xref: /dragonfly/libexec/rtld-elf/rtld.c (revision cecb9aae)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 #include <sys/resident.h>
50 #include <sys/tls.h>
51 
52 #include <machine/tls.h>
53 
54 #include <dlfcn.h>
55 #include <err.h>
56 #include <errno.h>
57 #include <fcntl.h>
58 #include <stdarg.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <unistd.h>
63 
64 #include "debug.h"
65 #include "rtld.h"
66 #include "libmap.h"
67 #include "rtld_printf.h"
68 #include "notes.h"
69 
70 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
71 #define LD_ARY_CACHE	16
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *_getenv_ld(const char *id);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static bool is_exported(const Elf_Sym *);
104 static void linkmap_add(Obj_Entry *);
105 static void linkmap_delete(Obj_Entry *);
106 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
107 static void unload_filtees(Obj_Entry *);
108 static int load_needed_objects(Obj_Entry *, int);
109 static int load_preload_objects(void);
110 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
111 static void map_stacks_exec(RtldLockState *);
112 static Obj_Entry *obj_from_addr(const void *);
113 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
114 static void objlist_call_init(Objlist *, RtldLockState *);
115 static void objlist_clear(Objlist *);
116 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
117 static void objlist_init(Objlist *);
118 static void objlist_push_head(Objlist *, Obj_Entry *);
119 static void objlist_push_tail(Objlist *, Obj_Entry *);
120 static void objlist_remove(Objlist *, Obj_Entry *);
121 static void *path_enumerate(const char *, path_enum_proc, void *);
122 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
123     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
124 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
125     int flags, RtldLockState *lockstate);
126 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
127     RtldLockState *);
128 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
129     int flags, RtldLockState *lockstate);
130 static int rtld_dirname(const char *, char *);
131 static int rtld_dirname_abs(const char *, char *);
132 static void *rtld_dlopen(const char *name, int fd, int mode);
133 static void rtld_exit(void);
134 static char *search_library_path(const char *, const char *);
135 static const void **get_program_var_addr(const char *, RtldLockState *);
136 static void set_program_var(const char *, const void *);
137 static int symlook_default(SymLook *, const Obj_Entry *refobj);
138 static int symlook_global(SymLook *, DoneList *);
139 static void symlook_init_from_req(SymLook *, const SymLook *);
140 static int symlook_list(SymLook *, const Objlist *, DoneList *);
141 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144 static void trace_loaded_objects(Obj_Entry *);
145 static void unlink_object(Obj_Entry *);
146 static void unload_object(Obj_Entry *);
147 static void unref_dag(Obj_Entry *);
148 static void ref_dag(Obj_Entry *);
149 static int origin_subst_one(char **, const char *, const char *,
150   const char *, char *);
151 static char *origin_subst(const char *, const char *);
152 static void preinitialize_main_object (void);
153 static int  rtld_verify_versions(const Objlist *);
154 static int  rtld_verify_object_versions(Obj_Entry *);
155 static void object_add_name(Obj_Entry *, const char *);
156 static int  object_match_name(const Obj_Entry *, const char *);
157 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
158 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
159     struct dl_phdr_info *phdr_info);
160 static uint_fast32_t gnu_hash (const char *);
161 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
162     const unsigned long);
163 
164 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
165 
166 /*
167  * Data declarations.
168  */
169 static char *error_message;	/* Message for dlerror(), or NULL */
170 struct r_debug r_debug;		/* for GDB; */
171 static bool libmap_disable;	/* Disable libmap */
172 static bool ld_loadfltr;	/* Immediate filters processing */
173 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
174 static bool trust;		/* False for setuid and setgid programs */
175 static bool dangerous_ld_env;	/* True if environment variables have been
176 				   used to affect the libraries loaded */
177 static const char *ld_bind_now;	/* Environment variable for immediate binding */
178 static const char *ld_debug;	/* Environment variable for debugging */
179 static const char *ld_library_path; /* Environment variable for search path */
180 static char *ld_preload;	/* Environment variable for libraries to
181 				   load first */
182 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
183 static const char *ld_tracing;	/* Called from ldd to print libs */
184 static const char *ld_utrace;	/* Use utrace() to log events. */
185 static int (*rtld_functrace)(   /* Optional function call tracing hook */
186 	const char *caller_obj,
187 	const char *callee_obj,
188 	const char *callee_func,
189 	void *stack);
190 static const Obj_Entry *rtld_functrace_obj;	/* Object thereof */
191 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
192 static Obj_Entry **obj_tail;	/* Link field of last object in list */
193 static Obj_Entry **preload_tail;
194 static Obj_Entry *obj_main;	/* The main program shared object */
195 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
196 static unsigned int obj_count;	/* Number of objects in obj_list */
197 static unsigned int obj_loads;	/* Number of objects in obj_list */
198 
199 static int	ld_resident;	/* Non-zero if resident */
200 static const char *ld_ary[LD_ARY_CACHE];
201 static int	ld_index;
202 static Objlist initlist;
203 
204 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
205   STAILQ_HEAD_INITIALIZER(list_global);
206 static Objlist list_main =	/* Objects loaded at program startup */
207   STAILQ_HEAD_INITIALIZER(list_main);
208 static Objlist list_fini =	/* Objects needing fini() calls */
209   STAILQ_HEAD_INITIALIZER(list_fini);
210 
211 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
212 
213 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
214 
215 extern Elf_Dyn _DYNAMIC;
216 #pragma weak _DYNAMIC
217 #ifndef RTLD_IS_DYNAMIC
218 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
219 #endif
220 
221 #ifdef ENABLE_OSRELDATE
222 int osreldate;
223 #endif
224 
225 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
226 static int max_stack_flags;
227 
228 /*
229  * These are the functions the dynamic linker exports to application
230  * programs.  They are the only symbols the dynamic linker is willing
231  * to export from itself.
232  */
233 static func_ptr_type exports[] = {
234     (func_ptr_type) &_rtld_error,
235     (func_ptr_type) &dlclose,
236     (func_ptr_type) &dlerror,
237     (func_ptr_type) &dlopen,
238     (func_ptr_type) &fdlopen,
239     (func_ptr_type) &dlfunc,
240     (func_ptr_type) &dlsym,
241     (func_ptr_type) &dlvsym,
242     (func_ptr_type) &dladdr,
243     (func_ptr_type) &dlinfo,
244     (func_ptr_type) &dl_iterate_phdr,
245 #ifdef __i386__
246     (func_ptr_type) &___tls_get_addr,
247 #endif
248     (func_ptr_type) &__tls_get_addr,
249     (func_ptr_type) &__tls_get_addr_tcb,
250     (func_ptr_type) &_rtld_allocate_tls,
251     (func_ptr_type) &_rtld_free_tls,
252     (func_ptr_type) &_rtld_call_init,
253     (func_ptr_type) &_rtld_thread_init,
254     (func_ptr_type) &_rtld_addr_phdr,
255     (func_ptr_type) &_rtld_get_stack_prot,
256     NULL
257 };
258 
259 /*
260  * Global declarations normally provided by crt1.  The dynamic linker is
261  * not built with crt1, so we have to provide them ourselves.
262  */
263 char *__progname;
264 char **environ;
265 
266 /*
267  * Used to pass argc, argv to init functions.
268  */
269 int main_argc;
270 char **main_argv;
271 
272 /*
273  * Globals to control TLS allocation.
274  */
275 size_t tls_last_offset;		/* Static TLS offset of last module */
276 size_t tls_last_size;		/* Static TLS size of last module */
277 size_t tls_static_space;	/* Static TLS space allocated */
278 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
279 int tls_max_index = 1;		/* Largest module index allocated */
280 
281 /*
282  * Fill in a DoneList with an allocation large enough to hold all of
283  * the currently-loaded objects.  Keep this as a macro since it calls
284  * alloca and we want that to occur within the scope of the caller.
285  */
286 #define donelist_init(dlp)					\
287     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
288     assert((dlp)->objs != NULL),				\
289     (dlp)->num_alloc = obj_count,				\
290     (dlp)->num_used = 0)
291 
292 #define	UTRACE_DLOPEN_START		1
293 #define	UTRACE_DLOPEN_STOP		2
294 #define	UTRACE_DLCLOSE_START		3
295 #define	UTRACE_DLCLOSE_STOP		4
296 #define	UTRACE_LOAD_OBJECT		5
297 #define	UTRACE_UNLOAD_OBJECT		6
298 #define	UTRACE_ADD_RUNDEP		7
299 #define	UTRACE_PRELOAD_FINISHED		8
300 #define	UTRACE_INIT_CALL		9
301 #define	UTRACE_FINI_CALL		10
302 
303 struct utrace_rtld {
304 	char sig[4];			/* 'RTLD' */
305 	int event;
306 	void *handle;
307 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
308 	size_t mapsize;
309 	int refcnt;			/* Used for 'mode' */
310 	char name[MAXPATHLEN];
311 };
312 
313 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
314 	if (ld_utrace != NULL)					\
315 		ld_utrace_log(e, h, mb, ms, r, n);		\
316 } while (0)
317 
318 static void
319 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
320     int refcnt, const char *name)
321 {
322 	struct utrace_rtld ut;
323 
324 	ut.sig[0] = 'R';
325 	ut.sig[1] = 'T';
326 	ut.sig[2] = 'L';
327 	ut.sig[3] = 'D';
328 	ut.event = event;
329 	ut.handle = handle;
330 	ut.mapbase = mapbase;
331 	ut.mapsize = mapsize;
332 	ut.refcnt = refcnt;
333 	bzero(ut.name, sizeof(ut.name));
334 	if (name)
335 		strlcpy(ut.name, name, sizeof(ut.name));
336 	utrace(&ut, sizeof(ut));
337 }
338 
339 /*
340  * Main entry point for dynamic linking.  The first argument is the
341  * stack pointer.  The stack is expected to be laid out as described
342  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
343  * Specifically, the stack pointer points to a word containing
344  * ARGC.  Following that in the stack is a null-terminated sequence
345  * of pointers to argument strings.  Then comes a null-terminated
346  * sequence of pointers to environment strings.  Finally, there is a
347  * sequence of "auxiliary vector" entries.
348  *
349  * The second argument points to a place to store the dynamic linker's
350  * exit procedure pointer and the third to a place to store the main
351  * program's object.
352  *
353  * The return value is the main program's entry point.
354  */
355 func_ptr_type
356 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
357 {
358     Elf_Auxinfo *aux_info[AT_COUNT];
359     int i;
360     int argc;
361     char **argv;
362     char **env;
363     Elf_Auxinfo *aux;
364     Elf_Auxinfo *auxp;
365     const char *argv0;
366     Objlist_Entry *entry;
367     Obj_Entry *obj;
368 
369     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
370              Obj_Entry **preload_tail;
371              Objlist initlist;
372        from global to here.  It will break the DWARF2 unwind scheme.
373        The system compilers were unaffected, but not gcc 4.6
374     */
375 
376     /*
377      * On entry, the dynamic linker itself has not been relocated yet.
378      * Be very careful not to reference any global data until after
379      * init_rtld has returned.  It is OK to reference file-scope statics
380      * and string constants, and to call static and global functions.
381      */
382 
383     /* Find the auxiliary vector on the stack. */
384     argc = *sp++;
385     argv = (char **) sp;
386     sp += argc + 1;	/* Skip over arguments and NULL terminator */
387     env = (char **) sp;
388 
389     /*
390      * If we aren't already resident we have to dig out some more info.
391      * Note that auxinfo does not exist when we are resident.
392      *
393      * I'm not sure about the ld_resident check.  It seems to read zero
394      * prior to relocation, which is what we want.  When running from a
395      * resident copy everything will be relocated so we are definitely
396      * good there.
397      */
398     if (ld_resident == 0)  {
399 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
400 	    ;
401 	aux = (Elf_Auxinfo *) sp;
402 
403 	/* Digest the auxiliary vector. */
404 	for (i = 0;  i < AT_COUNT;  i++)
405 	    aux_info[i] = NULL;
406 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
407 	    if (auxp->a_type < AT_COUNT)
408 		aux_info[auxp->a_type] = auxp;
409 	}
410 
411 	/* Initialize and relocate ourselves. */
412 	assert(aux_info[AT_BASE] != NULL);
413 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
414     }
415 
416     ld_index = 0;	/* don't use old env cache in case we are resident */
417     __progname = obj_rtld.path;
418     argv0 = argv[0] != NULL ? argv[0] : "(null)";
419     environ = env;
420     main_argc = argc;
421     main_argv = argv;
422 
423     trust = !issetugid();
424 
425     ld_bind_now = _getenv_ld("LD_BIND_NOW");
426     /*
427      * If the process is tainted, then we un-set the dangerous environment
428      * variables.  The process will be marked as tainted until setuid(2)
429      * is called.  If any child process calls setuid(2) we do not want any
430      * future processes to honor the potentially un-safe variables.
431      */
432     if (!trust) {
433 	if (   unsetenv("LD_DEBUG")
434 	    || unsetenv("LD_PRELOAD")
435 	    || unsetenv("LD_LIBRARY_PATH")
436 	    || unsetenv("LD_ELF_HINTS_PATH")
437 	    || unsetenv("LD_LIBMAP")
438 	    || unsetenv("LD_LIBMAP_DISABLE")
439 	    || unsetenv("LD_LOADFLTR")
440 	) {
441 	    _rtld_error("environment corrupt; aborting");
442 	    die();
443 	}
444     }
445     ld_debug = _getenv_ld("LD_DEBUG");
446     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
447     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
448     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
449     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
450     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
451     ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
452     dangerous_ld_env = (ld_library_path != NULL)
453 			|| (ld_preload != NULL)
454 			|| (ld_elf_hints_path != NULL)
455 			|| ld_loadfltr
456 			|| (libmap_override != NULL)
457 			|| libmap_disable
458 			;
459     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
460     ld_utrace = _getenv_ld("LD_UTRACE");
461 
462     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
463 	ld_elf_hints_path = _PATH_ELF_HINTS;
464 
465     if (ld_debug != NULL && *ld_debug != '\0')
466 	debug = 1;
467     dbg("%s is initialized, base address = %p", __progname,
468 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
469     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
470     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
471 
472     dbg("initializing thread locks");
473     lockdflt_init();
474 
475     /*
476      * If we are resident we can skip work that we have already done.
477      * Note that the stack is reset and there is no Elf_Auxinfo
478      * when running from a resident image, and the static globals setup
479      * between here and resident_skip will have already been setup.
480      */
481     if (ld_resident)
482 	goto resident_skip1;
483 
484     /*
485      * Load the main program, or process its program header if it is
486      * already loaded.
487      */
488     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
489 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
490 	dbg("loading main program");
491 	obj_main = map_object(fd, argv0, NULL);
492 	close(fd);
493 	if (obj_main == NULL)
494 	    die();
495 	max_stack_flags = obj->stack_flags;
496     } else {				/* Main program already loaded. */
497 	const Elf_Phdr *phdr;
498 	int phnum;
499 	caddr_t entry;
500 
501 	dbg("processing main program's program header");
502 	assert(aux_info[AT_PHDR] != NULL);
503 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
504 	assert(aux_info[AT_PHNUM] != NULL);
505 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
506 	assert(aux_info[AT_PHENT] != NULL);
507 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
508 	assert(aux_info[AT_ENTRY] != NULL);
509 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
510 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
511 	    die();
512     }
513 
514     char buf[MAXPATHLEN];
515     if (aux_info[AT_EXECPATH] != NULL) {
516 	char *kexecpath;
517 
518 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
519 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
520 	if (kexecpath[0] == '/')
521 		obj_main->path = kexecpath;
522 	else if (getcwd(buf, sizeof(buf)) == NULL ||
523 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
524 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
525 		obj_main->path = xstrdup(argv0);
526 	else
527 		obj_main->path = xstrdup(buf);
528     } else {
529 	char resolved[MAXPATHLEN];
530 	dbg("No AT_EXECPATH");
531 	if (argv0[0] == '/') {
532 		if (realpath(argv0, resolved) != NULL)
533 			obj_main->path = xstrdup(resolved);
534 		else
535 			obj_main->path = xstrdup(argv0);
536 	} else {
537 		if (getcwd(buf, sizeof(buf)) != NULL
538 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
539 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
540 		    && access(buf, R_OK) == 0
541 		    && realpath(buf, resolved) != NULL)
542 			obj_main->path = xstrdup(resolved);
543 		else
544 			obj_main->path = xstrdup(argv0);
545 	}
546     }
547     dbg("obj_main path %s", obj_main->path);
548     obj_main->mainprog = true;
549 
550     if (aux_info[AT_STACKPROT] != NULL &&
551       aux_info[AT_STACKPROT]->a_un.a_val != 0)
552 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
553 
554     /*
555      * Get the actual dynamic linker pathname from the executable if
556      * possible.  (It should always be possible.)  That ensures that
557      * gdb will find the right dynamic linker even if a non-standard
558      * one is being used.
559      */
560     if (obj_main->interp != NULL &&
561       strcmp(obj_main->interp, obj_rtld.path) != 0) {
562 	free(obj_rtld.path);
563 	obj_rtld.path = xstrdup(obj_main->interp);
564 	__progname = obj_rtld.path;
565     }
566 
567     digest_dynamic(obj_main, 0);
568     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
569 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
570 	obj_main->dynsymcount);
571 
572     linkmap_add(obj_main);
573     linkmap_add(&obj_rtld);
574 
575     /* Link the main program into the list of objects. */
576     *obj_tail = obj_main;
577     obj_tail = &obj_main->next;
578     obj_count++;
579     obj_loads++;
580 
581     /* Initialize a fake symbol for resolving undefined weak references. */
582     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
583     sym_zero.st_shndx = SHN_UNDEF;
584     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
585 
586     if (!libmap_disable)
587         libmap_disable = (bool)lm_init(libmap_override);
588 
589     dbg("loading LD_PRELOAD libraries");
590     if (load_preload_objects() == -1)
591 	die();
592     preload_tail = obj_tail;
593 
594     dbg("loading needed objects");
595     if (load_needed_objects(obj_main, 0) == -1)
596 	die();
597 
598     /* Make a list of all objects loaded at startup. */
599     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
600 	objlist_push_tail(&list_main, obj);
601 	obj->refcount++;
602     }
603 
604     dbg("checking for required versions");
605     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
606 	die();
607 
608 resident_skip1:
609 
610     if (ld_tracing) {		/* We're done */
611 	trace_loaded_objects(obj_main);
612 	exit(0);
613     }
614 
615     if (ld_resident)		/* XXX clean this up! */
616 	goto resident_skip2;
617 
618     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
619        dump_relocations(obj_main);
620        exit (0);
621     }
622 
623     /* setup TLS for main thread */
624     dbg("initializing initial thread local storage");
625     STAILQ_FOREACH(entry, &list_main, link) {
626 	/*
627 	 * Allocate all the initial objects out of the static TLS
628 	 * block even if they didn't ask for it.
629 	 */
630 	allocate_tls_offset(entry->obj);
631     }
632 
633     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
634 
635     /*
636      * Do not try to allocate the TLS here, let libc do it itself.
637      * (crt1 for the program will call _init_tls())
638      */
639 
640     if (relocate_objects(obj_main,
641       ld_bind_now != NULL && *ld_bind_now != '\0',
642       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
643 	die();
644 
645     dbg("doing copy relocations");
646     if (do_copy_relocations(obj_main) == -1)
647 	die();
648 
649 resident_skip2:
650 
651     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
652 	if (exec_sys_unregister(-1) < 0) {
653 	    dbg("exec_sys_unregister failed %d\n", errno);
654 	    exit(errno);
655 	}
656 	dbg("exec_sys_unregister success\n");
657 	exit(0);
658     }
659 
660     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
661        dump_relocations(obj_main);
662        exit (0);
663     }
664 
665     dbg("initializing key program variables");
666     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
667     set_program_var("environ", env);
668     set_program_var("__elf_aux_vector", aux);
669 
670     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
671 	extern void resident_start(void);
672 	ld_resident = 1;
673 	if (exec_sys_register(resident_start) < 0) {
674 	    dbg("exec_sys_register failed %d\n", errno);
675 	    exit(errno);
676 	}
677 	dbg("exec_sys_register success\n");
678 	exit(0);
679     }
680 
681     /* Make a list of init functions to call. */
682     objlist_init(&initlist);
683     initlist_add_objects(obj_list, preload_tail, &initlist);
684 
685     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
686 
687     map_stacks_exec(NULL);
688 
689     dbg("resolving ifuncs");
690     if (resolve_objects_ifunc(obj_main,
691       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
692       NULL) == -1)
693 	die();
694 
695     /*
696      * Do NOT call the initlist here, give libc a chance to set up
697      * the initial TLS segment.  crt1 will then call _rtld_call_init().
698      */
699 
700     dbg("transferring control to program entry point = %p", obj_main->entry);
701 
702     /* Return the exit procedure and the program entry point. */
703     *exit_proc = rtld_exit;
704     *objp = obj_main;
705     return (func_ptr_type) obj_main->entry;
706 }
707 
708 /*
709  * Call the initialization list for dynamically loaded libraries.
710  * (called from crt1.c).
711  */
712 void
713 _rtld_call_init(void)
714 {
715     RtldLockState lockstate;
716     Obj_Entry *obj;
717 
718     if (!obj_main->note_present && obj_main->valid_hash_gnu) {
719 	/*
720 	 * The use of a linker script with a PHDRS directive that does not include
721 	 * PT_NOTE will block the crt_no_init note.  In this case we'll look for the
722 	 * recently added GNU hash dynamic tag which gets built by default.  It is
723 	 * extremely unlikely to find a pre-3.1 binary without a PT_NOTE header and
724 	 * a gnu hash tag.  If gnu hash found, consider binary to use new crt code.
725 	 */
726 	obj_main->crt_no_init = true;
727 	dbg("Setting crt_no_init without presence of PT_NOTE header");
728     }
729 
730     wlock_acquire(rtld_bind_lock, &lockstate);
731     if (obj_main->crt_no_init) {
732 	preinitialize_main_object();
733     }
734     else {
735 	/*
736 	 * Make sure we don't call the main program's init and fini functions
737 	 * for binaries linked with old crt1 which calls _init itself.
738 	 */
739 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
740 	obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL;
741     }
742     objlist_call_init(&initlist, &lockstate);
743     objlist_clear(&initlist);
744     dbg("loading filtees");
745     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
746 	if (ld_loadfltr || obj->z_loadfltr)
747 	    load_filtees(obj, 0, &lockstate);
748     }
749     lock_release(rtld_bind_lock, &lockstate);
750 }
751 
752 void *
753 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
754 {
755 	void *ptr;
756 	Elf_Addr target;
757 
758 	ptr = (void *)make_function_pointer(def, obj);
759 	target = ((Elf_Addr (*)(void))ptr)();
760 	return ((void *)target);
761 }
762 
763 Elf_Addr
764 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
765 {
766     const Elf_Rel *rel;
767     const Elf_Sym *def;
768     const Obj_Entry *defobj;
769     Elf_Addr *where;
770     Elf_Addr target;
771     RtldLockState lockstate;
772 
773     rlock_acquire(rtld_bind_lock, &lockstate);
774     if (sigsetjmp(lockstate.env, 0) != 0)
775 	    lock_upgrade(rtld_bind_lock, &lockstate);
776     if (obj->pltrel)
777 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
778     else
779 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
780 
781     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
782     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
783 	&lockstate);
784     if (def == NULL)
785 	die();
786     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
787 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
788     else
789         target = (Elf_Addr)(defobj->relocbase + def->st_value);
790 
791     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
792       defobj->strtab + def->st_name, basename(obj->path),
793       (void *)target, basename(defobj->path));
794 
795     /*
796      * If we have a function call tracing hook, and the
797      * hook would like to keep tracing this one function,
798      * prevent the relocation so we will wind up here
799      * the next time again.
800      *
801      * We don't want to functrace calls from the functracer
802      * to avoid recursive loops.
803      */
804     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
805 	if (rtld_functrace(obj->path,
806 			   defobj->path,
807 			   defobj->strtab + def->st_name,
808 			   stack)) {
809 	    lock_release(rtld_bind_lock, &lockstate);
810 	    return target;
811 	}
812     }
813 
814     /*
815      * Write the new contents for the jmpslot. Note that depending on
816      * architecture, the value which we need to return back to the
817      * lazy binding trampoline may or may not be the target
818      * address. The value returned from reloc_jmpslot() is the value
819      * that the trampoline needs.
820      */
821     target = reloc_jmpslot(where, target, defobj, obj, rel);
822     lock_release(rtld_bind_lock, &lockstate);
823     return target;
824 }
825 
826 /*
827  * Error reporting function.  Use it like printf.  If formats the message
828  * into a buffer, and sets things up so that the next call to dlerror()
829  * will return the message.
830  */
831 void
832 _rtld_error(const char *fmt, ...)
833 {
834     static char buf[512];
835     va_list ap;
836 
837     va_start(ap, fmt);
838     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
839     error_message = buf;
840     va_end(ap);
841 }
842 
843 /*
844  * Return a dynamically-allocated copy of the current error message, if any.
845  */
846 static char *
847 errmsg_save(void)
848 {
849     return error_message == NULL ? NULL : xstrdup(error_message);
850 }
851 
852 /*
853  * Restore the current error message from a copy which was previously saved
854  * by errmsg_save().  The copy is freed.
855  */
856 static void
857 errmsg_restore(char *saved_msg)
858 {
859     if (saved_msg == NULL)
860 	error_message = NULL;
861     else {
862 	_rtld_error("%s", saved_msg);
863 	free(saved_msg);
864     }
865 }
866 
867 const char *
868 basename(const char *name)
869 {
870     const char *p = strrchr(name, '/');
871     return p != NULL ? p + 1 : name;
872 }
873 
874 static struct utsname uts;
875 
876 static int
877 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
878     char *may_free)
879 {
880     const char *p, *p1;
881     char *res1;
882     int subst_len;
883     int kw_len;
884 
885     res1 = *res = NULL;
886     p = real;
887     subst_len = kw_len = 0;
888     for (;;) {
889 	 p1 = strstr(p, kw);
890 	 if (p1 != NULL) {
891 	     if (subst_len == 0) {
892 		 subst_len = strlen(subst);
893 		 kw_len = strlen(kw);
894 	     }
895 	     if (*res == NULL) {
896 		 *res = xmalloc(PATH_MAX);
897 		 res1 = *res;
898 	     }
899 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
900 		 _rtld_error("Substitution of %s in %s cannot be performed",
901 		     kw, real);
902 		 if (may_free != NULL)
903 		     free(may_free);
904 		 free(res);
905 		 return (false);
906 	     }
907 	     memcpy(res1, p, p1 - p);
908 	     res1 += p1 - p;
909 	     memcpy(res1, subst, subst_len);
910 	     res1 += subst_len;
911 	     p = p1 + kw_len;
912 	 } else {
913 	    if (*res == NULL) {
914 		if (may_free != NULL)
915 		    *res = may_free;
916 		else
917 		    *res = xstrdup(real);
918 		return (true);
919 	    }
920 	    *res1 = '\0';
921 	    if (may_free != NULL)
922 		free(may_free);
923 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
924 		free(res);
925 		return (false);
926 	    }
927 	    return (true);
928 	 }
929     }
930 }
931 
932 static char *
933 origin_subst(const char *real, const char *origin_path)
934 {
935     char *res1, *res2, *res3, *res4;
936 
937     if (uts.sysname[0] == '\0') {
938 	if (uname(&uts) != 0) {
939 	    _rtld_error("utsname failed: %d", errno);
940 	    return (NULL);
941 	}
942     }
943     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
944 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
945 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
946 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
947 	    return (NULL);
948     return (res4);
949 }
950 
951 static void
952 die(void)
953 {
954     const char *msg = dlerror();
955 
956     if (msg == NULL)
957 	msg = "Fatal error";
958     rtld_fdputstr(STDERR_FILENO, msg);
959     rtld_fdputchar(STDERR_FILENO, '\n');
960     _exit(1);
961 }
962 
963 /*
964  * Process a shared object's DYNAMIC section, and save the important
965  * information in its Obj_Entry structure.
966  */
967 static void
968 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
969     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
970 {
971     const Elf_Dyn *dynp;
972     Needed_Entry **needed_tail = &obj->needed;
973     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
974     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
975     const Elf_Hashelt *hashtab;
976     const Elf32_Word *hashval;
977     Elf32_Word bkt, nmaskwords;
978     int bloom_size32;
979     bool nmw_power2;
980     int plttype = DT_REL;
981 
982     *dyn_rpath = NULL;
983     *dyn_soname = NULL;
984     *dyn_runpath = NULL;
985 
986     obj->bind_now = false;
987     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
988 	switch (dynp->d_tag) {
989 
990 	case DT_REL:
991 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
992 	    break;
993 
994 	case DT_RELSZ:
995 	    obj->relsize = dynp->d_un.d_val;
996 	    break;
997 
998 	case DT_RELENT:
999 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
1000 	    break;
1001 
1002 	case DT_JMPREL:
1003 	    obj->pltrel = (const Elf_Rel *)
1004 	      (obj->relocbase + dynp->d_un.d_ptr);
1005 	    break;
1006 
1007 	case DT_PLTRELSZ:
1008 	    obj->pltrelsize = dynp->d_un.d_val;
1009 	    break;
1010 
1011 	case DT_RELA:
1012 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
1013 	    break;
1014 
1015 	case DT_RELASZ:
1016 	    obj->relasize = dynp->d_un.d_val;
1017 	    break;
1018 
1019 	case DT_RELAENT:
1020 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1021 	    break;
1022 
1023 	case DT_PLTREL:
1024 	    plttype = dynp->d_un.d_val;
1025 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1026 	    break;
1027 
1028 	case DT_SYMTAB:
1029 	    obj->symtab = (const Elf_Sym *)
1030 	      (obj->relocbase + dynp->d_un.d_ptr);
1031 	    break;
1032 
1033 	case DT_SYMENT:
1034 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1035 	    break;
1036 
1037 	case DT_STRTAB:
1038 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1039 	    break;
1040 
1041 	case DT_STRSZ:
1042 	    obj->strsize = dynp->d_un.d_val;
1043 	    break;
1044 
1045 	case DT_VERNEED:
1046 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1047 		dynp->d_un.d_val);
1048 	    break;
1049 
1050 	case DT_VERNEEDNUM:
1051 	    obj->verneednum = dynp->d_un.d_val;
1052 	    break;
1053 
1054 	case DT_VERDEF:
1055 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1056 		dynp->d_un.d_val);
1057 	    break;
1058 
1059 	case DT_VERDEFNUM:
1060 	    obj->verdefnum = dynp->d_un.d_val;
1061 	    break;
1062 
1063 	case DT_VERSYM:
1064 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1065 		dynp->d_un.d_val);
1066 	    break;
1067 
1068 	case DT_HASH:
1069 	    {
1070 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1071 		    dynp->d_un.d_ptr);
1072 		obj->nbuckets = hashtab[0];
1073 		obj->nchains = hashtab[1];
1074 		obj->buckets = hashtab + 2;
1075 		obj->chains = obj->buckets + obj->nbuckets;
1076 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1077 		  obj->buckets != NULL;
1078 	    }
1079 	    break;
1080 
1081 	case DT_GNU_HASH:
1082 	    {
1083 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1084 		    dynp->d_un.d_ptr);
1085 		obj->nbuckets_gnu = hashtab[0];
1086 		obj->symndx_gnu = hashtab[1];
1087 		nmaskwords = hashtab[2];
1088 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1089 		/* Number of bitmask words is required to be power of 2 */
1090 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
1091 		obj->maskwords_bm_gnu = nmaskwords - 1;
1092 		obj->shift2_gnu = hashtab[3];
1093 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1094 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1095 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1096 		  obj->symndx_gnu;
1097 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
1098 		  obj->buckets_gnu != NULL;
1099 	    }
1100 	    break;
1101 
1102 	case DT_NEEDED:
1103 	    if (!obj->rtld) {
1104 		Needed_Entry *nep = NEW(Needed_Entry);
1105 		nep->name = dynp->d_un.d_val;
1106 		nep->obj = NULL;
1107 		nep->next = NULL;
1108 
1109 		*needed_tail = nep;
1110 		needed_tail = &nep->next;
1111 	    }
1112 	    break;
1113 
1114 	case DT_FILTER:
1115 	    if (!obj->rtld) {
1116 		Needed_Entry *nep = NEW(Needed_Entry);
1117 		nep->name = dynp->d_un.d_val;
1118 		nep->obj = NULL;
1119 		nep->next = NULL;
1120 
1121 		*needed_filtees_tail = nep;
1122 		needed_filtees_tail = &nep->next;
1123 	    }
1124 	    break;
1125 
1126 	case DT_AUXILIARY:
1127 	    if (!obj->rtld) {
1128 		Needed_Entry *nep = NEW(Needed_Entry);
1129 		nep->name = dynp->d_un.d_val;
1130 		nep->obj = NULL;
1131 		nep->next = NULL;
1132 
1133 		*needed_aux_filtees_tail = nep;
1134 		needed_aux_filtees_tail = &nep->next;
1135 	    }
1136 	    break;
1137 
1138 	case DT_PLTGOT:
1139 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1140 	    break;
1141 
1142 	case DT_TEXTREL:
1143 	    obj->textrel = true;
1144 	    break;
1145 
1146 	case DT_SYMBOLIC:
1147 	    obj->symbolic = true;
1148 	    break;
1149 
1150 	case DT_RPATH:
1151 	    /*
1152 	     * We have to wait until later to process this, because we
1153 	     * might not have gotten the address of the string table yet.
1154 	     */
1155 	    *dyn_rpath = dynp;
1156 	    break;
1157 
1158 	case DT_SONAME:
1159 	    *dyn_soname = dynp;
1160 	    break;
1161 
1162 	case DT_RUNPATH:
1163 	    *dyn_runpath = dynp;
1164 	    break;
1165 
1166 	case DT_INIT:
1167 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1168 	    break;
1169 
1170 	case DT_FINI:
1171 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1172 	    break;
1173 
1174 	case DT_PREINIT_ARRAY:
1175 	    obj->preinit_array = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1176 	    break;
1177 
1178 	case DT_INIT_ARRAY:
1179 	    obj->init_array = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1180 	    break;
1181 
1182 	case DT_FINI_ARRAY:
1183 	    obj->fini_array = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1184 	    break;
1185 
1186 	case DT_PREINIT_ARRAYSZ:
1187 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1188 	    break;
1189 
1190 	case DT_INIT_ARRAYSZ:
1191 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1192 	    break;
1193 
1194 	case DT_FINI_ARRAYSZ:
1195 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1196 	    break;
1197 
1198 	case DT_DEBUG:
1199 	    /* XXX - not implemented yet */
1200 	    if (!early)
1201 		dbg("Filling in DT_DEBUG entry");
1202 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1203 	    break;
1204 
1205 	case DT_FLAGS:
1206 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1207 		    obj->z_origin = true;
1208 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1209 		    obj->symbolic = true;
1210 		if (dynp->d_un.d_val & DF_TEXTREL)
1211 		    obj->textrel = true;
1212 		if (dynp->d_un.d_val & DF_BIND_NOW)
1213 		    obj->bind_now = true;
1214 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1215 		    ;*/
1216 	    break;
1217 
1218 	case DT_FLAGS_1:
1219 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1220 		    obj->z_noopen = true;
1221 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1222 		    obj->z_origin = true;
1223 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1224 		    XXX ;*/
1225 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1226 		    obj->bind_now = true;
1227 		if (dynp->d_un.d_val & DF_1_NODELETE)
1228 		    obj->z_nodelete = true;
1229 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1230 		    obj->z_loadfltr = true;
1231 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1232 		    obj->z_nodeflib = true;
1233 	    break;
1234 
1235 	default:
1236 	    if (!early) {
1237 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1238 		    (long)dynp->d_tag);
1239 	    }
1240 	    break;
1241 	}
1242     }
1243 
1244     obj->traced = false;
1245 
1246     if (plttype == DT_RELA) {
1247 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1248 	obj->pltrel = NULL;
1249 	obj->pltrelasize = obj->pltrelsize;
1250 	obj->pltrelsize = 0;
1251     }
1252 
1253     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1254     if (obj->valid_hash_sysv)
1255 	obj->dynsymcount = obj->nchains;
1256     else if (obj->valid_hash_gnu) {
1257 	obj->dynsymcount = 0;
1258 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1259 	    if (obj->buckets_gnu[bkt] == 0)
1260 		continue;
1261 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1262 	    do
1263 		obj->dynsymcount++;
1264 	    while ((*hashval++ & 1u) == 0);
1265 	}
1266 	obj->dynsymcount += obj->symndx_gnu;
1267     }
1268 }
1269 
1270 static void
1271 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1272     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1273 {
1274 
1275     if (obj->z_origin && obj->origin_path == NULL) {
1276 	obj->origin_path = xmalloc(PATH_MAX);
1277 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1278 	    die();
1279     }
1280 
1281     if (dyn_runpath != NULL) {
1282 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1283 	if (obj->z_origin)
1284 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1285     }
1286     else if (dyn_rpath != NULL) {
1287 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1288 	if (obj->z_origin)
1289 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1290     }
1291 
1292     if (dyn_soname != NULL)
1293 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1294 }
1295 
1296 static void
1297 digest_dynamic(Obj_Entry *obj, int early)
1298 {
1299 	const Elf_Dyn *dyn_rpath;
1300 	const Elf_Dyn *dyn_soname;
1301 	const Elf_Dyn *dyn_runpath;
1302 
1303 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1304 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1305 }
1306 
1307 /*
1308  * Process a shared object's program header.  This is used only for the
1309  * main program, when the kernel has already loaded the main program
1310  * into memory before calling the dynamic linker.  It creates and
1311  * returns an Obj_Entry structure.
1312  */
1313 static Obj_Entry *
1314 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1315 {
1316     Obj_Entry *obj;
1317     const Elf_Phdr *phlimit = phdr + phnum;
1318     const Elf_Phdr *ph;
1319     Elf_Addr note_start, note_end;
1320     int nsegs = 0;
1321 
1322     obj = obj_new();
1323     for (ph = phdr;  ph < phlimit;  ph++) {
1324 	if (ph->p_type != PT_PHDR)
1325 	    continue;
1326 
1327 	obj->phdr = phdr;
1328 	obj->phsize = ph->p_memsz;
1329 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1330 	break;
1331     }
1332 
1333     obj->stack_flags = PF_X | PF_R | PF_W;
1334 
1335     for (ph = phdr;  ph < phlimit;  ph++) {
1336 	switch (ph->p_type) {
1337 
1338 	case PT_INTERP:
1339 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1340 	    break;
1341 
1342 	case PT_LOAD:
1343 	    if (nsegs == 0) {	/* First load segment */
1344 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1345 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1346 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1347 		  obj->vaddrbase;
1348 	    } else {		/* Last load segment */
1349 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1350 		  obj->vaddrbase;
1351 	    }
1352 	    nsegs++;
1353 	    break;
1354 
1355 	case PT_DYNAMIC:
1356 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1357 	    break;
1358 
1359 	case PT_TLS:
1360 	    obj->tlsindex = 1;
1361 	    obj->tlssize = ph->p_memsz;
1362 	    obj->tlsalign = ph->p_align;
1363 	    obj->tlsinitsize = ph->p_filesz;
1364 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1365 	    break;
1366 
1367 	case PT_GNU_STACK:
1368 	    obj->stack_flags = ph->p_flags;
1369 	    break;
1370 
1371 	case PT_GNU_RELRO:
1372 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1373 	    obj->relro_size = round_page(ph->p_memsz);
1374 	    break;
1375 
1376 	case PT_NOTE:
1377 	    obj->note_present = true;
1378 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1379 	    note_end = note_start + ph->p_filesz;
1380 	    digest_notes(obj, note_start, note_end);
1381 	    break;
1382 	}
1383     }
1384     if (nsegs < 1) {
1385 	_rtld_error("%s: too few PT_LOAD segments", path);
1386 	return NULL;
1387     }
1388 
1389     obj->entry = entry;
1390     return obj;
1391 }
1392 
1393 void
1394 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1395 {
1396 	const Elf_Note *note;
1397 	const char *note_name;
1398 	uintptr_t p;
1399 
1400 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1401 	    note = (const Elf_Note *)((const char *)(note + 1) +
1402 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1403 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1404 		if (note->n_namesz != sizeof(NOTE_VENDOR) ||
1405 		    note->n_descsz != sizeof(int32_t))
1406 			continue;
1407 		if (note->n_type != ABI_NOTETYPE && note->n_type != CRT_NOINIT_NOTETYPE)
1408 			continue;
1409 		note_name = (const char *)(note + 1);
1410 		if (strncmp(NOTE_VENDOR, note_name, sizeof(NOTE_VENDOR)) != 0)
1411 			continue;
1412 		switch (note->n_type) {
1413 		case ABI_NOTETYPE:
1414 			/* DragonFly osrel note */
1415 			p = (uintptr_t)(note + 1);
1416 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1417 			obj->osrel = *(const int32_t *)(p);
1418 			dbg("note osrel %d", obj->osrel);
1419 			break;
1420 		case CRT_NOINIT_NOTETYPE:
1421 			/* DragonFly 'crt does not call init' note */
1422 			obj->crt_no_init = true;
1423 			dbg("note crt_no_init");
1424 			break;
1425 		}
1426 	}
1427 }
1428 
1429 static Obj_Entry *
1430 dlcheck(void *handle)
1431 {
1432     Obj_Entry *obj;
1433 
1434     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1435 	if (obj == (Obj_Entry *) handle)
1436 	    break;
1437 
1438     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1439 	_rtld_error("Invalid shared object handle %p", handle);
1440 	return NULL;
1441     }
1442     return obj;
1443 }
1444 
1445 /*
1446  * If the given object is already in the donelist, return true.  Otherwise
1447  * add the object to the list and return false.
1448  */
1449 static bool
1450 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1451 {
1452     unsigned int i;
1453 
1454     for (i = 0;  i < dlp->num_used;  i++)
1455 	if (dlp->objs[i] == obj)
1456 	    return true;
1457     /*
1458      * Our donelist allocation should always be sufficient.  But if
1459      * our threads locking isn't working properly, more shared objects
1460      * could have been loaded since we allocated the list.  That should
1461      * never happen, but we'll handle it properly just in case it does.
1462      */
1463     if (dlp->num_used < dlp->num_alloc)
1464 	dlp->objs[dlp->num_used++] = obj;
1465     return false;
1466 }
1467 
1468 /*
1469  * Hash function for symbol table lookup.  Don't even think about changing
1470  * this.  It is specified by the System V ABI.
1471  */
1472 unsigned long
1473 elf_hash(const char *name)
1474 {
1475     const unsigned char *p = (const unsigned char *) name;
1476     unsigned long h = 0;
1477     unsigned long g;
1478 
1479     while (*p != '\0') {
1480 	h = (h << 4) + *p++;
1481 	if ((g = h & 0xf0000000) != 0)
1482 	    h ^= g >> 24;
1483 	h &= ~g;
1484     }
1485     return h;
1486 }
1487 
1488 /*
1489  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1490  * unsigned in case it's implemented with a wider type.
1491  */
1492 static uint_fast32_t
1493 gnu_hash (const char *s)
1494 {
1495     uint_fast32_t h = 5381;
1496     for (unsigned char c = *s; c != '\0'; c = *++s)
1497 	h = h * 33 + c;
1498     return h & 0xffffffff;
1499 }
1500 
1501 /*
1502  * Find the library with the given name, and return its full pathname.
1503  * The returned string is dynamically allocated.  Generates an error
1504  * message and returns NULL if the library cannot be found.
1505  *
1506  * If the second argument is non-NULL, then it refers to an already-
1507  * loaded shared object, whose library search path will be searched.
1508  *
1509  * The search order is:
1510  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1511  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1512  *   LD_LIBRARY_PATH
1513  *   DT_RUNPATH in the referencing file
1514  *   ldconfig hints (if -z nodefaultlib, filter out /usr/lib from list)
1515  *   /usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1516  *
1517  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1518  */
1519 static char *
1520 find_library(const char *xname, const Obj_Entry *refobj)
1521 {
1522     char *pathname;
1523     char *name;
1524     bool objgiven = (refobj != NULL);
1525 
1526     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1527 	if (xname[0] != '/' && !trust) {
1528 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1529 	      xname);
1530 	    return NULL;
1531 	}
1532 	if (objgiven && refobj->z_origin)
1533 	    return origin_subst(xname, refobj->origin_path);
1534 	else
1535 	    return xstrdup(xname);
1536     }
1537 
1538     if (libmap_disable || !objgiven ||
1539 	(name = lm_find(refobj->path, xname)) == NULL)
1540 	name = (char *)xname;
1541 
1542     dbg(" Searching for \"%s\"", name);
1543 
1544     if ((objgiven &&
1545       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1546       (objgiven && (refobj->runpath == NULL) && (refobj != obj_main) &&
1547       (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1548       (pathname = search_library_path(name, ld_library_path)) != NULL ||
1549       (objgiven &&
1550       (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1551       (pathname = search_library_path(name, gethints(refobj->z_nodeflib)))
1552        != NULL ||
1553       (objgiven && !refobj->z_nodeflib &&
1554       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1555 	return pathname;
1556 
1557     if(objgiven && refobj->path != NULL) {
1558 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1559 	  name, basename(refobj->path));
1560     } else {
1561 	_rtld_error("Shared object \"%s\" not found", name);
1562     }
1563     return NULL;
1564 }
1565 
1566 /*
1567  * Given a symbol number in a referencing object, find the corresponding
1568  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1569  * no definition was found.  Returns a pointer to the Obj_Entry of the
1570  * defining object via the reference parameter DEFOBJ_OUT.
1571  */
1572 const Elf_Sym *
1573 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1574     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1575     RtldLockState *lockstate)
1576 {
1577     const Elf_Sym *ref;
1578     const Elf_Sym *def;
1579     const Obj_Entry *defobj;
1580     SymLook req;
1581     const char *name;
1582     int res;
1583 
1584     /*
1585      * If we have already found this symbol, get the information from
1586      * the cache.
1587      */
1588     if (symnum >= refobj->dynsymcount)
1589 	return NULL;	/* Bad object */
1590     if (cache != NULL && cache[symnum].sym != NULL) {
1591 	*defobj_out = cache[symnum].obj;
1592 	return cache[symnum].sym;
1593     }
1594 
1595     ref = refobj->symtab + symnum;
1596     name = refobj->strtab + ref->st_name;
1597     def = NULL;
1598     defobj = NULL;
1599 
1600     /*
1601      * We don't have to do a full scale lookup if the symbol is local.
1602      * We know it will bind to the instance in this load module; to
1603      * which we already have a pointer (ie ref). By not doing a lookup,
1604      * we not only improve performance, but it also avoids unresolvable
1605      * symbols when local symbols are not in the hash table.
1606      *
1607      * This might occur for TLS module relocations, which simply use
1608      * symbol 0.
1609      */
1610     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1611 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1612 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1613 		symnum);
1614 	}
1615 	symlook_init(&req, name);
1616 	req.flags = flags;
1617 	req.ventry = fetch_ventry(refobj, symnum);
1618 	req.lockstate = lockstate;
1619 	res = symlook_default(&req, refobj);
1620 	if (res == 0) {
1621 	    def = req.sym_out;
1622 	    defobj = req.defobj_out;
1623 	}
1624     } else {
1625 	def = ref;
1626 	defobj = refobj;
1627     }
1628 
1629     /*
1630      * If we found no definition and the reference is weak, treat the
1631      * symbol as having the value zero.
1632      */
1633     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1634 	def = &sym_zero;
1635 	defobj = obj_main;
1636     }
1637 
1638     if (def != NULL) {
1639 	*defobj_out = defobj;
1640 	/* Record the information in the cache to avoid subsequent lookups. */
1641 	if (cache != NULL) {
1642 	    cache[symnum].sym = def;
1643 	    cache[symnum].obj = defobj;
1644 	}
1645     } else {
1646 	if (refobj != &obj_rtld)
1647 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1648     }
1649     return def;
1650 }
1651 
1652 /*
1653  * Return the search path from the ldconfig hints file, reading it if
1654  * necessary.  Returns NULL if there are problems with the hints file,
1655  * or if the search path there is empty.
1656  * If DF_1_NODEFLIB flag set, omit STANDARD_LIBRARY_PATH directories
1657  */
1658 static const char *
1659 gethints(bool nostdlib)
1660 {
1661     static char *hints, *filtered_path;
1662     struct elfhints_hdr hdr;
1663     struct fill_search_info_args sargs, hargs;
1664     struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1665     struct dl_serpath *SLPpath, *hintpath;
1666     char *p;
1667     unsigned int SLPndx, hintndx, fndx, fcount;
1668     int fd;
1669     size_t flen;
1670     bool skip;
1671 
1672     if (hints == NULL) {
1673 	/* Keep from trying again in case the hints file is bad. */
1674 	hints = "";
1675 
1676 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1677 	    return (NULL);
1678 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1679 	  hdr.magic != ELFHINTS_MAGIC || hdr.version != 1) {
1680 	    close(fd);
1681 	    return (NULL);
1682 	}
1683 	p = xmalloc(hdr.dirlistlen + 1);
1684 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1685 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1686 	    free(p);
1687 	    close(fd);
1688 	    return (NULL);
1689 	}
1690 	hints = p;
1691 	close(fd);
1692     }
1693 
1694     if (!nostdlib)
1695 	return (hints[0] != '\0' ? hints : NULL);
1696 
1697     if (filtered_path != NULL)
1698 	goto filt_ret;
1699 
1700     smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1701     smeta.dls_cnt  = 0;
1702     hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1703     hmeta.dls_cnt  = 0;
1704 
1705     sargs.request = RTLD_DI_SERINFOSIZE;
1706     sargs.serinfo = &smeta;
1707     hargs.request = RTLD_DI_SERINFOSIZE;
1708     hargs.serinfo = &hmeta;
1709 
1710     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1711     path_enumerate(p, fill_search_info, &hargs);
1712 
1713     SLPinfo = malloc(smeta.dls_size);
1714     hintinfo = malloc(hmeta.dls_size);
1715 
1716     sargs.request  = RTLD_DI_SERINFO;
1717     sargs.serinfo  = SLPinfo;
1718     sargs.serpath  = &SLPinfo->dls_serpath[0];
1719     sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1720 
1721     hargs.request  = RTLD_DI_SERINFO;
1722     hargs.serinfo  = hintinfo;
1723     hargs.serpath  = &hintinfo->dls_serpath[0];
1724     hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1725 
1726     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1727     path_enumerate(p, fill_search_info, &hargs);
1728 
1729     fndx = 0;
1730     fcount = 0;
1731     filtered_path = xmalloc(hdr.dirlistlen + 1);
1732     hintpath = &hintinfo->dls_serpath[0];
1733     for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1734 	skip = false;
1735 	SLPpath = &SLPinfo->dls_serpath[0];
1736 	for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1737 	    if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1738 		skip = true;
1739 		break;
1740 	    }
1741 	}
1742 	if (skip)
1743 	    continue;
1744 	if (fcount > 0) {
1745 	    filtered_path[fndx] = ':';
1746 	    fndx++;
1747 	}
1748 	fcount++;
1749 	flen = strlen(hintpath->dls_name);
1750 	strncpy((filtered_path + fndx), hintpath->dls_name, flen);
1751 	fndx+= flen;
1752     }
1753     filtered_path[fndx] = '\0';
1754 
1755     free(SLPinfo);
1756     free(hintinfo);
1757 
1758 filt_ret:
1759     return (filtered_path[0] != '\0' ? filtered_path : NULL);
1760 }
1761 
1762 static void
1763 init_dag(Obj_Entry *root)
1764 {
1765     const Needed_Entry *needed;
1766     const Objlist_Entry *elm;
1767     DoneList donelist;
1768 
1769     if (root->dag_inited)
1770 	return;
1771     donelist_init(&donelist);
1772 
1773     /* Root object belongs to own DAG. */
1774     objlist_push_tail(&root->dldags, root);
1775     objlist_push_tail(&root->dagmembers, root);
1776     donelist_check(&donelist, root);
1777 
1778     /*
1779      * Add dependencies of root object to DAG in breadth order
1780      * by exploiting the fact that each new object get added
1781      * to the tail of the dagmembers list.
1782      */
1783     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1784 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1785 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1786 		continue;
1787 	    objlist_push_tail(&needed->obj->dldags, root);
1788 	    objlist_push_tail(&root->dagmembers, needed->obj);
1789 	}
1790     }
1791     root->dag_inited = true;
1792 }
1793 
1794 static void
1795 process_nodelete(Obj_Entry *root)
1796 {
1797 	const Objlist_Entry *elm;
1798 
1799 	/*
1800 	 * Walk over object DAG and process every dependent object that
1801 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1802 	 * which then should have its reference upped separately.
1803 	 */
1804 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1805 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1806 		    !elm->obj->ref_nodel) {
1807 			dbg("obj %s nodelete", elm->obj->path);
1808 			init_dag(elm->obj);
1809 			ref_dag(elm->obj);
1810 			elm->obj->ref_nodel = true;
1811 		}
1812 	}
1813 }
1814 
1815 /*
1816  * Initialize the dynamic linker.  The argument is the address at which
1817  * the dynamic linker has been mapped into memory.  The primary task of
1818  * this function is to relocate the dynamic linker.
1819  */
1820 static void
1821 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1822 {
1823     Obj_Entry objtmp;	/* Temporary rtld object */
1824     const Elf_Dyn *dyn_rpath;
1825     const Elf_Dyn *dyn_soname;
1826     const Elf_Dyn *dyn_runpath;
1827 
1828     /*
1829      * Conjure up an Obj_Entry structure for the dynamic linker.
1830      *
1831      * The "path" member can't be initialized yet because string constants
1832      * cannot yet be accessed. Below we will set it correctly.
1833      */
1834     memset(&objtmp, 0, sizeof(objtmp));
1835     objtmp.path = NULL;
1836     objtmp.rtld = true;
1837     objtmp.mapbase = mapbase;
1838 #ifdef PIC
1839     objtmp.relocbase = mapbase;
1840 #endif
1841     if (RTLD_IS_DYNAMIC()) {
1842 	objtmp.dynamic = rtld_dynamic(&objtmp);
1843 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1844 	assert(objtmp.needed == NULL);
1845 	assert(!objtmp.textrel);
1846 
1847 	/*
1848 	 * Temporarily put the dynamic linker entry into the object list, so
1849 	 * that symbols can be found.
1850 	 */
1851 
1852 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1853     }
1854 
1855     /* Initialize the object list. */
1856     obj_tail = &obj_list;
1857 
1858     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1859     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1860 
1861 #ifdef ENABLE_OSRELDATE
1862     if (aux_info[AT_OSRELDATE] != NULL)
1863 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1864 #endif
1865 
1866     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1867 
1868     /* Replace the path with a dynamically allocated copy. */
1869     obj_rtld.path = xstrdup(PATH_RTLD);
1870 
1871     r_debug.r_brk = r_debug_state;
1872     r_debug.r_state = RT_CONSISTENT;
1873 }
1874 
1875 /*
1876  * Add the init functions from a needed object list (and its recursive
1877  * needed objects) to "list".  This is not used directly; it is a helper
1878  * function for initlist_add_objects().  The write lock must be held
1879  * when this function is called.
1880  */
1881 static void
1882 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1883 {
1884     /* Recursively process the successor needed objects. */
1885     if (needed->next != NULL)
1886 	initlist_add_neededs(needed->next, list);
1887 
1888     /* Process the current needed object. */
1889     if (needed->obj != NULL)
1890 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1891 }
1892 
1893 /*
1894  * Scan all of the DAGs rooted in the range of objects from "obj" to
1895  * "tail" and add their init functions to "list".  This recurses over
1896  * the DAGs and ensure the proper init ordering such that each object's
1897  * needed libraries are initialized before the object itself.  At the
1898  * same time, this function adds the objects to the global finalization
1899  * list "list_fini" in the opposite order.  The write lock must be
1900  * held when this function is called.
1901  */
1902 static void
1903 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1904 {
1905 
1906     if (obj->init_scanned || obj->init_done)
1907 	return;
1908     obj->init_scanned = true;
1909 
1910     /* Recursively process the successor objects. */
1911     if (&obj->next != tail)
1912 	initlist_add_objects(obj->next, tail, list);
1913 
1914     /* Recursively process the needed objects. */
1915     if (obj->needed != NULL)
1916 	initlist_add_neededs(obj->needed, list);
1917     if (obj->needed_filtees != NULL)
1918 	initlist_add_neededs(obj->needed_filtees, list);
1919     if (obj->needed_aux_filtees != NULL)
1920 	initlist_add_neededs(obj->needed_aux_filtees, list);
1921 
1922     /* Add the object to the init list. */
1923     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1924       obj->init_array != (Elf_Addr)NULL)
1925 	objlist_push_tail(list, obj);
1926 
1927     /* Add the object to the global fini list in the reverse order. */
1928     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1929       && !obj->on_fini_list) {
1930 	objlist_push_head(&list_fini, obj);
1931 	obj->on_fini_list = true;
1932     }
1933 }
1934 
1935 #ifndef FPTR_TARGET
1936 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1937 #endif
1938 
1939 static bool
1940 is_exported(const Elf_Sym *def)
1941 {
1942     Elf_Addr value;
1943     const func_ptr_type *p;
1944 
1945     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1946     for (p = exports;  *p != NULL;  p++)
1947 	if (FPTR_TARGET(*p) == value)
1948 	    return true;
1949     return false;
1950 }
1951 
1952 static void
1953 free_needed_filtees(Needed_Entry *n)
1954 {
1955     Needed_Entry *needed, *needed1;
1956 
1957     for (needed = n; needed != NULL; needed = needed->next) {
1958 	if (needed->obj != NULL) {
1959 	    dlclose(needed->obj);
1960 	    needed->obj = NULL;
1961 	}
1962     }
1963     for (needed = n; needed != NULL; needed = needed1) {
1964 	needed1 = needed->next;
1965 	free(needed);
1966     }
1967 }
1968 
1969 static void
1970 unload_filtees(Obj_Entry *obj)
1971 {
1972 
1973     free_needed_filtees(obj->needed_filtees);
1974     obj->needed_filtees = NULL;
1975     free_needed_filtees(obj->needed_aux_filtees);
1976     obj->needed_aux_filtees = NULL;
1977     obj->filtees_loaded = false;
1978 }
1979 
1980 static void
1981 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1982     RtldLockState *lockstate)
1983 {
1984 
1985     for (; needed != NULL; needed = needed->next) {
1986 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1987 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1988 	  RTLD_LOCAL, lockstate);
1989     }
1990 }
1991 
1992 static void
1993 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
1994 {
1995 
1996     lock_restart_for_upgrade(lockstate);
1997     if (!obj->filtees_loaded) {
1998 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
1999 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2000 	obj->filtees_loaded = true;
2001     }
2002 }
2003 
2004 static int
2005 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2006 {
2007     Obj_Entry *obj1;
2008 
2009     for (; needed != NULL; needed = needed->next) {
2010 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2011 	  flags & ~RTLD_LO_NOLOAD);
2012 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2013 	    return (-1);
2014     }
2015     return (0);
2016 }
2017 
2018 /*
2019  * Given a shared object, traverse its list of needed objects, and load
2020  * each of them.  Returns 0 on success.  Generates an error message and
2021  * returns -1 on failure.
2022  */
2023 static int
2024 load_needed_objects(Obj_Entry *first, int flags)
2025 {
2026     Obj_Entry *obj;
2027 
2028     for (obj = first;  obj != NULL;  obj = obj->next) {
2029 	if (process_needed(obj, obj->needed, flags) == -1)
2030 	    return (-1);
2031     }
2032     return (0);
2033 }
2034 
2035 static int
2036 load_preload_objects(void)
2037 {
2038     char *p = ld_preload;
2039     static const char delim[] = " \t:;";
2040 
2041     if (p == NULL)
2042 	return 0;
2043 
2044     p += strspn(p, delim);
2045     while (*p != '\0') {
2046 	size_t len = strcspn(p, delim);
2047 	char savech;
2048 	Obj_Entry *obj;
2049 	SymLook req;
2050 	int res;
2051 
2052 	savech = p[len];
2053 	p[len] = '\0';
2054 	obj = load_object(p, -1, NULL, 0);
2055 	if (obj == NULL)
2056 	    return -1;	/* XXX - cleanup */
2057 	p[len] = savech;
2058 	p += len;
2059 	p += strspn(p, delim);
2060 
2061 	/* Check for the magic tracing function */
2062 	symlook_init(&req, RTLD_FUNCTRACE);
2063 	res = symlook_obj(&req, obj);
2064 	if (res == 0) {
2065 	    rtld_functrace = (void *)(req.defobj_out->relocbase +
2066 				      req.sym_out->st_value);
2067 	    rtld_functrace_obj = req.defobj_out;
2068 	}
2069     }
2070     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2071     return 0;
2072 }
2073 
2074 static const char *
2075 printable_path(const char *path)
2076 {
2077 
2078 	return (path == NULL ? "<unknown>" : path);
2079 }
2080 
2081 /*
2082  * Load a shared object into memory, if it is not already loaded.  The
2083  * object may be specified by name or by user-supplied file descriptor
2084  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2085  * duplicate is.
2086  *
2087  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2088  * on failure.
2089  */
2090 static Obj_Entry *
2091 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2092 {
2093     Obj_Entry *obj;
2094     int fd;
2095     struct stat sb;
2096     char *path;
2097 
2098     if (name != NULL) {
2099 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2100 	    if (object_match_name(obj, name))
2101 		return (obj);
2102 	}
2103 
2104 	path = find_library(name, refobj);
2105 	if (path == NULL)
2106 	    return (NULL);
2107     } else
2108 	path = NULL;
2109 
2110     /*
2111      * If we didn't find a match by pathname, or the name is not
2112      * supplied, open the file and check again by device and inode.
2113      * This avoids false mismatches caused by multiple links or ".."
2114      * in pathnames.
2115      *
2116      * To avoid a race, we open the file and use fstat() rather than
2117      * using stat().
2118      */
2119     fd = -1;
2120     if (fd_u == -1) {
2121 	if ((fd = open(path, O_RDONLY)) == -1) {
2122 	    _rtld_error("Cannot open \"%s\"", path);
2123 	    free(path);
2124 	    return (NULL);
2125 	}
2126     } else {
2127 	fd = dup(fd_u);
2128 	if (fd == -1) {
2129 	    _rtld_error("Cannot dup fd");
2130 	    free(path);
2131 	    return (NULL);
2132 	}
2133     }
2134     if (fstat(fd, &sb) == -1) {
2135 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2136 	close(fd);
2137 	free(path);
2138 	return NULL;
2139     }
2140     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2141 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2142 	    break;
2143     if (obj != NULL && name != NULL) {
2144 	object_add_name(obj, name);
2145 	free(path);
2146 	close(fd);
2147 	return obj;
2148     }
2149     if (flags & RTLD_LO_NOLOAD) {
2150 	free(path);
2151 	close(fd);
2152 	return (NULL);
2153     }
2154 
2155     /* First use of this object, so we must map it in */
2156     obj = do_load_object(fd, name, path, &sb, flags);
2157     if (obj == NULL)
2158 	free(path);
2159     close(fd);
2160 
2161     return obj;
2162 }
2163 
2164 static Obj_Entry *
2165 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2166   int flags)
2167 {
2168     Obj_Entry *obj;
2169     struct statfs fs;
2170 
2171     /*
2172      * but first, make sure that environment variables haven't been
2173      * used to circumvent the noexec flag on a filesystem.
2174      */
2175     if (dangerous_ld_env) {
2176 	if (fstatfs(fd, &fs) != 0) {
2177 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2178 		return NULL;
2179 	}
2180 	if (fs.f_flags & MNT_NOEXEC) {
2181 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2182 	    return NULL;
2183 	}
2184     }
2185     dbg("loading \"%s\"", printable_path(path));
2186     obj = map_object(fd, printable_path(path), sbp);
2187     if (obj == NULL)
2188         return NULL;
2189 
2190     /*
2191      * If DT_SONAME is present in the object, digest_dynamic2 already
2192      * added it to the object names.
2193      */
2194     if (name != NULL)
2195 	object_add_name(obj, name);
2196     obj->path = path;
2197     digest_dynamic(obj, 0);
2198     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2199 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2200     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2201       RTLD_LO_DLOPEN) {
2202 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2203 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2204 	munmap(obj->mapbase, obj->mapsize);
2205 	obj_free(obj);
2206 	return (NULL);
2207     }
2208 
2209     *obj_tail = obj;
2210     obj_tail = &obj->next;
2211     obj_count++;
2212     obj_loads++;
2213     linkmap_add(obj);	/* for GDB & dlinfo() */
2214     max_stack_flags |= obj->stack_flags;
2215 
2216     dbg("  %p .. %p: %s", obj->mapbase,
2217          obj->mapbase + obj->mapsize - 1, obj->path);
2218     if (obj->textrel)
2219 	dbg("  WARNING: %s has impure text", obj->path);
2220     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2221 	obj->path);
2222 
2223     return obj;
2224 }
2225 
2226 static Obj_Entry *
2227 obj_from_addr(const void *addr)
2228 {
2229     Obj_Entry *obj;
2230 
2231     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2232 	if (addr < (void *) obj->mapbase)
2233 	    continue;
2234 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2235 	    return obj;
2236     }
2237     return NULL;
2238 }
2239 
2240 /*
2241  * Call the finalization functions for each of the objects in "list"
2242  * belonging to the DAG of "root" and referenced once. If NULL "root"
2243  * is specified, every finalization function will be called regardless
2244  * of the reference count and the list elements won't be freed. All of
2245  * the objects are expected to have non-NULL fini functions.
2246  */
2247 static void
2248 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2249 {
2250     Objlist_Entry *elm;
2251     char *saved_msg;
2252     Elf_Addr *fini_addr;
2253     int index;
2254 
2255     assert(root == NULL || root->refcount == 1);
2256 
2257     /*
2258      * Preserve the current error message since a fini function might
2259      * call into the dynamic linker and overwrite it.
2260      */
2261     saved_msg = errmsg_save();
2262     do {
2263 	STAILQ_FOREACH(elm, list, link) {
2264 	    if (root != NULL && (elm->obj->refcount != 1 ||
2265 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2266 		continue;
2267 
2268 	    /* Remove object from fini list to prevent recursive invocation. */
2269 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2270 	    /*
2271 	     * XXX: If a dlopen() call references an object while the
2272 	     * fini function is in progress, we might end up trying to
2273 	     * unload the referenced object in dlclose() or the object
2274 	     * won't be unloaded although its fini function has been
2275 	     * called.
2276 	     */
2277 	    lock_release(rtld_bind_lock, lockstate);
2278 
2279 	    /*
2280 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.  When this
2281 	     * happens, DT_FINI_ARRAY is processed first, and it is also processed
2282 	     * backwards.  It is possible to encounter DT_FINI_ARRAY elements with
2283 	     * values of 0 or 1, but they need to be ignored.
2284 	     */
2285 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2286 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2287 		for (index = elm->obj->fini_array_num - 1; index >= 0; index--) {
2288 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2289 			dbg("calling fini array function for %s at %p",
2290 		            elm->obj->path, (void *)fini_addr[index]);
2291 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2292 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2293 			call_initfini_pointer(elm->obj, fini_addr[index]);
2294 		    }
2295 	        }
2296 	    }
2297 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2298 		dbg("calling fini function for %s at %p", elm->obj->path,
2299 		    (void *)elm->obj->fini);
2300 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2301 		    0, 0, elm->obj->path);
2302 	        call_initfini_pointer(elm->obj, elm->obj->fini);
2303 	    }
2304 	    wlock_acquire(rtld_bind_lock, lockstate);
2305 	    /* No need to free anything if process is going down. */
2306 	    if (root != NULL)
2307 		free(elm);
2308 	    /*
2309 	     * We must restart the list traversal after every fini call
2310 	     * because a dlclose() call from the fini function or from
2311 	     * another thread might have modified the reference counts.
2312 	     */
2313 	    break;
2314 	}
2315     } while (elm != NULL);
2316     errmsg_restore(saved_msg);
2317 }
2318 
2319 /*
2320  * If the main program is defined with a .preinit_array section, call
2321  * each function in order.  This must occur before the initialization
2322  * of any shared object or the main program.
2323  */
2324 static void
2325 preinitialize_main_object (void)
2326 {
2327     Elf_Addr *preinit_addr;
2328     int index;
2329 
2330     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2331     if (preinit_addr == NULL)
2332 	return;
2333 
2334     for (index = 0; index < obj_main->preinit_array_num; index++) {
2335 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2336 	    dbg("calling preinit function for %s at %p", obj_main->path,
2337 		(void *)preinit_addr[index]);
2338 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2339 		0, 0, obj_main->path);
2340 	    call_init_pointer(obj_main, preinit_addr[index]);
2341 	}
2342     }
2343 }
2344 
2345 /*
2346  * Call the initialization functions for each of the objects in
2347  * "list".  All of the objects are expected to have non-NULL init
2348  * functions.
2349  */
2350 static void
2351 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2352 {
2353     Objlist_Entry *elm;
2354     Obj_Entry *obj;
2355     char *saved_msg;
2356     Elf_Addr *init_addr;
2357     int index;
2358 
2359     /*
2360      * Clean init_scanned flag so that objects can be rechecked and
2361      * possibly initialized earlier if any of vectors called below
2362      * cause the change by using dlopen.
2363      */
2364     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2365 	obj->init_scanned = false;
2366 
2367     /*
2368      * Preserve the current error message since an init function might
2369      * call into the dynamic linker and overwrite it.
2370      */
2371     saved_msg = errmsg_save();
2372     STAILQ_FOREACH(elm, list, link) {
2373 	if (elm->obj->init_done) /* Initialized early. */
2374 	    continue;
2375 
2376 	/*
2377 	 * Race: other thread might try to use this object before current
2378 	 * one completes the initilization. Not much can be done here
2379 	 * without better locking.
2380 	 */
2381 	elm->obj->init_done = true;
2382 	lock_release(rtld_bind_lock, lockstate);
2383 
2384         /*
2385          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.  When
2386          * this happens, DT_INIT is processed first.  It is possible to
2387          * encounter DT_INIT_ARRAY elements with values of 0 or 1, but they
2388          * need to be ignored.
2389          */
2390          if (elm->obj->init != (Elf_Addr)NULL) {
2391 	    dbg("calling init function for %s at %p", elm->obj->path,
2392 	        (void *)elm->obj->init);
2393 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2394 	        0, 0, elm->obj->path);
2395 	    call_initfini_pointer(elm->obj, elm->obj->init);
2396 	}
2397 	init_addr = (Elf_Addr *)elm->obj->init_array;
2398 	if (init_addr != NULL) {
2399 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2400 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2401 		    dbg("calling init array function for %s at %p", elm->obj->path,
2402 			(void *)init_addr[index]);
2403 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2404 			(void *)init_addr[index], 0, 0, elm->obj->path);
2405 		    call_init_pointer(elm->obj, init_addr[index]);
2406 		}
2407 	    }
2408 	}
2409 	wlock_acquire(rtld_bind_lock, lockstate);
2410     }
2411     errmsg_restore(saved_msg);
2412 }
2413 
2414 static void
2415 objlist_clear(Objlist *list)
2416 {
2417     Objlist_Entry *elm;
2418 
2419     while (!STAILQ_EMPTY(list)) {
2420 	elm = STAILQ_FIRST(list);
2421 	STAILQ_REMOVE_HEAD(list, link);
2422 	free(elm);
2423     }
2424 }
2425 
2426 static Objlist_Entry *
2427 objlist_find(Objlist *list, const Obj_Entry *obj)
2428 {
2429     Objlist_Entry *elm;
2430 
2431     STAILQ_FOREACH(elm, list, link)
2432 	if (elm->obj == obj)
2433 	    return elm;
2434     return NULL;
2435 }
2436 
2437 static void
2438 objlist_init(Objlist *list)
2439 {
2440     STAILQ_INIT(list);
2441 }
2442 
2443 static void
2444 objlist_push_head(Objlist *list, Obj_Entry *obj)
2445 {
2446     Objlist_Entry *elm;
2447 
2448     elm = NEW(Objlist_Entry);
2449     elm->obj = obj;
2450     STAILQ_INSERT_HEAD(list, elm, link);
2451 }
2452 
2453 static void
2454 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2455 {
2456     Objlist_Entry *elm;
2457 
2458     elm = NEW(Objlist_Entry);
2459     elm->obj = obj;
2460     STAILQ_INSERT_TAIL(list, elm, link);
2461 }
2462 
2463 static void
2464 objlist_remove(Objlist *list, Obj_Entry *obj)
2465 {
2466     Objlist_Entry *elm;
2467 
2468     if ((elm = objlist_find(list, obj)) != NULL) {
2469 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2470 	free(elm);
2471     }
2472 }
2473 
2474 /*
2475  * Relocate dag rooted in the specified object.
2476  * Returns 0 on success, or -1 on failure.
2477  */
2478 
2479 static int
2480 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2481     int flags, RtldLockState *lockstate)
2482 {
2483 	Objlist_Entry *elm;
2484 	int error;
2485 
2486 	error = 0;
2487 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2488 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2489 		    lockstate);
2490 		if (error == -1)
2491 			break;
2492 	}
2493 	return (error);
2494 }
2495 
2496 /*
2497  * Relocate single object.
2498  * Returns 0 on success, or -1 on failure.
2499  */
2500 
2501 static int
2502 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2503     int flags, RtldLockState *lockstate)
2504 {
2505 	if (obj->relocated)
2506 	    return (0);
2507 	obj->relocated = true;
2508 	if (obj != rtldobj)
2509 	    dbg("relocating \"%s\"", obj->path);
2510 
2511 	if (obj->symtab == NULL || obj->strtab == NULL ||
2512 	  !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2513 	    _rtld_error("%s: Shared object has no run-time symbol table",
2514 	      obj->path);
2515 	    return (-1);
2516 	}
2517 
2518 	if (obj->textrel) {
2519 	    /* There are relocations to the write-protected text segment. */
2520 	    if (mprotect(obj->mapbase, obj->textsize,
2521 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2522 		_rtld_error("%s: Cannot write-enable text segment: %s",
2523 		  obj->path, rtld_strerror(errno));
2524 		return (-1);
2525 	    }
2526 	}
2527 
2528 	/* Process the non-PLT relocations. */
2529 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2530 		return (-1);
2531 
2532 	/*
2533 	 * Reprotect the text segment.  Make sure it is included in the
2534 	 * core dump since we modified it.  This unfortunately causes the
2535 	 * entire text segment to core-out but we don't have much of a
2536 	 * choice.  We could try to only reenable core dumps on pages
2537 	 * in which relocations occured but that is likely most of the text
2538 	 * pages anyway, and even that would not work because the rest of
2539 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
2540 	 * (created due to our modifications) backed by the original OBJT_VNODE
2541 	 * object, and the ELF coredump code is currently only able to dump
2542 	 * vnode records for pure vnode-backed mappings, not vnode backings
2543 	 * to memory objects.
2544 	 */
2545 	if (obj->textrel) {
2546 	    madvise(obj->mapbase, obj->textsize, MADV_CORE);
2547 	    if (mprotect(obj->mapbase, obj->textsize,
2548 	      PROT_READ|PROT_EXEC) == -1) {
2549 		_rtld_error("%s: Cannot write-protect text segment: %s",
2550 		  obj->path, rtld_strerror(errno));
2551 		return (-1);
2552 	    }
2553 	}
2554 
2555 
2556 	/* Set the special PLT or GOT entries. */
2557 	init_pltgot(obj);
2558 
2559 	/* Process the PLT relocations. */
2560 	if (reloc_plt(obj) == -1)
2561 	    return (-1);
2562 	/* Relocate the jump slots if we are doing immediate binding. */
2563 	if (obj->bind_now || bind_now)
2564 	    if (reloc_jmpslots(obj, flags, lockstate) == -1)
2565 		return (-1);
2566 
2567 	/*
2568 	 * Set up the magic number and version in the Obj_Entry.  These
2569 	 * were checked in the crt1.o from the original ElfKit, so we
2570 	 * set them for backward compatibility.
2571 	 */
2572 	obj->magic = RTLD_MAGIC;
2573 	obj->version = RTLD_VERSION;
2574 
2575 	/*
2576 	 * Set relocated data to read-only status if protection specified
2577 	 */
2578 
2579 	if (obj->relro_size) {
2580 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2581 		_rtld_error("%s: Cannot enforce relro relocation: %s",
2582 		  obj->path, rtld_strerror(errno));
2583 		return (-1);
2584 	    }
2585 	}
2586 	return (0);
2587 }
2588 
2589 /*
2590  * Relocate newly-loaded shared objects.  The argument is a pointer to
2591  * the Obj_Entry for the first such object.  All objects from the first
2592  * to the end of the list of objects are relocated.  Returns 0 on success,
2593  * or -1 on failure.
2594  */
2595 static int
2596 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2597     int flags, RtldLockState *lockstate)
2598 {
2599 	Obj_Entry *obj;
2600 	int error;
2601 
2602 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2603 		error = relocate_object(obj, bind_now, rtldobj, flags,
2604 		    lockstate);
2605 		if (error == -1)
2606 			break;
2607 	}
2608 	return (error);
2609 }
2610 
2611 /*
2612  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2613  * referencing STT_GNU_IFUNC symbols is postponed till the other
2614  * relocations are done.  The indirect functions specified as
2615  * ifunc are allowed to call other symbols, so we need to have
2616  * objects relocated before asking for resolution from indirects.
2617  *
2618  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2619  * instead of the usual lazy handling of PLT slots.  It is
2620  * consistent with how GNU does it.
2621  */
2622 static int
2623 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2624     RtldLockState *lockstate)
2625 {
2626 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2627 		return (-1);
2628 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2629 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2630 		return (-1);
2631 	return (0);
2632 }
2633 
2634 static int
2635 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2636     RtldLockState *lockstate)
2637 {
2638 	Obj_Entry *obj;
2639 
2640 	for (obj = first;  obj != NULL;  obj = obj->next) {
2641 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2642 			return (-1);
2643 	}
2644 	return (0);
2645 }
2646 
2647 static int
2648 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2649     RtldLockState *lockstate)
2650 {
2651 	Objlist_Entry *elm;
2652 
2653 	STAILQ_FOREACH(elm, list, link) {
2654 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2655 		    lockstate) == -1)
2656 			return (-1);
2657 	}
2658 	return (0);
2659 }
2660 
2661 /*
2662  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2663  * before the process exits.
2664  */
2665 static void
2666 rtld_exit(void)
2667 {
2668     RtldLockState lockstate;
2669 
2670     wlock_acquire(rtld_bind_lock, &lockstate);
2671     dbg("rtld_exit()");
2672     objlist_call_fini(&list_fini, NULL, &lockstate);
2673     /* No need to remove the items from the list, since we are exiting. */
2674     if (!libmap_disable)
2675         lm_fini();
2676     lock_release(rtld_bind_lock, &lockstate);
2677 }
2678 
2679 static void *
2680 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2681 {
2682     if (path == NULL)
2683 	return (NULL);
2684 
2685     path += strspn(path, ":;");
2686     while (*path != '\0') {
2687 	size_t len;
2688 	char  *res;
2689 
2690 	len = strcspn(path, ":;");
2691 	res = callback(path, len, arg);
2692 
2693 	if (res != NULL)
2694 	    return (res);
2695 
2696 	path += len;
2697 	path += strspn(path, ":;");
2698     }
2699 
2700     return (NULL);
2701 }
2702 
2703 struct try_library_args {
2704     const char	*name;
2705     size_t	 namelen;
2706     char	*buffer;
2707     size_t	 buflen;
2708 };
2709 
2710 static void *
2711 try_library_path(const char *dir, size_t dirlen, void *param)
2712 {
2713     struct try_library_args *arg;
2714 
2715     arg = param;
2716     if (*dir == '/' || trust) {
2717 	char *pathname;
2718 
2719 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2720 		return (NULL);
2721 
2722 	pathname = arg->buffer;
2723 	strncpy(pathname, dir, dirlen);
2724 	pathname[dirlen] = '/';
2725 	strcpy(pathname + dirlen + 1, arg->name);
2726 
2727 	dbg("  Trying \"%s\"", pathname);
2728 	if (access(pathname, F_OK) == 0) {		/* We found it */
2729 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2730 	    strcpy(pathname, arg->buffer);
2731 	    return (pathname);
2732 	}
2733     }
2734     return (NULL);
2735 }
2736 
2737 static char *
2738 search_library_path(const char *name, const char *path)
2739 {
2740     char *p;
2741     struct try_library_args arg;
2742 
2743     if (path == NULL)
2744 	return NULL;
2745 
2746     arg.name = name;
2747     arg.namelen = strlen(name);
2748     arg.buffer = xmalloc(PATH_MAX);
2749     arg.buflen = PATH_MAX;
2750 
2751     p = path_enumerate(path, try_library_path, &arg);
2752 
2753     free(arg.buffer);
2754 
2755     return (p);
2756 }
2757 
2758 int
2759 dlclose(void *handle)
2760 {
2761     Obj_Entry *root;
2762     RtldLockState lockstate;
2763 
2764     wlock_acquire(rtld_bind_lock, &lockstate);
2765     root = dlcheck(handle);
2766     if (root == NULL) {
2767 	lock_release(rtld_bind_lock, &lockstate);
2768 	return -1;
2769     }
2770     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2771 	root->path);
2772 
2773     /* Unreference the object and its dependencies. */
2774     root->dl_refcount--;
2775 
2776     if (root->refcount == 1) {
2777 	/*
2778 	 * The object will be no longer referenced, so we must unload it.
2779 	 * First, call the fini functions.
2780 	 */
2781 	objlist_call_fini(&list_fini, root, &lockstate);
2782 
2783 	unref_dag(root);
2784 
2785 	/* Finish cleaning up the newly-unreferenced objects. */
2786 	GDB_STATE(RT_DELETE,&root->linkmap);
2787 	unload_object(root);
2788 	GDB_STATE(RT_CONSISTENT,NULL);
2789     } else
2790 	unref_dag(root);
2791 
2792     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2793     lock_release(rtld_bind_lock, &lockstate);
2794     return 0;
2795 }
2796 
2797 char *
2798 dlerror(void)
2799 {
2800     char *msg = error_message;
2801     error_message = NULL;
2802     return msg;
2803 }
2804 
2805 void *
2806 dlopen(const char *name, int mode)
2807 {
2808 
2809 	return (rtld_dlopen(name, -1, mode));
2810 }
2811 
2812 void *
2813 fdlopen(int fd, int mode)
2814 {
2815 
2816 	return (rtld_dlopen(NULL, fd, mode));
2817 }
2818 
2819 static void *
2820 rtld_dlopen(const char *name, int fd, int mode)
2821 {
2822     RtldLockState lockstate;
2823     int lo_flags;
2824 
2825     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2826     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2827     if (ld_tracing != NULL) {
2828 	rlock_acquire(rtld_bind_lock, &lockstate);
2829 	if (sigsetjmp(lockstate.env, 0) != 0)
2830 	    lock_upgrade(rtld_bind_lock, &lockstate);
2831 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2832 	lock_release(rtld_bind_lock, &lockstate);
2833     }
2834     lo_flags = RTLD_LO_DLOPEN;
2835     if (mode & RTLD_NODELETE)
2836 	    lo_flags |= RTLD_LO_NODELETE;
2837     if (mode & RTLD_NOLOAD)
2838 	    lo_flags |= RTLD_LO_NOLOAD;
2839     if (ld_tracing != NULL)
2840 	    lo_flags |= RTLD_LO_TRACE;
2841 
2842     return (dlopen_object(name, fd, obj_main, lo_flags,
2843       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2844 }
2845 
2846 static void
2847 dlopen_cleanup(Obj_Entry *obj)
2848 {
2849 
2850 	obj->dl_refcount--;
2851 	unref_dag(obj);
2852 	if (obj->refcount == 0)
2853 		unload_object(obj);
2854 }
2855 
2856 static Obj_Entry *
2857 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2858     int mode, RtldLockState *lockstate)
2859 {
2860     Obj_Entry **old_obj_tail;
2861     Obj_Entry *obj;
2862     Objlist initlist;
2863     RtldLockState mlockstate;
2864     int result;
2865 
2866     objlist_init(&initlist);
2867 
2868     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2869 	wlock_acquire(rtld_bind_lock, &mlockstate);
2870 	lockstate = &mlockstate;
2871     }
2872     GDB_STATE(RT_ADD,NULL);
2873 
2874     old_obj_tail = obj_tail;
2875     obj = NULL;
2876     if (name == NULL && fd == -1) {
2877 	obj = obj_main;
2878 	obj->refcount++;
2879     } else {
2880 	obj = load_object(name, fd, refobj, lo_flags);
2881     }
2882 
2883     if (obj) {
2884 	obj->dl_refcount++;
2885 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2886 	    objlist_push_tail(&list_global, obj);
2887 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2888 	    assert(*old_obj_tail == obj);
2889 	    result = load_needed_objects(obj,
2890 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2891 	    init_dag(obj);
2892 	    ref_dag(obj);
2893 	    if (result != -1)
2894 		result = rtld_verify_versions(&obj->dagmembers);
2895 	    if (result != -1 && ld_tracing)
2896 		goto trace;
2897 	    if (result == -1 || relocate_object_dag(obj,
2898 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2899 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2900 	      lockstate) == -1) {
2901 		dlopen_cleanup(obj);
2902 		obj = NULL;
2903 	    } else if (lo_flags & RTLD_LO_EARLY) {
2904 		/*
2905 		 * Do not call the init functions for early loaded
2906 		 * filtees.  The image is still not initialized enough
2907 		 * for them to work.
2908 		 *
2909 		 * Our object is found by the global object list and
2910 		 * will be ordered among all init calls done right
2911 		 * before transferring control to main.
2912 		 */
2913 	    } else {
2914 		/* Make list of init functions to call. */
2915 		initlist_add_objects(obj, &obj->next, &initlist);
2916 	    }
2917 	    /*
2918 	     * Process all no_delete objects here, given them own
2919 	     * DAGs to prevent their dependencies from being unloaded.
2920 	     * This has to be done after we have loaded all of the
2921 	     * dependencies, so that we do not miss any.
2922 	     */
2923 	     if (obj != NULL)
2924 		process_nodelete(obj);
2925 	} else {
2926 	    /*
2927 	     * Bump the reference counts for objects on this DAG.  If
2928 	     * this is the first dlopen() call for the object that was
2929 	     * already loaded as a dependency, initialize the dag
2930 	     * starting at it.
2931 	     */
2932 	    init_dag(obj);
2933 	    ref_dag(obj);
2934 
2935 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2936 		goto trace;
2937 	}
2938 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2939 	  obj->z_nodelete) && !obj->ref_nodel) {
2940 	    dbg("obj %s nodelete", obj->path);
2941 	    ref_dag(obj);
2942 	    obj->z_nodelete = obj->ref_nodel = true;
2943 	}
2944     }
2945 
2946     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2947 	name);
2948     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2949 
2950     if (!(lo_flags & RTLD_LO_EARLY)) {
2951 	map_stacks_exec(lockstate);
2952     }
2953 
2954     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
2955       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2956       lockstate) == -1) {
2957 	objlist_clear(&initlist);
2958 	dlopen_cleanup(obj);
2959 	if (lockstate == &mlockstate)
2960 	    lock_release(rtld_bind_lock, lockstate);
2961 	return (NULL);
2962     }
2963 
2964     if (!(lo_flags & RTLD_LO_EARLY)) {
2965 	/* Call the init functions. */
2966 	objlist_call_init(&initlist, lockstate);
2967     }
2968     objlist_clear(&initlist);
2969     if (lockstate == &mlockstate)
2970 	lock_release(rtld_bind_lock, lockstate);
2971     return obj;
2972 trace:
2973     trace_loaded_objects(obj);
2974     if (lockstate == &mlockstate)
2975 	lock_release(rtld_bind_lock, lockstate);
2976     exit(0);
2977 }
2978 
2979 static void *
2980 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2981     int flags)
2982 {
2983     DoneList donelist;
2984     const Obj_Entry *obj, *defobj;
2985     const Elf_Sym *def;
2986     SymLook req;
2987     RtldLockState lockstate;
2988     int res;
2989 
2990     def = NULL;
2991     defobj = NULL;
2992     symlook_init(&req, name);
2993     req.ventry = ve;
2994     req.flags = flags | SYMLOOK_IN_PLT;
2995     req.lockstate = &lockstate;
2996 
2997     rlock_acquire(rtld_bind_lock, &lockstate);
2998     if (sigsetjmp(lockstate.env, 0) != 0)
2999 	    lock_upgrade(rtld_bind_lock, &lockstate);
3000     if (handle == NULL || handle == RTLD_NEXT ||
3001 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3002 
3003 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3004 	    _rtld_error("Cannot determine caller's shared object");
3005 	    lock_release(rtld_bind_lock, &lockstate);
3006 	    return NULL;
3007 	}
3008 	if (handle == NULL) {	/* Just the caller's shared object. */
3009 	    res = symlook_obj(&req, obj);
3010 	    if (res == 0) {
3011 		def = req.sym_out;
3012 		defobj = req.defobj_out;
3013 	    }
3014 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3015 		   handle == RTLD_SELF) { /* ... caller included */
3016 	    if (handle == RTLD_NEXT)
3017 		obj = obj->next;
3018 	    for (; obj != NULL; obj = obj->next) {
3019 		res = symlook_obj(&req, obj);
3020 		if (res == 0) {
3021 		    if (def == NULL ||
3022 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3023 			def = req.sym_out;
3024 			defobj = req.defobj_out;
3025 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3026 			    break;
3027 		    }
3028 		}
3029 	    }
3030 	    /*
3031 	     * Search the dynamic linker itself, and possibly resolve the
3032 	     * symbol from there.  This is how the application links to
3033 	     * dynamic linker services such as dlopen.
3034 	     */
3035 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3036 		res = symlook_obj(&req, &obj_rtld);
3037 		if (res == 0 && is_exported(req.sym_out)) {
3038 		    def = req.sym_out;
3039 		    defobj = req.defobj_out;
3040 		}
3041 	    }
3042 	} else {
3043 	    assert(handle == RTLD_DEFAULT);
3044 	    res = symlook_default(&req, obj);
3045 	    if (res == 0) {
3046 		defobj = req.defobj_out;
3047 		def = req.sym_out;
3048 	    }
3049 	}
3050     } else {
3051 	if ((obj = dlcheck(handle)) == NULL) {
3052 	    lock_release(rtld_bind_lock, &lockstate);
3053 	    return NULL;
3054 	}
3055 
3056 	donelist_init(&donelist);
3057 	if (obj->mainprog) {
3058             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3059 	    res = symlook_global(&req, &donelist);
3060 	    if (res == 0) {
3061 		def = req.sym_out;
3062 		defobj = req.defobj_out;
3063 	    }
3064 	    /*
3065 	     * Search the dynamic linker itself, and possibly resolve the
3066 	     * symbol from there.  This is how the application links to
3067 	     * dynamic linker services such as dlopen.
3068 	     */
3069 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3070 		res = symlook_obj(&req, &obj_rtld);
3071 		if (res == 0) {
3072 		    def = req.sym_out;
3073 		    defobj = req.defobj_out;
3074 		}
3075 	    }
3076 	}
3077 	else {
3078 	    /* Search the whole DAG rooted at the given object. */
3079 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3080 	    if (res == 0) {
3081 		def = req.sym_out;
3082 		defobj = req.defobj_out;
3083 	    }
3084 	}
3085     }
3086 
3087     if (def != NULL) {
3088 	lock_release(rtld_bind_lock, &lockstate);
3089 
3090 	/*
3091 	 * The value required by the caller is derived from the value
3092 	 * of the symbol. For the ia64 architecture, we need to
3093 	 * construct a function descriptor which the caller can use to
3094 	 * call the function with the right 'gp' value. For other
3095 	 * architectures and for non-functions, the value is simply
3096 	 * the relocated value of the symbol.
3097 	 */
3098 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3099 	    return (make_function_pointer(def, defobj));
3100 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3101 	    return (rtld_resolve_ifunc(defobj, def));
3102 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3103 	    tls_index ti;
3104 	    ti.ti_module = defobj->tlsindex;
3105 	    ti.ti_offset = def->st_value;
3106 	    return (__tls_get_addr(&ti));
3107 	} else
3108 	    return (defobj->relocbase + def->st_value);
3109     }
3110 
3111     _rtld_error("Undefined symbol \"%s\"", name);
3112     lock_release(rtld_bind_lock, &lockstate);
3113     return NULL;
3114 }
3115 
3116 void *
3117 dlsym(void *handle, const char *name)
3118 {
3119 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3120 	    SYMLOOK_DLSYM);
3121 }
3122 
3123 dlfunc_t
3124 dlfunc(void *handle, const char *name)
3125 {
3126 	union {
3127 		void *d;
3128 		dlfunc_t f;
3129 	} rv;
3130 
3131 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3132 	    SYMLOOK_DLSYM);
3133 	return (rv.f);
3134 }
3135 
3136 void *
3137 dlvsym(void *handle, const char *name, const char *version)
3138 {
3139 	Ver_Entry ventry;
3140 
3141 	ventry.name = version;
3142 	ventry.file = NULL;
3143 	ventry.hash = elf_hash(version);
3144 	ventry.flags= 0;
3145 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3146 	    SYMLOOK_DLSYM);
3147 }
3148 
3149 int
3150 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3151 {
3152     const Obj_Entry *obj;
3153     RtldLockState lockstate;
3154 
3155     rlock_acquire(rtld_bind_lock, &lockstate);
3156     obj = obj_from_addr(addr);
3157     if (obj == NULL) {
3158         _rtld_error("No shared object contains address");
3159 	lock_release(rtld_bind_lock, &lockstate);
3160         return (0);
3161     }
3162     rtld_fill_dl_phdr_info(obj, phdr_info);
3163     lock_release(rtld_bind_lock, &lockstate);
3164     return (1);
3165 }
3166 
3167 int
3168 dladdr(const void *addr, Dl_info *info)
3169 {
3170     const Obj_Entry *obj;
3171     const Elf_Sym *def;
3172     void *symbol_addr;
3173     unsigned long symoffset;
3174     RtldLockState lockstate;
3175 
3176     rlock_acquire(rtld_bind_lock, &lockstate);
3177     obj = obj_from_addr(addr);
3178     if (obj == NULL) {
3179         _rtld_error("No shared object contains address");
3180 	lock_release(rtld_bind_lock, &lockstate);
3181         return 0;
3182     }
3183     info->dli_fname = obj->path;
3184     info->dli_fbase = obj->mapbase;
3185     info->dli_saddr = NULL;
3186     info->dli_sname = NULL;
3187 
3188     /*
3189      * Walk the symbol list looking for the symbol whose address is
3190      * closest to the address sent in.
3191      */
3192     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3193         def = obj->symtab + symoffset;
3194 
3195         /*
3196          * For skip the symbol if st_shndx is either SHN_UNDEF or
3197          * SHN_COMMON.
3198          */
3199         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3200             continue;
3201 
3202         /*
3203          * If the symbol is greater than the specified address, or if it
3204          * is further away from addr than the current nearest symbol,
3205          * then reject it.
3206          */
3207         symbol_addr = obj->relocbase + def->st_value;
3208         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3209             continue;
3210 
3211         /* Update our idea of the nearest symbol. */
3212         info->dli_sname = obj->strtab + def->st_name;
3213         info->dli_saddr = symbol_addr;
3214 
3215         /* Exact match? */
3216         if (info->dli_saddr == addr)
3217             break;
3218     }
3219     lock_release(rtld_bind_lock, &lockstate);
3220     return 1;
3221 }
3222 
3223 int
3224 dlinfo(void *handle, int request, void *p)
3225 {
3226     const Obj_Entry *obj;
3227     RtldLockState lockstate;
3228     int error;
3229 
3230     rlock_acquire(rtld_bind_lock, &lockstate);
3231 
3232     if (handle == NULL || handle == RTLD_SELF) {
3233 	void *retaddr;
3234 
3235 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3236 	if ((obj = obj_from_addr(retaddr)) == NULL)
3237 	    _rtld_error("Cannot determine caller's shared object");
3238     } else
3239 	obj = dlcheck(handle);
3240 
3241     if (obj == NULL) {
3242 	lock_release(rtld_bind_lock, &lockstate);
3243 	return (-1);
3244     }
3245 
3246     error = 0;
3247     switch (request) {
3248     case RTLD_DI_LINKMAP:
3249 	*((struct link_map const **)p) = &obj->linkmap;
3250 	break;
3251     case RTLD_DI_ORIGIN:
3252 	error = rtld_dirname(obj->path, p);
3253 	break;
3254 
3255     case RTLD_DI_SERINFOSIZE:
3256     case RTLD_DI_SERINFO:
3257 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3258 	break;
3259 
3260     default:
3261 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3262 	error = -1;
3263     }
3264 
3265     lock_release(rtld_bind_lock, &lockstate);
3266 
3267     return (error);
3268 }
3269 
3270 static void
3271 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3272 {
3273 
3274 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3275 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3276 	    STAILQ_FIRST(&obj->names)->name : obj->path;
3277 	phdr_info->dlpi_phdr = obj->phdr;
3278 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3279 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3280 	phdr_info->dlpi_tls_data = obj->tlsinit;
3281 	phdr_info->dlpi_adds = obj_loads;
3282 	phdr_info->dlpi_subs = obj_loads - obj_count;
3283 }
3284 
3285 int
3286 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3287 {
3288     struct dl_phdr_info phdr_info;
3289     const Obj_Entry *obj;
3290     RtldLockState bind_lockstate, phdr_lockstate;
3291     int error;
3292 
3293     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3294     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3295 
3296     error = 0;
3297 
3298     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3299 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3300 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3301 		break;
3302 
3303     }
3304     lock_release(rtld_bind_lock, &bind_lockstate);
3305     lock_release(rtld_phdr_lock, &phdr_lockstate);
3306 
3307     return (error);
3308 }
3309 
3310 static void *
3311 fill_search_info(const char *dir, size_t dirlen, void *param)
3312 {
3313     struct fill_search_info_args *arg;
3314 
3315     arg = param;
3316 
3317     if (arg->request == RTLD_DI_SERINFOSIZE) {
3318 	arg->serinfo->dls_cnt ++;
3319 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3320     } else {
3321 	struct dl_serpath *s_entry;
3322 
3323 	s_entry = arg->serpath;
3324 	s_entry->dls_name  = arg->strspace;
3325 	s_entry->dls_flags = arg->flags;
3326 
3327 	strncpy(arg->strspace, dir, dirlen);
3328 	arg->strspace[dirlen] = '\0';
3329 
3330 	arg->strspace += dirlen + 1;
3331 	arg->serpath++;
3332     }
3333 
3334     return (NULL);
3335 }
3336 
3337 static int
3338 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3339 {
3340     struct dl_serinfo _info;
3341     struct fill_search_info_args args;
3342 
3343     args.request = RTLD_DI_SERINFOSIZE;
3344     args.serinfo = &_info;
3345 
3346     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3347     _info.dls_cnt  = 0;
3348 
3349     path_enumerate(obj->rpath, fill_search_info, &args);
3350     path_enumerate(ld_library_path, fill_search_info, &args);
3351     path_enumerate(obj->runpath, fill_search_info, &args);
3352     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3353     if (!obj->z_nodeflib)
3354       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3355 
3356 
3357     if (request == RTLD_DI_SERINFOSIZE) {
3358 	info->dls_size = _info.dls_size;
3359 	info->dls_cnt = _info.dls_cnt;
3360 	return (0);
3361     }
3362 
3363     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3364 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3365 	return (-1);
3366     }
3367 
3368     args.request  = RTLD_DI_SERINFO;
3369     args.serinfo  = info;
3370     args.serpath  = &info->dls_serpath[0];
3371     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3372 
3373     args.flags = LA_SER_RUNPATH;
3374     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3375 	return (-1);
3376 
3377     args.flags = LA_SER_LIBPATH;
3378     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3379 	return (-1);
3380 
3381     args.flags = LA_SER_RUNPATH;
3382     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3383 	return (-1);
3384 
3385     args.flags = LA_SER_CONFIG;
3386     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3387       != NULL)
3388 	return (-1);
3389 
3390     args.flags = LA_SER_DEFAULT;
3391     if (!obj->z_nodeflib &&
3392       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3393 	return (-1);
3394     return (0);
3395 }
3396 
3397 static int
3398 rtld_dirname(const char *path, char *bname)
3399 {
3400     const char *endp;
3401 
3402     /* Empty or NULL string gets treated as "." */
3403     if (path == NULL || *path == '\0') {
3404 	bname[0] = '.';
3405 	bname[1] = '\0';
3406 	return (0);
3407     }
3408 
3409     /* Strip trailing slashes */
3410     endp = path + strlen(path) - 1;
3411     while (endp > path && *endp == '/')
3412 	endp--;
3413 
3414     /* Find the start of the dir */
3415     while (endp > path && *endp != '/')
3416 	endp--;
3417 
3418     /* Either the dir is "/" or there are no slashes */
3419     if (endp == path) {
3420 	bname[0] = *endp == '/' ? '/' : '.';
3421 	bname[1] = '\0';
3422 	return (0);
3423     } else {
3424 	do {
3425 	    endp--;
3426 	} while (endp > path && *endp == '/');
3427     }
3428 
3429     if (endp - path + 2 > PATH_MAX)
3430     {
3431 	_rtld_error("Filename is too long: %s", path);
3432 	return(-1);
3433     }
3434 
3435     strncpy(bname, path, endp - path + 1);
3436     bname[endp - path + 1] = '\0';
3437     return (0);
3438 }
3439 
3440 static int
3441 rtld_dirname_abs(const char *path, char *base)
3442 {
3443 	char base_rel[PATH_MAX];
3444 
3445 	if (rtld_dirname(path, base) == -1)
3446 		return (-1);
3447 	if (base[0] == '/')
3448 		return (0);
3449 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3450 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3451 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3452 		return (-1);
3453 	strcpy(base, base_rel);
3454 	return (0);
3455 }
3456 
3457 static void
3458 linkmap_add(Obj_Entry *obj)
3459 {
3460     struct link_map *l = &obj->linkmap;
3461     struct link_map *prev;
3462 
3463     obj->linkmap.l_name = obj->path;
3464     obj->linkmap.l_addr = obj->mapbase;
3465     obj->linkmap.l_ld = obj->dynamic;
3466 #ifdef __mips__
3467     /* GDB needs load offset on MIPS to use the symbols */
3468     obj->linkmap.l_offs = obj->relocbase;
3469 #endif
3470 
3471     if (r_debug.r_map == NULL) {
3472 	r_debug.r_map = l;
3473 	return;
3474     }
3475 
3476     /*
3477      * Scan to the end of the list, but not past the entry for the
3478      * dynamic linker, which we want to keep at the very end.
3479      */
3480     for (prev = r_debug.r_map;
3481       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3482       prev = prev->l_next)
3483 	;
3484 
3485     /* Link in the new entry. */
3486     l->l_prev = prev;
3487     l->l_next = prev->l_next;
3488     if (l->l_next != NULL)
3489 	l->l_next->l_prev = l;
3490     prev->l_next = l;
3491 }
3492 
3493 static void
3494 linkmap_delete(Obj_Entry *obj)
3495 {
3496     struct link_map *l = &obj->linkmap;
3497 
3498     if (l->l_prev == NULL) {
3499 	if ((r_debug.r_map = l->l_next) != NULL)
3500 	    l->l_next->l_prev = NULL;
3501 	return;
3502     }
3503 
3504     if ((l->l_prev->l_next = l->l_next) != NULL)
3505 	l->l_next->l_prev = l->l_prev;
3506 }
3507 
3508 /*
3509  * Function for the debugger to set a breakpoint on to gain control.
3510  *
3511  * The two parameters allow the debugger to easily find and determine
3512  * what the runtime loader is doing and to whom it is doing it.
3513  *
3514  * When the loadhook trap is hit (r_debug_state, set at program
3515  * initialization), the arguments can be found on the stack:
3516  *
3517  *  +8   struct link_map *m
3518  *  +4   struct r_debug  *rd
3519  *  +0   RetAddr
3520  */
3521 void
3522 r_debug_state(struct r_debug* rd, struct link_map *m)
3523 {
3524     /*
3525      * The following is a hack to force the compiler to emit calls to
3526      * this function, even when optimizing.  If the function is empty,
3527      * the compiler is not obliged to emit any code for calls to it,
3528      * even when marked __noinline.  However, gdb depends on those
3529      * calls being made.
3530      */
3531     __asm __volatile("" : : : "memory");
3532 }
3533 
3534 /*
3535  * Get address of the pointer variable in the main program.
3536  * Prefer non-weak symbol over the weak one.
3537  */
3538 static const void **
3539 get_program_var_addr(const char *name, RtldLockState *lockstate)
3540 {
3541     SymLook req;
3542     DoneList donelist;
3543 
3544     symlook_init(&req, name);
3545     req.lockstate = lockstate;
3546     donelist_init(&donelist);
3547     if (symlook_global(&req, &donelist) != 0)
3548 	return (NULL);
3549     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3550 	return ((const void **)make_function_pointer(req.sym_out,
3551 	  req.defobj_out));
3552     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3553 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3554     else
3555 	return ((const void **)(req.defobj_out->relocbase + req.sym_out->st_value));
3556 }
3557 
3558 /*
3559  * Set a pointer variable in the main program to the given value.  This
3560  * is used to set key variables such as "environ" before any of the
3561  * init functions are called.
3562  */
3563 static void
3564 set_program_var(const char *name, const void *value)
3565 {
3566     const void **addr;
3567 
3568     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3569 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3570 	*addr = value;
3571     }
3572 }
3573 
3574 /*
3575  * Search the global objects, including dependencies and main object,
3576  * for the given symbol.
3577  */
3578 static int
3579 symlook_global(SymLook *req, DoneList *donelist)
3580 {
3581     SymLook req1;
3582     const Objlist_Entry *elm;
3583     int res;
3584 
3585     symlook_init_from_req(&req1, req);
3586 
3587     /* Search all objects loaded at program start up. */
3588     if (req->defobj_out == NULL ||
3589       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3590 	res = symlook_list(&req1, &list_main, donelist);
3591 	if (res == 0 && (req->defobj_out == NULL ||
3592 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3593 	    req->sym_out = req1.sym_out;
3594 	    req->defobj_out = req1.defobj_out;
3595 	    assert(req->defobj_out != NULL);
3596 	}
3597     }
3598 
3599     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3600     STAILQ_FOREACH(elm, &list_global, link) {
3601 	if (req->defobj_out != NULL &&
3602 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3603 	    break;
3604 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3605 	if (res == 0 && (req->defobj_out == NULL ||
3606 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3607 	    req->sym_out = req1.sym_out;
3608 	    req->defobj_out = req1.defobj_out;
3609 	    assert(req->defobj_out != NULL);
3610 	}
3611     }
3612 
3613     return (req->sym_out != NULL ? 0 : ESRCH);
3614 }
3615 
3616 /*
3617  * This is a special version of getenv which is far more efficient
3618  * at finding LD_ environment vars.
3619  */
3620 static
3621 const char *
3622 _getenv_ld(const char *id)
3623 {
3624     const char *envp;
3625     int i, j;
3626     int idlen = strlen(id);
3627 
3628     if (ld_index == LD_ARY_CACHE)
3629 	return(getenv(id));
3630     if (ld_index == 0) {
3631 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3632 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3633 		ld_ary[j++] = envp;
3634 	}
3635 	if (j == 0)
3636 		ld_ary[j++] = "";
3637 	ld_index = j;
3638     }
3639     for (i = ld_index - 1; i >= 0; --i) {
3640 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3641 	    return(ld_ary[i] + idlen + 1);
3642     }
3643     return(NULL);
3644 }
3645 
3646 /*
3647  * Given a symbol name in a referencing object, find the corresponding
3648  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3649  * no definition was found.  Returns a pointer to the Obj_Entry of the
3650  * defining object via the reference parameter DEFOBJ_OUT.
3651  */
3652 static int
3653 symlook_default(SymLook *req, const Obj_Entry *refobj)
3654 {
3655     DoneList donelist;
3656     const Objlist_Entry *elm;
3657     SymLook req1;
3658     int res;
3659 
3660     donelist_init(&donelist);
3661     symlook_init_from_req(&req1, req);
3662 
3663     /* Look first in the referencing object if linked symbolically. */
3664     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3665 	res = symlook_obj(&req1, refobj);
3666 	if (res == 0) {
3667 	    req->sym_out = req1.sym_out;
3668 	    req->defobj_out = req1.defobj_out;
3669 	    assert(req->defobj_out != NULL);
3670 	}
3671     }
3672 
3673     symlook_global(req, &donelist);
3674 
3675     /* Search all dlopened DAGs containing the referencing object. */
3676     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3677 	if (req->sym_out != NULL &&
3678 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3679 	    break;
3680 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3681 	if (res == 0 && (req->sym_out == NULL ||
3682 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3683 	    req->sym_out = req1.sym_out;
3684 	    req->defobj_out = req1.defobj_out;
3685 	    assert(req->defobj_out != NULL);
3686 	}
3687     }
3688 
3689     /*
3690      * Search the dynamic linker itself, and possibly resolve the
3691      * symbol from there.  This is how the application links to
3692      * dynamic linker services such as dlopen.  Only the values listed
3693      * in the "exports" array can be resolved from the dynamic linker.
3694      */
3695     if (req->sym_out == NULL ||
3696       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3697 	res = symlook_obj(&req1, &obj_rtld);
3698 	if (res == 0 && is_exported(req1.sym_out)) {
3699 	    req->sym_out = req1.sym_out;
3700 	    req->defobj_out = req1.defobj_out;
3701 	    assert(req->defobj_out != NULL);
3702 	}
3703     }
3704 
3705     return (req->sym_out != NULL ? 0 : ESRCH);
3706 }
3707 
3708 static int
3709 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3710 {
3711     const Elf_Sym *def;
3712     const Obj_Entry *defobj;
3713     const Objlist_Entry *elm;
3714     SymLook req1;
3715     int res;
3716 
3717     def = NULL;
3718     defobj = NULL;
3719     STAILQ_FOREACH(elm, objlist, link) {
3720 	if (donelist_check(dlp, elm->obj))
3721 	    continue;
3722 	symlook_init_from_req(&req1, req);
3723 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3724 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3725 		def = req1.sym_out;
3726 		defobj = req1.defobj_out;
3727 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3728 		    break;
3729 	    }
3730 	}
3731     }
3732     if (def != NULL) {
3733 	req->sym_out = def;
3734 	req->defobj_out = defobj;
3735 	return (0);
3736     }
3737     return (ESRCH);
3738 }
3739 
3740 /*
3741  * Search the chain of DAGS cointed to by the given Needed_Entry
3742  * for a symbol of the given name.  Each DAG is scanned completely
3743  * before advancing to the next one.  Returns a pointer to the symbol,
3744  * or NULL if no definition was found.
3745  */
3746 static int
3747 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3748 {
3749     const Elf_Sym *def;
3750     const Needed_Entry *n;
3751     const Obj_Entry *defobj;
3752     SymLook req1;
3753     int res;
3754 
3755     def = NULL;
3756     defobj = NULL;
3757     symlook_init_from_req(&req1, req);
3758     for (n = needed; n != NULL; n = n->next) {
3759 	if (n->obj == NULL ||
3760 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3761 	    continue;
3762 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3763 	def = req1.sym_out;
3764 	defobj = req1.defobj_out;
3765 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3766 		break;
3767 	}
3768     }
3769     if (def != NULL) {
3770 	req->sym_out = def;
3771 	req->defobj_out = defobj;
3772 	return (0);
3773     }
3774     return (ESRCH);
3775 }
3776 
3777 /*
3778  * Search the symbol table of a single shared object for a symbol of
3779  * the given name and version, if requested.  Returns a pointer to the
3780  * symbol, or NULL if no definition was found.  If the object is
3781  * filter, return filtered symbol from filtee.
3782  *
3783  * The symbol's hash value is passed in for efficiency reasons; that
3784  * eliminates many recomputations of the hash value.
3785  */
3786 int
3787 symlook_obj(SymLook *req, const Obj_Entry *obj)
3788 {
3789     DoneList donelist;
3790     SymLook req1;
3791     int flags, res, mres;
3792 
3793     /*
3794      * There is at least one valid hash at this point, and we prefer to use
3795      * the faster GNU version if available.
3796      */
3797     if (obj->valid_hash_gnu)
3798 	mres = symlook_obj1_gnu(req, obj);
3799     else
3800 	mres = symlook_obj1_sysv(req, obj);
3801 
3802     if (mres == 0) {
3803 	if (obj->needed_filtees != NULL) {
3804 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3805 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3806 	    donelist_init(&donelist);
3807 	    symlook_init_from_req(&req1, req);
3808 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3809 	    if (res == 0) {
3810 		req->sym_out = req1.sym_out;
3811 		req->defobj_out = req1.defobj_out;
3812 	    }
3813 	    return (res);
3814 	}
3815 	if (obj->needed_aux_filtees != NULL) {
3816 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3817 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3818 	    donelist_init(&donelist);
3819 	    symlook_init_from_req(&req1, req);
3820 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3821 	    if (res == 0) {
3822 		req->sym_out = req1.sym_out;
3823 		req->defobj_out = req1.defobj_out;
3824 		return (res);
3825 	    }
3826 	}
3827     }
3828     return (mres);
3829 }
3830 
3831 /* Symbol match routine common to both hash functions */
3832 static bool
3833 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3834 	const unsigned long symnum)
3835 {
3836 	Elf_Versym verndx;
3837 	const Elf_Sym *symp;
3838 	const char *strp;
3839 
3840 	symp = obj->symtab + symnum;
3841 	strp = obj->strtab + symp->st_name;
3842 
3843 	switch (ELF_ST_TYPE(symp->st_info)) {
3844 	case STT_FUNC:
3845 	case STT_NOTYPE:
3846 	case STT_OBJECT:
3847 	case STT_COMMON:
3848 	case STT_GNU_IFUNC:
3849 		if (symp->st_value == 0)
3850 			return (false);
3851 		/* fallthrough */
3852 	case STT_TLS:
3853 		if (symp->st_shndx != SHN_UNDEF)
3854 			break;
3855 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3856 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3857 			break;
3858 		/* fallthrough */
3859 	default:
3860 		return (false);
3861 	}
3862     if (strcmp(req->name, strp) != 0)
3863 	return (false);
3864 
3865 	if (req->ventry == NULL) {
3866 		if (obj->versyms != NULL) {
3867 			verndx = VER_NDX(obj->versyms[symnum]);
3868 			if (verndx > obj->vernum) {
3869 				_rtld_error(
3870 				    "%s: symbol %s references wrong version %d",
3871 				    obj->path, obj->strtab + symnum, verndx);
3872 				return (false);
3873 			}
3874 			/*
3875 			 * If we are not called from dlsym (i.e. this
3876 			 * is a normal relocation from unversioned
3877 			 * binary), accept the symbol immediately if
3878 			 * it happens to have first version after this
3879 			 * shared object became versioned.  Otherwise,
3880 			 * if symbol is versioned and not hidden,
3881 			 * remember it. If it is the only symbol with
3882 			 * this name exported by the shared object, it
3883 			 * will be returned as a match by the calling
3884 			 * function. If symbol is global (verndx < 2)
3885 			 * accept it unconditionally.
3886 			 */
3887 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3888 			    verndx == VER_NDX_GIVEN) {
3889 				result->sym_out = symp;
3890 				return (true);
3891 			}
3892 			else if (verndx >= VER_NDX_GIVEN) {
3893 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3894 				  == 0) {
3895 					if (result->vsymp == NULL)
3896 						result->vsymp = symp;
3897 					result->vcount++;
3898 				}
3899 				return (false);
3900 			}
3901 		}
3902 		result->sym_out = symp;
3903 		return (true);
3904 	}
3905 	if (obj->versyms == NULL) {
3906 		if (object_match_name(obj, req->ventry->name)) {
3907 			_rtld_error("%s: object %s should provide version %s "
3908 			    "for symbol %s", obj_rtld.path, obj->path,
3909 			    req->ventry->name, obj->strtab + symnum);
3910 			return (false);
3911 		}
3912 	} else {
3913 		verndx = VER_NDX(obj->versyms[symnum]);
3914 		if (verndx > obj->vernum) {
3915 			_rtld_error("%s: symbol %s references wrong version %d",
3916 			    obj->path, obj->strtab + symnum, verndx);
3917 			return (false);
3918 		}
3919 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3920 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3921 			/*
3922 			 * Version does not match. Look if this is a
3923 			 * global symbol and if it is not hidden. If
3924 			 * global symbol (verndx < 2) is available,
3925 			 * use it. Do not return symbol if we are
3926 			 * called by dlvsym, because dlvsym looks for
3927 			 * a specific version and default one is not
3928 			 * what dlvsym wants.
3929 			 */
3930 			if ((req->flags & SYMLOOK_DLSYM) ||
3931 			    (verndx >= VER_NDX_GIVEN) ||
3932 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3933 				return (false);
3934 		}
3935 	}
3936 	result->sym_out = symp;
3937 	return (true);
3938 }
3939 
3940 /*
3941  * Search for symbol using SysV hash function.
3942  * obj->buckets is known not to be NULL at this point; the test for this was
3943  * performed with the obj->valid_hash_sysv assignment.
3944  */
3945 static int
3946 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
3947 {
3948 	unsigned long symnum;
3949 	Sym_Match_Result matchres;
3950 
3951 	matchres.sym_out = NULL;
3952 	matchres.vsymp = NULL;
3953 	matchres.vcount = 0;
3954 
3955 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
3956 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
3957 		if (symnum >= obj->nchains)
3958 			return (ESRCH);	/* Bad object */
3959 
3960 		if (matched_symbol(req, obj, &matchres, symnum)) {
3961 			req->sym_out = matchres.sym_out;
3962 			req->defobj_out = obj;
3963 			return (0);
3964 		}
3965 	}
3966 	if (matchres.vcount == 1) {
3967 		req->sym_out = matchres.vsymp;
3968 		req->defobj_out = obj;
3969 		return (0);
3970 	}
3971 	return (ESRCH);
3972 }
3973 
3974 /* Search for symbol using GNU hash function */
3975 static int
3976 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
3977 {
3978 	Elf_Addr bloom_word;
3979 	const Elf32_Word *hashval;
3980 	Elf32_Word bucket;
3981 	Sym_Match_Result matchres;
3982 	unsigned int h1, h2;
3983 	unsigned long symnum;
3984 
3985 	matchres.sym_out = NULL;
3986 	matchres.vsymp = NULL;
3987 	matchres.vcount = 0;
3988 
3989 	/* Pick right bitmask word from Bloom filter array */
3990 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
3991 	    obj->maskwords_bm_gnu];
3992 
3993 	/* Calculate modulus word size of gnu hash and its derivative */
3994 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
3995 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
3996 
3997 	/* Filter out the "definitely not in set" queries */
3998 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
3999 		return (ESRCH);
4000 
4001 	/* Locate hash chain and corresponding value element*/
4002 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4003 	if (bucket == 0)
4004 		return (ESRCH);
4005 	hashval = &obj->chain_zero_gnu[bucket];
4006 	do {
4007 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4008 			symnum = hashval - obj->chain_zero_gnu;
4009 			if (matched_symbol(req, obj, &matchres, symnum)) {
4010 				req->sym_out = matchres.sym_out;
4011 				req->defobj_out = obj;
4012 				return (0);
4013 			}
4014 		}
4015 	} while ((*hashval++ & 1) == 0);
4016 	if (matchres.vcount == 1) {
4017 		req->sym_out = matchres.vsymp;
4018 		req->defobj_out = obj;
4019 		return (0);
4020 	}
4021 	return (ESRCH);
4022 }
4023 
4024 static void
4025 trace_loaded_objects(Obj_Entry *obj)
4026 {
4027     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4028     int		c;
4029 
4030     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4031 	main_local = "";
4032 
4033     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4034 	fmt1 = "\t%o => %p (%x)\n";
4035 
4036     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4037 	fmt2 = "\t%o (%x)\n";
4038 
4039     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
4040 
4041     for (; obj; obj = obj->next) {
4042 	Needed_Entry		*needed;
4043 	char			*name, *path;
4044 	bool			is_lib;
4045 
4046 	if (list_containers && obj->needed != NULL)
4047 	    rtld_printf("%s:\n", obj->path);
4048 	for (needed = obj->needed; needed; needed = needed->next) {
4049 	    if (needed->obj != NULL) {
4050 		if (needed->obj->traced && !list_containers)
4051 		    continue;
4052 		needed->obj->traced = true;
4053 		path = needed->obj->path;
4054 	    } else
4055 		path = "not found";
4056 
4057 	    name = (char *)obj->strtab + needed->name;
4058 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4059 
4060 	    fmt = is_lib ? fmt1 : fmt2;
4061 	    while ((c = *fmt++) != '\0') {
4062 		switch (c) {
4063 		default:
4064 		    rtld_putchar(c);
4065 		    continue;
4066 		case '\\':
4067 		    switch (c = *fmt) {
4068 		    case '\0':
4069 			continue;
4070 		    case 'n':
4071 			rtld_putchar('\n');
4072 			break;
4073 		    case 't':
4074 			rtld_putchar('\t');
4075 			break;
4076 		    }
4077 		    break;
4078 		case '%':
4079 		    switch (c = *fmt) {
4080 		    case '\0':
4081 			continue;
4082 		    case '%':
4083 		    default:
4084 			rtld_putchar(c);
4085 			break;
4086 		    case 'A':
4087 			rtld_putstr(main_local);
4088 			break;
4089 		    case 'a':
4090 			rtld_putstr(obj_main->path);
4091 			break;
4092 		    case 'o':
4093 			rtld_putstr(name);
4094 			break;
4095 		    case 'p':
4096 			rtld_putstr(path);
4097 			break;
4098 		    case 'x':
4099 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4100 			  0);
4101 			break;
4102 		    }
4103 		    break;
4104 		}
4105 		++fmt;
4106 	    }
4107 	}
4108     }
4109 }
4110 
4111 /*
4112  * Unload a dlopened object and its dependencies from memory and from
4113  * our data structures.  It is assumed that the DAG rooted in the
4114  * object has already been unreferenced, and that the object has a
4115  * reference count of 0.
4116  */
4117 static void
4118 unload_object(Obj_Entry *root)
4119 {
4120     Obj_Entry *obj;
4121     Obj_Entry **linkp;
4122 
4123     assert(root->refcount == 0);
4124 
4125     /*
4126      * Pass over the DAG removing unreferenced objects from
4127      * appropriate lists.
4128      */
4129     unlink_object(root);
4130 
4131     /* Unmap all objects that are no longer referenced. */
4132     linkp = &obj_list->next;
4133     while ((obj = *linkp) != NULL) {
4134 	if (obj->refcount == 0) {
4135 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4136 		obj->path);
4137 	    dbg("unloading \"%s\"", obj->path);
4138 	    unload_filtees(root);
4139 	    munmap(obj->mapbase, obj->mapsize);
4140 	    linkmap_delete(obj);
4141 	    *linkp = obj->next;
4142 	    obj_count--;
4143 	    obj_free(obj);
4144 	} else
4145 	    linkp = &obj->next;
4146     }
4147     obj_tail = linkp;
4148 }
4149 
4150 static void
4151 unlink_object(Obj_Entry *root)
4152 {
4153     Objlist_Entry *elm;
4154 
4155     if (root->refcount == 0) {
4156 	/* Remove the object from the RTLD_GLOBAL list. */
4157 	objlist_remove(&list_global, root);
4158 
4159     	/* Remove the object from all objects' DAG lists. */
4160 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4161 	    objlist_remove(&elm->obj->dldags, root);
4162 	    if (elm->obj != root)
4163 		unlink_object(elm->obj);
4164 	}
4165     }
4166 }
4167 
4168 static void
4169 ref_dag(Obj_Entry *root)
4170 {
4171     Objlist_Entry *elm;
4172 
4173     assert(root->dag_inited);
4174     STAILQ_FOREACH(elm, &root->dagmembers, link)
4175 	elm->obj->refcount++;
4176 }
4177 
4178 static void
4179 unref_dag(Obj_Entry *root)
4180 {
4181     Objlist_Entry *elm;
4182 
4183     assert(root->dag_inited);
4184     STAILQ_FOREACH(elm, &root->dagmembers, link)
4185 	elm->obj->refcount--;
4186 }
4187 
4188 /*
4189  * Common code for MD __tls_get_addr().
4190  */
4191 void *
4192 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
4193 {
4194     Elf_Addr* dtv = *dtvp;
4195     RtldLockState lockstate;
4196 
4197     /* Check dtv generation in case new modules have arrived */
4198     if (dtv[0] != tls_dtv_generation) {
4199 	Elf_Addr* newdtv;
4200 	int to_copy;
4201 
4202 	wlock_acquire(rtld_bind_lock, &lockstate);
4203 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4204 	to_copy = dtv[1];
4205 	if (to_copy > tls_max_index)
4206 	    to_copy = tls_max_index;
4207 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4208 	newdtv[0] = tls_dtv_generation;
4209 	newdtv[1] = tls_max_index;
4210 	free(dtv);
4211 	lock_release(rtld_bind_lock, &lockstate);
4212 	dtv = *dtvp = newdtv;
4213     }
4214 
4215     /* Dynamically allocate module TLS if necessary */
4216     if (!dtv[index + 1]) {
4217 	/* Signal safe, wlock will block out signals. */
4218 	wlock_acquire(rtld_bind_lock, &lockstate);
4219 	if (!dtv[index + 1])
4220 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4221 	lock_release(rtld_bind_lock, &lockstate);
4222     }
4223     return (void*) (dtv[index + 1] + offset);
4224 }
4225 
4226 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4227 
4228 /*
4229  * Allocate the static TLS area.  Return a pointer to the TCB.  The
4230  * static area is based on negative offsets relative to the tcb.
4231  *
4232  * The TCB contains an errno pointer for the system call layer, but because
4233  * we are the RTLD we really have no idea how the caller was compiled so
4234  * the information has to be passed in.  errno can either be:
4235  *
4236  *	type 0	errno is a simple non-TLS global pointer.
4237  *		(special case for e.g. libc_rtld)
4238  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
4239  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
4240  */
4241 struct tls_tcb *
4242 allocate_tls(Obj_Entry *objs)
4243 {
4244     Obj_Entry *obj;
4245     size_t data_size;
4246     size_t dtv_size;
4247     struct tls_tcb *tcb;
4248     Elf_Addr *dtv;
4249     Elf_Addr addr;
4250 
4251     /*
4252      * Allocate the new TCB.  static TLS storage is placed just before the
4253      * TCB to support the %gs:OFFSET (negative offset) model.
4254      */
4255     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4256 		~RTLD_STATIC_TLS_ALIGN_MASK;
4257     tcb = malloc(data_size + sizeof(*tcb));
4258     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
4259 
4260     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
4261     dtv = malloc(dtv_size);
4262     bzero(dtv, dtv_size);
4263 
4264 #ifdef RTLD_TCB_HAS_SELF_POINTER
4265     tcb->tcb_self = tcb;
4266 #endif
4267     tcb->tcb_dtv = dtv;
4268     tcb->tcb_pthread = NULL;
4269 
4270     dtv[0] = tls_dtv_generation;
4271     dtv[1] = tls_max_index;
4272 
4273     for (obj = objs; obj; obj = obj->next) {
4274 	if (obj->tlsoffset) {
4275 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
4276 	    memset((void *)(addr + obj->tlsinitsize),
4277 		   0, obj->tlssize - obj->tlsinitsize);
4278 	    if (obj->tlsinit)
4279 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4280 	    dtv[obj->tlsindex + 1] = addr;
4281 	}
4282     }
4283     return(tcb);
4284 }
4285 
4286 void
4287 free_tls(struct tls_tcb *tcb)
4288 {
4289     Elf_Addr *dtv;
4290     int dtv_size, i;
4291     Elf_Addr tls_start, tls_end;
4292     size_t data_size;
4293 
4294     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4295 		~RTLD_STATIC_TLS_ALIGN_MASK;
4296 
4297     dtv = tcb->tcb_dtv;
4298     dtv_size = dtv[1];
4299     tls_end = (Elf_Addr)tcb;
4300     tls_start = (Elf_Addr)tcb - data_size;
4301     for (i = 0; i < dtv_size; i++) {
4302 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
4303 	    free((void *)dtv[i+2]);
4304 	}
4305     }
4306 
4307     free((void*) tls_start);
4308 }
4309 
4310 #else
4311 #error "Unsupported TLS layout"
4312 #endif
4313 
4314 /*
4315  * Allocate TLS block for module with given index.
4316  */
4317 void *
4318 allocate_module_tls(int index)
4319 {
4320     Obj_Entry* obj;
4321     char* p;
4322 
4323     for (obj = obj_list; obj; obj = obj->next) {
4324 	if (obj->tlsindex == index)
4325 	    break;
4326     }
4327     if (!obj) {
4328 	_rtld_error("Can't find module with TLS index %d", index);
4329 	die();
4330     }
4331 
4332     p = malloc(obj->tlssize);
4333     if (p == NULL) {
4334 	_rtld_error("Cannot allocate TLS block for index %d", index);
4335 	die();
4336     }
4337     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4338     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4339 
4340     return p;
4341 }
4342 
4343 bool
4344 allocate_tls_offset(Obj_Entry *obj)
4345 {
4346     size_t off;
4347 
4348     if (obj->tls_done)
4349 	return true;
4350 
4351     if (obj->tlssize == 0) {
4352 	obj->tls_done = true;
4353 	return true;
4354     }
4355 
4356     if (obj->tlsindex == 1)
4357 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4358     else
4359 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4360 				   obj->tlssize, obj->tlsalign);
4361 
4362     /*
4363      * If we have already fixed the size of the static TLS block, we
4364      * must stay within that size. When allocating the static TLS, we
4365      * leave a small amount of space spare to be used for dynamically
4366      * loading modules which use static TLS.
4367      */
4368     if (tls_static_space) {
4369 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4370 	    return false;
4371     }
4372 
4373     tls_last_offset = obj->tlsoffset = off;
4374     tls_last_size = obj->tlssize;
4375     obj->tls_done = true;
4376 
4377     return true;
4378 }
4379 
4380 void
4381 free_tls_offset(Obj_Entry *obj)
4382 {
4383 #ifdef RTLD_STATIC_TLS_VARIANT_II
4384     /*
4385      * If we were the last thing to allocate out of the static TLS
4386      * block, we give our space back to the 'allocator'. This is a
4387      * simplistic workaround to allow libGL.so.1 to be loaded and
4388      * unloaded multiple times. We only handle the Variant II
4389      * mechanism for now - this really needs a proper allocator.
4390      */
4391     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4392 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4393 	tls_last_offset -= obj->tlssize;
4394 	tls_last_size = 0;
4395     }
4396 #endif
4397 }
4398 
4399 struct tls_tcb *
4400 _rtld_allocate_tls(void)
4401 {
4402     struct tls_tcb *new_tcb;
4403     RtldLockState lockstate;
4404 
4405     wlock_acquire(rtld_bind_lock, &lockstate);
4406     new_tcb = allocate_tls(obj_list);
4407     lock_release(rtld_bind_lock, &lockstate);
4408     return (new_tcb);
4409 }
4410 
4411 void
4412 _rtld_free_tls(struct tls_tcb *tcb)
4413 {
4414     RtldLockState lockstate;
4415 
4416     wlock_acquire(rtld_bind_lock, &lockstate);
4417     free_tls(tcb);
4418     lock_release(rtld_bind_lock, &lockstate);
4419 }
4420 
4421 static void
4422 object_add_name(Obj_Entry *obj, const char *name)
4423 {
4424     Name_Entry *entry;
4425     size_t len;
4426 
4427     len = strlen(name);
4428     entry = malloc(sizeof(Name_Entry) + len);
4429 
4430     if (entry != NULL) {
4431 	strcpy(entry->name, name);
4432 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4433     }
4434 }
4435 
4436 static int
4437 object_match_name(const Obj_Entry *obj, const char *name)
4438 {
4439     Name_Entry *entry;
4440 
4441     STAILQ_FOREACH(entry, &obj->names, link) {
4442 	if (strcmp(name, entry->name) == 0)
4443 	    return (1);
4444     }
4445     return (0);
4446 }
4447 
4448 static Obj_Entry *
4449 locate_dependency(const Obj_Entry *obj, const char *name)
4450 {
4451     const Objlist_Entry *entry;
4452     const Needed_Entry *needed;
4453 
4454     STAILQ_FOREACH(entry, &list_main, link) {
4455 	if (object_match_name(entry->obj, name))
4456 	    return entry->obj;
4457     }
4458 
4459     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4460 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4461 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4462 	    /*
4463 	     * If there is DT_NEEDED for the name we are looking for,
4464 	     * we are all set.  Note that object might not be found if
4465 	     * dependency was not loaded yet, so the function can
4466 	     * return NULL here.  This is expected and handled
4467 	     * properly by the caller.
4468 	     */
4469 	    return (needed->obj);
4470 	}
4471     }
4472     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4473 	obj->path, name);
4474     die();
4475 }
4476 
4477 static int
4478 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4479     const Elf_Vernaux *vna)
4480 {
4481     const Elf_Verdef *vd;
4482     const char *vername;
4483 
4484     vername = refobj->strtab + vna->vna_name;
4485     vd = depobj->verdef;
4486     if (vd == NULL) {
4487 	_rtld_error("%s: version %s required by %s not defined",
4488 	    depobj->path, vername, refobj->path);
4489 	return (-1);
4490     }
4491     for (;;) {
4492 	if (vd->vd_version != VER_DEF_CURRENT) {
4493 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4494 		depobj->path, vd->vd_version);
4495 	    return (-1);
4496 	}
4497 	if (vna->vna_hash == vd->vd_hash) {
4498 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4499 		((char *)vd + vd->vd_aux);
4500 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4501 		return (0);
4502 	}
4503 	if (vd->vd_next == 0)
4504 	    break;
4505 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4506     }
4507     if (vna->vna_flags & VER_FLG_WEAK)
4508 	return (0);
4509     _rtld_error("%s: version %s required by %s not found",
4510 	depobj->path, vername, refobj->path);
4511     return (-1);
4512 }
4513 
4514 static int
4515 rtld_verify_object_versions(Obj_Entry *obj)
4516 {
4517     const Elf_Verneed *vn;
4518     const Elf_Verdef  *vd;
4519     const Elf_Verdaux *vda;
4520     const Elf_Vernaux *vna;
4521     const Obj_Entry *depobj;
4522     int maxvernum, vernum;
4523 
4524     if (obj->ver_checked)
4525 	return (0);
4526     obj->ver_checked = true;
4527 
4528     maxvernum = 0;
4529     /*
4530      * Walk over defined and required version records and figure out
4531      * max index used by any of them. Do very basic sanity checking
4532      * while there.
4533      */
4534     vn = obj->verneed;
4535     while (vn != NULL) {
4536 	if (vn->vn_version != VER_NEED_CURRENT) {
4537 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4538 		obj->path, vn->vn_version);
4539 	    return (-1);
4540 	}
4541 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4542 	for (;;) {
4543 	    vernum = VER_NEED_IDX(vna->vna_other);
4544 	    if (vernum > maxvernum)
4545 		maxvernum = vernum;
4546 	    if (vna->vna_next == 0)
4547 		 break;
4548 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4549 	}
4550 	if (vn->vn_next == 0)
4551 	    break;
4552 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4553     }
4554 
4555     vd = obj->verdef;
4556     while (vd != NULL) {
4557 	if (vd->vd_version != VER_DEF_CURRENT) {
4558 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4559 		obj->path, vd->vd_version);
4560 	    return (-1);
4561 	}
4562 	vernum = VER_DEF_IDX(vd->vd_ndx);
4563 	if (vernum > maxvernum)
4564 		maxvernum = vernum;
4565 	if (vd->vd_next == 0)
4566 	    break;
4567 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4568     }
4569 
4570     if (maxvernum == 0)
4571 	return (0);
4572 
4573     /*
4574      * Store version information in array indexable by version index.
4575      * Verify that object version requirements are satisfied along the
4576      * way.
4577      */
4578     obj->vernum = maxvernum + 1;
4579     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4580 
4581     vd = obj->verdef;
4582     while (vd != NULL) {
4583 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4584 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4585 	    assert(vernum <= maxvernum);
4586 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4587 	    obj->vertab[vernum].hash = vd->vd_hash;
4588 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4589 	    obj->vertab[vernum].file = NULL;
4590 	    obj->vertab[vernum].flags = 0;
4591 	}
4592 	if (vd->vd_next == 0)
4593 	    break;
4594 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4595     }
4596 
4597     vn = obj->verneed;
4598     while (vn != NULL) {
4599 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4600 	if (depobj == NULL)
4601 	    return (-1);
4602 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4603 	for (;;) {
4604 	    if (check_object_provided_version(obj, depobj, vna))
4605 		return (-1);
4606 	    vernum = VER_NEED_IDX(vna->vna_other);
4607 	    assert(vernum <= maxvernum);
4608 	    obj->vertab[vernum].hash = vna->vna_hash;
4609 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4610 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4611 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4612 		VER_INFO_HIDDEN : 0;
4613 	    if (vna->vna_next == 0)
4614 		 break;
4615 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4616 	}
4617 	if (vn->vn_next == 0)
4618 	    break;
4619 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4620     }
4621     return 0;
4622 }
4623 
4624 static int
4625 rtld_verify_versions(const Objlist *objlist)
4626 {
4627     Objlist_Entry *entry;
4628     int rc;
4629 
4630     rc = 0;
4631     STAILQ_FOREACH(entry, objlist, link) {
4632 	/*
4633 	 * Skip dummy objects or objects that have their version requirements
4634 	 * already checked.
4635 	 */
4636 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4637 	    continue;
4638 	if (rtld_verify_object_versions(entry->obj) == -1) {
4639 	    rc = -1;
4640 	    if (ld_tracing == NULL)
4641 		break;
4642 	}
4643     }
4644     if (rc == 0 || ld_tracing != NULL)
4645 	rc = rtld_verify_object_versions(&obj_rtld);
4646     return rc;
4647 }
4648 
4649 const Ver_Entry *
4650 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4651 {
4652     Elf_Versym vernum;
4653 
4654     if (obj->vertab) {
4655 	vernum = VER_NDX(obj->versyms[symnum]);
4656 	if (vernum >= obj->vernum) {
4657 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4658 		obj->path, obj->strtab + symnum, vernum);
4659 	} else if (obj->vertab[vernum].hash != 0) {
4660 	    return &obj->vertab[vernum];
4661 	}
4662     }
4663     return NULL;
4664 }
4665 
4666 int
4667 _rtld_get_stack_prot(void)
4668 {
4669 
4670 	return (stack_prot);
4671 }
4672 
4673 static void
4674 map_stacks_exec(RtldLockState *lockstate)
4675 {
4676 	return;
4677 	/*
4678 	 * Stack protection must be implemented in the kernel before the dynamic
4679 	 * linker can handle PT_GNU_STACK sections.
4680 	 * The following is the FreeBSD implementation of map_stacks_exec()
4681 	 * void (*thr_map_stacks_exec)(void);
4682 	 *
4683 	 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4684 	 *     return;
4685 	 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4686 	 *     get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4687 	 * if (thr_map_stacks_exec != NULL) {
4688 	 *     stack_prot |= PROT_EXEC;
4689 	 *     thr_map_stacks_exec();
4690 	 * }
4691 	 */
4692 }
4693 
4694 void
4695 symlook_init(SymLook *dst, const char *name)
4696 {
4697 
4698 	bzero(dst, sizeof(*dst));
4699 	dst->name = name;
4700 	dst->hash = elf_hash(name);
4701 	dst->hash_gnu = gnu_hash(name);
4702 }
4703 
4704 static void
4705 symlook_init_from_req(SymLook *dst, const SymLook *src)
4706 {
4707 
4708 	dst->name = src->name;
4709 	dst->hash = src->hash;
4710 	dst->hash_gnu = src->hash_gnu;
4711 	dst->ventry = src->ventry;
4712 	dst->flags = src->flags;
4713 	dst->defobj_out = NULL;
4714 	dst->sym_out = NULL;
4715 	dst->lockstate = src->lockstate;
4716 }
4717 
4718 #ifdef ENABLE_OSRELDATE
4719 /*
4720  * Overrides for libc_pic-provided functions.
4721  */
4722 
4723 int
4724 __getosreldate(void)
4725 {
4726 	size_t len;
4727 	int oid[2];
4728 	int error, osrel;
4729 
4730 	if (osreldate != 0)
4731 		return (osreldate);
4732 
4733 	oid[0] = CTL_KERN;
4734 	oid[1] = KERN_OSRELDATE;
4735 	osrel = 0;
4736 	len = sizeof(osrel);
4737 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4738 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4739 		osreldate = osrel;
4740 	return (osreldate);
4741 }
4742 #endif
4743 
4744 /*
4745  * No unresolved symbols for rtld.
4746  */
4747 void
4748 __pthread_cxa_finalize(struct dl_phdr_info *a)
4749 {
4750 }
4751 
4752 const char *
4753 rtld_strerror(int errnum)
4754 {
4755 
4756 	if (errnum < 0 || errnum >= sys_nerr)
4757 		return ("Unknown error");
4758 	return (sys_errlist[errnum]);
4759 }
4760