n':
4291 			rtld_putchar('\n');
4292 			break;
4293 		    case 't':
4294 			rtld_putchar('\t');
4295 			break;
4296 		    }
4297 		    break;
4298 		case '%':
4299 		    switch (c = *fmt) {
4300 		    case '\0':
4301 			continue;
4302 		    case '%':
4303 		    default:
4304 			rtld_putchar(c);
4305 			break;
4306 		    case 'A':
4307 			rtld_putstr(main_local);
4308 			break;
4309 		    case 'a':
4310 			rtld_putstr(obj_main->path);
4311 			break;
4312 		    case 'o':
4313 			rtld_putstr(name);
4314 			break;
4315 		    case 'p':
4316 			rtld_putstr(path);
4317 			break;
4318 		    case 'x':
4319 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4320 			  0);
4321 			break;
4322 		    }
4323 		    break;
4324 		}
4325 		++fmt;
4326 	    }
4327 	}
4328     }
4329 }
4330 
4331 /*
4332  * Unload a dlopened object and its dependencies from memory and from
4333  * our data structures.  It is assumed that the DAG rooted in the
4334  * object has already been unreferenced, and that the object has a
4335  * reference count of 0.
4336  */
4337 static void
4338 unload_object(Obj_Entry *root)
4339 {
4340     Obj_Entry *obj;
4341     Obj_Entry **linkp;
4342 
4343     assert(root->refcount == 0);
4344 
4345     /*
4346      * Pass over the DAG removing unreferenced objects from
4347      * appropriate lists.
4348      */
4349     unlink_object(root);
4350 
4351     /* Unmap all objects that are no longer referenced. */
4352     linkp = &obj_list->next;
4353     while ((obj = *linkp) != NULL) {
4354 	if (obj->refcount == 0) {
4355 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4356 		obj->path);
4357 	    dbg("unloading \"%s\"", obj->path);
4358 	    unload_filtees(root);
4359 	    munmap(obj->mapbase, obj->mapsize);
4360 	    linkmap_delete(obj);
4361 	    *linkp = obj->next;
4362 	    obj_count--;
4363 	    obj_free(obj);
4364 	} else
4365 	    linkp = &obj->next;
4366     }
4367     obj_tail = linkp;
4368 }
4369 
4370 static void
4371 unlink_object(Obj_Entry *root)
4372 {
4373     Objlist_Entry *elm;
4374 
4375     if (root->refcount == 0) {
4376 	/* Remove the object from the RTLD_GLOBAL list. */
4377 	objlist_remove(&list_global, root);
4378 
4379     	/* Remove the object from all objects' DAG lists. */
4380 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4381 	    objlist_remove(&elm->obj->dldags, root);
4382 	    if (elm->obj != root)
4383 		unlink_object(elm->obj);
4384 	}
4385     }
4386 }
4387 
4388 static void
4389 ref_dag(Obj_Entry *root)
4390 {
4391     Objlist_Entry *elm;
4392 
4393     assert(root->dag_inited);
4394     STAILQ_FOREACH(elm, &root->dagmembers, link)
4395 	elm->obj->refcount++;
4396 }
4397 
4398 static void
4399 unref_dag(Obj_Entry *root)
4400 {
4401     Objlist_Entry *elm;
4402 
4403     assert(root->dag_inited);
4404     STAILQ_FOREACH(elm, &root->dagmembers, link)
4405 	elm->obj->refcount--;
4406 }
4407 
4408 /*
4409  * Common code for MD __tls_get_addr().
4410  */
4411 void *
4412 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
4413 {
4414     Elf_Addr* dtv = *dtvp;
4415     RtldLockState lockstate;
4416 
4417     /* Check dtv generation in case new modules have arrived */
4418     if (dtv[0] != tls_dtv_generation) {
4419 	Elf_Addr* newdtv;
4420 	int to_copy;
4421 
4422 	wlock_acquire(rtld_bind_lock, &lockstate);
4423 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4424 	to_copy = dtv[1];
4425 	if (to_copy > tls_max_index)
4426 	    to_copy = tls_max_index;
4427 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4428 	newdtv[0] = tls_dtv_generation;
4429 	newdtv[1] = tls_max_index;
4430 	free(dtv);
4431 	lock_release(rtld_bind_lock, &lockstate);
4432 	dtv = *dtvp = newdtv;
4433     }
4434 
4435     /* Dynamically allocate module TLS if necessary */
4436     if (!dtv[index + 1]) {
4437 	/* Signal safe, wlock will block out signals. */
4438 	wlock_acquire(rtld_bind_lock, &lockstate);
4439 	if (!dtv[index + 1])
4440 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4441 	lock_release(rtld_bind_lock, &lockstate);
4442     }
4443     return ((void *)(dtv[index + 1] + offset));
4444 }
4445 
4446 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4447 
4448 /*
4449  * Allocate the static TLS area.  Return a pointer to the TCB.  The
4450  * static area is based on negative offsets relative to the tcb.
4451  *
4452  * The TCB contains an errno pointer for the system call layer, but because
4453  * we are the RTLD we really have no idea how the caller was compiled so
4454  * the information has to be passed in.  errno can either be:
4455  *
4456  *	type 0	errno is a simple non-TLS global pointer.
4457  *		(special case for e.g. libc_rtld)
4458  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
4459  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
4460  */
4461 struct tls_tcb *
4462 allocate_tls(Obj_Entry *objs)
4463 {
4464     Obj_Entry *obj;
4465     size_t data_size;
4466     size_t dtv_size;
4467     struct tls_tcb *tcb;
4468     Elf_Addr *dtv;
4469     Elf_Addr addr;
4470 
4471     /*
4472      * Allocate the new TCB.  static TLS storage is placed just before the
4473      * TCB to support the %gs:OFFSET (negative offset) model.
4474      */
4475     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4476 		~RTLD_STATIC_TLS_ALIGN_MASK;
4477     tcb = malloc(data_size + sizeof(*tcb));
4478     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
4479 
4480     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
4481     dtv = malloc(dtv_size);
4482     bzero(dtv, dtv_size);
4483 
4484 #ifdef RTLD_TCB_HAS_SELF_POINTER
4485     tcb->tcb_self = tcb;
4486 #endif
4487     tcb->tcb_dtv = dtv;
4488     tcb->tcb_pthread = NULL;
4489 
4490     dtv[0] = tls_dtv_generation;
4491     dtv[1] = tls_max_index;
4492 
4493     for (obj = objs; obj; obj = obj->next) {
4494 	if (obj->tlsoffset) {
4495 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
4496 	    memset((void *)(addr + obj->tlsinitsize),
4497 		   0, obj->tlssize - obj->tlsinitsize);
4498 	    if (obj->tlsinit) {
4499 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4500 		obj->static_tls_copied = true;
4501 	    }
4502 	    dtv[obj->tlsindex + 1] = addr;
4503 	}
4504     }
4505     return(tcb);
4506 }
4507 
4508 void
4509 free_tls(struct tls_tcb *tcb)
4510 {
4511     Elf_Addr *dtv;
4512     int dtv_size, i;
4513     Elf_Addr tls_start, tls_end;
4514     size_t data_size;
4515 
4516     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4517 		~RTLD_STATIC_TLS_ALIGN_MASK;
4518 
4519     dtv = tcb->tcb_dtv;
4520     dtv_size = dtv[1];
4521     tls_end = (Elf_Addr)tcb;
4522     tls_start = (Elf_Addr)tcb - data_size;
4523     for (i = 0; i < dtv_size; i++) {
4524 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
4525 	    free((void *)dtv[i+2]);
4526 	}
4527     }
4528     free(dtv);
4529 
4530     free((void*) tls_start);
4531 }
4532 
4533 #else
4534 #error "Unsupported TLS layout"
4535 #endif
4536 
4537 /*
4538  * Allocate TLS block for module with given index.
4539  */
4540 void *
4541 allocate_module_tls(int index)
4542 {
4543     Obj_Entry* obj;
4544     char* p;
4545 
4546     for (obj = obj_list; obj; obj = obj->next) {
4547 	if (obj->tlsindex == index)
4548 	    break;
4549     }
4550     if (!obj) {
4551 	_rtld_error("Can't find module with TLS index %d", index);
4552 	die();
4553     }
4554 
4555     p = malloc(obj->tlssize);
4556     if (p == NULL) {
4557 	_rtld_error("Cannot allocate TLS block for index %d", index);
4558 	die();
4559     }
4560     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4561     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4562 
4563     return p;
4564 }
4565 
4566 bool
4567 allocate_tls_offset(Obj_Entry *obj)
4568 {
4569     size_t off;
4570 
4571     if (obj->tls_done)
4572 	return true;
4573 
4574     if (obj->tlssize == 0) {
4575 	obj->tls_done = true;
4576 	return true;
4577     }
4578 
4579     if (obj->tlsindex == 1)
4580 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4581     else
4582 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4583 				   obj->tlssize, obj->tlsalign);
4584 
4585     /*
4586      * If we have already fixed the size of the static TLS block, we
4587      * must stay within that size. When allocating the static TLS, we
4588      * leave a small amount of space spare to be used for dynamically
4589      * loading modules which use static TLS.
4590      */
4591     if (tls_static_space) {
4592 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4593 	    return false;
4594     }
4595 
4596     tls_last_offset = obj->tlsoffset = off;
4597     tls_last_size = obj->tlssize;
4598     obj->tls_done = true;
4599 
4600     return true;
4601 }
4602 
4603 void
4604 free_tls_offset(Obj_Entry *obj)
4605 {
4606 #ifdef RTLD_STATIC_TLS_VARIANT_II
4607     /*
4608      * If we were the last thing to allocate out of the static TLS
4609      * block, we give our space back to the 'allocator'. This is a
4610      * simplistic workaround to allow libGL.so.1 to be loaded and
4611      * unloaded multiple times. We only handle the Variant II
4612      * mechanism for now - this really needs a proper allocator.
4613      */
4614     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4615 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4616 	tls_last_offset -= obj->tlssize;
4617 	tls_last_size = 0;
4618     }
4619 #endif
4620 }
4621 
4622 struct tls_tcb *
4623 _rtld_allocate_tls(void)
4624 {
4625     struct tls_tcb *new_tcb;
4626     RtldLockState lockstate;
4627 
4628     wlock_acquire(rtld_bind_lock, &lockstate);
4629     new_tcb = allocate_tls(obj_list);
4630     lock_release(rtld_bind_lock, &lockstate);
4631 
4632     return (new_tcb);
4633 }
4634 
4635 void
4636 _rtld_free_tls(struct tls_tcb *tcb)
4637 {
4638     RtldLockState lockstate;
4639 
4640     wlock_acquire(rtld_bind_lock, &lockstate);
4641     free_tls(tcb);
4642     lock_release(rtld_bind_lock, &lockstate);
4643 }
4644 
4645 static void
4646 object_add_name(Obj_Entry *obj, const char *name)
4647 {
4648     Name_Entry *entry;
4649     size_t len;
4650 
4651     len = strlen(name);
4652     entry = malloc(sizeof(Name_Entry) + len);
4653 
4654     if (entry != NULL) {
4655 	strcpy(entry->name, name);
4656 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4657     }
4658 }
4659 
4660 static int
4661 object_match_name(const Obj_Entry *obj, const char *name)
4662 {
4663     Name_Entry *entry;
4664 
4665     STAILQ_FOREACH(entry, &obj->names, link) {
4666 	if (strcmp(name, entry->name) == 0)
4667 	    return (1);
4668     }
4669     return (0);
4670 }
4671 
4672 static Obj_Entry *
4673 locate_dependency(const Obj_Entry *obj, const char *name)
4674 {
4675     const Objlist_Entry *entry;
4676     const Needed_Entry *needed;
4677 
4678     STAILQ_FOREACH(entry, &list_main, link) {
4679 	if (object_match_name(entry->obj, name))
4680 	    return entry->obj;
4681     }
4682 
4683     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4684 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4685 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4686 	    /*
4687 	     * If there is DT_NEEDED for the name we are looking for,
4688 	     * we are all set.  Note that object might not be found if
4689 	     * dependency was not loaded yet, so the function can
4690 	     * return NULL here.  This is expected and handled
4691 	     * properly by the caller.
4692 	     */
4693 	    return (needed->obj);
4694 	}
4695     }
4696     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4697 	obj->path, name);
4698     die();
4699 }
4700 
4701 static int
4702 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4703     const Elf_Vernaux *vna)
4704 {
4705     const Elf_Verdef *vd;
4706     const char *vername;
4707 
4708     vername = refobj->strtab + vna->vna_name;
4709     vd = depobj->verdef;
4710     if (vd == NULL) {
4711 	_rtld_error("%s: version %s required by %s not defined",
4712 	    depobj->path, vername, refobj->path);
4713 	return (-1);
4714     }
4715     for (;;) {
4716 	if (vd->vd_version != VER_DEF_CURRENT) {
4717 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4718 		depobj->path, vd->vd_version);
4719 	    return (-1);
4720 	}
4721 	if (vna->vna_hash == vd->vd_hash) {
4722 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4723 		((char *)vd + vd->vd_aux);
4724 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4725 		return (0);
4726 	}
4727 	if (vd->vd_next == 0)
4728 	    break;
4729 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4730     }
4731     if (vna->vna_flags & VER_FLG_WEAK)
4732 	return (0);
4733     _rtld_error("%s: version %s required by %s not found",
4734 	depobj->path, vername, refobj->path);
4735     return (-1);
4736 }
4737 
4738 static int
4739 rtld_verify_object_versions(Obj_Entry *obj)
4740 {
4741     const Elf_Verneed *vn;
4742     const Elf_Verdef  *vd;
4743     const Elf_Verdaux *vda;
4744     const Elf_Vernaux *vna;
4745     const Obj_Entry *depobj;
4746     int maxvernum, vernum;
4747 
4748     if (obj->ver_checked)
4749 	return (0);
4750     obj->ver_checked = true;
4751 
4752     maxvernum = 0;
4753     /*
4754      * Walk over defined and required version records and figure out
4755      * max index used by any of them. Do very basic sanity checking
4756      * while there.
4757      */
4758     vn = obj->verneed;
4759     while (vn != NULL) {
4760 	if (vn->vn_version != VER_NEED_CURRENT) {
4761 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4762 		obj->path, vn->vn_version);
4763 	    return (-1);
4764 	}
4765 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4766 	for (;;) {
4767 	    vernum = VER_NEED_IDX(vna->vna_other);
4768 	    if (vernum > maxvernum)
4769 		maxvernum = vernum;
4770 	    if (vna->vna_next == 0)
4771 		 break;
4772 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4773 	}
4774 	if (vn->vn_next == 0)
4775 	    break;
4776 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4777     }
4778 
4779     vd = obj->verdef;
4780     while (vd != NULL) {
4781 	if (vd->vd_version != VER_DEF_CURRENT) {
4782 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4783 		obj->path, vd->vd_version);
4784 	    return (-1);
4785 	}
4786 	vernum = VER_DEF_IDX(vd->vd_ndx);
4787 	if (vernum > maxvernum)
4788 		maxvernum = vernum;
4789 	if (vd->vd_next == 0)
4790 	    break;
4791 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4792     }
4793 
4794     if (maxvernum == 0)
4795 	return (0);
4796 
4797     /*
4798      * Store version information in array indexable by version index.
4799      * Verify that object version requirements are satisfied along the
4800      * way.
4801      */
4802     obj->vernum = maxvernum + 1;
4803     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4804 
4805     vd = obj->verdef;
4806     while (vd != NULL) {
4807 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4808 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4809 	    assert(vernum <= maxvernum);
4810 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4811 	    obj->vertab[vernum].hash = vd->vd_hash;
4812 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4813 	    obj->vertab[vernum].file = NULL;
4814 	    obj->vertab[vernum].flags = 0;
4815 	}
4816 	if (vd->vd_next == 0)
4817 	    break;
4818 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4819     }
4820 
4821     vn = obj->verneed;
4822     while (vn != NULL) {
4823 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4824 	if (depobj == NULL)
4825 	    return (-1);
4826 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4827 	for (;;) {
4828 	    if (check_object_provided_version(obj, depobj, vna))
4829 		return (-1);
4830 	    vernum = VER_NEED_IDX(vna->vna_other);
4831 	    assert(vernum <= maxvernum);
4832 	    obj->vertab[vernum].hash = vna->vna_hash;
4833 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4834 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4835 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4836 		VER_INFO_HIDDEN : 0;
4837 	    if (vna->vna_next == 0)
4838 		 break;
4839 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4840 	}
4841 	if (vn->vn_next == 0)
4842 	    break;
4843 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4844     }
4845     return 0;
4846 }
4847 
4848 static int
4849 rtld_verify_versions(const Objlist *objlist)
4850 {
4851     Objlist_Entry *entry;
4852     int rc;
4853 
4854     rc = 0;
4855     STAILQ_FOREACH(entry, objlist, link) {
4856 	/*
4857 	 * Skip dummy objects or objects that have their version requirements
4858 	 * already checked.
4859 	 */
4860 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4861 	    continue;
4862 	if (rtld_verify_object_versions(entry->obj) == -1) {
4863 	    rc = -1;
4864 	    if (ld_tracing == NULL)
4865 		break;
4866 	}
4867     }
4868     if (rc == 0 || ld_tracing != NULL)
4869 	rc = rtld_verify_object_versions(&obj_rtld);
4870     return rc;
4871 }
4872 
4873 const Ver_Entry *
4874 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4875 {
4876     Elf_Versym vernum;
4877 
4878     if (obj->vertab) {
4879 	vernum = VER_NDX(obj->versyms[symnum]);
4880 	if (vernum >= obj->vernum) {
4881 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4882 		obj->path, obj->strtab + symnum, vernum);
4883 	} else if (obj->vertab[vernum].hash != 0) {
4884 	    return &obj->vertab[vernum];
4885 	}
4886     }
4887     return NULL;
4888 }
4889 
4890 int
4891 _rtld_get_stack_prot(void)
4892 {
4893 
4894 	return (stack_prot);
4895 }
4896 
4897 static void
4898 map_stacks_exec(RtldLockState *lockstate)
4899 {
4900 	return;
4901 	/*
4902 	 * Stack protection must be implemented in the kernel before the dynamic
4903 	 * linker can handle PT_GNU_STACK sections.
4904 	 * The following is the FreeBSD implementation of map_stacks_exec()
4905 	 * void (*thr_map_stacks_exec)(void);
4906 	 *
4907 	 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4908 	 *     return;
4909 	 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4910 	 *     get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4911 	 * if (thr_map_stacks_exec != NULL) {
4912 	 *     stack_prot |= PROT_EXEC;
4913 	 *     thr_map_stacks_exec();
4914 	 * }
4915 	 */
4916 }
4917 
4918 /*
4919  * Only called after all primary shared libraries are loaded (EARLY is
4920  * not set).  Resolves the static TLS distribution function at first-call.
4921  * This is typically a weak libc symbol that is overrideen by the threading
4922  * library.
4923  */
4924 static void
4925 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
4926 {
4927 	Objlist_Entry *elm;
4928 	Obj_Entry *obj;
4929 	static void (*dtlsfunc)(size_t, void *, size_t, size_t);
4930 
4931 	/*
4932 	 * First time, resolve "_pthread_distribute_static_tls".
4933 	 */
4934 	if (dtlsfunc == NULL) {
4935 		dtlsfunc = (void *)dlfunc(RTLD_ALL,
4936 					  "_pthread_distribute_static_tls");
4937 		if (dtlsfunc == NULL)
4938 			return;
4939 	}
4940 
4941 	/*
4942 	 * Initialize static TLS data for the object list using the callback
4943 	 * function (to either libc or pthreads).
4944 	 */
4945 	STAILQ_FOREACH(elm, list, link) {
4946 		obj = elm->obj;
4947 		if (/*obj->marker ||*/ !obj->tls_done || obj->static_tls_copied)
4948 			continue;
4949 		dtlsfunc(obj->tlsoffset, obj->tlsinit,
4950 			 obj->tlsinitsize, obj->tlssize);
4951 		obj->static_tls_copied = true;
4952 	}
4953 }
4954 
4955 void
4956 symlook_init(SymLook *dst, const char *name)
4957 {
4958 
4959 	bzero(dst, sizeof(*dst));
4960 	dst->name = name;
4961 	dst->hash = elf_hash(name);
4962 	dst->hash_gnu = gnu_hash(name);
4963 }
4964 
4965 static void
4966 symlook_init_from_req(SymLook *dst, const SymLook *src)
4967 {
4968 
4969 	dst->name = src->name;
4970 	dst->hash = src->hash;
4971 	dst->hash_gnu = src->hash_gnu;
4972 	dst->ventry = src->ventry;
4973 	dst->flags = src->flags;
4974 	dst->defobj_out = NULL;
4975 	dst->sym_out = NULL;
4976 	dst->lockstate = src->lockstate;
4977 }
4978 
4979 
4980 /*
4981  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4982  */
4983 static int
4984 parse_libdir(const char *str)
4985 {
4986 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
4987 	const char *orig;
4988 	int fd;
4989 	char c;
4990 
4991 	orig = str;
4992 	fd = 0;
4993 	for (c = *str; c != '\0'; c = *++str) {
4994 		if (c < '0' || c > '9')
4995 			return (-1);
4996 
4997 		fd *= RADIX;
4998 		fd += c - '0';
4999 	}
5000 
5001 	/* Make sure we actually parsed something. */
5002 	if (str == orig) {
5003 		_rtld_error("failed to parse directory FD from '%s'", str);
5004 		return (-1);
5005 	}
5006 	return (fd);
5007 }
5008 
5009 #ifdef ENABLE_OSRELDATE
5010 /*
5011  * Overrides for libc_pic-provided functions.
5012  */
5013 
5014 int
5015 __getosreldate(void)
5016 {
5017 	size_t len;
5018 	int oid[2];
5019 	int error, osrel;
5020 
5021 	if (osreldate != 0)
5022 		return (osreldate);
5023 
5024 	oid[0] = CTL_KERN;
5025 	oid[1] = KERN_OSRELDATE;
5026 	osrel = 0;
5027 	len = sizeof(osrel);
5028 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
5029 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
5030 		osreldate = osrel;
5031 	return (osreldate);
5032 }
5033 #endif
5034 
5035 /*
5036  * Ask the kernel for the extra tls space to allocate after calculating
5037  * base tls requirements in rtld-elf.  5.9 or later.
5038  */
5039 static int
5040 __getstatictlsextra(void)
5041 {
5042 	size_t len;
5043 	int oid[2];
5044 	int error;
5045 	int tls_extra;
5046 
5047 	oid[0] = CTL_KERN;
5048 	oid[1] = KERN_STATIC_TLS_EXTRA;
5049 	len = sizeof(tls_extra);
5050 	error = sysctl(oid, 2, &tls_extra, &len, NULL, 0);
5051 	if (error || len != sizeof(tls_extra))
5052 		tls_extra = RTLD_STATIC_TLS_EXTRA_DEFAULT;
5053 	if (tls_extra < RTLD_STATIC_TLS_EXTRA_MIN)
5054 		tls_extra = RTLD_STATIC_TLS_EXTRA_MIN;
5055 	if (tls_extra > RTLD_STATIC_TLS_EXTRA_MAX)
5056 		tls_extra = RTLD_STATIC_TLS_EXTRA_MAX;
5057 	return tls_extra;
5058 }
5059 
5060 /*
5061  * No unresolved symbols for rtld.
5062  */
5063 void
5064 __pthread_cxa_finalize(struct dl_phdr_info *a)
5065 {
5066 }
5067 
5068 const char *
5069 rtld_strerror(int errnum)
5070 {
5071 
5072 	if (errnum < 0 || errnum >= sys_nerr)
5073 		return ("Unknown error");
5074 	return (sys_errlist[errnum]);
5075 }
5076