xref: /dragonfly/libexec/rtld-elf/rtld.c (revision ae24b5e0)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 #include <sys/resident.h>
50 #include <sys/tls.h>
51 
52 #include <machine/tls.h>
53 
54 #include <dlfcn.h>
55 #include <err.h>
56 #include <errno.h>
57 #include <fcntl.h>
58 #include <stdarg.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <unistd.h>
63 
64 #include "debug.h"
65 #include "rtld.h"
66 #include "libmap.h"
67 #include "rtld_printf.h"
68 #include "notes.h"
69 
70 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
71 #define LD_ARY_CACHE	16
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *_getenv_ld(const char *id);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *, int *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106 static void unload_filtees(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110 static void map_stacks_exec(RtldLockState *);
111 static Obj_Entry *obj_from_addr(const void *);
112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113 static void objlist_call_init(Objlist *, RtldLockState *);
114 static void objlist_clear(Objlist *);
115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116 static void objlist_init(Objlist *);
117 static void objlist_push_head(Objlist *, Obj_Entry *);
118 static void objlist_push_tail(Objlist *, Obj_Entry *);
119 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120 static void objlist_remove(Objlist *, Obj_Entry *);
121 static int parse_libdir(const char *);
122 static void *path_enumerate(const char *, path_enum_proc, void *);
123 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
124     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
125 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
126     int flags, RtldLockState *lockstate);
127 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
128     RtldLockState *);
129 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
130     int flags, RtldLockState *lockstate);
131 static int rtld_dirname(const char *, char *);
132 static int rtld_dirname_abs(const char *, char *);
133 static void *rtld_dlopen(const char *name, int fd, int mode);
134 static void rtld_exit(void);
135 static char *search_library_path(const char *, const char *);
136 static char *search_library_pathfds(const char *, const char *, int *);
137 static const void **get_program_var_addr(const char *, RtldLockState *);
138 static void set_program_var(const char *, const void *);
139 static int symlook_default(SymLook *, const Obj_Entry *refobj);
140 static int symlook_global(SymLook *, DoneList *);
141 static void symlook_init_from_req(SymLook *, const SymLook *);
142 static int symlook_list(SymLook *, const Objlist *, DoneList *);
143 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
144 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
145 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
146 static void trace_loaded_objects(Obj_Entry *);
147 static void unlink_object(Obj_Entry *);
148 static void unload_object(Obj_Entry *);
149 static void unref_dag(Obj_Entry *);
150 static void ref_dag(Obj_Entry *);
151 static char *origin_subst_one(char *, const char *, const char *, bool);
152 static char *origin_subst(char *, const char *);
153 static void preinit_main(void);
154 static int  rtld_verify_versions(const Objlist *);
155 static int  rtld_verify_object_versions(Obj_Entry *);
156 static void object_add_name(Obj_Entry *, const char *);
157 static int  object_match_name(const Obj_Entry *, const char *);
158 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
159 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
160     struct dl_phdr_info *phdr_info);
161 static uint_fast32_t gnu_hash (const char *);
162 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
163     const unsigned long);
164 
165 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
166 void _r_debug_postinit(struct link_map *) __noinline;
167 
168 /*
169  * Data declarations.
170  */
171 static char *error_message;	/* Message for dlerror(), or NULL */
172 struct r_debug r_debug;		/* for GDB; */
173 static bool libmap_disable;	/* Disable libmap */
174 static bool ld_loadfltr;	/* Immediate filters processing */
175 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
176 static bool trust;		/* False for setuid and setgid programs */
177 static bool dangerous_ld_env;	/* True if environment variables have been
178 				   used to affect the libraries loaded */
179 static const char *ld_bind_now;	/* Environment variable for immediate binding */
180 static const char *ld_debug;	/* Environment variable for debugging */
181 static const char *ld_library_path;	/* Environment variable for search path */
182 static const char *ld_library_dirs;	/* Env variable for library descriptors */
183 static char *ld_preload;	/* Environment variable for libraries to
184 				   load first */
185 static const char *ld_elf_hints_path;	/* Env var. for alternative hints path */
186 static const char *ld_tracing;	/* Called from ldd to print libs */
187 static const char *ld_utrace;	/* Use utrace() to log events. */
188 static int (*rtld_functrace)(   /* Optional function call tracing hook */
189 	const char *caller_obj,
190 	const char *callee_obj,
191 	const char *callee_func,
192 	void *stack);
193 static const Obj_Entry *rtld_functrace_obj;	/* Object thereof */
194 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
195 static Obj_Entry **obj_tail;	/* Link field of last object in list */
196 static Obj_Entry **preload_tail;
197 static Obj_Entry *obj_main;	/* The main program shared object */
198 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
199 static unsigned int obj_count;	/* Number of objects in obj_list */
200 static unsigned int obj_loads;	/* Number of objects in obj_list */
201 
202 static int	ld_resident;	/* Non-zero if resident */
203 static const char *ld_ary[LD_ARY_CACHE];
204 static int	ld_index;
205 static Objlist initlist;
206 
207 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
208   STAILQ_HEAD_INITIALIZER(list_global);
209 static Objlist list_main =	/* Objects loaded at program startup */
210   STAILQ_HEAD_INITIALIZER(list_main);
211 static Objlist list_fini =	/* Objects needing fini() calls */
212   STAILQ_HEAD_INITIALIZER(list_fini);
213 
214 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
215 const char *__ld_sharedlib_base;
216 
217 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
218 
219 extern Elf_Dyn _DYNAMIC;
220 #pragma weak _DYNAMIC
221 #ifndef RTLD_IS_DYNAMIC
222 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
223 #endif
224 
225 #ifdef ENABLE_OSRELDATE
226 int osreldate;
227 #endif
228 
229 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
230 #if 0
231 static int max_stack_flags;
232 #endif
233 
234 /*
235  * Global declarations normally provided by crt1.  The dynamic linker is
236  * not built with crt1, so we have to provide them ourselves.
237  */
238 char *__progname;
239 char **environ;
240 
241 /*
242  * Used to pass argc, argv to init functions.
243  */
244 int main_argc;
245 char **main_argv;
246 
247 /*
248  * Globals to control TLS allocation.
249  */
250 size_t tls_last_offset;		/* Static TLS offset of last module */
251 size_t tls_last_size;		/* Static TLS size of last module */
252 size_t tls_static_space;	/* Static TLS space allocated */
253 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
254 int tls_max_index = 1;		/* Largest module index allocated */
255 
256 /*
257  * Fill in a DoneList with an allocation large enough to hold all of
258  * the currently-loaded objects.  Keep this as a macro since it calls
259  * alloca and we want that to occur within the scope of the caller.
260  */
261 #define donelist_init(dlp)					\
262     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
263     assert((dlp)->objs != NULL),				\
264     (dlp)->num_alloc = obj_count,				\
265     (dlp)->num_used = 0)
266 
267 #define	UTRACE_DLOPEN_START		1
268 #define	UTRACE_DLOPEN_STOP		2
269 #define	UTRACE_DLCLOSE_START		3
270 #define	UTRACE_DLCLOSE_STOP		4
271 #define	UTRACE_LOAD_OBJECT		5
272 #define	UTRACE_UNLOAD_OBJECT		6
273 #define	UTRACE_ADD_RUNDEP		7
274 #define	UTRACE_PRELOAD_FINISHED		8
275 #define	UTRACE_INIT_CALL		9
276 #define	UTRACE_FINI_CALL		10
277 
278 struct utrace_rtld {
279 	char sig[4];			/* 'RTLD' */
280 	int event;
281 	void *handle;
282 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
283 	size_t mapsize;
284 	int refcnt;			/* Used for 'mode' */
285 	char name[MAXPATHLEN];
286 };
287 
288 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
289 	if (ld_utrace != NULL)					\
290 		ld_utrace_log(e, h, mb, ms, r, n);		\
291 } while (0)
292 
293 static void
294 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
295     int refcnt, const char *name)
296 {
297 	struct utrace_rtld ut;
298 
299 	ut.sig[0] = 'R';
300 	ut.sig[1] = 'T';
301 	ut.sig[2] = 'L';
302 	ut.sig[3] = 'D';
303 	ut.event = event;
304 	ut.handle = handle;
305 	ut.mapbase = mapbase;
306 	ut.mapsize = mapsize;
307 	ut.refcnt = refcnt;
308 	bzero(ut.name, sizeof(ut.name));
309 	if (name)
310 		strlcpy(ut.name, name, sizeof(ut.name));
311 	utrace(&ut, sizeof(ut));
312 }
313 
314 /*
315  * Main entry point for dynamic linking.  The first argument is the
316  * stack pointer.  The stack is expected to be laid out as described
317  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
318  * Specifically, the stack pointer points to a word containing
319  * ARGC.  Following that in the stack is a null-terminated sequence
320  * of pointers to argument strings.  Then comes a null-terminated
321  * sequence of pointers to environment strings.  Finally, there is a
322  * sequence of "auxiliary vector" entries.
323  *
324  * The second argument points to a place to store the dynamic linker's
325  * exit procedure pointer and the third to a place to store the main
326  * program's object.
327  *
328  * The return value is the main program's entry point.
329  */
330 func_ptr_type
331 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
332 {
333     Elf_Auxinfo *aux_info[AT_COUNT];
334     int i;
335     int argc;
336     char **argv;
337     char **env;
338     Elf_Auxinfo *aux;
339     Elf_Auxinfo *auxp;
340     const char *argv0;
341     Objlist_Entry *entry;
342     Obj_Entry *obj;
343     Obj_Entry *last_interposer;
344 
345     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
346              Obj_Entry **preload_tail;
347              Objlist initlist;
348        from global to here.  It will break the DWARF2 unwind scheme.
349     */
350 
351     /*
352      * On entry, the dynamic linker itself has not been relocated yet.
353      * Be very careful not to reference any global data until after
354      * init_rtld has returned.  It is OK to reference file-scope statics
355      * and string constants, and to call static and global functions.
356      */
357 
358     /* Find the auxiliary vector on the stack. */
359     argc = *sp++;
360     argv = (char **) sp;
361     sp += argc + 1;	/* Skip over arguments and NULL terminator */
362     env = (char **) sp;
363 
364     /*
365      * If we aren't already resident we have to dig out some more info.
366      * Note that auxinfo does not exist when we are resident.
367      *
368      * I'm not sure about the ld_resident check.  It seems to read zero
369      * prior to relocation, which is what we want.  When running from a
370      * resident copy everything will be relocated so we are definitely
371      * good there.
372      */
373     if (ld_resident == 0)  {
374 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
375 	    ;
376 	aux = (Elf_Auxinfo *) sp;
377 
378 	/* Digest the auxiliary vector. */
379 	for (i = 0;  i < AT_COUNT;  i++)
380 	    aux_info[i] = NULL;
381 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
382 	    if (auxp->a_type < AT_COUNT)
383 		aux_info[auxp->a_type] = auxp;
384 	}
385 
386 	/* Initialize and relocate ourselves. */
387 	assert(aux_info[AT_BASE] != NULL);
388 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
389     }
390 
391     ld_index = 0;	/* don't use old env cache in case we are resident */
392     __progname = obj_rtld.path;
393     argv0 = argv[0] != NULL ? argv[0] : "(null)";
394     environ = env;
395     main_argc = argc;
396     main_argv = argv;
397 
398     trust = !issetugid();
399 
400     ld_bind_now = _getenv_ld("LD_BIND_NOW");
401     /*
402      * If the process is tainted, then we un-set the dangerous environment
403      * variables.  The process will be marked as tainted until setuid(2)
404      * is called.  If any child process calls setuid(2) we do not want any
405      * future processes to honor the potentially un-safe variables.
406      */
407     if (!trust) {
408 	if (   unsetenv("LD_DEBUG")
409 	    || unsetenv("LD_PRELOAD")
410 	    || unsetenv("LD_LIBRARY_PATH")
411 	    || unsetenv("LD_LIBRARY_PATH_FDS")
412 	    || unsetenv("LD_ELF_HINTS_PATH")
413 	    || unsetenv("LD_LIBMAP")
414 	    || unsetenv("LD_LIBMAP_DISABLE")
415 	    || unsetenv("LD_LOADFLTR")
416 	    || unsetenv("LD_SHAREDLIB_BASE")
417 	) {
418 		_rtld_error("environment corrupt; aborting");
419 		die();
420 	}
421     }
422     __ld_sharedlib_base = _getenv_ld("LD_SHAREDLIB_BASE");
423     ld_debug = _getenv_ld("LD_DEBUG");
424     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
425     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
426     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
427     ld_library_dirs = _getenv_ld("LD_LIBRARY_PATH_FDS");
428     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
429     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
430     ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
431     dangerous_ld_env = (ld_library_path != NULL)
432 			|| (ld_preload != NULL)
433 			|| (ld_elf_hints_path != NULL)
434 			|| ld_loadfltr
435 			|| (libmap_override != NULL)
436 			|| libmap_disable
437 			;
438     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
439     ld_utrace = _getenv_ld("LD_UTRACE");
440 
441     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
442 	ld_elf_hints_path = _PATH_ELF_HINTS;
443 
444     if (ld_debug != NULL && *ld_debug != '\0')
445 	debug = 1;
446     dbg("%s is initialized, base address = %p", __progname,
447 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
448     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
449     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
450 
451     dbg("initializing thread locks");
452     lockdflt_init();
453 
454     /*
455      * If we are resident we can skip work that we have already done.
456      * Note that the stack is reset and there is no Elf_Auxinfo
457      * when running from a resident image, and the static globals setup
458      * between here and resident_skip will have already been setup.
459      */
460     if (ld_resident)
461 	goto resident_skip1;
462 
463     /*
464      * Load the main program, or process its program header if it is
465      * already loaded.
466      */
467     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
468 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
469 	dbg("loading main program");
470 	obj_main = map_object(fd, argv0, NULL);
471 	close(fd);
472 	if (obj_main == NULL)
473 	    die();
474 #if 0
475 	max_stack_flags = obj_main->stack_flags;
476 #endif
477     } else {				/* Main program already loaded. */
478 	const Elf_Phdr *phdr;
479 	int phnum;
480 	caddr_t entry;
481 
482 	dbg("processing main program's program header");
483 	assert(aux_info[AT_PHDR] != NULL);
484 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
485 	assert(aux_info[AT_PHNUM] != NULL);
486 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
487 	assert(aux_info[AT_PHENT] != NULL);
488 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
489 	assert(aux_info[AT_ENTRY] != NULL);
490 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
491 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
492 	    die();
493     }
494 
495     char buf[MAXPATHLEN];
496     if (aux_info[AT_EXECPATH] != NULL) {
497 	char *kexecpath;
498 
499 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
500 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
501 	if (kexecpath[0] == '/')
502 		obj_main->path = kexecpath;
503 	else if (getcwd(buf, sizeof(buf)) == NULL ||
504 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
505 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
506 		obj_main->path = xstrdup(argv0);
507 	else
508 		obj_main->path = xstrdup(buf);
509     } else {
510 	char resolved[MAXPATHLEN];
511 	dbg("No AT_EXECPATH");
512 	if (argv0[0] == '/') {
513 		if (realpath(argv0, resolved) != NULL)
514 			obj_main->path = xstrdup(resolved);
515 		else
516 			obj_main->path = xstrdup(argv0);
517 	} else {
518 		if (getcwd(buf, sizeof(buf)) != NULL
519 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
520 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
521 		    && access(buf, R_OK) == 0
522 		    && realpath(buf, resolved) != NULL)
523 			obj_main->path = xstrdup(resolved);
524 		else
525 			obj_main->path = xstrdup(argv0);
526 	}
527     }
528     dbg("obj_main path %s", obj_main->path);
529     obj_main->mainprog = true;
530 
531     if (aux_info[AT_STACKPROT] != NULL &&
532       aux_info[AT_STACKPROT]->a_un.a_val != 0)
533 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
534 
535     /*
536      * Get the actual dynamic linker pathname from the executable if
537      * possible.  (It should always be possible.)  That ensures that
538      * gdb will find the right dynamic linker even if a non-standard
539      * one is being used.
540      */
541     if (obj_main->interp != NULL &&
542       strcmp(obj_main->interp, obj_rtld.path) != 0) {
543 	free(obj_rtld.path);
544 	obj_rtld.path = xstrdup(obj_main->interp);
545         __progname = obj_rtld.path;
546     }
547 
548     digest_dynamic(obj_main, 0);
549     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
550 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
551 	obj_main->dynsymcount);
552 
553     linkmap_add(obj_main);
554     linkmap_add(&obj_rtld);
555 
556     /* Link the main program into the list of objects. */
557     *obj_tail = obj_main;
558     obj_tail = &obj_main->next;
559     obj_count++;
560     obj_loads++;
561 
562     /* Initialize a fake symbol for resolving undefined weak references. */
563     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
564     sym_zero.st_shndx = SHN_UNDEF;
565     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
566 
567     if (!libmap_disable)
568         libmap_disable = (bool)lm_init(libmap_override);
569 
570     dbg("loading LD_PRELOAD libraries");
571     if (load_preload_objects() == -1)
572 	die();
573     preload_tail = obj_tail;
574 
575     dbg("loading needed objects");
576     if (load_needed_objects(obj_main, 0) == -1)
577 	die();
578 
579     /* Make a list of all objects loaded at startup. */
580     last_interposer = obj_main;
581     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
582 	if (obj->z_interpose && obj != obj_main) {
583 	    objlist_put_after(&list_main, last_interposer, obj);
584 	    last_interposer = obj;
585 	} else {
586 	    objlist_push_tail(&list_main, obj);
587 	}
588 	obj->refcount++;
589     }
590 
591     dbg("checking for required versions");
592     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
593 	die();
594 
595 resident_skip1:
596 
597     if (ld_tracing) {		/* We're done */
598 	trace_loaded_objects(obj_main);
599 	exit(0);
600     }
601 
602     if (ld_resident)		/* XXX clean this up! */
603 	goto resident_skip2;
604 
605     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
606        dump_relocations(obj_main);
607        exit (0);
608     }
609 
610     /* setup TLS for main thread */
611     dbg("initializing initial thread local storage");
612     STAILQ_FOREACH(entry, &list_main, link) {
613 	/*
614 	 * Allocate all the initial objects out of the static TLS
615 	 * block even if they didn't ask for it.
616 	 */
617 	allocate_tls_offset(entry->obj);
618     }
619 
620     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
621 
622     /*
623      * Do not try to allocate the TLS here, let libc do it itself.
624      * (crt1 for the program will call _init_tls())
625      */
626 
627     if (relocate_objects(obj_main,
628       ld_bind_now != NULL && *ld_bind_now != '\0',
629       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
630 	die();
631 
632     dbg("doing copy relocations");
633     if (do_copy_relocations(obj_main) == -1)
634 	die();
635 
636 resident_skip2:
637 
638     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
639 	if (exec_sys_unregister(-1) < 0) {
640 	    dbg("exec_sys_unregister failed %d\n", errno);
641 	    exit(errno);
642 	}
643 	dbg("exec_sys_unregister success\n");
644 	exit(0);
645     }
646 
647     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
648        dump_relocations(obj_main);
649        exit (0);
650     }
651 
652     dbg("initializing key program variables");
653     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
654     set_program_var("environ", env);
655     set_program_var("__elf_aux_vector", aux);
656 
657     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
658 	extern void resident_start(void);
659 	ld_resident = 1;
660 	if (exec_sys_register(resident_start) < 0) {
661 	    dbg("exec_sys_register failed %d\n", errno);
662 	    exit(errno);
663 	}
664 	dbg("exec_sys_register success\n");
665 	exit(0);
666     }
667 
668     /* Make a list of init functions to call. */
669     objlist_init(&initlist);
670     initlist_add_objects(obj_list, preload_tail, &initlist);
671 
672     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
673 
674     map_stacks_exec(NULL);
675 
676     dbg("resolving ifuncs");
677     if (resolve_objects_ifunc(obj_main,
678       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
679       NULL) == -1)
680 	die();
681 
682     /*
683      * Do NOT call the initlist here, give libc a chance to set up
684      * the initial TLS segment.  crt1 will then call _rtld_call_init().
685      */
686 
687     dbg("transferring control to program entry point = %p", obj_main->entry);
688 
689     /* Return the exit procedure and the program entry point. */
690     *exit_proc = rtld_exit;
691     *objp = obj_main;
692     return (func_ptr_type) obj_main->entry;
693 }
694 
695 /*
696  * Call the initialization list for dynamically loaded libraries.
697  * (called from crt1.c).
698  */
699 void
700 _rtld_call_init(void)
701 {
702     RtldLockState lockstate;
703     Obj_Entry *obj;
704 
705     if (!obj_main->note_present && obj_main->valid_hash_gnu) {
706 	/*
707 	 * The use of a linker script with a PHDRS directive that does not include
708 	 * PT_NOTE will block the crt_no_init note.  In this case we'll look for the
709 	 * recently added GNU hash dynamic tag which gets built by default.  It is
710 	 * extremely unlikely to find a pre-3.1 binary without a PT_NOTE header and
711 	 * a gnu hash tag.  If gnu hash found, consider binary to use new crt code.
712 	 */
713 	obj_main->crt_no_init = true;
714 	dbg("Setting crt_no_init without presence of PT_NOTE header");
715     }
716 
717     wlock_acquire(rtld_bind_lock, &lockstate);
718     if (obj_main->crt_no_init)
719 	preinit_main();
720     else {
721 	/*
722 	 * Make sure we don't call the main program's init and fini functions
723 	 * for binaries linked with old crt1 which calls _init itself.
724 	 */
725 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
726 	obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL;
727     }
728     objlist_call_init(&initlist, &lockstate);
729     _r_debug_postinit(&obj_main->linkmap);
730     objlist_clear(&initlist);
731     dbg("loading filtees");
732     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
733 	if (ld_loadfltr || obj->z_loadfltr)
734 	    load_filtees(obj, 0, &lockstate);
735     }
736     lock_release(rtld_bind_lock, &lockstate);
737 }
738 
739 void *
740 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
741 {
742 	void *ptr;
743 	Elf_Addr target;
744 
745 	ptr = (void *)make_function_pointer(def, obj);
746 	target = ((Elf_Addr (*)(void))ptr)();
747 	return ((void *)target);
748 }
749 
750 Elf_Addr
751 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
752 {
753     const Elf_Rel *rel;
754     const Elf_Sym *def;
755     const Obj_Entry *defobj;
756     Elf_Addr *where;
757     Elf_Addr target;
758     RtldLockState lockstate;
759 
760     rlock_acquire(rtld_bind_lock, &lockstate);
761     if (sigsetjmp(lockstate.env, 0) != 0)
762 	    lock_upgrade(rtld_bind_lock, &lockstate);
763     if (obj->pltrel)
764 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
765     else
766 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
767 
768     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
769     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
770 	&lockstate);
771     if (def == NULL)
772 	die();
773     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
774 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
775     else
776 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
777 
778     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
779       defobj->strtab + def->st_name, basename(obj->path),
780       (void *)target, basename(defobj->path));
781 
782     /*
783      * If we have a function call tracing hook, and the
784      * hook would like to keep tracing this one function,
785      * prevent the relocation so we will wind up here
786      * the next time again.
787      *
788      * We don't want to functrace calls from the functracer
789      * to avoid recursive loops.
790      */
791     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
792 	if (rtld_functrace(obj->path,
793 			   defobj->path,
794 			   defobj->strtab + def->st_name,
795 			   stack)) {
796 	    lock_release(rtld_bind_lock, &lockstate);
797 	    return target;
798 	}
799     }
800 
801     /*
802      * Write the new contents for the jmpslot. Note that depending on
803      * architecture, the value which we need to return back to the
804      * lazy binding trampoline may or may not be the target
805      * address. The value returned from reloc_jmpslot() is the value
806      * that the trampoline needs.
807      */
808     target = reloc_jmpslot(where, target, defobj, obj, rel);
809     lock_release(rtld_bind_lock, &lockstate);
810     return target;
811 }
812 
813 /*
814  * Error reporting function.  Use it like printf.  If formats the message
815  * into a buffer, and sets things up so that the next call to dlerror()
816  * will return the message.
817  */
818 void
819 _rtld_error(const char *fmt, ...)
820 {
821     static char buf[512];
822     va_list ap;
823 
824     va_start(ap, fmt);
825     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
826     error_message = buf;
827     va_end(ap);
828 }
829 
830 /*
831  * Return a dynamically-allocated copy of the current error message, if any.
832  */
833 static char *
834 errmsg_save(void)
835 {
836     return error_message == NULL ? NULL : xstrdup(error_message);
837 }
838 
839 /*
840  * Restore the current error message from a copy which was previously saved
841  * by errmsg_save().  The copy is freed.
842  */
843 static void
844 errmsg_restore(char *saved_msg)
845 {
846     if (saved_msg == NULL)
847 	error_message = NULL;
848     else {
849 	_rtld_error("%s", saved_msg);
850 	free(saved_msg);
851     }
852 }
853 
854 const char *
855 basename(const char *name)
856 {
857     const char *p = strrchr(name, '/');
858     return p != NULL ? p + 1 : name;
859 }
860 
861 static struct utsname uts;
862 
863 static char *
864 origin_subst_one(char *real, const char *kw, const char *subst,
865     bool may_free)
866 {
867 	char *p, *p1, *res, *resp;
868 	int subst_len, kw_len, subst_count, old_len, new_len;
869 
870 	kw_len = strlen(kw);
871 
872 	/*
873 	 * First, count the number of the keyword occurrences, to
874 	 * preallocate the final string.
875 	 */
876 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
877 		p1 = strstr(p, kw);
878 		if (p1 == NULL)
879 			break;
880 	}
881 
882 	/*
883 	 * If the keyword is not found, just return.
884 	 */
885 	if (subst_count == 0)
886 		return (may_free ? real : xstrdup(real));
887 
888 	/*
889 	 * There is indeed something to substitute.  Calculate the
890 	 * length of the resulting string, and allocate it.
891 	 */
892 	subst_len = strlen(subst);
893 	old_len = strlen(real);
894 	new_len = old_len + (subst_len - kw_len) * subst_count;
895 	res = xmalloc(new_len + 1);
896 
897 	/*
898 	 * Now, execute the substitution loop.
899 	 */
900 	for (p = real, resp = res, *resp = '\0';;) {
901 		p1 = strstr(p, kw);
902 		if (p1 != NULL) {
903 			/* Copy the prefix before keyword. */
904 			memcpy(resp, p, p1 - p);
905 			resp += p1 - p;
906 			/* Keyword replacement. */
907 			memcpy(resp, subst, subst_len);
908 			resp += subst_len;
909 			*resp = '\0';
910 			p = p1 + kw_len;
911 		} else
912 			break;
913 	}
914 
915 	/* Copy to the end of string and finish. */
916 	strcat(resp, p);
917 	if (may_free)
918 		free(real);
919 	return (res);
920 }
921 
922 static char *
923 origin_subst(char *real, const char *origin_path)
924 {
925 	char *res1, *res2, *res3, *res4;
926 
927 	if (uts.sysname[0] == '\0') {
928 		if (uname(&uts) != 0) {
929 			_rtld_error("utsname failed: %d", errno);
930 			return (NULL);
931 		}
932 	}
933 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
934 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
935 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
936 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
937 	return (res4);
938 }
939 
940 static void
941 die(void)
942 {
943     const char *msg = dlerror();
944 
945     if (msg == NULL)
946 	msg = "Fatal error";
947     rtld_fdputstr(STDERR_FILENO, msg);
948     rtld_fdputchar(STDERR_FILENO, '\n');
949     _exit(1);
950 }
951 
952 /*
953  * Process a shared object's DYNAMIC section, and save the important
954  * information in its Obj_Entry structure.
955  */
956 static void
957 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
958     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
959 {
960     const Elf_Dyn *dynp;
961     Needed_Entry **needed_tail = &obj->needed;
962     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
963     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
964     const Elf_Hashelt *hashtab;
965     const Elf32_Word *hashval;
966     Elf32_Word bkt, nmaskwords;
967     int bloom_size32;
968     bool nmw_power2;
969     int plttype = DT_REL;
970 
971     *dyn_rpath = NULL;
972     *dyn_soname = NULL;
973     *dyn_runpath = NULL;
974 
975     obj->bind_now = false;
976     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
977 	switch (dynp->d_tag) {
978 
979 	case DT_REL:
980 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
981 	    break;
982 
983 	case DT_RELSZ:
984 	    obj->relsize = dynp->d_un.d_val;
985 	    break;
986 
987 	case DT_RELENT:
988 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
989 	    break;
990 
991 	case DT_JMPREL:
992 	    obj->pltrel = (const Elf_Rel *)
993 	      (obj->relocbase + dynp->d_un.d_ptr);
994 	    break;
995 
996 	case DT_PLTRELSZ:
997 	    obj->pltrelsize = dynp->d_un.d_val;
998 	    break;
999 
1000 	case DT_RELA:
1001 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1002 	    break;
1003 
1004 	case DT_RELASZ:
1005 	    obj->relasize = dynp->d_un.d_val;
1006 	    break;
1007 
1008 	case DT_RELAENT:
1009 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1010 	    break;
1011 
1012 	case DT_PLTREL:
1013 	    plttype = dynp->d_un.d_val;
1014 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1015 	    break;
1016 
1017 	case DT_SYMTAB:
1018 	    obj->symtab = (const Elf_Sym *)
1019 	      (obj->relocbase + dynp->d_un.d_ptr);
1020 	    break;
1021 
1022 	case DT_SYMENT:
1023 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1024 	    break;
1025 
1026 	case DT_STRTAB:
1027 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1028 	    break;
1029 
1030 	case DT_STRSZ:
1031 	    obj->strsize = dynp->d_un.d_val;
1032 	    break;
1033 
1034 	case DT_VERNEED:
1035 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1036 		dynp->d_un.d_val);
1037 	    break;
1038 
1039 	case DT_VERNEEDNUM:
1040 	    obj->verneednum = dynp->d_un.d_val;
1041 	    break;
1042 
1043 	case DT_VERDEF:
1044 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1045 		dynp->d_un.d_val);
1046 	    break;
1047 
1048 	case DT_VERDEFNUM:
1049 	    obj->verdefnum = dynp->d_un.d_val;
1050 	    break;
1051 
1052 	case DT_VERSYM:
1053 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1054 		dynp->d_un.d_val);
1055 	    break;
1056 
1057 	case DT_HASH:
1058 	    {
1059 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1060 		    dynp->d_un.d_ptr);
1061 		obj->nbuckets = hashtab[0];
1062 		obj->nchains = hashtab[1];
1063 		obj->buckets = hashtab + 2;
1064 		obj->chains = obj->buckets + obj->nbuckets;
1065 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1066 		  obj->buckets != NULL;
1067 	    }
1068 	    break;
1069 
1070 	case DT_GNU_HASH:
1071 	    {
1072 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1073 		    dynp->d_un.d_ptr);
1074 		obj->nbuckets_gnu = hashtab[0];
1075 		obj->symndx_gnu = hashtab[1];
1076 		nmaskwords = hashtab[2];
1077 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1078 		/* Number of bitmask words is required to be power of 2 */
1079 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
1080 		obj->maskwords_bm_gnu = nmaskwords - 1;
1081 		obj->shift2_gnu = hashtab[3];
1082 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1083 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1084 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1085 		  obj->symndx_gnu;
1086 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
1087 		  obj->buckets_gnu != NULL;
1088 	    }
1089 	    break;
1090 
1091 	case DT_NEEDED:
1092 	    if (!obj->rtld) {
1093 		Needed_Entry *nep = NEW(Needed_Entry);
1094 		nep->name = dynp->d_un.d_val;
1095 		nep->obj = NULL;
1096 		nep->next = NULL;
1097 
1098 		*needed_tail = nep;
1099 		needed_tail = &nep->next;
1100 	    }
1101 	    break;
1102 
1103 	case DT_FILTER:
1104 	    if (!obj->rtld) {
1105 		Needed_Entry *nep = NEW(Needed_Entry);
1106 		nep->name = dynp->d_un.d_val;
1107 		nep->obj = NULL;
1108 		nep->next = NULL;
1109 
1110 		*needed_filtees_tail = nep;
1111 		needed_filtees_tail = &nep->next;
1112 	    }
1113 	    break;
1114 
1115 	case DT_AUXILIARY:
1116 	    if (!obj->rtld) {
1117 		Needed_Entry *nep = NEW(Needed_Entry);
1118 		nep->name = dynp->d_un.d_val;
1119 		nep->obj = NULL;
1120 		nep->next = NULL;
1121 
1122 		*needed_aux_filtees_tail = nep;
1123 		needed_aux_filtees_tail = &nep->next;
1124 	    }
1125 	    break;
1126 
1127 	case DT_PLTGOT:
1128 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1129 	    break;
1130 
1131 	case DT_TEXTREL:
1132 	    obj->textrel = true;
1133 	    break;
1134 
1135 	case DT_SYMBOLIC:
1136 	    obj->symbolic = true;
1137 	    break;
1138 
1139 	case DT_RPATH:
1140 	    /*
1141 	     * We have to wait until later to process this, because we
1142 	     * might not have gotten the address of the string table yet.
1143 	     */
1144 	    *dyn_rpath = dynp;
1145 	    break;
1146 
1147 	case DT_SONAME:
1148 	    *dyn_soname = dynp;
1149 	    break;
1150 
1151 	case DT_RUNPATH:
1152 	    *dyn_runpath = dynp;
1153 	    break;
1154 
1155 	case DT_INIT:
1156 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1157 	    break;
1158 
1159 	case DT_PREINIT_ARRAY:
1160 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1161 	    break;
1162 
1163 	case DT_PREINIT_ARRAYSZ:
1164 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1165 	    break;
1166 
1167 	case DT_INIT_ARRAY:
1168 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1169 	    break;
1170 
1171 	case DT_INIT_ARRAYSZ:
1172 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1173 	    break;
1174 
1175 	case DT_FINI:
1176 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1177 	    break;
1178 
1179 	case DT_FINI_ARRAY:
1180 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1181 	    break;
1182 
1183 	case DT_FINI_ARRAYSZ:
1184 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1185 	    break;
1186 
1187 	case DT_DEBUG:
1188 	    /* XXX - not implemented yet */
1189 	    if (!early)
1190 		dbg("Filling in DT_DEBUG entry");
1191 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1192 	    break;
1193 
1194 	case DT_FLAGS:
1195 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1196 		    obj->z_origin = true;
1197 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1198 		    obj->symbolic = true;
1199 		if (dynp->d_un.d_val & DF_TEXTREL)
1200 		    obj->textrel = true;
1201 		if (dynp->d_un.d_val & DF_BIND_NOW)
1202 		    obj->bind_now = true;
1203 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1204 		    ;*/
1205 	    break;
1206 
1207 	case DT_FLAGS_1:
1208 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1209 		    obj->z_noopen = true;
1210 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1211 		    obj->z_origin = true;
1212 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1213 		    XXX ;*/
1214 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1215 		    obj->bind_now = true;
1216 		if (dynp->d_un.d_val & DF_1_NODELETE)
1217 		    obj->z_nodelete = true;
1218 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1219 		    obj->z_loadfltr = true;
1220 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
1221 		    obj->z_interpose = true;
1222 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1223 		    obj->z_nodeflib = true;
1224 	    break;
1225 
1226 	default:
1227 	    if (!early) {
1228 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1229 		    (long)dynp->d_tag);
1230 	    }
1231 	    break;
1232 	}
1233     }
1234 
1235     obj->traced = false;
1236 
1237     if (plttype == DT_RELA) {
1238 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1239 	obj->pltrel = NULL;
1240 	obj->pltrelasize = obj->pltrelsize;
1241 	obj->pltrelsize = 0;
1242     }
1243 
1244     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1245     if (obj->valid_hash_sysv)
1246 	obj->dynsymcount = obj->nchains;
1247     else if (obj->valid_hash_gnu) {
1248 	obj->dynsymcount = 0;
1249 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1250 	    if (obj->buckets_gnu[bkt] == 0)
1251 		continue;
1252 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1253 	    do
1254 		obj->dynsymcount++;
1255 	    while ((*hashval++ & 1u) == 0);
1256 	}
1257 	obj->dynsymcount += obj->symndx_gnu;
1258     }
1259 }
1260 
1261 static void
1262 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1263     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1264 {
1265 
1266     if (obj->z_origin && obj->origin_path == NULL) {
1267 	obj->origin_path = xmalloc(PATH_MAX);
1268 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1269 	    die();
1270     }
1271 
1272     if (dyn_runpath != NULL) {
1273 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1274 	if (obj->z_origin)
1275 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1276     }
1277     else if (dyn_rpath != NULL) {
1278 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1279 	if (obj->z_origin)
1280 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1281     }
1282 
1283     if (dyn_soname != NULL)
1284 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1285 }
1286 
1287 static void
1288 digest_dynamic(Obj_Entry *obj, int early)
1289 {
1290 	const Elf_Dyn *dyn_rpath;
1291 	const Elf_Dyn *dyn_soname;
1292 	const Elf_Dyn *dyn_runpath;
1293 
1294 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1295 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1296 }
1297 
1298 /*
1299  * Process a shared object's program header.  This is used only for the
1300  * main program, when the kernel has already loaded the main program
1301  * into memory before calling the dynamic linker.  It creates and
1302  * returns an Obj_Entry structure.
1303  */
1304 static Obj_Entry *
1305 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1306 {
1307     Obj_Entry *obj;
1308     const Elf_Phdr *phlimit = phdr + phnum;
1309     const Elf_Phdr *ph;
1310     Elf_Addr note_start, note_end;
1311     int nsegs = 0;
1312 
1313     obj = obj_new();
1314     for (ph = phdr;  ph < phlimit;  ph++) {
1315 	if (ph->p_type != PT_PHDR)
1316 	    continue;
1317 
1318 	obj->phdr = phdr;
1319 	obj->phsize = ph->p_memsz;
1320 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1321 	break;
1322     }
1323 
1324     obj->stack_flags = PF_X | PF_R | PF_W;
1325 
1326     for (ph = phdr;  ph < phlimit;  ph++) {
1327 	switch (ph->p_type) {
1328 
1329 	case PT_INTERP:
1330 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1331 	    break;
1332 
1333 	case PT_LOAD:
1334 	    if (nsegs == 0) {	/* First load segment */
1335 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1336 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1337 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1338 		  obj->vaddrbase;
1339 	    } else {		/* Last load segment */
1340 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1341 		  obj->vaddrbase;
1342 	    }
1343 	    nsegs++;
1344 	    break;
1345 
1346 	case PT_DYNAMIC:
1347 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1348 	    break;
1349 
1350 	case PT_TLS:
1351 	    obj->tlsindex = 1;
1352 	    obj->tlssize = ph->p_memsz;
1353 	    obj->tlsalign = ph->p_align;
1354 	    obj->tlsinitsize = ph->p_filesz;
1355 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1356 	    break;
1357 
1358 	case PT_GNU_STACK:
1359 	    obj->stack_flags = ph->p_flags;
1360 	    break;
1361 
1362 	case PT_GNU_RELRO:
1363 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1364 	    obj->relro_size = round_page(ph->p_memsz);
1365 	    break;
1366 
1367 	case PT_NOTE:
1368 	    obj->note_present = true;
1369 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1370 	    note_end = note_start + ph->p_filesz;
1371 	    digest_notes(obj, note_start, note_end);
1372 	    break;
1373 	}
1374     }
1375     if (nsegs < 1) {
1376 	_rtld_error("%s: too few PT_LOAD segments", path);
1377 	return NULL;
1378     }
1379 
1380     obj->entry = entry;
1381     return obj;
1382 }
1383 
1384 void
1385 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1386 {
1387 	const Elf_Note *note;
1388 	const char *note_name;
1389 	uintptr_t p;
1390 
1391 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1392 	    note = (const Elf_Note *)((const char *)(note + 1) +
1393 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1394 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1395 		if (note->n_namesz != sizeof(NOTE_VENDOR) ||
1396 		    note->n_descsz != sizeof(int32_t))
1397 			continue;
1398 		if (note->n_type != ABI_NOTETYPE &&
1399 		    note->n_type != CRT_NOINIT_NOTETYPE)
1400 			continue;
1401 		note_name = (const char *)(note + 1);
1402 		if (strncmp(NOTE_VENDOR, note_name, sizeof(NOTE_VENDOR)) != 0)
1403 			continue;
1404 		switch (note->n_type) {
1405 		case ABI_NOTETYPE:
1406 			/* DragonFly osrel note */
1407 			p = (uintptr_t)(note + 1);
1408 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1409 			obj->osrel = *(const int32_t *)(p);
1410 			dbg("note osrel %d", obj->osrel);
1411 			break;
1412 		case CRT_NOINIT_NOTETYPE:
1413 			/* DragonFly 'crt does not call init' note */
1414 			obj->crt_no_init = true;
1415 			dbg("note crt_no_init");
1416 			break;
1417 		}
1418 	}
1419 }
1420 
1421 static Obj_Entry *
1422 dlcheck(void *handle)
1423 {
1424     Obj_Entry *obj;
1425 
1426     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1427 	if (obj == (Obj_Entry *) handle)
1428 	    break;
1429 
1430     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1431 	_rtld_error("Invalid shared object handle %p", handle);
1432 	return NULL;
1433     }
1434     return obj;
1435 }
1436 
1437 /*
1438  * If the given object is already in the donelist, return true.  Otherwise
1439  * add the object to the list and return false.
1440  */
1441 static bool
1442 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1443 {
1444     unsigned int i;
1445 
1446     for (i = 0;  i < dlp->num_used;  i++)
1447 	if (dlp->objs[i] == obj)
1448 	    return true;
1449     /*
1450      * Our donelist allocation should always be sufficient.  But if
1451      * our threads locking isn't working properly, more shared objects
1452      * could have been loaded since we allocated the list.  That should
1453      * never happen, but we'll handle it properly just in case it does.
1454      */
1455     if (dlp->num_used < dlp->num_alloc)
1456 	dlp->objs[dlp->num_used++] = obj;
1457     return false;
1458 }
1459 
1460 /*
1461  * Hash function for symbol table lookup.  Don't even think about changing
1462  * this.  It is specified by the System V ABI.
1463  */
1464 unsigned long
1465 elf_hash(const char *name)
1466 {
1467     const unsigned char *p = (const unsigned char *) name;
1468     unsigned long h = 0;
1469     unsigned long g;
1470 
1471     while (*p != '\0') {
1472 	h = (h << 4) + *p++;
1473 	if ((g = h & 0xf0000000) != 0)
1474 	    h ^= g >> 24;
1475 	h &= ~g;
1476     }
1477     return h;
1478 }
1479 
1480 /*
1481  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1482  * unsigned in case it's implemented with a wider type.
1483  */
1484 static uint_fast32_t
1485 gnu_hash(const char *s)
1486 {
1487 	uint_fast32_t h;
1488 	unsigned char c;
1489 
1490 	h = 5381;
1491 	for (c = *s; c != '\0'; c = *++s)
1492 		h = h * 33 + c;
1493 	return (h & 0xffffffff);
1494 }
1495 
1496 
1497 /*
1498  * Find the library with the given name, and return its full pathname.
1499  * The returned string is dynamically allocated.  Generates an error
1500  * message and returns NULL if the library cannot be found.
1501  *
1502  * If the second argument is non-NULL, then it refers to an already-
1503  * loaded shared object, whose library search path will be searched.
1504  *
1505  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
1506  * descriptor (which is close-on-exec) will be passed out via the third
1507  * argument.
1508  *
1509  * The search order is:
1510  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1511  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1512  *   LD_LIBRARY_PATH
1513  *   DT_RUNPATH in the referencing file
1514  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
1515  *	 from list)
1516  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1517  *
1518  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1519  */
1520 static char *
1521 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
1522 {
1523     char *pathname;
1524     char *name;
1525     bool nodeflib, objgiven;
1526 
1527     objgiven = refobj != NULL;
1528     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1529 	if (xname[0] != '/' && !trust) {
1530 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1531 	      xname);
1532 	    return NULL;
1533 	}
1534 	if (objgiven && refobj->z_origin) {
1535 		return (origin_subst(__DECONST(char *, xname),
1536 		    refobj->origin_path));
1537 	} else {
1538 		return (xstrdup(xname));
1539 	}
1540     }
1541 
1542     if (libmap_disable || !objgiven ||
1543 	(name = lm_find(refobj->path, xname)) == NULL)
1544 	name = (char *)xname;
1545 
1546     dbg(" Searching for \"%s\"", name);
1547 
1548     nodeflib = objgiven ? refobj->z_nodeflib : false;
1549     if ((objgiven &&
1550       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1551       (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1552       (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1553       (pathname = search_library_path(name, ld_library_path)) != NULL ||
1554       (objgiven &&
1555       (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1556       (pathname = search_library_pathfds(name, ld_library_dirs, fdp)) != NULL ||
1557       (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1558       (objgiven && !nodeflib &&
1559       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1560 	return (pathname);
1561 
1562     if (objgiven && refobj->path != NULL) {
1563 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1564 	  name, basename(refobj->path));
1565     } else {
1566 	_rtld_error("Shared object \"%s\" not found", name);
1567     }
1568     return NULL;
1569 }
1570 
1571 /*
1572  * Given a symbol number in a referencing object, find the corresponding
1573  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1574  * no definition was found.  Returns a pointer to the Obj_Entry of the
1575  * defining object via the reference parameter DEFOBJ_OUT.
1576  */
1577 const Elf_Sym *
1578 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1579     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1580     RtldLockState *lockstate)
1581 {
1582     const Elf_Sym *ref;
1583     const Elf_Sym *def;
1584     const Obj_Entry *defobj;
1585     SymLook req;
1586     const char *name;
1587     int res;
1588 
1589     /*
1590      * If we have already found this symbol, get the information from
1591      * the cache.
1592      */
1593     if (symnum >= refobj->dynsymcount)
1594 	return NULL;	/* Bad object */
1595     if (cache != NULL && cache[symnum].sym != NULL) {
1596 	*defobj_out = cache[symnum].obj;
1597 	return cache[symnum].sym;
1598     }
1599 
1600     ref = refobj->symtab + symnum;
1601     name = refobj->strtab + ref->st_name;
1602     def = NULL;
1603     defobj = NULL;
1604 
1605     /*
1606      * We don't have to do a full scale lookup if the symbol is local.
1607      * We know it will bind to the instance in this load module; to
1608      * which we already have a pointer (ie ref). By not doing a lookup,
1609      * we not only improve performance, but it also avoids unresolvable
1610      * symbols when local symbols are not in the hash table.
1611      *
1612      * This might occur for TLS module relocations, which simply use
1613      * symbol 0.
1614      */
1615     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1616 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1617 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1618 		symnum);
1619 	}
1620 	symlook_init(&req, name);
1621 	req.flags = flags;
1622 	req.ventry = fetch_ventry(refobj, symnum);
1623 	req.lockstate = lockstate;
1624 	res = symlook_default(&req, refobj);
1625 	if (res == 0) {
1626 	    def = req.sym_out;
1627 	    defobj = req.defobj_out;
1628 	}
1629     } else {
1630 	def = ref;
1631 	defobj = refobj;
1632     }
1633 
1634     /*
1635      * If we found no definition and the reference is weak, treat the
1636      * symbol as having the value zero.
1637      */
1638     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1639 	def = &sym_zero;
1640 	defobj = obj_main;
1641     }
1642 
1643     if (def != NULL) {
1644 	*defobj_out = defobj;
1645 	/* Record the information in the cache to avoid subsequent lookups. */
1646 	if (cache != NULL) {
1647 	    cache[symnum].sym = def;
1648 	    cache[symnum].obj = defobj;
1649 	}
1650     } else {
1651 	if (refobj != &obj_rtld)
1652 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1653     }
1654     return def;
1655 }
1656 
1657 /*
1658  * Return the search path from the ldconfig hints file, reading it if
1659  * necessary.  If nostdlib is true, then the default search paths are
1660  * not added to result.
1661  *
1662  * Returns NULL if there are problems with the hints file,
1663  * or if the search path there is empty.
1664  */
1665 static const char *
1666 gethints(bool nostdlib)
1667 {
1668 	static char *hints, *filtered_path;
1669 	struct elfhints_hdr hdr;
1670 	struct fill_search_info_args sargs, hargs;
1671 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1672 	struct dl_serpath *SLPpath, *hintpath;
1673 	char *p;
1674 	unsigned int SLPndx, hintndx, fndx, fcount;
1675 	int fd;
1676 	size_t flen;
1677 	bool skip;
1678 
1679 	/* First call, read the hints file */
1680 	if (hints == NULL) {
1681 		/* Keep from trying again in case the hints file is bad. */
1682 		hints = "";
1683 
1684 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1685 			return (NULL);
1686 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1687 		    hdr.magic != ELFHINTS_MAGIC ||
1688 		    hdr.version != 1) {
1689 			close(fd);
1690 			return (NULL);
1691 		}
1692 		p = xmalloc(hdr.dirlistlen + 1);
1693 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1694 		    read(fd, p, hdr.dirlistlen + 1) !=
1695 		    (ssize_t)hdr.dirlistlen + 1) {
1696 			free(p);
1697 			close(fd);
1698 			return (NULL);
1699 		}
1700 		hints = p;
1701 		close(fd);
1702 	}
1703 
1704 	/*
1705 	 * If caller agreed to receive list which includes the default
1706 	 * paths, we are done. Otherwise, if we still have not
1707 	 * calculated filtered result, do it now.
1708 	 */
1709 	if (!nostdlib)
1710 		return (hints[0] != '\0' ? hints : NULL);
1711 	if (filtered_path != NULL)
1712 		goto filt_ret;
1713 
1714 	/*
1715 	 * Obtain the list of all configured search paths, and the
1716 	 * list of the default paths.
1717 	 *
1718 	 * First estimate the size of the results.
1719 	 */
1720 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1721 	smeta.dls_cnt = 0;
1722 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1723 	hmeta.dls_cnt = 0;
1724 
1725 	sargs.request = RTLD_DI_SERINFOSIZE;
1726 	sargs.serinfo = &smeta;
1727 	hargs.request = RTLD_DI_SERINFOSIZE;
1728 	hargs.serinfo = &hmeta;
1729 
1730 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1731 	path_enumerate(p, fill_search_info, &hargs);
1732 
1733 	SLPinfo = xmalloc(smeta.dls_size);
1734 	hintinfo = xmalloc(hmeta.dls_size);
1735 
1736 	/*
1737 	 * Next fetch both sets of paths.
1738 	 */
1739 	sargs.request = RTLD_DI_SERINFO;
1740 	sargs.serinfo = SLPinfo;
1741 	sargs.serpath = &SLPinfo->dls_serpath[0];
1742 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1743 
1744 	hargs.request = RTLD_DI_SERINFO;
1745 	hargs.serinfo = hintinfo;
1746 	hargs.serpath = &hintinfo->dls_serpath[0];
1747 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1748 
1749 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1750 	path_enumerate(p, fill_search_info, &hargs);
1751 
1752 	/*
1753 	 * Now calculate the difference between two sets, by excluding
1754 	 * standard paths from the full set.
1755 	 */
1756 	fndx = 0;
1757 	fcount = 0;
1758 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1759 	hintpath = &hintinfo->dls_serpath[0];
1760 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1761 		skip = false;
1762 		SLPpath = &SLPinfo->dls_serpath[0];
1763 		/*
1764 		 * Check each standard path against current.
1765 		 */
1766 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1767 			/* matched, skip the path */
1768 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1769 				skip = true;
1770 				break;
1771 			}
1772 		}
1773 		if (skip)
1774 			continue;
1775 		/*
1776 		 * Not matched against any standard path, add the path
1777 		 * to result. Separate consecutive paths with ':'.
1778 		 */
1779 		if (fcount > 0) {
1780 			filtered_path[fndx] = ':';
1781 			fndx++;
1782 		}
1783 		fcount++;
1784 		flen = strlen(hintpath->dls_name);
1785 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1786 		fndx += flen;
1787 	}
1788 	filtered_path[fndx] = '\0';
1789 
1790 	free(SLPinfo);
1791 	free(hintinfo);
1792 
1793 filt_ret:
1794 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1795 }
1796 
1797 static void
1798 init_dag(Obj_Entry *root)
1799 {
1800     const Needed_Entry *needed;
1801     const Objlist_Entry *elm;
1802     DoneList donelist;
1803 
1804     if (root->dag_inited)
1805 	return;
1806     donelist_init(&donelist);
1807 
1808     /* Root object belongs to own DAG. */
1809     objlist_push_tail(&root->dldags, root);
1810     objlist_push_tail(&root->dagmembers, root);
1811     donelist_check(&donelist, root);
1812 
1813     /*
1814      * Add dependencies of root object to DAG in breadth order
1815      * by exploiting the fact that each new object get added
1816      * to the tail of the dagmembers list.
1817      */
1818     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1819 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1820 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1821 		continue;
1822 	    objlist_push_tail(&needed->obj->dldags, root);
1823 	    objlist_push_tail(&root->dagmembers, needed->obj);
1824 	}
1825     }
1826     root->dag_inited = true;
1827 }
1828 
1829 static void
1830 process_nodelete(Obj_Entry *root)
1831 {
1832 	const Objlist_Entry *elm;
1833 
1834 	/*
1835 	 * Walk over object DAG and process every dependent object that
1836 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1837 	 * which then should have its reference upped separately.
1838 	 */
1839 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1840 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1841 		    !elm->obj->ref_nodel) {
1842 			dbg("obj %s nodelete", elm->obj->path);
1843 			init_dag(elm->obj);
1844 			ref_dag(elm->obj);
1845 			elm->obj->ref_nodel = true;
1846 		}
1847 	}
1848 }
1849 
1850 /*
1851  * Initialize the dynamic linker.  The argument is the address at which
1852  * the dynamic linker has been mapped into memory.  The primary task of
1853  * this function is to relocate the dynamic linker.
1854  */
1855 static void
1856 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1857 {
1858     Obj_Entry objtmp;	/* Temporary rtld object */
1859     const Elf_Ehdr *ehdr;
1860     const Elf_Dyn *dyn_rpath;
1861     const Elf_Dyn *dyn_soname;
1862     const Elf_Dyn *dyn_runpath;
1863 
1864     /*
1865      * Conjure up an Obj_Entry structure for the dynamic linker.
1866      *
1867      * The "path" member can't be initialized yet because string constants
1868      * cannot yet be accessed. Below we will set it correctly.
1869      */
1870     memset(&objtmp, 0, sizeof(objtmp));
1871     objtmp.path = NULL;
1872     objtmp.rtld = true;
1873     objtmp.mapbase = mapbase;
1874 #ifdef PIC
1875     objtmp.relocbase = mapbase;
1876 #endif
1877     if (RTLD_IS_DYNAMIC()) {
1878 	objtmp.dynamic = rtld_dynamic(&objtmp);
1879 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1880 	assert(objtmp.needed == NULL);
1881 	assert(!objtmp.textrel);
1882 
1883 	/*
1884 	 * Temporarily put the dynamic linker entry into the object list, so
1885 	 * that symbols can be found.
1886 	 */
1887 
1888 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1889     }
1890     ehdr = (Elf_Ehdr *)mapbase;
1891     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
1892     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
1893 
1894     /* Initialize the object list. */
1895     obj_tail = &obj_list;
1896 
1897     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1898     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1899 
1900 #ifdef ENABLE_OSRELDATE
1901     if (aux_info[AT_OSRELDATE] != NULL)
1902 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1903 #endif
1904 
1905     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1906 
1907     /* Replace the path with a dynamically allocated copy. */
1908     obj_rtld.path = xstrdup(PATH_RTLD);
1909 
1910     r_debug.r_brk = r_debug_state;
1911     r_debug.r_state = RT_CONSISTENT;
1912 }
1913 
1914 /*
1915  * Add the init functions from a needed object list (and its recursive
1916  * needed objects) to "list".  This is not used directly; it is a helper
1917  * function for initlist_add_objects().  The write lock must be held
1918  * when this function is called.
1919  */
1920 static void
1921 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1922 {
1923     /* Recursively process the successor needed objects. */
1924     if (needed->next != NULL)
1925 	initlist_add_neededs(needed->next, list);
1926 
1927     /* Process the current needed object. */
1928     if (needed->obj != NULL)
1929 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1930 }
1931 
1932 /*
1933  * Scan all of the DAGs rooted in the range of objects from "obj" to
1934  * "tail" and add their init functions to "list".  This recurses over
1935  * the DAGs and ensure the proper init ordering such that each object's
1936  * needed libraries are initialized before the object itself.  At the
1937  * same time, this function adds the objects to the global finalization
1938  * list "list_fini" in the opposite order.  The write lock must be
1939  * held when this function is called.
1940  */
1941 static void
1942 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1943 {
1944 
1945     if (obj->init_scanned || obj->init_done)
1946 	return;
1947     obj->init_scanned = true;
1948 
1949     /* Recursively process the successor objects. */
1950     if (&obj->next != tail)
1951 	initlist_add_objects(obj->next, tail, list);
1952 
1953     /* Recursively process the needed objects. */
1954     if (obj->needed != NULL)
1955 	initlist_add_neededs(obj->needed, list);
1956     if (obj->needed_filtees != NULL)
1957 	initlist_add_neededs(obj->needed_filtees, list);
1958     if (obj->needed_aux_filtees != NULL)
1959 	initlist_add_neededs(obj->needed_aux_filtees, list);
1960 
1961     /* Add the object to the init list. */
1962     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1963       obj->init_array != (Elf_Addr)NULL)
1964 	objlist_push_tail(list, obj);
1965 
1966     /* Add the object to the global fini list in the reverse order. */
1967     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1968       && !obj->on_fini_list) {
1969 	objlist_push_head(&list_fini, obj);
1970 	obj->on_fini_list = true;
1971     }
1972 }
1973 
1974 #ifndef FPTR_TARGET
1975 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1976 #endif
1977 
1978 static void
1979 free_needed_filtees(Needed_Entry *n)
1980 {
1981     Needed_Entry *needed, *needed1;
1982 
1983     for (needed = n; needed != NULL; needed = needed->next) {
1984 	if (needed->obj != NULL) {
1985 	    dlclose(needed->obj);
1986 	    needed->obj = NULL;
1987 	}
1988     }
1989     for (needed = n; needed != NULL; needed = needed1) {
1990 	needed1 = needed->next;
1991 	free(needed);
1992     }
1993 }
1994 
1995 static void
1996 unload_filtees(Obj_Entry *obj)
1997 {
1998 
1999     free_needed_filtees(obj->needed_filtees);
2000     obj->needed_filtees = NULL;
2001     free_needed_filtees(obj->needed_aux_filtees);
2002     obj->needed_aux_filtees = NULL;
2003     obj->filtees_loaded = false;
2004 }
2005 
2006 static void
2007 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
2008     RtldLockState *lockstate)
2009 {
2010 
2011     for (; needed != NULL; needed = needed->next) {
2012 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
2013 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
2014 	  RTLD_LOCAL, lockstate);
2015     }
2016 }
2017 
2018 static void
2019 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2020 {
2021 
2022     lock_restart_for_upgrade(lockstate);
2023     if (!obj->filtees_loaded) {
2024 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2025 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2026 	obj->filtees_loaded = true;
2027     }
2028 }
2029 
2030 static int
2031 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2032 {
2033     Obj_Entry *obj1;
2034 
2035     for (; needed != NULL; needed = needed->next) {
2036 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2037 	  flags & ~RTLD_LO_NOLOAD);
2038 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2039 	    return (-1);
2040     }
2041     return (0);
2042 }
2043 
2044 /*
2045  * Given a shared object, traverse its list of needed objects, and load
2046  * each of them.  Returns 0 on success.  Generates an error message and
2047  * returns -1 on failure.
2048  */
2049 static int
2050 load_needed_objects(Obj_Entry *first, int flags)
2051 {
2052     Obj_Entry *obj;
2053 
2054     for (obj = first;  obj != NULL;  obj = obj->next) {
2055 	if (process_needed(obj, obj->needed, flags) == -1)
2056 	    return (-1);
2057     }
2058     return (0);
2059 }
2060 
2061 static int
2062 load_preload_objects(void)
2063 {
2064     char *p = ld_preload;
2065     Obj_Entry *obj;
2066     static const char delim[] = " \t:;";
2067 
2068     if (p == NULL)
2069 	return 0;
2070 
2071     p += strspn(p, delim);
2072     while (*p != '\0') {
2073 	size_t len = strcspn(p, delim);
2074 	char savech;
2075 	SymLook req;
2076 	int res;
2077 
2078 	savech = p[len];
2079 	p[len] = '\0';
2080 	obj = load_object(p, -1, NULL, 0);
2081 	if (obj == NULL)
2082 	    return -1;	/* XXX - cleanup */
2083 	obj->z_interpose = true;
2084 	p[len] = savech;
2085 	p += len;
2086 	p += strspn(p, delim);
2087 
2088 	/* Check for the magic tracing function */
2089 	symlook_init(&req, RTLD_FUNCTRACE);
2090 	res = symlook_obj(&req, obj);
2091 	if (res == 0) {
2092 	    rtld_functrace = (void *)(req.defobj_out->relocbase +
2093 				      req.sym_out->st_value);
2094 	    rtld_functrace_obj = req.defobj_out;
2095 	}
2096     }
2097     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2098     return 0;
2099 }
2100 
2101 static const char *
2102 printable_path(const char *path)
2103 {
2104 
2105 	return (path == NULL ? "<unknown>" : path);
2106 }
2107 
2108 /*
2109  * Load a shared object into memory, if it is not already loaded.  The
2110  * object may be specified by name or by user-supplied file descriptor
2111  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2112  * duplicate is.
2113  *
2114  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2115  * on failure.
2116  */
2117 static Obj_Entry *
2118 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2119 {
2120     Obj_Entry *obj;
2121     int fd;
2122     struct stat sb;
2123     char *path;
2124 
2125     fd = -1;
2126     if (name != NULL) {
2127 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2128 	    if (object_match_name(obj, name))
2129 		return (obj);
2130 	}
2131 
2132 	path = find_library(name, refobj, &fd);
2133 	if (path == NULL)
2134 	    return (NULL);
2135     } else
2136 	path = NULL;
2137 
2138     if (fd >= 0) {
2139 	/*
2140 	 * search_library_pathfds() opens a fresh file descriptor for the
2141 	 * library, so there is no need to dup().
2142 	 */
2143     } else if (fd_u == -1) {
2144 	/*
2145 	 * If we didn't find a match by pathname, or the name is not
2146 	 * supplied, open the file and check again by device and inode.
2147 	 * This avoids false mismatches caused by multiple links or ".."
2148 	 * in pathnames.
2149 	 *
2150 	 * To avoid a race, we open the file and use fstat() rather than
2151 	 * using stat().
2152 	 */
2153 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2154 	    _rtld_error("Cannot open \"%s\"", path);
2155 	    free(path);
2156 	    return (NULL);
2157 	}
2158     } else {
2159 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2160 	if (fd == -1) {
2161 	    _rtld_error("Cannot dup fd");
2162 	    free(path);
2163 	    return (NULL);
2164 	}
2165     }
2166     if (fstat(fd, &sb) == -1) {
2167 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2168 	close(fd);
2169 	free(path);
2170 	return NULL;
2171     }
2172     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2173 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2174 	    break;
2175     if (obj != NULL && name != NULL) {
2176 	object_add_name(obj, name);
2177 	free(path);
2178 	close(fd);
2179 	return obj;
2180     }
2181     if (flags & RTLD_LO_NOLOAD) {
2182 	free(path);
2183 	close(fd);
2184 	return (NULL);
2185     }
2186 
2187     /* First use of this object, so we must map it in */
2188     obj = do_load_object(fd, name, path, &sb, flags);
2189     if (obj == NULL)
2190 	free(path);
2191     close(fd);
2192 
2193     return obj;
2194 }
2195 
2196 static Obj_Entry *
2197 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2198   int flags)
2199 {
2200     Obj_Entry *obj;
2201     struct statfs fs;
2202 
2203     /*
2204      * but first, make sure that environment variables haven't been
2205      * used to circumvent the noexec flag on a filesystem.
2206      */
2207     if (dangerous_ld_env) {
2208 	if (fstatfs(fd, &fs) != 0) {
2209 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2210 	    return NULL;
2211 	}
2212 	if (fs.f_flags & MNT_NOEXEC) {
2213 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2214 	    return NULL;
2215 	}
2216     }
2217     dbg("loading \"%s\"", printable_path(path));
2218     obj = map_object(fd, printable_path(path), sbp);
2219     if (obj == NULL)
2220         return NULL;
2221 
2222     /*
2223      * If DT_SONAME is present in the object, digest_dynamic2 already
2224      * added it to the object names.
2225      */
2226     if (name != NULL)
2227 	object_add_name(obj, name);
2228     obj->path = path;
2229     digest_dynamic(obj, 0);
2230     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2231 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2232     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2233       RTLD_LO_DLOPEN) {
2234 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2235 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2236 	munmap(obj->mapbase, obj->mapsize);
2237 	obj_free(obj);
2238 	return (NULL);
2239     }
2240 
2241     *obj_tail = obj;
2242     obj_tail = &obj->next;
2243     obj_count++;
2244     obj_loads++;
2245     linkmap_add(obj);	/* for GDB & dlinfo() */
2246 #if 0
2247     max_stack_flags |= obj->stack_flags;
2248 #endif
2249 
2250     dbg("  %p .. %p: %s", obj->mapbase,
2251          obj->mapbase + obj->mapsize - 1, obj->path);
2252     if (obj->textrel)
2253 	dbg("  WARNING: %s has impure text", obj->path);
2254     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2255 	obj->path);
2256 
2257     return obj;
2258 }
2259 
2260 static Obj_Entry *
2261 obj_from_addr(const void *addr)
2262 {
2263     Obj_Entry *obj;
2264 
2265     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2266 	if (addr < (void *) obj->mapbase)
2267 	    continue;
2268 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2269 	    return obj;
2270     }
2271     return NULL;
2272 }
2273 
2274 /*
2275  * If the main program is defined with a .preinit_array section, call
2276  * each function in order.  This must occur before the initialization
2277  * of any shared object or the main program.
2278  */
2279 static void
2280 preinit_main(void)
2281 {
2282     Elf_Addr *preinit_addr;
2283     int index;
2284 
2285     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2286     if (preinit_addr == NULL)
2287 	return;
2288 
2289     for (index = 0; index < obj_main->preinit_array_num; index++) {
2290 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2291 	    dbg("calling preinit function for %s at %p", obj_main->path,
2292 	      (void *)preinit_addr[index]);
2293 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2294 	      0, 0, obj_main->path);
2295 	    call_init_pointer(obj_main, preinit_addr[index]);
2296 	}
2297     }
2298 }
2299 
2300 /*
2301  * Call the finalization functions for each of the objects in "list"
2302  * belonging to the DAG of "root" and referenced once. If NULL "root"
2303  * is specified, every finalization function will be called regardless
2304  * of the reference count and the list elements won't be freed. All of
2305  * the objects are expected to have non-NULL fini functions.
2306  */
2307 static void
2308 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2309 {
2310     Objlist_Entry *elm;
2311     char *saved_msg;
2312     Elf_Addr *fini_addr;
2313     int index;
2314 
2315     assert(root == NULL || root->refcount == 1);
2316 
2317     /*
2318      * Preserve the current error message since a fini function might
2319      * call into the dynamic linker and overwrite it.
2320      */
2321     saved_msg = errmsg_save();
2322     do {
2323 	STAILQ_FOREACH(elm, list, link) {
2324 	    if (root != NULL && (elm->obj->refcount != 1 ||
2325 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2326 		continue;
2327 
2328 	    /* Remove object from fini list to prevent recursive invocation. */
2329 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2330 	    /*
2331 	     * XXX: If a dlopen() call references an object while the
2332 	     * fini function is in progress, we might end up trying to
2333 	     * unload the referenced object in dlclose() or the object
2334 	     * won't be unloaded although its fini function has been
2335 	     * called.
2336 	     */
2337 	    lock_release(rtld_bind_lock, lockstate);
2338 
2339 	    /*
2340 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
2341 	     * When this happens, DT_FINI_ARRAY is processed first.
2342 	     * It is also processed backwards.  It is possible to encounter
2343 	     * DT_FINI_ARRAY elements with values of 0 or 1, but they need
2344 	     * to be ignored.
2345 	     */
2346 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2347 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2348 		for (index = elm->obj->fini_array_num - 1; index >= 0; index--) {
2349 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2350 			dbg("calling fini array function for %s at %p",
2351 			    elm->obj->path, (void *)fini_addr[index]);
2352 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2353 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2354 			call_initfini_pointer(elm->obj, fini_addr[index]);
2355 		    }
2356 		}
2357 	    }
2358 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2359 		dbg("calling fini function for %s at %p", elm->obj->path,
2360 		    (void *)elm->obj->fini);
2361 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2362 		    0, 0, elm->obj->path);
2363 		call_initfini_pointer(elm->obj, elm->obj->fini);
2364 	    }
2365 	    wlock_acquire(rtld_bind_lock, lockstate);
2366 	    /* No need to free anything if process is going down. */
2367 	    if (root != NULL)
2368 		free(elm);
2369 	    /*
2370 	     * We must restart the list traversal after every fini call
2371 	     * because a dlclose() call from the fini function or from
2372 	     * another thread might have modified the reference counts.
2373 	     */
2374 	    break;
2375 	}
2376     } while (elm != NULL);
2377     errmsg_restore(saved_msg);
2378 }
2379 
2380 /*
2381  * Call the initialization functions for each of the objects in
2382  * "list".  All of the objects are expected to have non-NULL init
2383  * functions.
2384  */
2385 static void
2386 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2387 {
2388     Objlist_Entry *elm;
2389     Obj_Entry *obj;
2390     char *saved_msg;
2391     Elf_Addr *init_addr;
2392     int index;
2393 
2394     /*
2395      * Clean init_scanned flag so that objects can be rechecked and
2396      * possibly initialized earlier if any of vectors called below
2397      * cause the change by using dlopen.
2398      */
2399     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2400 	obj->init_scanned = false;
2401 
2402     /*
2403      * Preserve the current error message since an init function might
2404      * call into the dynamic linker and overwrite it.
2405      */
2406     saved_msg = errmsg_save();
2407     STAILQ_FOREACH(elm, list, link) {
2408 	if (elm->obj->init_done) /* Initialized early. */
2409 	    continue;
2410 
2411 	/*
2412 	 * Race: other thread might try to use this object before current
2413 	 * one completes the initilization. Not much can be done here
2414 	 * without better locking.
2415 	 */
2416 	elm->obj->init_done = true;
2417 	lock_release(rtld_bind_lock, lockstate);
2418 
2419         /*
2420          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
2421          * When this happens, DT_INIT is processed first.
2422 	 * It is possible to encounter DT_INIT_ARRAY elements with values
2423 	 * of 0 or 1, but they need to be ignored.
2424          */
2425 	if (elm->obj->init != (Elf_Addr)NULL) {
2426 	    dbg("calling init function for %s at %p", elm->obj->path,
2427 	        (void *)elm->obj->init);
2428 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2429 	        0, 0, elm->obj->path);
2430 	    call_initfini_pointer(elm->obj, elm->obj->init);
2431 	}
2432 	init_addr = (Elf_Addr *)elm->obj->init_array;
2433 	if (init_addr != NULL) {
2434 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2435 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2436 		    dbg("calling init array function for %s at %p", elm->obj->path,
2437 			(void *)init_addr[index]);
2438 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2439 			(void *)init_addr[index], 0, 0, elm->obj->path);
2440 		    call_init_pointer(elm->obj, init_addr[index]);
2441 		}
2442 	    }
2443 	}
2444 	wlock_acquire(rtld_bind_lock, lockstate);
2445     }
2446     errmsg_restore(saved_msg);
2447 }
2448 
2449 static void
2450 objlist_clear(Objlist *list)
2451 {
2452     Objlist_Entry *elm;
2453 
2454     while (!STAILQ_EMPTY(list)) {
2455 	elm = STAILQ_FIRST(list);
2456 	STAILQ_REMOVE_HEAD(list, link);
2457 	free(elm);
2458     }
2459 }
2460 
2461 static Objlist_Entry *
2462 objlist_find(Objlist *list, const Obj_Entry *obj)
2463 {
2464     Objlist_Entry *elm;
2465 
2466     STAILQ_FOREACH(elm, list, link)
2467 	if (elm->obj == obj)
2468 	    return elm;
2469     return NULL;
2470 }
2471 
2472 static void
2473 objlist_init(Objlist *list)
2474 {
2475     STAILQ_INIT(list);
2476 }
2477 
2478 static void
2479 objlist_push_head(Objlist *list, Obj_Entry *obj)
2480 {
2481     Objlist_Entry *elm;
2482 
2483     elm = NEW(Objlist_Entry);
2484     elm->obj = obj;
2485     STAILQ_INSERT_HEAD(list, elm, link);
2486 }
2487 
2488 static void
2489 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2490 {
2491     Objlist_Entry *elm;
2492 
2493     elm = NEW(Objlist_Entry);
2494     elm->obj = obj;
2495     STAILQ_INSERT_TAIL(list, elm, link);
2496 }
2497 
2498 static void
2499 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2500 {
2501 	Objlist_Entry *elm, *listelm;
2502 
2503 	STAILQ_FOREACH(listelm, list, link) {
2504 		if (listelm->obj == listobj)
2505 			break;
2506 	}
2507 	elm = NEW(Objlist_Entry);
2508 	elm->obj = obj;
2509 	if (listelm != NULL)
2510 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
2511 	else
2512 		STAILQ_INSERT_TAIL(list, elm, link);
2513 }
2514 
2515 static void
2516 objlist_remove(Objlist *list, Obj_Entry *obj)
2517 {
2518     Objlist_Entry *elm;
2519 
2520     if ((elm = objlist_find(list, obj)) != NULL) {
2521 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2522 	free(elm);
2523     }
2524 }
2525 
2526 /*
2527  * Relocate dag rooted in the specified object.
2528  * Returns 0 on success, or -1 on failure.
2529  */
2530 
2531 static int
2532 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2533     int flags, RtldLockState *lockstate)
2534 {
2535 	Objlist_Entry *elm;
2536 	int error;
2537 
2538 	error = 0;
2539 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2540 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2541 		    lockstate);
2542 		if (error == -1)
2543 			break;
2544 	}
2545 	return (error);
2546 }
2547 
2548 /*
2549  * Prepare for, or clean after, relocating an object marked with
2550  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
2551  * segments are remapped read-write.  After relocations are done, the
2552  * segment's permissions are returned back to the modes specified in
2553  * the phdrs.  If any relocation happened, or always for wired
2554  * program, COW is triggered.
2555  */
2556 static int
2557 reloc_textrel_prot(Obj_Entry *obj, bool before)
2558 {
2559 	const Elf_Phdr *ph;
2560 	void *base;
2561 	size_t l, sz;
2562 	int prot;
2563 
2564 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
2565 	    l--, ph++) {
2566 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
2567 			continue;
2568 		base = obj->relocbase + trunc_page(ph->p_vaddr);
2569 		sz = round_page(ph->p_vaddr + ph->p_filesz) -
2570 		    trunc_page(ph->p_vaddr);
2571 		prot = convert_prot(ph->p_flags) | (before ? PROT_WRITE : 0);
2572 	/*
2573 	 * Make sure modified text segments are included in the
2574 	 * core dump since we modified it.  This unfortunately causes the
2575 	 * entire text segment to core-out but we don't have much of a
2576 	 * choice.  We could try to only reenable core dumps on pages
2577 	 * in which relocations occured but that is likely most of the text
2578 	 * pages anyway, and even that would not work because the rest of
2579 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
2580 	 * (created due to our modifications) backed by the original OBJT_VNODE
2581 	 * object, and the ELF coredump code is currently only able to dump
2582 	 * vnode records for pure vnode-backed mappings, not vnode backings
2583 	 * to memory objects.
2584 	 */
2585 		if (before == false)
2586 			madvise(base, sz, MADV_CORE);
2587 		if (mprotect(base, sz, prot) == -1) {
2588 			_rtld_error("%s: Cannot write-%sable text segment: %s",
2589 			    obj->path, before ? "en" : "dis",
2590 			    rtld_strerror(errno));
2591 			return (-1);
2592 		}
2593 	}
2594 	return (0);
2595 }
2596 
2597 /*
2598  * Relocate single object.
2599  * Returns 0 on success, or -1 on failure.
2600  */
2601 static int
2602 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2603     int flags, RtldLockState *lockstate)
2604 {
2605 
2606 	if (obj->relocated)
2607 		return (0);
2608 	obj->relocated = true;
2609 	if (obj != rtldobj)
2610 		dbg("relocating \"%s\"", obj->path);
2611 
2612 	if (obj->symtab == NULL || obj->strtab == NULL ||
2613 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2614 		_rtld_error("%s: Shared object has no run-time symbol table",
2615 			    obj->path);
2616 		return (-1);
2617 	}
2618 
2619 	/* There are relocations to the write-protected text segment. */
2620 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
2621 		return (-1);
2622 
2623 	/* Process the non-PLT non-IFUNC relocations. */
2624 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2625 		return (-1);
2626 
2627 	/* Re-protected the text segment. */
2628 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
2629 		return (-1);
2630 
2631 	/* Set the special PLT or GOT entries. */
2632 	init_pltgot(obj);
2633 
2634 	/* Process the PLT relocations. */
2635 	if (reloc_plt(obj) == -1)
2636 		return (-1);
2637 	/* Relocate the jump slots if we are doing immediate binding. */
2638 	if (obj->bind_now || bind_now)
2639 		if (reloc_jmpslots(obj, flags, lockstate) == -1)
2640 			return (-1);
2641 
2642 	/*
2643 	 * Process the non-PLT IFUNC relocations.  The relocations are
2644 	 * processed in two phases, because IFUNC resolvers may
2645 	 * reference other symbols, which must be readily processed
2646 	 * before resolvers are called.
2647 	 */
2648 	if (obj->non_plt_gnu_ifunc &&
2649 	    reloc_non_plt(obj, rtldobj, flags | SYMLOOK_IFUNC, lockstate))
2650 		return (-1);
2651 
2652 	/*
2653 	 * Set up the magic number and version in the Obj_Entry.  These
2654 	 * were checked in the crt1.o from the original ElfKit, so we
2655 	 * set them for backward compatibility.
2656 	 */
2657 	obj->magic = RTLD_MAGIC;
2658 	obj->version = RTLD_VERSION;
2659 
2660 	/*
2661 	 * Set relocated data to read-only status if protection specified
2662 	 */
2663 
2664 	if (obj->relro_size) {
2665 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2666 		_rtld_error("%s: Cannot enforce relro relocation: %s",
2667 		  obj->path, rtld_strerror(errno));
2668 		return (-1);
2669 	    }
2670 	}
2671 	return (0);
2672 }
2673 
2674 /*
2675  * Relocate newly-loaded shared objects.  The argument is a pointer to
2676  * the Obj_Entry for the first such object.  All objects from the first
2677  * to the end of the list of objects are relocated.  Returns 0 on success,
2678  * or -1 on failure.
2679  */
2680 static int
2681 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2682     int flags, RtldLockState *lockstate)
2683 {
2684 	Obj_Entry *obj;
2685 	int error;
2686 
2687 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2688 		error = relocate_object(obj, bind_now, rtldobj, flags,
2689 		    lockstate);
2690 		if (error == -1)
2691 			break;
2692 	}
2693 	return (error);
2694 }
2695 
2696 /*
2697  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2698  * referencing STT_GNU_IFUNC symbols is postponed till the other
2699  * relocations are done.  The indirect functions specified as
2700  * ifunc are allowed to call other symbols, so we need to have
2701  * objects relocated before asking for resolution from indirects.
2702  *
2703  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2704  * instead of the usual lazy handling of PLT slots.  It is
2705  * consistent with how GNU does it.
2706  */
2707 static int
2708 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2709     RtldLockState *lockstate)
2710 {
2711 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2712 		return (-1);
2713 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2714 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2715 		return (-1);
2716 	return (0);
2717 }
2718 
2719 static int
2720 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2721     RtldLockState *lockstate)
2722 {
2723 	Obj_Entry *obj;
2724 
2725 	for (obj = first;  obj != NULL;  obj = obj->next) {
2726 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2727 			return (-1);
2728 	}
2729 	return (0);
2730 }
2731 
2732 static int
2733 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2734     RtldLockState *lockstate)
2735 {
2736 	Objlist_Entry *elm;
2737 
2738 	STAILQ_FOREACH(elm, list, link) {
2739 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2740 		    lockstate) == -1)
2741 			return (-1);
2742 	}
2743 	return (0);
2744 }
2745 
2746 /*
2747  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2748  * before the process exits.
2749  */
2750 static void
2751 rtld_exit(void)
2752 {
2753     RtldLockState lockstate;
2754 
2755     wlock_acquire(rtld_bind_lock, &lockstate);
2756     dbg("rtld_exit()");
2757     objlist_call_fini(&list_fini, NULL, &lockstate);
2758     /* No need to remove the items from the list, since we are exiting. */
2759     if (!libmap_disable)
2760         lm_fini();
2761     lock_release(rtld_bind_lock, &lockstate);
2762 }
2763 
2764 /*
2765  * Iterate over a search path, translate each element, and invoke the
2766  * callback on the result.
2767  */
2768 static void *
2769 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2770 {
2771     const char *trans;
2772     if (path == NULL)
2773 	return (NULL);
2774 
2775     path += strspn(path, ":;");
2776     while (*path != '\0') {
2777 	size_t len;
2778 	char  *res;
2779 
2780 	len = strcspn(path, ":;");
2781 	trans = lm_findn(NULL, path, len);
2782 	if (trans)
2783 	    res = callback(trans, strlen(trans), arg);
2784 	else
2785 	    res = callback(path, len, arg);
2786 
2787 	if (res != NULL)
2788 	    return (res);
2789 
2790 	path += len;
2791 	path += strspn(path, ":;");
2792     }
2793 
2794     return (NULL);
2795 }
2796 
2797 struct try_library_args {
2798     const char	*name;
2799     size_t	 namelen;
2800     char	*buffer;
2801     size_t	 buflen;
2802 };
2803 
2804 static void *
2805 try_library_path(const char *dir, size_t dirlen, void *param)
2806 {
2807     struct try_library_args *arg;
2808 
2809     arg = param;
2810     if (*dir == '/' || trust) {
2811 	char *pathname;
2812 
2813 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2814 		return (NULL);
2815 
2816 	pathname = arg->buffer;
2817 	strncpy(pathname, dir, dirlen);
2818 	pathname[dirlen] = '/';
2819 	strcpy(pathname + dirlen + 1, arg->name);
2820 
2821 	dbg("  Trying \"%s\"", pathname);
2822 	if (access(pathname, F_OK) == 0) {		/* We found it */
2823 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2824 	    strcpy(pathname, arg->buffer);
2825 	    return (pathname);
2826 	}
2827     }
2828     return (NULL);
2829 }
2830 
2831 static char *
2832 search_library_path(const char *name, const char *path)
2833 {
2834     char *p;
2835     struct try_library_args arg;
2836 
2837     if (path == NULL)
2838 	return NULL;
2839 
2840     arg.name = name;
2841     arg.namelen = strlen(name);
2842     arg.buffer = xmalloc(PATH_MAX);
2843     arg.buflen = PATH_MAX;
2844 
2845     p = path_enumerate(path, try_library_path, &arg);
2846 
2847     free(arg.buffer);
2848 
2849     return (p);
2850 }
2851 
2852 
2853 /*
2854  * Finds the library with the given name using the directory descriptors
2855  * listed in the LD_LIBRARY_PATH_FDS environment variable.
2856  *
2857  * Returns a freshly-opened close-on-exec file descriptor for the library,
2858  * or -1 if the library cannot be found.
2859  */
2860 static char *
2861 search_library_pathfds(const char *name, const char *path, int *fdp)
2862 {
2863 	char *envcopy, *fdstr, *found, *last_token;
2864 	size_t len;
2865 	int dirfd, fd;
2866 
2867 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
2868 
2869 	/* Don't load from user-specified libdirs into setuid binaries. */
2870 	if (!trust)
2871 		return (NULL);
2872 
2873 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
2874 	if (path == NULL)
2875 		return (NULL);
2876 
2877 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
2878 	if (name[0] == '/') {
2879 		dbg("Absolute path (%s) passed to %s", name, __func__);
2880 		return (NULL);
2881 	}
2882 
2883 	/*
2884 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
2885 	 * copy of the path, as strtok_r rewrites separator tokens
2886 	 * with '\0'.
2887 	 */
2888 	found = NULL;
2889 	envcopy = xstrdup(path);
2890 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
2891 	    fdstr = strtok_r(NULL, ":", &last_token)) {
2892 		dirfd = parse_libdir(fdstr);
2893 		if (dirfd < 0)
2894 			break;
2895 		fd = openat(dirfd, name, O_RDONLY | O_CLOEXEC);
2896 		if (fd >= 0) {
2897 			*fdp = fd;
2898 			len = strlen(fdstr) + strlen(name) + 3;
2899 			found = xmalloc(len);
2900 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
2901 				_rtld_error("error generating '%d/%s'",
2902 				    dirfd, name);
2903 				die();
2904 			}
2905 			dbg("open('%s') => %d", found, fd);
2906 			break;
2907 		}
2908 	}
2909 	free(envcopy);
2910 
2911 	return (found);
2912 }
2913 
2914 
2915 int
2916 dlclose(void *handle)
2917 {
2918     Obj_Entry *root;
2919     RtldLockState lockstate;
2920 
2921     wlock_acquire(rtld_bind_lock, &lockstate);
2922     root = dlcheck(handle);
2923     if (root == NULL) {
2924 	lock_release(rtld_bind_lock, &lockstate);
2925 	return -1;
2926     }
2927     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2928 	root->path);
2929 
2930     /* Unreference the object and its dependencies. */
2931     root->dl_refcount--;
2932 
2933     if (root->refcount == 1) {
2934 	/*
2935 	 * The object will be no longer referenced, so we must unload it.
2936 	 * First, call the fini functions.
2937 	 */
2938 	objlist_call_fini(&list_fini, root, &lockstate);
2939 
2940 	unref_dag(root);
2941 
2942 	/* Finish cleaning up the newly-unreferenced objects. */
2943 	GDB_STATE(RT_DELETE,&root->linkmap);
2944 	unload_object(root);
2945 	GDB_STATE(RT_CONSISTENT,NULL);
2946     } else
2947 	unref_dag(root);
2948 
2949     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2950     lock_release(rtld_bind_lock, &lockstate);
2951     return 0;
2952 }
2953 
2954 char *
2955 dlerror(void)
2956 {
2957     char *msg = error_message;
2958     error_message = NULL;
2959     return msg;
2960 }
2961 
2962 void *
2963 dlopen(const char *name, int mode)
2964 {
2965 
2966 	return (rtld_dlopen(name, -1, mode));
2967 }
2968 
2969 void *
2970 fdlopen(int fd, int mode)
2971 {
2972 
2973 	return (rtld_dlopen(NULL, fd, mode));
2974 }
2975 
2976 static void *
2977 rtld_dlopen(const char *name, int fd, int mode)
2978 {
2979     RtldLockState lockstate;
2980     int lo_flags;
2981 
2982     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2983     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2984     if (ld_tracing != NULL) {
2985 	rlock_acquire(rtld_bind_lock, &lockstate);
2986 	if (sigsetjmp(lockstate.env, 0) != 0)
2987 	    lock_upgrade(rtld_bind_lock, &lockstate);
2988 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2989 	lock_release(rtld_bind_lock, &lockstate);
2990     }
2991     lo_flags = RTLD_LO_DLOPEN;
2992     if (mode & RTLD_NODELETE)
2993 	    lo_flags |= RTLD_LO_NODELETE;
2994     if (mode & RTLD_NOLOAD)
2995 	    lo_flags |= RTLD_LO_NOLOAD;
2996     if (ld_tracing != NULL)
2997 	    lo_flags |= RTLD_LO_TRACE;
2998 
2999     return (dlopen_object(name, fd, obj_main, lo_flags,
3000       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
3001 }
3002 
3003 static void
3004 dlopen_cleanup(Obj_Entry *obj)
3005 {
3006 
3007 	obj->dl_refcount--;
3008 	unref_dag(obj);
3009 	if (obj->refcount == 0)
3010 		unload_object(obj);
3011 }
3012 
3013 static Obj_Entry *
3014 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
3015     int mode, RtldLockState *lockstate)
3016 {
3017     Obj_Entry **old_obj_tail;
3018     Obj_Entry *obj;
3019     Objlist initlist;
3020     RtldLockState mlockstate;
3021     int result;
3022 
3023     objlist_init(&initlist);
3024 
3025     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
3026 	wlock_acquire(rtld_bind_lock, &mlockstate);
3027 	lockstate = &mlockstate;
3028     }
3029     GDB_STATE(RT_ADD,NULL);
3030 
3031     old_obj_tail = obj_tail;
3032     obj = NULL;
3033     if (name == NULL && fd == -1) {
3034 	obj = obj_main;
3035 	obj->refcount++;
3036     } else {
3037 	obj = load_object(name, fd, refobj, lo_flags);
3038     }
3039 
3040     if (obj) {
3041 	obj->dl_refcount++;
3042 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
3043 	    objlist_push_tail(&list_global, obj);
3044 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
3045 	    assert(*old_obj_tail == obj);
3046 	    result = load_needed_objects(obj,
3047 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
3048 	    init_dag(obj);
3049 	    ref_dag(obj);
3050 	    if (result != -1)
3051 		result = rtld_verify_versions(&obj->dagmembers);
3052 	    if (result != -1 && ld_tracing)
3053 		goto trace;
3054 	    if (result == -1 || relocate_object_dag(obj,
3055 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
3056 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3057 	      lockstate) == -1) {
3058 		dlopen_cleanup(obj);
3059 		obj = NULL;
3060 	    } else if (lo_flags & RTLD_LO_EARLY) {
3061 		/*
3062 		 * Do not call the init functions for early loaded
3063 		 * filtees.  The image is still not initialized enough
3064 		 * for them to work.
3065 		 *
3066 		 * Our object is found by the global object list and
3067 		 * will be ordered among all init calls done right
3068 		 * before transferring control to main.
3069 		 */
3070 	    } else {
3071 		/* Make list of init functions to call. */
3072 		initlist_add_objects(obj, &obj->next, &initlist);
3073 	    }
3074 	    /*
3075 	     * Process all no_delete objects here, given them own
3076 	     * DAGs to prevent their dependencies from being unloaded.
3077 	     * This has to be done after we have loaded all of the
3078 	     * dependencies, so that we do not miss any.
3079 	     */
3080 	    if (obj != NULL)
3081 		process_nodelete(obj);
3082 	} else {
3083 	    /*
3084 	     * Bump the reference counts for objects on this DAG.  If
3085 	     * this is the first dlopen() call for the object that was
3086 	     * already loaded as a dependency, initialize the dag
3087 	     * starting at it.
3088 	     */
3089 	    init_dag(obj);
3090 	    ref_dag(obj);
3091 
3092 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
3093 		goto trace;
3094 	}
3095 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
3096 	  obj->z_nodelete) && !obj->ref_nodel) {
3097 	    dbg("obj %s nodelete", obj->path);
3098 	    ref_dag(obj);
3099 	    obj->z_nodelete = obj->ref_nodel = true;
3100 	}
3101     }
3102 
3103     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
3104 	name);
3105     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
3106 
3107     if (!(lo_flags & RTLD_LO_EARLY)) {
3108 	map_stacks_exec(lockstate);
3109     }
3110 
3111     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3112       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3113       lockstate) == -1) {
3114 	objlist_clear(&initlist);
3115 	dlopen_cleanup(obj);
3116 	if (lockstate == &mlockstate)
3117 	    lock_release(rtld_bind_lock, lockstate);
3118 	return (NULL);
3119     }
3120 
3121     if (!(lo_flags & RTLD_LO_EARLY)) {
3122 	/* Call the init functions. */
3123 	objlist_call_init(&initlist, lockstate);
3124     }
3125     objlist_clear(&initlist);
3126     if (lockstate == &mlockstate)
3127 	lock_release(rtld_bind_lock, lockstate);
3128     return obj;
3129 trace:
3130     trace_loaded_objects(obj);
3131     if (lockstate == &mlockstate)
3132 	lock_release(rtld_bind_lock, lockstate);
3133     exit(0);
3134 }
3135 
3136 static void *
3137 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3138     int flags)
3139 {
3140     DoneList donelist;
3141     const Obj_Entry *obj, *defobj;
3142     const Elf_Sym *def;
3143     SymLook req;
3144     RtldLockState lockstate;
3145     tls_index ti;
3146     int res;
3147 
3148     def = NULL;
3149     defobj = NULL;
3150     symlook_init(&req, name);
3151     req.ventry = ve;
3152     req.flags = flags | SYMLOOK_IN_PLT;
3153     req.lockstate = &lockstate;
3154 
3155     rlock_acquire(rtld_bind_lock, &lockstate);
3156     if (sigsetjmp(lockstate.env, 0) != 0)
3157 	    lock_upgrade(rtld_bind_lock, &lockstate);
3158     if (handle == NULL || handle == RTLD_NEXT ||
3159 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3160 
3161 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3162 	    _rtld_error("Cannot determine caller's shared object");
3163 	    lock_release(rtld_bind_lock, &lockstate);
3164 	    return NULL;
3165 	}
3166 	if (handle == NULL) {	/* Just the caller's shared object. */
3167 	    res = symlook_obj(&req, obj);
3168 	    if (res == 0) {
3169 		def = req.sym_out;
3170 		defobj = req.defobj_out;
3171 	    }
3172 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3173 		   handle == RTLD_SELF) { /* ... caller included */
3174 	    if (handle == RTLD_NEXT)
3175 		obj = obj->next;
3176 	    for (; obj != NULL; obj = obj->next) {
3177 		res = symlook_obj(&req, obj);
3178 		if (res == 0) {
3179 		    if (def == NULL ||
3180 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3181 			def = req.sym_out;
3182 			defobj = req.defobj_out;
3183 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3184 			    break;
3185 		    }
3186 		}
3187 	    }
3188 	    /*
3189 	     * Search the dynamic linker itself, and possibly resolve the
3190 	     * symbol from there.  This is how the application links to
3191 	     * dynamic linker services such as dlopen.
3192 	     */
3193 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3194 		res = symlook_obj(&req, &obj_rtld);
3195 		if (res == 0) {
3196 		    def = req.sym_out;
3197 		    defobj = req.defobj_out;
3198 		}
3199 	    }
3200 	} else {
3201 	    assert(handle == RTLD_DEFAULT);
3202 	    res = symlook_default(&req, obj);
3203 	    if (res == 0) {
3204 		defobj = req.defobj_out;
3205 		def = req.sym_out;
3206 	    }
3207 	}
3208     } else {
3209 	if ((obj = dlcheck(handle)) == NULL) {
3210 	    lock_release(rtld_bind_lock, &lockstate);
3211 	    return NULL;
3212 	}
3213 
3214 	donelist_init(&donelist);
3215 	if (obj->mainprog) {
3216             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3217 	    res = symlook_global(&req, &donelist);
3218 	    if (res == 0) {
3219 		def = req.sym_out;
3220 		defobj = req.defobj_out;
3221 	    }
3222 	    /*
3223 	     * Search the dynamic linker itself, and possibly resolve the
3224 	     * symbol from there.  This is how the application links to
3225 	     * dynamic linker services such as dlopen.
3226 	     */
3227 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3228 		res = symlook_obj(&req, &obj_rtld);
3229 		if (res == 0) {
3230 		    def = req.sym_out;
3231 		    defobj = req.defobj_out;
3232 		}
3233 	    }
3234 	}
3235 	else {
3236 	    /* Search the whole DAG rooted at the given object. */
3237 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3238 	    if (res == 0) {
3239 		def = req.sym_out;
3240 		defobj = req.defobj_out;
3241 	    }
3242 	}
3243     }
3244 
3245     if (def != NULL) {
3246 	lock_release(rtld_bind_lock, &lockstate);
3247 
3248 	/*
3249 	 * The value required by the caller is derived from the value
3250 	 * of the symbol. this is simply the relocated value of the
3251 	 * symbol.
3252 	 */
3253 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3254 	    return (make_function_pointer(def, defobj));
3255 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3256 	    return (rtld_resolve_ifunc(defobj, def));
3257 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3258 	    ti.ti_module = defobj->tlsindex;
3259 	    ti.ti_offset = def->st_value;
3260 	    return (__tls_get_addr(&ti));
3261 	} else
3262 	    return (defobj->relocbase + def->st_value);
3263     }
3264 
3265     _rtld_error("Undefined symbol \"%s\"", name);
3266     lock_release(rtld_bind_lock, &lockstate);
3267     return NULL;
3268 }
3269 
3270 void *
3271 dlsym(void *handle, const char *name)
3272 {
3273 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3274 	    SYMLOOK_DLSYM);
3275 }
3276 
3277 dlfunc_t
3278 dlfunc(void *handle, const char *name)
3279 {
3280 	union {
3281 		void *d;
3282 		dlfunc_t f;
3283 	} rv;
3284 
3285 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3286 	    SYMLOOK_DLSYM);
3287 	return (rv.f);
3288 }
3289 
3290 void *
3291 dlvsym(void *handle, const char *name, const char *version)
3292 {
3293 	Ver_Entry ventry;
3294 
3295 	ventry.name = version;
3296 	ventry.file = NULL;
3297 	ventry.hash = elf_hash(version);
3298 	ventry.flags= 0;
3299 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3300 	    SYMLOOK_DLSYM);
3301 }
3302 
3303 int
3304 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3305 {
3306     const Obj_Entry *obj;
3307     RtldLockState lockstate;
3308 
3309     rlock_acquire(rtld_bind_lock, &lockstate);
3310     obj = obj_from_addr(addr);
3311     if (obj == NULL) {
3312         _rtld_error("No shared object contains address");
3313 	lock_release(rtld_bind_lock, &lockstate);
3314         return (0);
3315     }
3316     rtld_fill_dl_phdr_info(obj, phdr_info);
3317     lock_release(rtld_bind_lock, &lockstate);
3318     return (1);
3319 }
3320 
3321 int
3322 dladdr(const void *addr, Dl_info *info)
3323 {
3324     const Obj_Entry *obj;
3325     const Elf_Sym *def;
3326     void *symbol_addr;
3327     unsigned long symoffset;
3328     RtldLockState lockstate;
3329 
3330     rlock_acquire(rtld_bind_lock, &lockstate);
3331     obj = obj_from_addr(addr);
3332     if (obj == NULL) {
3333         _rtld_error("No shared object contains address");
3334 	lock_release(rtld_bind_lock, &lockstate);
3335         return 0;
3336     }
3337     info->dli_fname = obj->path;
3338     info->dli_fbase = obj->mapbase;
3339     info->dli_saddr = NULL;
3340     info->dli_sname = NULL;
3341 
3342     /*
3343      * Walk the symbol list looking for the symbol whose address is
3344      * closest to the address sent in.
3345      */
3346     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3347         def = obj->symtab + symoffset;
3348 
3349         /*
3350          * For skip the symbol if st_shndx is either SHN_UNDEF or
3351          * SHN_COMMON.
3352          */
3353         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3354             continue;
3355 
3356         /*
3357          * If the symbol is greater than the specified address, or if it
3358          * is further away from addr than the current nearest symbol,
3359          * then reject it.
3360          */
3361         symbol_addr = obj->relocbase + def->st_value;
3362         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3363             continue;
3364 
3365         /* Update our idea of the nearest symbol. */
3366         info->dli_sname = obj->strtab + def->st_name;
3367         info->dli_saddr = symbol_addr;
3368 
3369         /* Exact match? */
3370         if (info->dli_saddr == addr)
3371             break;
3372     }
3373     lock_release(rtld_bind_lock, &lockstate);
3374     return 1;
3375 }
3376 
3377 int
3378 dlinfo(void *handle, int request, void *p)
3379 {
3380     const Obj_Entry *obj;
3381     RtldLockState lockstate;
3382     int error;
3383 
3384     rlock_acquire(rtld_bind_lock, &lockstate);
3385 
3386     if (handle == NULL || handle == RTLD_SELF) {
3387 	void *retaddr;
3388 
3389 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3390 	if ((obj = obj_from_addr(retaddr)) == NULL)
3391 	    _rtld_error("Cannot determine caller's shared object");
3392     } else
3393 	obj = dlcheck(handle);
3394 
3395     if (obj == NULL) {
3396 	lock_release(rtld_bind_lock, &lockstate);
3397 	return (-1);
3398     }
3399 
3400     error = 0;
3401     switch (request) {
3402     case RTLD_DI_LINKMAP:
3403 	*((struct link_map const **)p) = &obj->linkmap;
3404 	break;
3405     case RTLD_DI_ORIGIN:
3406 	error = rtld_dirname(obj->path, p);
3407 	break;
3408 
3409     case RTLD_DI_SERINFOSIZE:
3410     case RTLD_DI_SERINFO:
3411 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3412 	break;
3413 
3414     default:
3415 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3416 	error = -1;
3417     }
3418 
3419     lock_release(rtld_bind_lock, &lockstate);
3420 
3421     return (error);
3422 }
3423 
3424 static void
3425 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3426 {
3427 
3428 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3429 	phdr_info->dlpi_name = obj->path;
3430 	phdr_info->dlpi_phdr = obj->phdr;
3431 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3432 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3433 	phdr_info->dlpi_tls_data = obj->tlsinit;
3434 	phdr_info->dlpi_adds = obj_loads;
3435 	phdr_info->dlpi_subs = obj_loads - obj_count;
3436 }
3437 
3438 int
3439 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3440 {
3441     struct dl_phdr_info phdr_info;
3442     const Obj_Entry *obj;
3443     RtldLockState bind_lockstate, phdr_lockstate;
3444     int error;
3445 
3446     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3447     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3448 
3449     error = 0;
3450 
3451     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3452 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3453 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3454 		break;
3455 
3456     }
3457     if (error == 0) {
3458 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3459 	error = callback(&phdr_info, sizeof(phdr_info), param);
3460     }
3461 
3462     lock_release(rtld_bind_lock, &bind_lockstate);
3463     lock_release(rtld_phdr_lock, &phdr_lockstate);
3464 
3465     return (error);
3466 }
3467 
3468 static void *
3469 fill_search_info(const char *dir, size_t dirlen, void *param)
3470 {
3471     struct fill_search_info_args *arg;
3472 
3473     arg = param;
3474 
3475     if (arg->request == RTLD_DI_SERINFOSIZE) {
3476 	arg->serinfo->dls_cnt ++;
3477 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3478     } else {
3479 	struct dl_serpath *s_entry;
3480 
3481 	s_entry = arg->serpath;
3482 	s_entry->dls_name  = arg->strspace;
3483 	s_entry->dls_flags = arg->flags;
3484 
3485 	strncpy(arg->strspace, dir, dirlen);
3486 	arg->strspace[dirlen] = '\0';
3487 
3488 	arg->strspace += dirlen + 1;
3489 	arg->serpath++;
3490     }
3491 
3492     return (NULL);
3493 }
3494 
3495 static int
3496 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3497 {
3498     struct dl_serinfo _info;
3499     struct fill_search_info_args args;
3500 
3501     args.request = RTLD_DI_SERINFOSIZE;
3502     args.serinfo = &_info;
3503 
3504     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3505     _info.dls_cnt  = 0;
3506 
3507     path_enumerate(obj->rpath, fill_search_info, &args);
3508     path_enumerate(ld_library_path, fill_search_info, &args);
3509     path_enumerate(obj->runpath, fill_search_info, &args);
3510     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3511     if (!obj->z_nodeflib)
3512       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3513 
3514 
3515     if (request == RTLD_DI_SERINFOSIZE) {
3516 	info->dls_size = _info.dls_size;
3517 	info->dls_cnt = _info.dls_cnt;
3518 	return (0);
3519     }
3520 
3521     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3522 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3523 	return (-1);
3524     }
3525 
3526     args.request  = RTLD_DI_SERINFO;
3527     args.serinfo  = info;
3528     args.serpath  = &info->dls_serpath[0];
3529     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3530 
3531     args.flags = LA_SER_RUNPATH;
3532     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3533 	return (-1);
3534 
3535     args.flags = LA_SER_LIBPATH;
3536     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3537 	return (-1);
3538 
3539     args.flags = LA_SER_RUNPATH;
3540     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3541 	return (-1);
3542 
3543     args.flags = LA_SER_CONFIG;
3544     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3545       != NULL)
3546 	return (-1);
3547 
3548     args.flags = LA_SER_DEFAULT;
3549     if (!obj->z_nodeflib &&
3550       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3551 	return (-1);
3552     return (0);
3553 }
3554 
3555 static int
3556 rtld_dirname(const char *path, char *bname)
3557 {
3558     const char *endp;
3559 
3560     /* Empty or NULL string gets treated as "." */
3561     if (path == NULL || *path == '\0') {
3562 	bname[0] = '.';
3563 	bname[1] = '\0';
3564 	return (0);
3565     }
3566 
3567     /* Strip trailing slashes */
3568     endp = path + strlen(path) - 1;
3569     while (endp > path && *endp == '/')
3570 	endp--;
3571 
3572     /* Find the start of the dir */
3573     while (endp > path && *endp != '/')
3574 	endp--;
3575 
3576     /* Either the dir is "/" or there are no slashes */
3577     if (endp == path) {
3578 	bname[0] = *endp == '/' ? '/' : '.';
3579 	bname[1] = '\0';
3580 	return (0);
3581     } else {
3582 	do {
3583 	    endp--;
3584 	} while (endp > path && *endp == '/');
3585     }
3586 
3587     if (endp - path + 2 > PATH_MAX)
3588     {
3589 	_rtld_error("Filename is too long: %s", path);
3590 	return(-1);
3591     }
3592 
3593     strncpy(bname, path, endp - path + 1);
3594     bname[endp - path + 1] = '\0';
3595     return (0);
3596 }
3597 
3598 static int
3599 rtld_dirname_abs(const char *path, char *base)
3600 {
3601 	char base_rel[PATH_MAX];
3602 
3603 	if (rtld_dirname(path, base) == -1)
3604 		return (-1);
3605 	if (base[0] == '/')
3606 		return (0);
3607 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3608 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3609 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3610 		return (-1);
3611 	strcpy(base, base_rel);
3612 	return (0);
3613 }
3614 
3615 static void
3616 linkmap_add(Obj_Entry *obj)
3617 {
3618     struct link_map *l = &obj->linkmap;
3619     struct link_map *prev;
3620 
3621     obj->linkmap.l_name = obj->path;
3622     obj->linkmap.l_addr = obj->mapbase;
3623     obj->linkmap.l_ld = obj->dynamic;
3624 
3625     if (r_debug.r_map == NULL) {
3626 	r_debug.r_map = l;
3627 	return;
3628     }
3629 
3630     /*
3631      * Scan to the end of the list, but not past the entry for the
3632      * dynamic linker, which we want to keep at the very end.
3633      */
3634     for (prev = r_debug.r_map;
3635       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3636       prev = prev->l_next)
3637 	;
3638 
3639     /* Link in the new entry. */
3640     l->l_prev = prev;
3641     l->l_next = prev->l_next;
3642     if (l->l_next != NULL)
3643 	l->l_next->l_prev = l;
3644     prev->l_next = l;
3645 }
3646 
3647 static void
3648 linkmap_delete(Obj_Entry *obj)
3649 {
3650     struct link_map *l = &obj->linkmap;
3651 
3652     if (l->l_prev == NULL) {
3653 	if ((r_debug.r_map = l->l_next) != NULL)
3654 	    l->l_next->l_prev = NULL;
3655 	return;
3656     }
3657 
3658     if ((l->l_prev->l_next = l->l_next) != NULL)
3659 	l->l_next->l_prev = l->l_prev;
3660 }
3661 
3662 /*
3663  * Function for the debugger to set a breakpoint on to gain control.
3664  *
3665  * The two parameters allow the debugger to easily find and determine
3666  * what the runtime loader is doing and to whom it is doing it.
3667  *
3668  * When the loadhook trap is hit (r_debug_state, set at program
3669  * initialization), the arguments can be found on the stack:
3670  *
3671  *  +8   struct link_map *m
3672  *  +4   struct r_debug  *rd
3673  *  +0   RetAddr
3674  */
3675 void
3676 r_debug_state(struct r_debug* rd, struct link_map *m)
3677 {
3678     /*
3679      * The following is a hack to force the compiler to emit calls to
3680      * this function, even when optimizing.  If the function is empty,
3681      * the compiler is not obliged to emit any code for calls to it,
3682      * even when marked __noinline.  However, gdb depends on those
3683      * calls being made.
3684      */
3685     __asm __volatile("" : : : "memory");
3686 }
3687 
3688 /*
3689  * A function called after init routines have completed. This can be used to
3690  * break before a program's entry routine is called, and can be used when
3691  * main is not available in the symbol table.
3692  */
3693 void
3694 _r_debug_postinit(struct link_map *m)
3695 {
3696 
3697 	/* See r_debug_state(). */
3698 	__asm __volatile("" : : : "memory");
3699 }
3700 
3701 /*
3702  * Get address of the pointer variable in the main program.
3703  * Prefer non-weak symbol over the weak one.
3704  */
3705 static const void **
3706 get_program_var_addr(const char *name, RtldLockState *lockstate)
3707 {
3708     SymLook req;
3709     DoneList donelist;
3710 
3711     symlook_init(&req, name);
3712     req.lockstate = lockstate;
3713     donelist_init(&donelist);
3714     if (symlook_global(&req, &donelist) != 0)
3715 	return (NULL);
3716     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3717 	return ((const void **)make_function_pointer(req.sym_out,
3718 	  req.defobj_out));
3719     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3720 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3721     else
3722 	return ((const void **)(req.defobj_out->relocbase +
3723 	  req.sym_out->st_value));
3724 }
3725 
3726 /*
3727  * Set a pointer variable in the main program to the given value.  This
3728  * is used to set key variables such as "environ" before any of the
3729  * init functions are called.
3730  */
3731 static void
3732 set_program_var(const char *name, const void *value)
3733 {
3734     const void **addr;
3735 
3736     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3737 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3738 	*addr = value;
3739     }
3740 }
3741 
3742 /*
3743  * Search the global objects, including dependencies and main object,
3744  * for the given symbol.
3745  */
3746 static int
3747 symlook_global(SymLook *req, DoneList *donelist)
3748 {
3749     SymLook req1;
3750     const Objlist_Entry *elm;
3751     int res;
3752 
3753     symlook_init_from_req(&req1, req);
3754 
3755     /* Search all objects loaded at program start up. */
3756     if (req->defobj_out == NULL ||
3757       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3758 	res = symlook_list(&req1, &list_main, donelist);
3759 	if (res == 0 && (req->defobj_out == NULL ||
3760 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3761 	    req->sym_out = req1.sym_out;
3762 	    req->defobj_out = req1.defobj_out;
3763 	    assert(req->defobj_out != NULL);
3764 	}
3765     }
3766 
3767     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3768     STAILQ_FOREACH(elm, &list_global, link) {
3769 	if (req->defobj_out != NULL &&
3770 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3771 	    break;
3772 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3773 	if (res == 0 && (req->defobj_out == NULL ||
3774 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3775 	    req->sym_out = req1.sym_out;
3776 	    req->defobj_out = req1.defobj_out;
3777 	    assert(req->defobj_out != NULL);
3778 	}
3779     }
3780 
3781     return (req->sym_out != NULL ? 0 : ESRCH);
3782 }
3783 
3784 /*
3785  * This is a special version of getenv which is far more efficient
3786  * at finding LD_ environment vars.
3787  */
3788 static
3789 const char *
3790 _getenv_ld(const char *id)
3791 {
3792     const char *envp;
3793     int i, j;
3794     int idlen = strlen(id);
3795 
3796     if (ld_index == LD_ARY_CACHE)
3797 	return(getenv(id));
3798     if (ld_index == 0) {
3799 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3800 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3801 		ld_ary[j++] = envp;
3802 	}
3803 	if (j == 0)
3804 		ld_ary[j++] = "";
3805 	ld_index = j;
3806     }
3807     for (i = ld_index - 1; i >= 0; --i) {
3808 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3809 	    return(ld_ary[i] + idlen + 1);
3810     }
3811     return(NULL);
3812 }
3813 
3814 /*
3815  * Given a symbol name in a referencing object, find the corresponding
3816  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3817  * no definition was found.  Returns a pointer to the Obj_Entry of the
3818  * defining object via the reference parameter DEFOBJ_OUT.
3819  */
3820 static int
3821 symlook_default(SymLook *req, const Obj_Entry *refobj)
3822 {
3823     DoneList donelist;
3824     const Objlist_Entry *elm;
3825     SymLook req1;
3826     int res;
3827 
3828     donelist_init(&donelist);
3829     symlook_init_from_req(&req1, req);
3830 
3831     /* Look first in the referencing object if linked symbolically. */
3832     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3833 	res = symlook_obj(&req1, refobj);
3834 	if (res == 0) {
3835 	    req->sym_out = req1.sym_out;
3836 	    req->defobj_out = req1.defobj_out;
3837 	    assert(req->defobj_out != NULL);
3838 	}
3839     }
3840 
3841     symlook_global(req, &donelist);
3842 
3843     /* Search all dlopened DAGs containing the referencing object. */
3844     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3845 	if (req->sym_out != NULL &&
3846 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3847 	    break;
3848 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3849 	if (res == 0 && (req->sym_out == NULL ||
3850 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3851 	    req->sym_out = req1.sym_out;
3852 	    req->defobj_out = req1.defobj_out;
3853 	    assert(req->defobj_out != NULL);
3854 	}
3855     }
3856 
3857     /*
3858      * Search the dynamic linker itself, and possibly resolve the
3859      * symbol from there.  This is how the application links to
3860      * dynamic linker services such as dlopen.
3861      */
3862     if (req->sym_out == NULL ||
3863       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3864 	res = symlook_obj(&req1, &obj_rtld);
3865 	if (res == 0) {
3866 	    req->sym_out = req1.sym_out;
3867 	    req->defobj_out = req1.defobj_out;
3868 	    assert(req->defobj_out != NULL);
3869 	}
3870     }
3871 
3872     return (req->sym_out != NULL ? 0 : ESRCH);
3873 }
3874 
3875 static int
3876 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3877 {
3878     const Elf_Sym *def;
3879     const Obj_Entry *defobj;
3880     const Objlist_Entry *elm;
3881     SymLook req1;
3882     int res;
3883 
3884     def = NULL;
3885     defobj = NULL;
3886     STAILQ_FOREACH(elm, objlist, link) {
3887 	if (donelist_check(dlp, elm->obj))
3888 	    continue;
3889 	symlook_init_from_req(&req1, req);
3890 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3891 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3892 		def = req1.sym_out;
3893 		defobj = req1.defobj_out;
3894 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3895 		    break;
3896 	    }
3897 	}
3898     }
3899     if (def != NULL) {
3900 	req->sym_out = def;
3901 	req->defobj_out = defobj;
3902 	return (0);
3903     }
3904     return (ESRCH);
3905 }
3906 
3907 /*
3908  * Search the chain of DAGS cointed to by the given Needed_Entry
3909  * for a symbol of the given name.  Each DAG is scanned completely
3910  * before advancing to the next one.  Returns a pointer to the symbol,
3911  * or NULL if no definition was found.
3912  */
3913 static int
3914 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3915 {
3916     const Elf_Sym *def;
3917     const Needed_Entry *n;
3918     const Obj_Entry *defobj;
3919     SymLook req1;
3920     int res;
3921 
3922     def = NULL;
3923     defobj = NULL;
3924     symlook_init_from_req(&req1, req);
3925     for (n = needed; n != NULL; n = n->next) {
3926 	if (n->obj == NULL ||
3927 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3928 	    continue;
3929 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3930 	    def = req1.sym_out;
3931 	    defobj = req1.defobj_out;
3932 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3933 		break;
3934 	}
3935     }
3936     if (def != NULL) {
3937 	req->sym_out = def;
3938 	req->defobj_out = defobj;
3939 	return (0);
3940     }
3941     return (ESRCH);
3942 }
3943 
3944 /*
3945  * Search the symbol table of a single shared object for a symbol of
3946  * the given name and version, if requested.  Returns a pointer to the
3947  * symbol, or NULL if no definition was found.  If the object is
3948  * filter, return filtered symbol from filtee.
3949  *
3950  * The symbol's hash value is passed in for efficiency reasons; that
3951  * eliminates many recomputations of the hash value.
3952  */
3953 int
3954 symlook_obj(SymLook *req, const Obj_Entry *obj)
3955 {
3956     DoneList donelist;
3957     SymLook req1;
3958     int flags, res, mres;
3959 
3960     /*
3961      * If there is at least one valid hash at this point, we prefer to
3962      * use the faster GNU version if available.
3963      */
3964     if (obj->valid_hash_gnu)
3965 	mres = symlook_obj1_gnu(req, obj);
3966     else if (obj->valid_hash_sysv)
3967 	mres = symlook_obj1_sysv(req, obj);
3968     else
3969 	return (EINVAL);
3970 
3971     if (mres == 0) {
3972 	if (obj->needed_filtees != NULL) {
3973 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3974 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3975 	    donelist_init(&donelist);
3976 	    symlook_init_from_req(&req1, req);
3977 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3978 	    if (res == 0) {
3979 		req->sym_out = req1.sym_out;
3980 		req->defobj_out = req1.defobj_out;
3981 	    }
3982 	    return (res);
3983 	}
3984 	if (obj->needed_aux_filtees != NULL) {
3985 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3986 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3987 	    donelist_init(&donelist);
3988 	    symlook_init_from_req(&req1, req);
3989 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3990 	    if (res == 0) {
3991 		req->sym_out = req1.sym_out;
3992 		req->defobj_out = req1.defobj_out;
3993 		return (res);
3994 	    }
3995 	}
3996     }
3997     return (mres);
3998 }
3999 
4000 /* Symbol match routine common to both hash functions */
4001 static bool
4002 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
4003     const unsigned long symnum)
4004 {
4005 	Elf_Versym verndx;
4006 	const Elf_Sym *symp;
4007 	const char *strp;
4008 
4009 	symp = obj->symtab + symnum;
4010 	strp = obj->strtab + symp->st_name;
4011 
4012 	switch (ELF_ST_TYPE(symp->st_info)) {
4013 	case STT_FUNC:
4014 	case STT_NOTYPE:
4015 	case STT_OBJECT:
4016 	case STT_COMMON:
4017 	case STT_GNU_IFUNC:
4018 		if (symp->st_value == 0)
4019 			return (false);
4020 		/* fallthrough */
4021 	case STT_TLS:
4022 		if (symp->st_shndx != SHN_UNDEF)
4023 			break;
4024 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
4025 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
4026 			break;
4027 		/* fallthrough */
4028 	default:
4029 		return (false);
4030 	}
4031 	if (strcmp(req->name, strp) != 0)
4032 		return (false);
4033 
4034 	if (req->ventry == NULL) {
4035 		if (obj->versyms != NULL) {
4036 			verndx = VER_NDX(obj->versyms[symnum]);
4037 			if (verndx > obj->vernum) {
4038 				_rtld_error(
4039 				    "%s: symbol %s references wrong version %d",
4040 				    obj->path, obj->strtab + symnum, verndx);
4041 				return (false);
4042 			}
4043 			/*
4044 			 * If we are not called from dlsym (i.e. this
4045 			 * is a normal relocation from unversioned
4046 			 * binary), accept the symbol immediately if
4047 			 * it happens to have first version after this
4048 			 * shared object became versioned.  Otherwise,
4049 			 * if symbol is versioned and not hidden,
4050 			 * remember it. If it is the only symbol with
4051 			 * this name exported by the shared object, it
4052 			 * will be returned as a match by the calling
4053 			 * function. If symbol is global (verndx < 2)
4054 			 * accept it unconditionally.
4055 			 */
4056 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
4057 			    verndx == VER_NDX_GIVEN) {
4058 				result->sym_out = symp;
4059 				return (true);
4060 			}
4061 			else if (verndx >= VER_NDX_GIVEN) {
4062 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
4063 				    == 0) {
4064 					if (result->vsymp == NULL)
4065 						result->vsymp = symp;
4066 					result->vcount++;
4067 				}
4068 				return (false);
4069 			}
4070 		}
4071 		result->sym_out = symp;
4072 		return (true);
4073 	}
4074 	if (obj->versyms == NULL) {
4075 		if (object_match_name(obj, req->ventry->name)) {
4076 			_rtld_error("%s: object %s should provide version %s "
4077 			    "for symbol %s", obj_rtld.path, obj->path,
4078 			    req->ventry->name, obj->strtab + symnum);
4079 			return (false);
4080 		}
4081 	} else {
4082 		verndx = VER_NDX(obj->versyms[symnum]);
4083 		if (verndx > obj->vernum) {
4084 			_rtld_error("%s: symbol %s references wrong version %d",
4085 			    obj->path, obj->strtab + symnum, verndx);
4086 			return (false);
4087 		}
4088 		if (obj->vertab[verndx].hash != req->ventry->hash ||
4089 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
4090 			/*
4091 			 * Version does not match. Look if this is a
4092 			 * global symbol and if it is not hidden. If
4093 			 * global symbol (verndx < 2) is available,
4094 			 * use it. Do not return symbol if we are
4095 			 * called by dlvsym, because dlvsym looks for
4096 			 * a specific version and default one is not
4097 			 * what dlvsym wants.
4098 			 */
4099 			if ((req->flags & SYMLOOK_DLSYM) ||
4100 			    (verndx >= VER_NDX_GIVEN) ||
4101 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
4102 				return (false);
4103 		}
4104 	}
4105 	result->sym_out = symp;
4106 	return (true);
4107 }
4108 
4109 /*
4110  * Search for symbol using SysV hash function.
4111  * obj->buckets is known not to be NULL at this point; the test for this was
4112  * performed with the obj->valid_hash_sysv assignment.
4113  */
4114 static int
4115 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4116 {
4117 	unsigned long symnum;
4118 	Sym_Match_Result matchres;
4119 
4120 	matchres.sym_out = NULL;
4121 	matchres.vsymp = NULL;
4122 	matchres.vcount = 0;
4123 
4124 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4125 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4126 		if (symnum >= obj->nchains)
4127 			return (ESRCH);	/* Bad object */
4128 
4129 		if (matched_symbol(req, obj, &matchres, symnum)) {
4130 			req->sym_out = matchres.sym_out;
4131 			req->defobj_out = obj;
4132 			return (0);
4133 		}
4134 	}
4135 	if (matchres.vcount == 1) {
4136 		req->sym_out = matchres.vsymp;
4137 		req->defobj_out = obj;
4138 		return (0);
4139 	}
4140 	return (ESRCH);
4141 }
4142 
4143 /* Search for symbol using GNU hash function */
4144 static int
4145 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4146 {
4147 	Elf_Addr bloom_word;
4148 	const Elf32_Word *hashval;
4149 	Elf32_Word bucket;
4150 	Sym_Match_Result matchres;
4151 	unsigned int h1, h2;
4152 	unsigned long symnum;
4153 
4154 	matchres.sym_out = NULL;
4155 	matchres.vsymp = NULL;
4156 	matchres.vcount = 0;
4157 
4158 	/* Pick right bitmask word from Bloom filter array */
4159 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4160 	    obj->maskwords_bm_gnu];
4161 
4162 	/* Calculate modulus word size of gnu hash and its derivative */
4163 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4164 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4165 
4166 	/* Filter out the "definitely not in set" queries */
4167 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4168 		return (ESRCH);
4169 
4170 	/* Locate hash chain and corresponding value element*/
4171 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4172 	if (bucket == 0)
4173 		return (ESRCH);
4174 	hashval = &obj->chain_zero_gnu[bucket];
4175 	do {
4176 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4177 			symnum = hashval - obj->chain_zero_gnu;
4178 			if (matched_symbol(req, obj, &matchres, symnum)) {
4179 				req->sym_out = matchres.sym_out;
4180 				req->defobj_out = obj;
4181 				return (0);
4182 			}
4183 		}
4184 	} while ((*hashval++ & 1) == 0);
4185 	if (matchres.vcount == 1) {
4186 		req->sym_out = matchres.vsymp;
4187 		req->defobj_out = obj;
4188 		return (0);
4189 	}
4190 	return (ESRCH);
4191 }
4192 
4193 static void
4194 trace_loaded_objects(Obj_Entry *obj)
4195 {
4196     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4197     int		c;
4198 
4199     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4200 	main_local = "";
4201 
4202     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4203 	fmt1 = "\t%o => %p (%x)\n";
4204 
4205     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4206 	fmt2 = "\t%o (%x)\n";
4207 
4208     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
4209 
4210     for (; obj; obj = obj->next) {
4211 	Needed_Entry		*needed;
4212 	char			*name, *path;
4213 	bool			is_lib;
4214 
4215 	if (list_containers && obj->needed != NULL)
4216 	    rtld_printf("%s:\n", obj->path);
4217 	for (needed = obj->needed; needed; needed = needed->next) {
4218 	    if (needed->obj != NULL) {
4219 		if (needed->obj->traced && !list_containers)
4220 		    continue;
4221 		needed->obj->traced = true;
4222 		path = needed->obj->path;
4223 	    } else
4224 		path = "not found";
4225 
4226 	    name = (char *)obj->strtab + needed->name;
4227 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4228 
4229 	    fmt = is_lib ? fmt1 : fmt2;
4230 	    while ((c = *fmt++) != '\0') {
4231 		switch (c) {
4232 		default:
4233 		    rtld_putchar(c);
4234 		    continue;
4235 		case '\\':
4236 		    switch (c = *fmt) {
4237 		    case '\0':
4238 			continue;
4239 		    case 'n':
4240 			rtld_putchar('\n');
4241 			break;
4242 		    case 't':
4243 			rtld_putchar('\t');
4244 			break;
4245 		    }
4246 		    break;
4247 		case '%':
4248 		    switch (c = *fmt) {
4249 		    case '\0':
4250 			continue;
4251 		    case '%':
4252 		    default:
4253 			rtld_putchar(c);
4254 			break;
4255 		    case 'A':
4256 			rtld_putstr(main_local);
4257 			break;
4258 		    case 'a':
4259 			rtld_putstr(obj_main->path);
4260 			break;
4261 		    case 'o':
4262 			rtld_putstr(name);
4263 			break;
4264 		    case 'p':
4265 			rtld_putstr(path);
4266 			break;
4267 		    case 'x':
4268 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4269 			  0);
4270 			break;
4271 		    }
4272 		    break;
4273 		}
4274 		++fmt;
4275 	    }
4276 	}
4277     }
4278 }
4279 
4280 /*
4281  * Unload a dlopened object and its dependencies from memory and from
4282  * our data structures.  It is assumed that the DAG rooted in the
4283  * object has already been unreferenced, and that the object has a
4284  * reference count of 0.
4285  */
4286 static void
4287 unload_object(Obj_Entry *root)
4288 {
4289     Obj_Entry *obj;
4290     Obj_Entry **linkp;
4291 
4292     assert(root->refcount == 0);
4293 
4294     /*
4295      * Pass over the DAG removing unreferenced objects from
4296      * appropriate lists.
4297      */
4298     unlink_object(root);
4299 
4300     /* Unmap all objects that are no longer referenced. */
4301     linkp = &obj_list->next;
4302     while ((obj = *linkp) != NULL) {
4303 	if (obj->refcount == 0) {
4304 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4305 		obj->path);
4306 	    dbg("unloading \"%s\"", obj->path);
4307 	    unload_filtees(root);
4308 	    munmap(obj->mapbase, obj->mapsize);
4309 	    linkmap_delete(obj);
4310 	    *linkp = obj->next;
4311 	    obj_count--;
4312 	    obj_free(obj);
4313 	} else
4314 	    linkp = &obj->next;
4315     }
4316     obj_tail = linkp;
4317 }
4318 
4319 static void
4320 unlink_object(Obj_Entry *root)
4321 {
4322     Objlist_Entry *elm;
4323 
4324     if (root->refcount == 0) {
4325 	/* Remove the object from the RTLD_GLOBAL list. */
4326 	objlist_remove(&list_global, root);
4327 
4328     	/* Remove the object from all objects' DAG lists. */
4329 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4330 	    objlist_remove(&elm->obj->dldags, root);
4331 	    if (elm->obj != root)
4332 		unlink_object(elm->obj);
4333 	}
4334     }
4335 }
4336 
4337 static void
4338 ref_dag(Obj_Entry *root)
4339 {
4340     Objlist_Entry *elm;
4341 
4342     assert(root->dag_inited);
4343     STAILQ_FOREACH(elm, &root->dagmembers, link)
4344 	elm->obj->refcount++;
4345 }
4346 
4347 static void
4348 unref_dag(Obj_Entry *root)
4349 {
4350     Objlist_Entry *elm;
4351 
4352     assert(root->dag_inited);
4353     STAILQ_FOREACH(elm, &root->dagmembers, link)
4354 	elm->obj->refcount--;
4355 }
4356 
4357 /*
4358  * Common code for MD __tls_get_addr().
4359  */
4360 void *
4361 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
4362 {
4363     Elf_Addr* dtv = *dtvp;
4364     RtldLockState lockstate;
4365 
4366     /* Check dtv generation in case new modules have arrived */
4367     if (dtv[0] != tls_dtv_generation) {
4368 	Elf_Addr* newdtv;
4369 	int to_copy;
4370 
4371 	wlock_acquire(rtld_bind_lock, &lockstate);
4372 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4373 	to_copy = dtv[1];
4374 	if (to_copy > tls_max_index)
4375 	    to_copy = tls_max_index;
4376 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4377 	newdtv[0] = tls_dtv_generation;
4378 	newdtv[1] = tls_max_index;
4379 	free(dtv);
4380 	lock_release(rtld_bind_lock, &lockstate);
4381 	dtv = *dtvp = newdtv;
4382     }
4383 
4384     /* Dynamically allocate module TLS if necessary */
4385     if (!dtv[index + 1]) {
4386 	/* Signal safe, wlock will block out signals. */
4387 	wlock_acquire(rtld_bind_lock, &lockstate);
4388 	if (!dtv[index + 1])
4389 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4390 	lock_release(rtld_bind_lock, &lockstate);
4391     }
4392     return ((void *)(dtv[index + 1] + offset));
4393 }
4394 
4395 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4396 
4397 /*
4398  * Allocate the static TLS area.  Return a pointer to the TCB.  The
4399  * static area is based on negative offsets relative to the tcb.
4400  *
4401  * The TCB contains an errno pointer for the system call layer, but because
4402  * we are the RTLD we really have no idea how the caller was compiled so
4403  * the information has to be passed in.  errno can either be:
4404  *
4405  *	type 0	errno is a simple non-TLS global pointer.
4406  *		(special case for e.g. libc_rtld)
4407  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
4408  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
4409  */
4410 struct tls_tcb *
4411 allocate_tls(Obj_Entry *objs)
4412 {
4413     Obj_Entry *obj;
4414     size_t data_size;
4415     size_t dtv_size;
4416     struct tls_tcb *tcb;
4417     Elf_Addr *dtv;
4418     Elf_Addr addr;
4419 
4420     /*
4421      * Allocate the new TCB.  static TLS storage is placed just before the
4422      * TCB to support the %gs:OFFSET (negative offset) model.
4423      */
4424     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4425 		~RTLD_STATIC_TLS_ALIGN_MASK;
4426     tcb = malloc(data_size + sizeof(*tcb));
4427     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
4428 
4429     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
4430     dtv = malloc(dtv_size);
4431     bzero(dtv, dtv_size);
4432 
4433 #ifdef RTLD_TCB_HAS_SELF_POINTER
4434     tcb->tcb_self = tcb;
4435 #endif
4436     tcb->tcb_dtv = dtv;
4437     tcb->tcb_pthread = NULL;
4438 
4439     dtv[0] = tls_dtv_generation;
4440     dtv[1] = tls_max_index;
4441 
4442     for (obj = objs; obj; obj = obj->next) {
4443 	if (obj->tlsoffset) {
4444 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
4445 	    memset((void *)(addr + obj->tlsinitsize),
4446 		   0, obj->tlssize - obj->tlsinitsize);
4447 	    if (obj->tlsinit)
4448 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4449 	    dtv[obj->tlsindex + 1] = addr;
4450 	}
4451     }
4452     return(tcb);
4453 }
4454 
4455 void
4456 free_tls(struct tls_tcb *tcb)
4457 {
4458     Elf_Addr *dtv;
4459     int dtv_size, i;
4460     Elf_Addr tls_start, tls_end;
4461     size_t data_size;
4462 
4463     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4464 		~RTLD_STATIC_TLS_ALIGN_MASK;
4465 
4466     dtv = tcb->tcb_dtv;
4467     dtv_size = dtv[1];
4468     tls_end = (Elf_Addr)tcb;
4469     tls_start = (Elf_Addr)tcb - data_size;
4470     for (i = 0; i < dtv_size; i++) {
4471 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
4472 	    free((void *)dtv[i+2]);
4473 	}
4474     }
4475     free(dtv);
4476 
4477     free((void*) tls_start);
4478 }
4479 
4480 #else
4481 #error "Unsupported TLS layout"
4482 #endif
4483 
4484 /*
4485  * Allocate TLS block for module with given index.
4486  */
4487 void *
4488 allocate_module_tls(int index)
4489 {
4490     Obj_Entry* obj;
4491     char* p;
4492 
4493     for (obj = obj_list; obj; obj = obj->next) {
4494 	if (obj->tlsindex == index)
4495 	    break;
4496     }
4497     if (!obj) {
4498 	_rtld_error("Can't find module with TLS index %d", index);
4499 	die();
4500     }
4501 
4502     p = malloc(obj->tlssize);
4503     if (p == NULL) {
4504 	_rtld_error("Cannot allocate TLS block for index %d", index);
4505 	die();
4506     }
4507     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4508     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4509 
4510     return p;
4511 }
4512 
4513 bool
4514 allocate_tls_offset(Obj_Entry *obj)
4515 {
4516     size_t off;
4517 
4518     if (obj->tls_done)
4519 	return true;
4520 
4521     if (obj->tlssize == 0) {
4522 	obj->tls_done = true;
4523 	return true;
4524     }
4525 
4526     if (obj->tlsindex == 1)
4527 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4528     else
4529 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4530 				   obj->tlssize, obj->tlsalign);
4531 
4532     /*
4533      * If we have already fixed the size of the static TLS block, we
4534      * must stay within that size. When allocating the static TLS, we
4535      * leave a small amount of space spare to be used for dynamically
4536      * loading modules which use static TLS.
4537      */
4538     if (tls_static_space) {
4539 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4540 	    return false;
4541     }
4542 
4543     tls_last_offset = obj->tlsoffset = off;
4544     tls_last_size = obj->tlssize;
4545     obj->tls_done = true;
4546 
4547     return true;
4548 }
4549 
4550 void
4551 free_tls_offset(Obj_Entry *obj)
4552 {
4553 #ifdef RTLD_STATIC_TLS_VARIANT_II
4554     /*
4555      * If we were the last thing to allocate out of the static TLS
4556      * block, we give our space back to the 'allocator'. This is a
4557      * simplistic workaround to allow libGL.so.1 to be loaded and
4558      * unloaded multiple times. We only handle the Variant II
4559      * mechanism for now - this really needs a proper allocator.
4560      */
4561     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4562 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4563 	tls_last_offset -= obj->tlssize;
4564 	tls_last_size = 0;
4565     }
4566 #endif
4567 }
4568 
4569 struct tls_tcb *
4570 _rtld_allocate_tls(void)
4571 {
4572     struct tls_tcb *new_tcb;
4573     RtldLockState lockstate;
4574 
4575     wlock_acquire(rtld_bind_lock, &lockstate);
4576     new_tcb = allocate_tls(obj_list);
4577     lock_release(rtld_bind_lock, &lockstate);
4578     return (new_tcb);
4579 }
4580 
4581 void
4582 _rtld_free_tls(struct tls_tcb *tcb)
4583 {
4584     RtldLockState lockstate;
4585 
4586     wlock_acquire(rtld_bind_lock, &lockstate);
4587     free_tls(tcb);
4588     lock_release(rtld_bind_lock, &lockstate);
4589 }
4590 
4591 static void
4592 object_add_name(Obj_Entry *obj, const char *name)
4593 {
4594     Name_Entry *entry;
4595     size_t len;
4596 
4597     len = strlen(name);
4598     entry = malloc(sizeof(Name_Entry) + len);
4599 
4600     if (entry != NULL) {
4601 	strcpy(entry->name, name);
4602 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4603     }
4604 }
4605 
4606 static int
4607 object_match_name(const Obj_Entry *obj, const char *name)
4608 {
4609     Name_Entry *entry;
4610 
4611     STAILQ_FOREACH(entry, &obj->names, link) {
4612 	if (strcmp(name, entry->name) == 0)
4613 	    return (1);
4614     }
4615     return (0);
4616 }
4617 
4618 static Obj_Entry *
4619 locate_dependency(const Obj_Entry *obj, const char *name)
4620 {
4621     const Objlist_Entry *entry;
4622     const Needed_Entry *needed;
4623 
4624     STAILQ_FOREACH(entry, &list_main, link) {
4625 	if (object_match_name(entry->obj, name))
4626 	    return entry->obj;
4627     }
4628 
4629     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4630 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4631 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4632 	    /*
4633 	     * If there is DT_NEEDED for the name we are looking for,
4634 	     * we are all set.  Note that object might not be found if
4635 	     * dependency was not loaded yet, so the function can
4636 	     * return NULL here.  This is expected and handled
4637 	     * properly by the caller.
4638 	     */
4639 	    return (needed->obj);
4640 	}
4641     }
4642     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4643 	obj->path, name);
4644     die();
4645 }
4646 
4647 static int
4648 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4649     const Elf_Vernaux *vna)
4650 {
4651     const Elf_Verdef *vd;
4652     const char *vername;
4653 
4654     vername = refobj->strtab + vna->vna_name;
4655     vd = depobj->verdef;
4656     if (vd == NULL) {
4657 	_rtld_error("%s: version %s required by %s not defined",
4658 	    depobj->path, vername, refobj->path);
4659 	return (-1);
4660     }
4661     for (;;) {
4662 	if (vd->vd_version != VER_DEF_CURRENT) {
4663 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4664 		depobj->path, vd->vd_version);
4665 	    return (-1);
4666 	}
4667 	if (vna->vna_hash == vd->vd_hash) {
4668 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4669 		((char *)vd + vd->vd_aux);
4670 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4671 		return (0);
4672 	}
4673 	if (vd->vd_next == 0)
4674 	    break;
4675 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4676     }
4677     if (vna->vna_flags & VER_FLG_WEAK)
4678 	return (0);
4679     _rtld_error("%s: version %s required by %s not found",
4680 	depobj->path, vername, refobj->path);
4681     return (-1);
4682 }
4683 
4684 static int
4685 rtld_verify_object_versions(Obj_Entry *obj)
4686 {
4687     const Elf_Verneed *vn;
4688     const Elf_Verdef  *vd;
4689     const Elf_Verdaux *vda;
4690     const Elf_Vernaux *vna;
4691     const Obj_Entry *depobj;
4692     int maxvernum, vernum;
4693 
4694     if (obj->ver_checked)
4695 	return (0);
4696     obj->ver_checked = true;
4697 
4698     maxvernum = 0;
4699     /*
4700      * Walk over defined and required version records and figure out
4701      * max index used by any of them. Do very basic sanity checking
4702      * while there.
4703      */
4704     vn = obj->verneed;
4705     while (vn != NULL) {
4706 	if (vn->vn_version != VER_NEED_CURRENT) {
4707 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4708 		obj->path, vn->vn_version);
4709 	    return (-1);
4710 	}
4711 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4712 	for (;;) {
4713 	    vernum = VER_NEED_IDX(vna->vna_other);
4714 	    if (vernum > maxvernum)
4715 		maxvernum = vernum;
4716 	    if (vna->vna_next == 0)
4717 		 break;
4718 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4719 	}
4720 	if (vn->vn_next == 0)
4721 	    break;
4722 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4723     }
4724 
4725     vd = obj->verdef;
4726     while (vd != NULL) {
4727 	if (vd->vd_version != VER_DEF_CURRENT) {
4728 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4729 		obj->path, vd->vd_version);
4730 	    return (-1);
4731 	}
4732 	vernum = VER_DEF_IDX(vd->vd_ndx);
4733 	if (vernum > maxvernum)
4734 		maxvernum = vernum;
4735 	if (vd->vd_next == 0)
4736 	    break;
4737 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4738     }
4739 
4740     if (maxvernum == 0)
4741 	return (0);
4742 
4743     /*
4744      * Store version information in array indexable by version index.
4745      * Verify that object version requirements are satisfied along the
4746      * way.
4747      */
4748     obj->vernum = maxvernum + 1;
4749     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4750 
4751     vd = obj->verdef;
4752     while (vd != NULL) {
4753 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4754 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4755 	    assert(vernum <= maxvernum);
4756 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4757 	    obj->vertab[vernum].hash = vd->vd_hash;
4758 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4759 	    obj->vertab[vernum].file = NULL;
4760 	    obj->vertab[vernum].flags = 0;
4761 	}
4762 	if (vd->vd_next == 0)
4763 	    break;
4764 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4765     }
4766 
4767     vn = obj->verneed;
4768     while (vn != NULL) {
4769 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4770 	if (depobj == NULL)
4771 	    return (-1);
4772 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4773 	for (;;) {
4774 	    if (check_object_provided_version(obj, depobj, vna))
4775 		return (-1);
4776 	    vernum = VER_NEED_IDX(vna->vna_other);
4777 	    assert(vernum <= maxvernum);
4778 	    obj->vertab[vernum].hash = vna->vna_hash;
4779 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4780 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4781 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4782 		VER_INFO_HIDDEN : 0;
4783 	    if (vna->vna_next == 0)
4784 		 break;
4785 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4786 	}
4787 	if (vn->vn_next == 0)
4788 	    break;
4789 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4790     }
4791     return 0;
4792 }
4793 
4794 static int
4795 rtld_verify_versions(const Objlist *objlist)
4796 {
4797     Objlist_Entry *entry;
4798     int rc;
4799 
4800     rc = 0;
4801     STAILQ_FOREACH(entry, objlist, link) {
4802 	/*
4803 	 * Skip dummy objects or objects that have their version requirements
4804 	 * already checked.
4805 	 */
4806 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4807 	    continue;
4808 	if (rtld_verify_object_versions(entry->obj) == -1) {
4809 	    rc = -1;
4810 	    if (ld_tracing == NULL)
4811 		break;
4812 	}
4813     }
4814     if (rc == 0 || ld_tracing != NULL)
4815 	rc = rtld_verify_object_versions(&obj_rtld);
4816     return rc;
4817 }
4818 
4819 const Ver_Entry *
4820 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4821 {
4822     Elf_Versym vernum;
4823 
4824     if (obj->vertab) {
4825 	vernum = VER_NDX(obj->versyms[symnum]);
4826 	if (vernum >= obj->vernum) {
4827 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4828 		obj->path, obj->strtab + symnum, vernum);
4829 	} else if (obj->vertab[vernum].hash != 0) {
4830 	    return &obj->vertab[vernum];
4831 	}
4832     }
4833     return NULL;
4834 }
4835 
4836 int
4837 _rtld_get_stack_prot(void)
4838 {
4839 
4840 	return (stack_prot);
4841 }
4842 
4843 static void
4844 map_stacks_exec(RtldLockState *lockstate)
4845 {
4846 	return;
4847 	/*
4848 	 * Stack protection must be implemented in the kernel before the dynamic
4849 	 * linker can handle PT_GNU_STACK sections.
4850 	 * The following is the FreeBSD implementation of map_stacks_exec()
4851 	 * void (*thr_map_stacks_exec)(void);
4852 	 *
4853 	 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4854 	 *     return;
4855 	 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4856 	 *     get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4857 	 * if (thr_map_stacks_exec != NULL) {
4858 	 *     stack_prot |= PROT_EXEC;
4859 	 *     thr_map_stacks_exec();
4860 	 * }
4861 	 */
4862 }
4863 
4864 void
4865 symlook_init(SymLook *dst, const char *name)
4866 {
4867 
4868 	bzero(dst, sizeof(*dst));
4869 	dst->name = name;
4870 	dst->hash = elf_hash(name);
4871 	dst->hash_gnu = gnu_hash(name);
4872 }
4873 
4874 static void
4875 symlook_init_from_req(SymLook *dst, const SymLook *src)
4876 {
4877 
4878 	dst->name = src->name;
4879 	dst->hash = src->hash;
4880 	dst->hash_gnu = src->hash_gnu;
4881 	dst->ventry = src->ventry;
4882 	dst->flags = src->flags;
4883 	dst->defobj_out = NULL;
4884 	dst->sym_out = NULL;
4885 	dst->lockstate = src->lockstate;
4886 }
4887 
4888 
4889 /*
4890  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
4891  */
4892 static int
4893 parse_libdir(const char *str)
4894 {
4895 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
4896 	const char *orig;
4897 	int fd;
4898 	char c;
4899 
4900 	orig = str;
4901 	fd = 0;
4902 	for (c = *str; c != '\0'; c = *++str) {
4903 		if (c < '0' || c > '9')
4904 			return (-1);
4905 
4906 		fd *= RADIX;
4907 		fd += c - '0';
4908 	}
4909 
4910 	/* Make sure we actually parsed something. */
4911 	if (str == orig) {
4912 		_rtld_error("failed to parse directory FD from '%s'", str);
4913 		return (-1);
4914 	}
4915 	return (fd);
4916 }
4917 
4918 #ifdef ENABLE_OSRELDATE
4919 /*
4920  * Overrides for libc_pic-provided functions.
4921  */
4922 
4923 int
4924 __getosreldate(void)
4925 {
4926 	size_t len;
4927 	int oid[2];
4928 	int error, osrel;
4929 
4930 	if (osreldate != 0)
4931 		return (osreldate);
4932 
4933 	oid[0] = CTL_KERN;
4934 	oid[1] = KERN_OSRELDATE;
4935 	osrel = 0;
4936 	len = sizeof(osrel);
4937 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4938 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4939 		osreldate = osrel;
4940 	return (osreldate);
4941 }
4942 #endif
4943 
4944 /*
4945  * No unresolved symbols for rtld.
4946  */
4947 void
4948 __pthread_cxa_finalize(struct dl_phdr_info *a)
4949 {
4950 }
4951 
4952 const char *
4953 rtld_strerror(int errnum)
4954 {
4955 
4956 	if (errnum < 0 || errnum >= sys_nerr)
4957 		return ("Unknown error");
4958 	return (sys_errlist[errnum]);
4959 }
4960