xref: /dragonfly/libexec/rtld-elf/rtld.c (revision d0d42ea0)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009, 2010, 2011 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * $FreeBSD: src/libexec/rtld-elf/rtld.c,v 1.173 2011/02/09 09:20:27 kib Exp $
28  */
29 
30 /*
31  * Dynamic linker for ELF.
32  *
33  * John Polstra <jdp@polstra.com>.
34  */
35 
36 #ifndef __GNUC__
37 #error "GCC is needed to compile this file"
38 #endif
39 
40 #include <sys/param.h>
41 #include <sys/mount.h>
42 #include <sys/mman.h>
43 #include <sys/stat.h>
44 #include <sys/uio.h>
45 #include <sys/utsname.h>
46 #include <sys/ktrace.h>
47 #include <sys/resident.h>
48 #include <sys/tls.h>
49 
50 #include <machine/tls.h>
51 
52 #include <dlfcn.h>
53 #include <err.h>
54 #include <errno.h>
55 #include <fcntl.h>
56 #include <stdarg.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <string.h>
60 #include <unistd.h>
61 
62 #include "debug.h"
63 #include "rtld.h"
64 #include "libmap.h"
65 
66 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
67 #define LD_ARY_CACHE	16
68 
69 /* Types. */
70 typedef void (*func_ptr_type)();
71 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
72 
73 /*
74  * This structure provides a reentrant way to keep a list of objects and
75  * check which ones have already been processed in some way.
76  */
77 typedef struct Struct_DoneList {
78     const Obj_Entry **objs;		/* Array of object pointers */
79     unsigned int num_alloc;		/* Allocated size of the array */
80     unsigned int num_used;		/* Number of array slots used */
81 } DoneList;
82 
83 /*
84  * Function declarations.
85  */
86 static const char *_getenv_ld(const char *id);
87 static void die(void) __dead2;
88 static void digest_dynamic(Obj_Entry *, int);
89 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
90 static Obj_Entry *dlcheck(void *);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(void);
99 static void init_dag(Obj_Entry *);
100 static void init_dag1(Obj_Entry *, Obj_Entry *, DoneList *);
101 static void init_rtld(caddr_t);
102 static void initlist_add_neededs(Needed_Entry *, Objlist *);
103 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
104 static bool is_exported(const Elf_Sym *);
105 static void linkmap_add(Obj_Entry *);
106 static void linkmap_delete(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, const Obj_Entry *, int);
110 static Obj_Entry *obj_from_addr(const void *);
111 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
112 static void objlist_call_init(Objlist *, RtldLockState *);
113 static void objlist_clear(Objlist *);
114 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
115 static void objlist_init(Objlist *);
116 static void objlist_push_head(Objlist *, Obj_Entry *);
117 static void objlist_push_tail(Objlist *, Obj_Entry *);
118 static void objlist_remove(Objlist *, Obj_Entry *);
119 static void *path_enumerate(const char *, path_enum_proc, void *);
120 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *);
121 static int rtld_dirname(const char *, char *);
122 static int rtld_dirname_abs(const char *, char *);
123 static void rtld_exit(void);
124 static char *search_library_path(const char *, const char *);
125 static const void **get_program_var_addr(const char *);
126 static void set_program_var(const char *, const void *);
127 static const Elf_Sym *symlook_default(const char *, unsigned long,
128   const Obj_Entry *, const Obj_Entry **, const Ver_Entry *, int);
129 static const Elf_Sym *symlook_list(const char *, unsigned long, const Objlist *,
130   const Obj_Entry **, const Ver_Entry *, int, DoneList *);
131 static const Elf_Sym *symlook_needed(const char *, unsigned long,
132   const Needed_Entry *, const Obj_Entry **, const Ver_Entry *,
133   int, DoneList *);
134 static void trace_loaded_objects(Obj_Entry *);
135 static void unlink_object(Obj_Entry *);
136 static void unload_object(Obj_Entry *);
137 static void unref_dag(Obj_Entry *);
138 static void ref_dag(Obj_Entry *);
139 static int origin_subst_one(char **, const char *, const char *,
140   const char *, char *);
141 static char *origin_subst(const char *, const char *);
142 static int  rtld_verify_versions(const Objlist *);
143 static int  rtld_verify_object_versions(Obj_Entry *);
144 static void object_add_name(Obj_Entry *, const char *);
145 static int  object_match_name(const Obj_Entry *, const char *);
146 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
147 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
148     struct dl_phdr_info *phdr_info);
149 
150 void r_debug_state(struct r_debug *, struct link_map *);
151 
152 /*
153  * Data declarations.
154  */
155 static char *error_message;	/* Message for dlerror(), or NULL */
156 struct r_debug r_debug;		/* for GDB; */
157 static bool libmap_disable;	/* Disable libmap */
158 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
159 static bool trust;		/* False for setuid and setgid programs */
160 static bool dangerous_ld_env;	/* True if environment variables have been
161 				   used to affect the libraries loaded */
162 static const char *ld_bind_now;	/* Environment variable for immediate binding */
163 static const char *ld_debug;	/* Environment variable for debugging */
164 static const char *ld_library_path; /* Environment variable for search path */
165 static char *ld_preload;	/* Environment variable for libraries to
166 				   load first */
167 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
168 static const char *ld_tracing;	/* Called from ldd(1) to print libs */
169 				/* Optional function call tracing hook */
170 static const char *ld_utrace;	/* Use utrace() to log events. */
171 static int (*rtld_functrace)(const char *caller_obj,
172 			     const char *callee_obj,
173 			     const char *callee_func,
174 			     void *stack);
175 static Obj_Entry *rtld_functrace_obj;	/* Object thereof */
176 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
177 static Obj_Entry **obj_tail;	/* Link field of last object in list */
178 static Obj_Entry **preload_tail;
179 static Obj_Entry *obj_main;	/* The main program shared object */
180 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
181 static unsigned int obj_count;	/* Number of objects in obj_list */
182 static unsigned int obj_loads;	/* Number of objects in obj_list */
183 
184 static int	ld_resident;	/* Non-zero if resident */
185 static const char *ld_ary[LD_ARY_CACHE];
186 static int	ld_index;
187 static Objlist initlist;
188 
189 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
190   STAILQ_HEAD_INITIALIZER(list_global);
191 static Objlist list_main =	/* Objects loaded at program startup */
192   STAILQ_HEAD_INITIALIZER(list_main);
193 static Objlist list_fini =	/* Objects needing fini() calls */
194   STAILQ_HEAD_INITIALIZER(list_fini);
195 
196 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
197 
198 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
199 
200 extern Elf_Dyn _DYNAMIC;
201 #pragma weak _DYNAMIC
202 #ifndef RTLD_IS_DYNAMIC
203 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
204 #endif
205 
206 /*
207  * These are the functions the dynamic linker exports to application
208  * programs.  They are the only symbols the dynamic linker is willing
209  * to export from itself.
210  */
211 static func_ptr_type exports[] = {
212     (func_ptr_type) &_rtld_error,
213     (func_ptr_type) &dlclose,
214     (func_ptr_type) &dlerror,
215     (func_ptr_type) &dlopen,
216     (func_ptr_type) &dlfunc,
217     (func_ptr_type) &dlsym,
218     (func_ptr_type) &dlvsym,
219     (func_ptr_type) &dladdr,
220     (func_ptr_type) &dlinfo,
221     (func_ptr_type) &dl_iterate_phdr,
222 #ifdef __i386__
223     (func_ptr_type) &___tls_get_addr,
224 #endif
225     (func_ptr_type) &__tls_get_addr,
226     (func_ptr_type) &__tls_get_addr_tcb,
227     (func_ptr_type) &_rtld_allocate_tls,
228     (func_ptr_type) &_rtld_free_tls,
229     (func_ptr_type) &_rtld_call_init,
230     (func_ptr_type) &_rtld_thread_init,
231     (func_ptr_type) &_rtld_addr_phdr,
232     NULL
233 };
234 
235 /*
236  * Global declarations normally provided by crt1.  The dynamic linker is
237  * not built with crt1, so we have to provide them ourselves.
238  */
239 char *__progname;
240 char **environ;
241 
242 /*
243  * Globals to control TLS allocation.
244  */
245 size_t tls_last_offset;		/* Static TLS offset of last module */
246 size_t tls_last_size;		/* Static TLS size of last module */
247 size_t tls_static_space;	/* Static TLS space allocated */
248 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
249 int tls_max_index = 1;		/* Largest module index allocated */
250 
251 /*
252  * Fill in a DoneList with an allocation large enough to hold all of
253  * the currently-loaded objects.  Keep this as a macro since it calls
254  * alloca and we want that to occur within the scope of the caller.
255  */
256 #define donelist_init(dlp)					\
257     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
258     assert((dlp)->objs != NULL),				\
259     (dlp)->num_alloc = obj_count,				\
260     (dlp)->num_used = 0)
261 
262 #define	UTRACE_DLOPEN_START		1
263 #define	UTRACE_DLOPEN_STOP		2
264 #define	UTRACE_DLCLOSE_START		3
265 #define	UTRACE_DLCLOSE_STOP		4
266 #define	UTRACE_LOAD_OBJECT		5
267 #define	UTRACE_UNLOAD_OBJECT		6
268 #define	UTRACE_ADD_RUNDEP		7
269 #define	UTRACE_PRELOAD_FINISHED		8
270 #define	UTRACE_INIT_CALL		9
271 #define	UTRACE_FINI_CALL		10
272 
273 struct utrace_rtld {
274 	char sig[4];			/* 'RTLD' */
275 	int event;
276 	void *handle;
277 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
278 	size_t mapsize;
279 	int refcnt;			/* Used for 'mode' */
280 	char name[MAXPATHLEN];
281 };
282 
283 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
284 	if (ld_utrace != NULL)					\
285 		ld_utrace_log(e, h, mb, ms, r, n);		\
286 } while (0)
287 
288 static void
289 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
290     int refcnt, const char *name)
291 {
292 	struct utrace_rtld ut;
293 
294 	ut.sig[0] = 'R';
295 	ut.sig[1] = 'T';
296 	ut.sig[2] = 'L';
297 	ut.sig[3] = 'D';
298 	ut.event = event;
299 	ut.handle = handle;
300 	ut.mapbase = mapbase;
301 	ut.mapsize = mapsize;
302 	ut.refcnt = refcnt;
303 	bzero(ut.name, sizeof(ut.name));
304 	if (name)
305 		strlcpy(ut.name, name, sizeof(ut.name));
306 	utrace(&ut, sizeof(ut));
307 }
308 
309 /*
310  * Main entry point for dynamic linking.  The first argument is the
311  * stack pointer.  The stack is expected to be laid out as described
312  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
313  * Specifically, the stack pointer points to a word containing
314  * ARGC.  Following that in the stack is a null-terminated sequence
315  * of pointers to argument strings.  Then comes a null-terminated
316  * sequence of pointers to environment strings.  Finally, there is a
317  * sequence of "auxiliary vector" entries.
318  *
319  * The second argument points to a place to store the dynamic linker's
320  * exit procedure pointer and the third to a place to store the main
321  * program's object.
322  *
323  * The return value is the main program's entry point.
324  */
325 func_ptr_type
326 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
327 {
328     Elf_Auxinfo *aux_info[AT_COUNT];
329     int i;
330     int argc;
331     char **argv;
332     char **env;
333     Elf_Auxinfo *aux;
334     Elf_Auxinfo *auxp;
335     const char *argv0;
336     Objlist_Entry *entry;
337     Obj_Entry *obj;
338 
339     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
340              Obj_Entry **preload_tail;
341              Objlist initlist;
342        from global to here.  It will break the DRAWF2 unwind scheme.
343        The system compilers were unaffected, but not gcc 4.6
344     */
345 
346     /*
347      * On entry, the dynamic linker itself has not been relocated yet.
348      * Be very careful not to reference any global data until after
349      * init_rtld has returned.  It is OK to reference file-scope statics
350      * and string constants, and to call static and global functions.
351      */
352 
353     /* Find the auxiliary vector on the stack. */
354     argc = *sp++;
355     argv = (char **) sp;
356     sp += argc + 1;	/* Skip over arguments and NULL terminator */
357     env = (char **) sp;
358 
359     /*
360      * If we aren't already resident we have to dig out some more info.
361      * Note that auxinfo does not exist when we are resident.
362      *
363      * I'm not sure about the ld_resident check.  It seems to read zero
364      * prior to relocation, which is what we want.  When running from a
365      * resident copy everything will be relocated so we are definitely
366      * good there.
367      */
368     if (ld_resident == 0)  {
369 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
370 	    ;
371 	aux = (Elf_Auxinfo *) sp;
372 
373 	/* Digest the auxiliary vector. */
374 	for (i = 0;  i < AT_COUNT;  i++)
375 	    aux_info[i] = NULL;
376 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
377 	    if (auxp->a_type < AT_COUNT)
378 		aux_info[auxp->a_type] = auxp;
379 	}
380 
381 	/* Initialize and relocate ourselves. */
382 	assert(aux_info[AT_BASE] != NULL);
383 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
384     }
385 
386     ld_index = 0;	/* don't use old env cache in case we are resident */
387     __progname = obj_rtld.path;
388     argv0 = argv[0] != NULL ? argv[0] : "(null)";
389     environ = env;
390 
391     trust = !issetugid();
392 
393     ld_bind_now = _getenv_ld("LD_BIND_NOW");
394     /*
395      * If the process is tainted, then we un-set the dangerous environment
396      * variables.  The process will be marked as tainted until setuid(2)
397      * is called.  If any child process calls setuid(2) we do not want any
398      * future processes to honor the potentially un-safe variables.
399      */
400     if (!trust) {
401 	if (   unsetenv("LD_DEBUG")
402 	    || unsetenv("LD_PRELOAD")
403 	    || unsetenv("LD_LIBRARY_PATH")
404 	    || unsetenv("LD_ELF_HINTS_PATH")
405 	    || unsetenv("LD_LIBMAP")
406 	    || unsetenv("LD_LIBMAP_DISABLE")
407 	) {
408 	    _rtld_error("environment corrupt; aborting");
409 	    die();
410 	}
411     }
412     ld_debug = _getenv_ld("LD_DEBUG");
413     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
414     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
415     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
416     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
417     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
418     dangerous_ld_env = (ld_library_path != NULL)
419 			|| (ld_preload != NULL)
420 			|| (ld_elf_hints_path != NULL)
421 			|| (libmap_override != NULL)
422 			|| libmap_disable
423 			;
424     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
425     ld_utrace = _getenv_ld("LD_UTRACE");
426 
427     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
428 	ld_elf_hints_path = _PATH_ELF_HINTS;
429 
430     if (ld_debug != NULL && *ld_debug != '\0')
431 	debug = 1;
432     dbg("%s is initialized, base address = %p", __progname,
433 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
434     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
435     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
436 
437     dbg("initializing thread locks");
438     lockdflt_init();
439 
440     /*
441      * If we are resident we can skip work that we have already done.
442      * Note that the stack is reset and there is no Elf_Auxinfo
443      * when running from a resident image, and the static globals setup
444      * between here and resident_skip will have already been setup.
445      */
446     if (ld_resident)
447 	goto resident_skip1;
448 
449     /*
450      * Load the main program, or process its program header if it is
451      * already loaded.
452      */
453     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
454 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
455 	dbg("loading main program");
456 	obj_main = map_object(fd, argv0, NULL);
457 	close(fd);
458 	if (obj_main == NULL)
459 	    die();
460     } else {				/* Main program already loaded. */
461 	const Elf_Phdr *phdr;
462 	int phnum;
463 	caddr_t entry;
464 
465 	dbg("processing main program's program header");
466 	assert(aux_info[AT_PHDR] != NULL);
467 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
468 	assert(aux_info[AT_PHNUM] != NULL);
469 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
470 	assert(aux_info[AT_PHENT] != NULL);
471 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
472 	assert(aux_info[AT_ENTRY] != NULL);
473 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
474 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
475 	    die();
476     }
477 
478     char buf[MAXPATHLEN];
479     if (aux_info[AT_EXECPATH] != 0) {
480 	char *kexecpath;
481 
482 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
483 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
484 	if (kexecpath[0] == '/')
485 		obj_main->path = kexecpath;
486 	else if (getcwd(buf, sizeof(buf)) == NULL ||
487 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
488 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
489 		obj_main->path = xstrdup(argv0);
490 	else
491 		obj_main->path = xstrdup(buf);
492     } else {
493 	char resolved[MAXPATHLEN];
494 	dbg("No AT_EXECPATH");
495 	if (argv0[0] == '/') {
496 		if (realpath(argv0, resolved) != NULL)
497 			obj_main->path = xstrdup(resolved);
498 		else
499 			obj_main->path = xstrdup(argv0);
500 	} else {
501 		if (getcwd(buf, sizeof(buf)) != NULL
502 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
503 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
504 		    && access(buf, R_OK) == 0
505 		    && realpath(buf, resolved) != NULL)
506 			obj_main->path = xstrdup(resolved);
507 		else
508 			obj_main->path = xstrdup(argv0);
509 	}
510     }
511     dbg("obj_main path %s", obj_main->path);
512     obj_main->mainprog = true;
513 
514     /*
515      * Get the actual dynamic linker pathname from the executable if
516      * possible.  (It should always be possible.)  That ensures that
517      * gdb will find the right dynamic linker even if a non-standard
518      * one is being used.
519      */
520     if (obj_main->interp != NULL &&
521       strcmp(obj_main->interp, obj_rtld.path) != 0) {
522 	free(obj_rtld.path);
523 	obj_rtld.path = xstrdup(obj_main->interp);
524 	__progname = obj_rtld.path;
525     }
526 
527     digest_dynamic(obj_main, 0);
528 
529     linkmap_add(obj_main);
530     linkmap_add(&obj_rtld);
531 
532     /* Link the main program into the list of objects. */
533     *obj_tail = obj_main;
534     obj_tail = &obj_main->next;
535     obj_count++;
536     obj_loads++;
537     /* Make sure we don't call the main program's init and fini functions. */
538     obj_main->init = obj_main->fini = (Elf_Addr)NULL;
539 
540     /* Initialize a fake symbol for resolving undefined weak references. */
541     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
542     sym_zero.st_shndx = SHN_UNDEF;
543     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
544 
545     if (!libmap_disable)
546         libmap_disable = (bool)lm_init(libmap_override);
547 
548     dbg("loading LD_PRELOAD libraries");
549     if (load_preload_objects() == -1)
550 	die();
551     preload_tail = obj_tail;
552 
553     dbg("loading needed objects");
554     if (load_needed_objects(obj_main, 0) == -1)
555 	die();
556 
557     /* Make a list of all objects loaded at startup. */
558     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
559 	objlist_push_tail(&list_main, obj);
560 	obj->refcount++;
561     }
562 
563     dbg("checking for required versions");
564     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
565 	die();
566 
567 resident_skip1:
568 
569     if (ld_tracing) {		/* We're done */
570 	trace_loaded_objects(obj_main);
571 	exit(0);
572     }
573 
574     if (ld_resident)		/* XXX clean this up! */
575 	goto resident_skip2;
576 
577     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
578        dump_relocations(obj_main);
579        exit (0);
580     }
581 
582     /* setup TLS for main thread */
583     dbg("initializing initial thread local storage");
584     STAILQ_FOREACH(entry, &list_main, link) {
585 	/*
586 	 * Allocate all the initial objects out of the static TLS
587 	 * block even if they didn't ask for it.
588 	 */
589 	allocate_tls_offset(entry->obj);
590     }
591 
592     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
593 
594     /*
595      * Do not try to allocate the TLS here, let libc do it itself.
596      * (crt1 for the program will call _init_tls())
597      */
598 
599     if (relocate_objects(obj_main,
600 	ld_bind_now != NULL && *ld_bind_now != '\0', &obj_rtld) == -1)
601 	die();
602 
603     dbg("doing copy relocations");
604     if (do_copy_relocations(obj_main) == -1)
605 	die();
606 
607 resident_skip2:
608 
609     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
610 	if (exec_sys_unregister(-1) < 0) {
611 	    dbg("exec_sys_unregister failed %d\n", errno);
612 	    exit(errno);
613 	}
614 	dbg("exec_sys_unregister success\n");
615 	exit(0);
616     }
617 
618     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
619        dump_relocations(obj_main);
620        exit (0);
621     }
622 
623     dbg("initializing key program variables");
624     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
625     set_program_var("environ", env);
626 
627     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
628 	extern void resident_start(void);
629 	ld_resident = 1;
630 	if (exec_sys_register(resident_start) < 0) {
631 	    dbg("exec_sys_register failed %d\n", errno);
632 	    exit(errno);
633 	}
634 	dbg("exec_sys_register success\n");
635 	exit(0);
636     }
637 
638     /* Make a list of init functions to call. */
639     objlist_init(&initlist);
640     initlist_add_objects(obj_list, preload_tail, &initlist);
641 
642     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
643 
644     /*
645      * Do NOT call the initlist here, give libc a chance to set up
646      * the initial TLS segment.  crt1 will then call _rtld_call_init().
647      */
648 
649     dbg("transferring control to program entry point = %p", obj_main->entry);
650 
651     /* Return the exit procedure and the program entry point. */
652     *exit_proc = rtld_exit;
653     *objp = obj_main;
654     return (func_ptr_type) obj_main->entry;
655 }
656 
657 /*
658  * Call the initialization list for dynamically loaded libraries.
659  * (called from crt1.c).
660  */
661 void
662 _rtld_call_init(void)
663 {
664     RtldLockState lockstate;
665 
666     wlock_acquire(rtld_bind_lock, &lockstate);
667     objlist_call_init(&initlist, &lockstate);
668     objlist_clear(&initlist);
669     lock_release(rtld_bind_lock, &lockstate);
670 }
671 
672 Elf_Addr
673 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
674 {
675     const Elf_Rel *rel;
676     const Elf_Sym *def;
677     const Obj_Entry *defobj;
678     Elf_Addr *where;
679     Elf_Addr target;
680     RtldLockState lockstate;
681     int do_reloc = 1;
682 
683     rlock_acquire(rtld_bind_lock, &lockstate);
684     if (sigsetjmp(lockstate.env, 0) != 0)
685 	    lock_upgrade(rtld_bind_lock, &lockstate);
686     if (obj->pltrel)
687 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
688     else
689 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
690 
691     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
692     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL);
693     if (def == NULL)
694 	die();
695 
696     target = (Elf_Addr)(defobj->relocbase + def->st_value);
697 
698     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
699       defobj->strtab + def->st_name, basename(obj->path),
700       (void *)target, basename(defobj->path));
701 
702     /*
703      * If we have a function call tracing hook, and the
704      * hook would like to keep tracing this one function,
705      * prevent the relocation so we will wind up here
706      * the next time again.
707      *
708      * We don't want to functrace calls from the functracer
709      * to avoid recursive loops.
710      */
711     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
712 	if (rtld_functrace(obj->path,
713 			   defobj->path,
714 			   defobj->strtab + def->st_name,
715 			   stack))
716 	    do_reloc = 0;
717     }
718 
719     if (do_reloc)
720 	target = reloc_jmpslot(where, target, defobj, obj, rel);
721     lock_release(rtld_bind_lock, &lockstate);
722     return target;
723 }
724 
725 /*
726  * Error reporting function.  Use it like printf.  If formats the message
727  * into a buffer, and sets things up so that the next call to dlerror()
728  * will return the message.
729  */
730 void
731 _rtld_error(const char *fmt, ...)
732 {
733     static char buf[512];
734     va_list ap;
735 
736     va_start(ap, fmt);
737     vsnprintf(buf, sizeof buf, fmt, ap);
738     error_message = buf;
739     va_end(ap);
740 }
741 
742 /*
743  * Return a dynamically-allocated copy of the current error message, if any.
744  */
745 static char *
746 errmsg_save(void)
747 {
748     return error_message == NULL ? NULL : xstrdup(error_message);
749 }
750 
751 /*
752  * Restore the current error message from a copy which was previously saved
753  * by errmsg_save().  The copy is freed.
754  */
755 static void
756 errmsg_restore(char *saved_msg)
757 {
758     if (saved_msg == NULL)
759 	error_message = NULL;
760     else {
761 	_rtld_error("%s", saved_msg);
762 	free(saved_msg);
763     }
764 }
765 
766 const char *
767 basename(const char *name)
768 {
769     const char *p = strrchr(name, '/');
770     return p != NULL ? p + 1 : name;
771 }
772 
773 static struct utsname uts;
774 
775 static int
776 origin_subst_one(char **res, const char *real, const char *kw, const char *subst,
777     char *may_free)
778 {
779     const char *p, *p1;
780     char *res1;
781     int subst_len;
782     int kw_len;
783 
784     res1 = *res = NULL;
785     p = real;
786     subst_len = kw_len = 0;
787     for (;;) {
788 	 p1 = strstr(p, kw);
789 	 if (p1 != NULL) {
790 	     if (subst_len == 0) {
791 		 subst_len = strlen(subst);
792 		 kw_len = strlen(kw);
793 	     }
794 	     if (*res == NULL) {
795 		 *res = xmalloc(PATH_MAX);
796 		 res1 = *res;
797 	     }
798 	     if ((res1 - *res) + subst_len + (p1 - p) >= PATH_MAX) {
799 		 _rtld_error("Substitution of %s in %s cannot be performed",
800 		     kw, real);
801 		 if (may_free != NULL)
802 		     free(may_free);
803 		 free(res);
804 		 return (false);
805 	     }
806 	     memcpy(res1, p, p1 - p);
807 	     res1 += p1 - p;
808 	     memcpy(res1, subst, subst_len);
809 	     res1 += subst_len;
810 	     p = p1 + kw_len;
811 	 } else {
812 	    if (*res == NULL) {
813 		if (may_free != NULL)
814 		    *res = may_free;
815 		else
816 		    *res = xstrdup(real);
817 		return (true);
818 	    }
819 	    *res1 = '\0';
820 	    if (may_free != NULL)
821 		free(may_free);
822 	    if (strlcat(res1, p, PATH_MAX - (res1 - *res)) >= PATH_MAX) {
823 		free(res);
824 		return (false);
825 	    }
826 	    return (true);
827 	 }
828     }
829 }
830 
831 static char *
832 origin_subst(const char *real, const char *origin_path)
833 {
834     char *res1, *res2, *res3, *res4;
835 
836     if (uts.sysname[0] == '\0') {
837 	if (uname(&uts) != 0) {
838 	    _rtld_error("utsname failed: %d", errno);
839 	    return (NULL);
840 	}
841     }
842     if (!origin_subst_one(&res1, real, "$ORIGIN", origin_path, NULL) ||
843 	!origin_subst_one(&res2, res1, "$OSNAME", uts.sysname, res1) ||
844 	!origin_subst_one(&res3, res2, "$OSREL", uts.release, res2) ||
845 	!origin_subst_one(&res4, res3, "$PLATFORM", uts.machine, res3))
846 	    return (NULL);
847     return (res4);
848 }
849 
850 static void
851 die(void)
852 {
853     const char *msg = dlerror();
854 
855     if (msg == NULL)
856 	msg = "Fatal error";
857     errx(1, "%s", msg);
858 }
859 
860 /*
861  * Process a shared object's DYNAMIC section, and save the important
862  * information in its Obj_Entry structure.
863  */
864 static void
865 digest_dynamic(Obj_Entry *obj, int early)
866 {
867     const Elf_Dyn *dynp;
868     Needed_Entry **needed_tail = &obj->needed;
869     const Elf_Dyn *dyn_rpath = NULL;
870     const Elf_Dyn *dyn_soname = NULL;
871     int plttype = DT_REL;
872 
873     obj->bind_now = false;
874     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
875 	switch (dynp->d_tag) {
876 
877 	case DT_REL:
878 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
879 	    break;
880 
881 	case DT_RELSZ:
882 	    obj->relsize = dynp->d_un.d_val;
883 	    break;
884 
885 	case DT_RELENT:
886 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
887 	    break;
888 
889 	case DT_JMPREL:
890 	    obj->pltrel = (const Elf_Rel *)
891 	      (obj->relocbase + dynp->d_un.d_ptr);
892 	    break;
893 
894 	case DT_PLTRELSZ:
895 	    obj->pltrelsize = dynp->d_un.d_val;
896 	    break;
897 
898 	case DT_RELA:
899 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
900 	    break;
901 
902 	case DT_RELASZ:
903 	    obj->relasize = dynp->d_un.d_val;
904 	    break;
905 
906 	case DT_RELAENT:
907 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
908 	    break;
909 
910 	case DT_PLTREL:
911 	    plttype = dynp->d_un.d_val;
912 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
913 	    break;
914 
915 	case DT_SYMTAB:
916 	    obj->symtab = (const Elf_Sym *)
917 	      (obj->relocbase + dynp->d_un.d_ptr);
918 	    break;
919 
920 	case DT_SYMENT:
921 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
922 	    break;
923 
924 	case DT_STRTAB:
925 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
926 	    break;
927 
928 	case DT_STRSZ:
929 	    obj->strsize = dynp->d_un.d_val;
930 	    break;
931 
932 	case DT_VERNEED:
933 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
934 		dynp->d_un.d_val);
935 	    break;
936 
937 	case DT_VERNEEDNUM:
938 	    obj->verneednum = dynp->d_un.d_val;
939 	    break;
940 
941 	case DT_VERDEF:
942 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
943 		dynp->d_un.d_val);
944 	    break;
945 
946 	case DT_VERDEFNUM:
947 	    obj->verdefnum = dynp->d_un.d_val;
948 	    break;
949 
950 	case DT_VERSYM:
951 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
952 		dynp->d_un.d_val);
953 	    break;
954 
955 	case DT_HASH:
956 	    {
957 		const Elf_Hashelt *hashtab = (const Elf_Hashelt *)
958 		  (obj->relocbase + dynp->d_un.d_ptr);
959 		obj->nbuckets = hashtab[0];
960 		obj->nchains = hashtab[1];
961 		obj->buckets = hashtab + 2;
962 		obj->chains = obj->buckets + obj->nbuckets;
963 	    }
964 	    break;
965 
966 	case DT_NEEDED:
967 	    if (!obj->rtld) {
968 		Needed_Entry *nep = NEW(Needed_Entry);
969 		nep->name = dynp->d_un.d_val;
970 		nep->obj = NULL;
971 		nep->next = NULL;
972 
973 		*needed_tail = nep;
974 		needed_tail = &nep->next;
975 	    }
976 	    break;
977 
978 	case DT_PLTGOT:
979 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
980 	    break;
981 
982 	case DT_TEXTREL:
983 	    obj->textrel = true;
984 	    break;
985 
986 	case DT_SYMBOLIC:
987 	    obj->symbolic = true;
988 	    break;
989 
990 	case DT_RPATH:
991 	case DT_RUNPATH:	/* XXX: process separately */
992 	    /*
993 	     * We have to wait until later to process this, because we
994 	     * might not have gotten the address of the string table yet.
995 	     */
996 	    dyn_rpath = dynp;
997 	    break;
998 
999 	case DT_SONAME:
1000 	    dyn_soname = dynp;
1001 	    break;
1002 
1003 	case DT_INIT:
1004 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1005 	    break;
1006 
1007 	case DT_FINI:
1008 	    obj->fini = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1009 	    break;
1010 
1011 	case DT_DEBUG:
1012 	    /* XXX - not implemented yet */
1013 	    if (!early)
1014 		dbg("Filling in DT_DEBUG entry");
1015 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1016 	    break;
1017 
1018 	case DT_FLAGS:
1019 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1020 		    obj->z_origin = true;
1021 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1022 		    obj->symbolic = true;
1023 		if (dynp->d_un.d_val & DF_TEXTREL)
1024 		    obj->textrel = true;
1025 		if (dynp->d_un.d_val & DF_BIND_NOW)
1026 		    obj->bind_now = true;
1027 		if (dynp->d_un.d_val & DF_STATIC_TLS)
1028 		    ;
1029 	    break;
1030 
1031 	case DT_FLAGS_1:
1032 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1033 		    obj->z_noopen = true;
1034 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1035 		    obj->z_origin = true;
1036 		if (dynp->d_un.d_val & DF_1_GLOBAL)
1037 			/* XXX */;
1038 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1039 		    obj->bind_now = true;
1040 		if (dynp->d_un.d_val & DF_1_NODELETE)
1041 		    obj->z_nodelete = true;
1042 	    break;
1043 
1044 	default:
1045 	    if (!early) {
1046 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1047 		    (long)dynp->d_tag);
1048 	    }
1049 	    break;
1050 	}
1051     }
1052 
1053     obj->traced = false;
1054 
1055     if (plttype == DT_RELA) {
1056 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1057 	obj->pltrel = NULL;
1058 	obj->pltrelasize = obj->pltrelsize;
1059 	obj->pltrelsize = 0;
1060     }
1061 
1062     if (obj->z_origin && obj->origin_path == NULL) {
1063 	obj->origin_path = xmalloc(PATH_MAX);
1064 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1065 	    die();
1066     }
1067 
1068     if (dyn_rpath != NULL) {
1069 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1070 	if (obj->z_origin)
1071 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1072     }
1073 
1074     if (dyn_soname != NULL)
1075 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1076 }
1077 
1078 /*
1079  * Process a shared object's program header.  This is used only for the
1080  * main program, when the kernel has already loaded the main program
1081  * into memory before calling the dynamic linker.  It creates and
1082  * returns an Obj_Entry structure.
1083  */
1084 static Obj_Entry *
1085 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1086 {
1087     Obj_Entry *obj;
1088     const Elf_Phdr *phlimit = phdr + phnum;
1089     const Elf_Phdr *ph;
1090     int nsegs = 0;
1091 
1092     obj = obj_new();
1093     for (ph = phdr;  ph < phlimit;  ph++) {
1094 	if (ph->p_type != PT_PHDR)
1095 	    continue;
1096 
1097 	obj->phdr = phdr;
1098 	obj->phsize = ph->p_memsz;
1099 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1100 	break;
1101     }
1102 
1103     for (ph = phdr;  ph < phlimit;  ph++) {
1104 	switch (ph->p_type) {
1105 
1106 	case PT_INTERP:
1107 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1108 	    break;
1109 
1110 	case PT_LOAD:
1111 	    if (nsegs == 0) {	/* First load segment */
1112 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1113 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1114 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1115 		  obj->vaddrbase;
1116 	    } else {		/* Last load segment */
1117 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1118 		  obj->vaddrbase;
1119 	    }
1120 	    nsegs++;
1121 	    break;
1122 
1123 	case PT_DYNAMIC:
1124 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1125 	    break;
1126 
1127 	case PT_TLS:
1128 	    obj->tlsindex = 1;
1129 	    obj->tlssize = ph->p_memsz;
1130 	    obj->tlsalign = ph->p_align;
1131 	    obj->tlsinitsize = ph->p_filesz;
1132 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1133 	    break;
1134 	}
1135     }
1136     if (nsegs < 1) {
1137 	_rtld_error("%s: too few PT_LOAD segments", path);
1138 	return NULL;
1139     }
1140 
1141     obj->entry = entry;
1142     return obj;
1143 }
1144 
1145 static Obj_Entry *
1146 dlcheck(void *handle)
1147 {
1148     Obj_Entry *obj;
1149 
1150     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1151 	if (obj == (Obj_Entry *) handle)
1152 	    break;
1153 
1154     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1155 	_rtld_error("Invalid shared object handle %p", handle);
1156 	return NULL;
1157     }
1158     return obj;
1159 }
1160 
1161 /*
1162  * If the given object is already in the donelist, return true.  Otherwise
1163  * add the object to the list and return false.
1164  */
1165 static bool
1166 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1167 {
1168     unsigned int i;
1169 
1170     for (i = 0;  i < dlp->num_used;  i++)
1171 	if (dlp->objs[i] == obj)
1172 	    return true;
1173     /*
1174      * Our donelist allocation should always be sufficient.  But if
1175      * our threads locking isn't working properly, more shared objects
1176      * could have been loaded since we allocated the list.  That should
1177      * never happen, but we'll handle it properly just in case it does.
1178      */
1179     if (dlp->num_used < dlp->num_alloc)
1180 	dlp->objs[dlp->num_used++] = obj;
1181     return false;
1182 }
1183 
1184 /*
1185  * Hash function for symbol table lookup.  Don't even think about changing
1186  * this.  It is specified by the System V ABI.
1187  */
1188 unsigned long
1189 elf_hash(const char *name)
1190 {
1191     const unsigned char *p = (const unsigned char *) name;
1192     unsigned long h = 0;
1193     unsigned long g;
1194 
1195     while (*p != '\0') {
1196 	h = (h << 4) + *p++;
1197 	if ((g = h & 0xf0000000) != 0)
1198 	    h ^= g >> 24;
1199 	h &= ~g;
1200     }
1201     return h;
1202 }
1203 
1204 /*
1205  * Find the library with the given name, and return its full pathname.
1206  * The returned string is dynamically allocated.  Generates an error
1207  * message and returns NULL if the library cannot be found.
1208  *
1209  * If the second argument is non-NULL, then it refers to an already-
1210  * loaded shared object, whose library search path will be searched.
1211  *
1212  * The search order is:
1213  *   LD_LIBRARY_PATH
1214  *   rpath in the referencing file
1215  *   ldconfig hints
1216  *   /usr/lib
1217  */
1218 static char *
1219 find_library(const char *xname, const Obj_Entry *refobj)
1220 {
1221     char *pathname;
1222     char *name;
1223 
1224     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1225 	if (xname[0] != '/' && !trust) {
1226 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1227 	      xname);
1228 	    return NULL;
1229 	}
1230 	if (refobj != NULL && refobj->z_origin)
1231 	    return origin_subst(xname, refobj->origin_path);
1232 	else
1233 	    return xstrdup(xname);
1234     }
1235 
1236     if (libmap_disable || (refobj == NULL) ||
1237 	(name = lm_find(refobj->path, xname)) == NULL)
1238 	name = (char *)xname;
1239 
1240     dbg(" Searching for \"%s\"", name);
1241 
1242     if ((pathname = search_library_path(name, ld_library_path)) != NULL ||
1243       (refobj != NULL &&
1244       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1245       (pathname = search_library_path(name, gethints())) != NULL ||
1246       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL)
1247 	return pathname;
1248 
1249     if(refobj != NULL && refobj->path != NULL) {
1250 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1251 	  name, basename(refobj->path));
1252     } else {
1253 	_rtld_error("Shared object \"%s\" not found", name);
1254     }
1255     return NULL;
1256 }
1257 
1258 /*
1259  * Given a symbol number in a referencing object, find the corresponding
1260  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1261  * no definition was found.  Returns a pointer to the Obj_Entry of the
1262  * defining object via the reference parameter DEFOBJ_OUT.
1263  */
1264 const Elf_Sym *
1265 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1266     const Obj_Entry **defobj_out, int flags, SymCache *cache)
1267 {
1268     const Elf_Sym *ref;
1269     const Elf_Sym *def;
1270     const Obj_Entry *defobj;
1271     const Ver_Entry *ventry;
1272     const char *name;
1273     unsigned long hash;
1274 
1275     /*
1276      * If we have already found this symbol, get the information from
1277      * the cache.
1278      */
1279     if (symnum >= refobj->nchains)
1280 	return NULL;	/* Bad object */
1281     if (cache != NULL && cache[symnum].sym != NULL) {
1282 	*defobj_out = cache[symnum].obj;
1283 	return cache[symnum].sym;
1284     }
1285 
1286     ref = refobj->symtab + symnum;
1287     name = refobj->strtab + ref->st_name;
1288     defobj = NULL;
1289 
1290     /*
1291      * We don't have to do a full scale lookup if the symbol is local.
1292      * We know it will bind to the instance in this load module; to
1293      * which we already have a pointer (ie ref). By not doing a lookup,
1294      * we not only improve performance, but it also avoids unresolvable
1295      * symbols when local symbols are not in the hash table.
1296      *
1297      * This might occur for TLS module relocations, which simply use
1298      * symbol 0.
1299      */
1300     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1301 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1302 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1303 		symnum);
1304 	}
1305 	ventry = fetch_ventry(refobj, symnum);
1306 	hash = elf_hash(name);
1307 	def = symlook_default(name, hash, refobj, &defobj, ventry, flags);
1308     } else {
1309 	def = ref;
1310 	defobj = refobj;
1311     }
1312 
1313     /*
1314      * If we found no definition and the reference is weak, treat the
1315      * symbol as having the value zero.
1316      */
1317     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1318 	def = &sym_zero;
1319 	defobj = obj_main;
1320     }
1321 
1322     if (def != NULL) {
1323 	*defobj_out = defobj;
1324 	/* Record the information in the cache to avoid subsequent lookups. */
1325 	if (cache != NULL) {
1326 	    cache[symnum].sym = def;
1327 	    cache[symnum].obj = defobj;
1328 	}
1329     } else {
1330 	if (refobj != &obj_rtld)
1331 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1332     }
1333     return def;
1334 }
1335 
1336 /*
1337  * Return the search path from the ldconfig hints file, reading it if
1338  * necessary.  Returns NULL if there are problems with the hints file,
1339  * or if the search path there is empty.
1340  */
1341 static const char *
1342 gethints(void)
1343 {
1344     static char *hints;
1345 
1346     if (hints == NULL) {
1347 	int fd;
1348 	struct elfhints_hdr hdr;
1349 	char *p;
1350 
1351 	/* Keep from trying again in case the hints file is bad. */
1352 	hints = "";
1353 
1354 	if ((fd = open(ld_elf_hints_path, O_RDONLY)) == -1)
1355 	    return NULL;
1356 	if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1357 	  hdr.magic != ELFHINTS_MAGIC ||
1358 	  hdr.version != 1) {
1359 	    close(fd);
1360 	    return NULL;
1361 	}
1362 	p = xmalloc(hdr.dirlistlen + 1);
1363 	if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1364 	  read(fd, p, hdr.dirlistlen + 1) != (ssize_t)hdr.dirlistlen + 1) {
1365 	    free(p);
1366 	    close(fd);
1367 	    return NULL;
1368 	}
1369 	hints = p;
1370 	close(fd);
1371     }
1372     return hints[0] != '\0' ? hints : NULL;
1373 }
1374 
1375 static void
1376 init_dag(Obj_Entry *root)
1377 {
1378     DoneList donelist;
1379 
1380     if (root->dag_inited)
1381 	return;
1382     donelist_init(&donelist);
1383     init_dag1(root, root, &donelist);
1384 }
1385 
1386 static void
1387 init_dag1(Obj_Entry *root, Obj_Entry *obj, DoneList *dlp)
1388 {
1389     const Needed_Entry *needed;
1390 
1391     if (donelist_check(dlp, obj))
1392 	return;
1393 
1394     objlist_push_tail(&obj->dldags, root);
1395     objlist_push_tail(&root->dagmembers, obj);
1396     for (needed = obj->needed;  needed != NULL;  needed = needed->next)
1397 	if (needed->obj != NULL)
1398 	    init_dag1(root, needed->obj, dlp);
1399     root->dag_inited = true;
1400 }
1401 
1402 /*
1403  * Initialize the dynamic linker.  The argument is the address at which
1404  * the dynamic linker has been mapped into memory.  The primary task of
1405  * this function is to relocate the dynamic linker.
1406  */
1407 static void
1408 init_rtld(caddr_t mapbase)
1409 {
1410     Obj_Entry objtmp;	/* Temporary rtld object */
1411 
1412     /*
1413      * Conjure up an Obj_Entry structure for the dynamic linker.
1414      *
1415      * The "path" member can't be initialized yet because string constants
1416      * cannot yet be accessed. Below we will set it correctly.
1417      */
1418     memset(&objtmp, 0, sizeof(objtmp));
1419     objtmp.path = NULL;
1420     objtmp.rtld = true;
1421     objtmp.mapbase = mapbase;
1422 #ifdef PIC
1423     objtmp.relocbase = mapbase;
1424 #endif
1425     if (RTLD_IS_DYNAMIC()) {
1426 	objtmp.dynamic = rtld_dynamic(&objtmp);
1427 	digest_dynamic(&objtmp, 1);
1428 	assert(objtmp.needed == NULL);
1429 	assert(!objtmp.textrel);
1430 
1431 	/*
1432 	 * Temporarily put the dynamic linker entry into the object list, so
1433 	 * that symbols can be found.
1434 	 */
1435 
1436 	relocate_objects(&objtmp, true, &objtmp);
1437     }
1438 
1439     /* Initialize the object list. */
1440     obj_tail = &obj_list;
1441 
1442     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1443     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1444 
1445     /* Replace the path with a dynamically allocated copy. */
1446     obj_rtld.path = xstrdup(PATH_RTLD);
1447 
1448     r_debug.r_brk = r_debug_state;
1449     r_debug.r_state = RT_CONSISTENT;
1450 }
1451 
1452 /*
1453  * Add the init functions from a needed object list (and its recursive
1454  * needed objects) to "list".  This is not used directly; it is a helper
1455  * function for initlist_add_objects().  The write lock must be held
1456  * when this function is called.
1457  */
1458 static void
1459 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1460 {
1461     /* Recursively process the successor needed objects. */
1462     if (needed->next != NULL)
1463 	initlist_add_neededs(needed->next, list);
1464 
1465     /* Process the current needed object. */
1466     if (needed->obj != NULL)
1467 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1468 }
1469 
1470 /*
1471  * Scan all of the DAGs rooted in the range of objects from "obj" to
1472  * "tail" and add their init functions to "list".  This recurses over
1473  * the DAGs and ensure the proper init ordering such that each object's
1474  * needed libraries are initialized before the object itself.  At the
1475  * same time, this function adds the objects to the global finalization
1476  * list "list_fini" in the opposite order.  The write lock must be
1477  * held when this function is called.
1478  */
1479 static void
1480 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1481 {
1482     if (obj->init_scanned || obj->init_done)
1483 	return;
1484     obj->init_scanned = true;
1485 
1486     /* Recursively process the successor objects. */
1487     if (&obj->next != tail)
1488 	initlist_add_objects(obj->next, tail, list);
1489 
1490     /* Recursively process the needed objects. */
1491     if (obj->needed != NULL)
1492 	initlist_add_neededs(obj->needed, list);
1493 
1494     /* Add the object to the init list. */
1495     if (obj->init != (Elf_Addr)NULL)
1496 	objlist_push_tail(list, obj);
1497 
1498     /* Add the object to the global fini list in the reverse order. */
1499     if (obj->fini != (Elf_Addr)NULL && !obj->on_fini_list) {
1500 	objlist_push_head(&list_fini, obj);
1501 	obj->on_fini_list = true;
1502     }
1503 }
1504 
1505 #ifndef FPTR_TARGET
1506 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1507 #endif
1508 
1509 static bool
1510 is_exported(const Elf_Sym *def)
1511 {
1512     Elf_Addr value;
1513     const func_ptr_type *p;
1514 
1515     value = (Elf_Addr)(obj_rtld.relocbase + def->st_value);
1516     for (p = exports;  *p != NULL;  p++)
1517 	if (FPTR_TARGET(*p) == value)
1518 	    return true;
1519     return false;
1520 }
1521 
1522 /*
1523  * Given a shared object, traverse its list of needed objects, and load
1524  * each of them.  Returns 0 on success.  Generates an error message and
1525  * returns -1 on failure.
1526  */
1527 static int
1528 load_needed_objects(Obj_Entry *first, int flags)
1529 {
1530     Obj_Entry *obj, *obj1;
1531 
1532     for (obj = first;  obj != NULL;  obj = obj->next) {
1533 	Needed_Entry *needed;
1534 
1535 	for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
1536 	    obj1 = needed->obj = load_object(obj->strtab + needed->name, obj,
1537 		flags & ~RTLD_LO_NOLOAD);
1538 	    if (obj1 == NULL && !ld_tracing)
1539 		return -1;
1540 	    if (obj1 != NULL && obj1->z_nodelete && !obj1->ref_nodel) {
1541 		dbg("obj %s nodelete", obj1->path);
1542 		init_dag(obj1);
1543 		ref_dag(obj1);
1544 		obj1->ref_nodel = true;
1545 	    }
1546 	}
1547     }
1548     return (0);
1549 }
1550 
1551 #define RTLD_FUNCTRACE "_rtld_functrace"
1552 
1553 static int
1554 load_preload_objects(void)
1555 {
1556     char *p = ld_preload;
1557     static const char delim[] = " \t:;";
1558 
1559     if (p == NULL)
1560 	return 0;
1561 
1562     p += strspn(p, delim);
1563     while (*p != '\0') {
1564 	size_t len = strcspn(p, delim);
1565 	char savech;
1566 	Obj_Entry *obj;
1567 	const Elf_Sym *sym;
1568 
1569 	savech = p[len];
1570 	p[len] = '\0';
1571 	obj = load_object(p, NULL, 0);
1572 	if (obj == NULL)
1573 	    return -1;	/* XXX - cleanup */
1574 	p[len] = savech;
1575 	p += len;
1576 	p += strspn(p, delim);
1577 
1578 	/* Check for the magic tracing function */
1579 	sym = symlook_obj(RTLD_FUNCTRACE, elf_hash(RTLD_FUNCTRACE), obj, NULL, 1);
1580 	if (sym != NULL) {
1581 		rtld_functrace = (void *)(obj->relocbase + sym->st_value);
1582 		rtld_functrace_obj = obj;
1583 	}
1584     }
1585     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
1586     return 0;
1587 }
1588 
1589 /*
1590  * Load a shared object into memory, if it is not already loaded.
1591  *
1592  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
1593  * on failure.
1594  */
1595 static Obj_Entry *
1596 load_object(const char *name, const Obj_Entry *refobj, int flags)
1597 {
1598     Obj_Entry *obj;
1599     int fd = -1;
1600     struct stat sb;
1601     char *path;
1602 
1603     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1604 	if (object_match_name(obj, name))
1605 	    return obj;
1606 
1607     path = find_library(name, refobj);
1608     if (path == NULL)
1609 	return NULL;
1610 
1611     /*
1612      * If we didn't find a match by pathname, open the file and check
1613      * again by device and inode.  This avoids false mismatches caused
1614      * by multiple links or ".." in pathnames.
1615      *
1616      * To avoid a race, we open the file and use fstat() rather than
1617      * using stat().
1618      */
1619     if ((fd = open(path, O_RDONLY)) == -1) {
1620 	_rtld_error("Cannot open \"%s\"", path);
1621 	free(path);
1622 	return NULL;
1623     }
1624     if (fstat(fd, &sb) == -1) {
1625 	_rtld_error("Cannot fstat \"%s\"", path);
1626 	close(fd);
1627 	free(path);
1628 	return NULL;
1629     }
1630     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
1631 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
1632 	    break;
1633     if (obj != NULL) {
1634 	object_add_name(obj, name);
1635 	free(path);
1636 	close(fd);
1637 	return obj;
1638     }
1639     if (flags & RTLD_LO_NOLOAD) {
1640 	free(path);
1641 	return (NULL);
1642     }
1643 
1644     /* First use of this object, so we must map it in */
1645     obj = do_load_object(fd, name, path, &sb, flags);
1646     if (obj == NULL)
1647 	free(path);
1648     close(fd);
1649 
1650     return obj;
1651 }
1652 
1653 static Obj_Entry *
1654 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
1655   int flags)
1656 {
1657     Obj_Entry *obj;
1658     struct statfs fs;
1659 
1660     /*
1661      * but first, make sure that environment variables haven't been
1662      * used to circumvent the noexec flag on a filesystem.
1663      */
1664     if (dangerous_ld_env) {
1665 	if (fstatfs(fd, &fs) != 0) {
1666 	    _rtld_error("Cannot fstatfs \"%s\"", path);
1667 		return NULL;
1668 	}
1669 	if (fs.f_flags & MNT_NOEXEC) {
1670 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
1671 	    return NULL;
1672 	}
1673     }
1674     dbg("loading \"%s\"", path);
1675     obj = map_object(fd, path, sbp);
1676     if (obj == NULL)
1677         return NULL;
1678 
1679     object_add_name(obj, name);
1680     obj->path = path;
1681     digest_dynamic(obj, 0);
1682     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
1683       RTLD_LO_DLOPEN) {
1684 	dbg("refusing to load non-loadable \"%s\"", obj->path);
1685 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
1686 	munmap(obj->mapbase, obj->mapsize);
1687 	obj_free(obj);
1688 	return (NULL);
1689     }
1690 
1691     *obj_tail = obj;
1692     obj_tail = &obj->next;
1693     obj_count++;
1694     obj_loads++;
1695     linkmap_add(obj);	/* for GDB & dlinfo() */
1696 
1697     dbg("  %p .. %p: %s", obj->mapbase,
1698          obj->mapbase + obj->mapsize - 1, obj->path);
1699     if (obj->textrel)
1700 	dbg("  WARNING: %s has impure text", obj->path);
1701     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
1702 	obj->path);
1703 
1704     return obj;
1705 }
1706 
1707 static Obj_Entry *
1708 obj_from_addr(const void *addr)
1709 {
1710     Obj_Entry *obj;
1711 
1712     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
1713 	if (addr < (void *) obj->mapbase)
1714 	    continue;
1715 	if (addr < (void *) (obj->mapbase + obj->mapsize))
1716 	    return obj;
1717     }
1718     return NULL;
1719 }
1720 
1721 /*
1722  * Call the finalization functions for each of the objects in "list"
1723  * belonging to the DAG of "root" and referenced once. If NULL "root"
1724  * is specified, every finalization function will be called regardless
1725  * of the reference count and the list elements won't be freed. All of
1726  * the objects are expected to have non-NULL fini functions.
1727  */
1728 static void
1729 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
1730 {
1731     Objlist_Entry *elm;
1732     char *saved_msg;
1733 
1734     assert(root == NULL || root->refcount == 1);
1735 
1736     /*
1737      * Preserve the current error message since a fini function might
1738      * call into the dynamic linker and overwrite it.
1739      */
1740     saved_msg = errmsg_save();
1741     do {
1742 	STAILQ_FOREACH(elm, list, link) {
1743 	    if (root != NULL && (elm->obj->refcount != 1 ||
1744 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
1745 		continue;
1746 	    dbg("calling fini function for %s at %p", elm->obj->path,
1747 	        (void *)elm->obj->fini);
1748 	    LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini, 0, 0,
1749 		elm->obj->path);
1750 	    /* Remove object from fini list to prevent recursive invocation. */
1751 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1752 	    /*
1753 	     * XXX: If a dlopen() call references an object while the
1754 	     * fini function is in progress, we might end up trying to
1755 	     * unload the referenced object in dlclose() or the object
1756 	     * won't be unloaded although its fini function has been
1757 	     * called.
1758 	     */
1759 	    lock_release(rtld_bind_lock, lockstate);
1760 	    call_initfini_pointer(elm->obj, elm->obj->fini);
1761 	    wlock_acquire(rtld_bind_lock, lockstate);
1762 	    /* No need to free anything if process is going down. */
1763 	    if (root != NULL)
1764 		free(elm);
1765 	    /*
1766 	     * We must restart the list traversal after every fini call
1767 	     * because a dlclose() call from the fini function or from
1768 	     * another thread might have modified the reference counts.
1769 	     */
1770 	    break;
1771 	}
1772     } while (elm != NULL);
1773     errmsg_restore(saved_msg);
1774 }
1775 
1776 /*
1777  * Call the initialization functions for each of the objects in
1778  * "list".  All of the objects are expected to have non-NULL init
1779  * functions.
1780  */
1781 static void
1782 objlist_call_init(Objlist *list, RtldLockState *lockstate)
1783 {
1784     Objlist_Entry *elm;
1785     Obj_Entry *obj;
1786     char *saved_msg;
1787 
1788     /*
1789      * Clean init_scanned flag so that objects can be rechecked and
1790      * possibly initialized earlier if any of vectors called below
1791      * cause the change by using dlopen.
1792      */
1793     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1794 	obj->init_scanned = false;
1795 
1796     /*
1797      * Preserve the current error message since an init function might
1798      * call into the dynamic linker and overwrite it.
1799      */
1800     saved_msg = errmsg_save();
1801     STAILQ_FOREACH(elm, list, link) {
1802 	if (elm->obj->init_done) /* Initialized early. */
1803 	    continue;
1804 	dbg("calling init function for %s at %p", elm->obj->path,
1805 	    (void *)elm->obj->init);
1806 	LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init, 0, 0,
1807 	    elm->obj->path);
1808 	/*
1809 	 * Race: other thread might try to use this object before current
1810 	 * one completes the initilization. Not much can be done here
1811 	 * without better locking.
1812 	 */
1813 	elm->obj->init_done = true;
1814 	lock_release(rtld_bind_lock, lockstate);
1815 	call_initfini_pointer(elm->obj, elm->obj->init);
1816 	wlock_acquire(rtld_bind_lock, lockstate);
1817     }
1818     errmsg_restore(saved_msg);
1819 }
1820 
1821 static void
1822 objlist_clear(Objlist *list)
1823 {
1824     Objlist_Entry *elm;
1825 
1826     while (!STAILQ_EMPTY(list)) {
1827 	elm = STAILQ_FIRST(list);
1828 	STAILQ_REMOVE_HEAD(list, link);
1829 	free(elm);
1830     }
1831 }
1832 
1833 static Objlist_Entry *
1834 objlist_find(Objlist *list, const Obj_Entry *obj)
1835 {
1836     Objlist_Entry *elm;
1837 
1838     STAILQ_FOREACH(elm, list, link)
1839 	if (elm->obj == obj)
1840 	    return elm;
1841     return NULL;
1842 }
1843 
1844 static void
1845 objlist_init(Objlist *list)
1846 {
1847     STAILQ_INIT(list);
1848 }
1849 
1850 static void
1851 objlist_push_head(Objlist *list, Obj_Entry *obj)
1852 {
1853     Objlist_Entry *elm;
1854 
1855     elm = NEW(Objlist_Entry);
1856     elm->obj = obj;
1857     STAILQ_INSERT_HEAD(list, elm, link);
1858 }
1859 
1860 static void
1861 objlist_push_tail(Objlist *list, Obj_Entry *obj)
1862 {
1863     Objlist_Entry *elm;
1864 
1865     elm = NEW(Objlist_Entry);
1866     elm->obj = obj;
1867     STAILQ_INSERT_TAIL(list, elm, link);
1868 }
1869 
1870 static void
1871 objlist_remove(Objlist *list, Obj_Entry *obj)
1872 {
1873     Objlist_Entry *elm;
1874 
1875     if ((elm = objlist_find(list, obj)) != NULL) {
1876 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
1877 	free(elm);
1878     }
1879 }
1880 
1881 /*
1882  * Relocate newly-loaded shared objects.  The argument is a pointer to
1883  * the Obj_Entry for the first such object.  All objects from the first
1884  * to the end of the list of objects are relocated.  Returns 0 on success,
1885  * or -1 on failure.
1886  */
1887 static int
1888 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj)
1889 {
1890     Obj_Entry *obj;
1891 
1892     for (obj = first;  obj != NULL;  obj = obj->next) {
1893 	if (obj != rtldobj)
1894 	    dbg("relocating \"%s\"", obj->path);
1895 	if (obj->nbuckets == 0 || obj->nchains == 0 || obj->buckets == NULL ||
1896 	    obj->symtab == NULL || obj->strtab == NULL) {
1897 	    _rtld_error("%s: Shared object has no run-time symbol table",
1898 	      obj->path);
1899 	    return -1;
1900 	}
1901 
1902 	if (obj->textrel) {
1903 	    /* There are relocations to the write-protected text segment. */
1904 	    if (mprotect(obj->mapbase, obj->textsize,
1905 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
1906 		_rtld_error("%s: Cannot write-enable text segment: %s",
1907 		  obj->path, strerror(errno));
1908 		return -1;
1909 	    }
1910 	}
1911 
1912 	/* Process the non-PLT relocations. */
1913 	if (reloc_non_plt(obj, rtldobj))
1914 		return -1;
1915 
1916 	/*
1917 	 * Reprotect the text segment.  Make sure it is included in the
1918 	 * core dump since we modified it.  This unfortunately causes the
1919 	 * entire text segment to core-out but we don't have much of a
1920 	 * choice.  We could try to only reenable core dumps on pages
1921 	 * in which relocations occured but that is likely most of the text
1922 	 * pages anyway, and even that would not work because the rest of
1923 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
1924 	 * (created due to our modifications) backed by the original OBJT_VNODE
1925 	 * object, and the ELF coredump code is currently only able to dump
1926 	 * vnode records for pure vnode-backed mappings, not vnode backings
1927 	 * to memory objects.
1928 	 */
1929 	if (obj->textrel) {
1930 	    madvise(obj->mapbase, obj->textsize, MADV_CORE);
1931 	    if (mprotect(obj->mapbase, obj->textsize,
1932 	      PROT_READ|PROT_EXEC) == -1) {
1933 		_rtld_error("%s: Cannot write-protect text segment: %s",
1934 		  obj->path, strerror(errno));
1935 		return -1;
1936 	    }
1937 	}
1938 
1939 	/* Process the PLT relocations. */
1940 	if (reloc_plt(obj) == -1)
1941 	    return -1;
1942 	/* Relocate the jump slots if we are doing immediate binding. */
1943 	if (obj->bind_now || bind_now)
1944 	    if (reloc_jmpslots(obj) == -1)
1945 		return -1;
1946 
1947 
1948 	/*
1949 	 * Set up the magic number and version in the Obj_Entry.  These
1950 	 * were checked in the crt1.o from the original ElfKit, so we
1951 	 * set them for backward compatibility.
1952 	 */
1953 	obj->magic = RTLD_MAGIC;
1954 	obj->version = RTLD_VERSION;
1955 
1956 	/* Set the special PLT or GOT entries. */
1957 	init_pltgot(obj);
1958     }
1959 
1960     return 0;
1961 }
1962 
1963 /*
1964  * Cleanup procedure.  It will be called (by the atexit mechanism) just
1965  * before the process exits.
1966  */
1967 static void
1968 rtld_exit(void)
1969 {
1970     RtldLockState lockstate;
1971 
1972     wlock_acquire(rtld_bind_lock, &lockstate);
1973     dbg("rtld_exit()");
1974     objlist_call_fini(&list_fini, NULL, &lockstate);
1975     /* No need to remove the items from the list, since we are exiting. */
1976     if (!libmap_disable)
1977         lm_fini();
1978     lock_release(rtld_bind_lock, &lockstate);
1979 }
1980 
1981 static void *
1982 path_enumerate(const char *path, path_enum_proc callback, void *arg)
1983 {
1984     if (path == NULL)
1985 	return (NULL);
1986 
1987     path += strspn(path, ":;");
1988     while (*path != '\0') {
1989 	size_t len;
1990 	char  *res;
1991 
1992 	len = strcspn(path, ":;");
1993 	res = callback(path, len, arg);
1994 
1995 	if (res != NULL)
1996 	    return (res);
1997 
1998 	path += len;
1999 	path += strspn(path, ":;");
2000     }
2001 
2002     return (NULL);
2003 }
2004 
2005 struct try_library_args {
2006     const char	*name;
2007     size_t	 namelen;
2008     char	*buffer;
2009     size_t	 buflen;
2010 };
2011 
2012 static void *
2013 try_library_path(const char *dir, size_t dirlen, void *param)
2014 {
2015     struct try_library_args *arg;
2016 
2017     arg = param;
2018     if (*dir == '/' || trust) {
2019 	char *pathname;
2020 
2021 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2022 		return (NULL);
2023 
2024 	pathname = arg->buffer;
2025 	strncpy(pathname, dir, dirlen);
2026 	pathname[dirlen] = '/';
2027 	strcpy(pathname + dirlen + 1, arg->name);
2028 
2029 	dbg("  Trying \"%s\"", pathname);
2030 	if (access(pathname, F_OK) == 0) {		/* We found it */
2031 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2032 	    strcpy(pathname, arg->buffer);
2033 	    return (pathname);
2034 	}
2035     }
2036     return (NULL);
2037 }
2038 
2039 static char *
2040 search_library_path(const char *name, const char *path)
2041 {
2042     char *p;
2043     struct try_library_args arg;
2044 
2045     if (path == NULL)
2046 	return NULL;
2047 
2048     arg.name = name;
2049     arg.namelen = strlen(name);
2050     arg.buffer = xmalloc(PATH_MAX);
2051     arg.buflen = PATH_MAX;
2052 
2053     p = path_enumerate(path, try_library_path, &arg);
2054 
2055     free(arg.buffer);
2056 
2057     return (p);
2058 }
2059 
2060 int
2061 dlclose(void *handle)
2062 {
2063     Obj_Entry *root;
2064     RtldLockState lockstate;
2065 
2066     wlock_acquire(rtld_bind_lock, &lockstate);
2067     root = dlcheck(handle);
2068     if (root == NULL) {
2069 	lock_release(rtld_bind_lock, &lockstate);
2070 	return -1;
2071     }
2072     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2073 	root->path);
2074 
2075     /* Unreference the object and its dependencies. */
2076     root->dl_refcount--;
2077 
2078     if (root->refcount == 1) {
2079 	/*
2080 	 * The object will be no longer referenced, so we must unload it.
2081 	 * First, call the fini functions.
2082 	 */
2083 	objlist_call_fini(&list_fini, root, &lockstate);
2084 
2085 	unref_dag(root);
2086 
2087 	/* Finish cleaning up the newly-unreferenced objects. */
2088 	GDB_STATE(RT_DELETE,&root->linkmap);
2089 	unload_object(root);
2090 	GDB_STATE(RT_CONSISTENT,NULL);
2091     } else
2092 	unref_dag(root);
2093 
2094     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2095     lock_release(rtld_bind_lock, &lockstate);
2096     return 0;
2097 }
2098 
2099 char *
2100 dlerror(void)
2101 {
2102     char *msg = error_message;
2103     error_message = NULL;
2104     return msg;
2105 }
2106 
2107 void *
2108 dlopen(const char *name, int mode)
2109 {
2110     Obj_Entry **old_obj_tail;
2111     Obj_Entry *obj;
2112     Objlist initlist;
2113     RtldLockState lockstate;
2114     int result, lo_flags;
2115 
2116     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2117     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2118     if (ld_tracing != NULL)
2119 	environ = (char **)*get_program_var_addr("environ");
2120     lo_flags = RTLD_LO_DLOPEN;
2121     if (mode & RTLD_NODELETE)
2122 	    lo_flags |= RTLD_LO_NODELETE;
2123     if (mode & RTLD_NOLOAD)
2124 	    lo_flags |= RTLD_LO_NOLOAD;
2125     if (ld_tracing != NULL)
2126 	    lo_flags |= RTLD_LO_TRACE;
2127 
2128     objlist_init(&initlist);
2129 
2130     wlock_acquire(rtld_bind_lock, &lockstate);
2131     GDB_STATE(RT_ADD,NULL);
2132 
2133     old_obj_tail = obj_tail;
2134     obj = NULL;
2135     if (name == NULL) {
2136 	obj = obj_main;
2137 	obj->refcount++;
2138     } else {
2139 	obj = load_object(name, obj_main, lo_flags);
2140     }
2141 
2142     if (obj) {
2143 	obj->dl_refcount++;
2144 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2145 	    objlist_push_tail(&list_global, obj);
2146 	mode &= RTLD_MODEMASK;
2147 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2148 	    assert(*old_obj_tail == obj);
2149 	    result = load_needed_objects(obj, RTLD_LO_DLOPEN);
2150 	    init_dag(obj);
2151 	    ref_dag(obj);
2152 	    if (result != -1)
2153 		result = rtld_verify_versions(&obj->dagmembers);
2154 	    if (result != -1 && ld_tracing)
2155 		goto trace;
2156 	    if (result == -1 ||
2157 	      (relocate_objects(obj, mode == RTLD_NOW, &obj_rtld)) == -1) {
2158 		obj->dl_refcount--;
2159 		unref_dag(obj);
2160 		if (obj->refcount == 0)
2161 		    unload_object(obj);
2162 		obj = NULL;
2163 	    } else {
2164 		/* Make list of init functions to call. */
2165 		initlist_add_objects(obj, &obj->next, &initlist);
2166 	    }
2167 	} else {
2168 
2169 	    /*
2170 	     * Bump the reference counts for objects on this DAG.  If
2171 	     * this is the first dlopen() call for the object that was
2172 	     * already loaded as a dependency, initialize the dag
2173 	     * starting at it.
2174 	     */
2175 	    init_dag(obj);
2176 	    ref_dag(obj);
2177 
2178 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2179 		goto trace;
2180 	}
2181 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2182 	  obj->z_nodelete) && !obj->ref_nodel) {
2183 	    dbg("obj %s nodelete", obj->path);
2184 	    ref_dag(obj);
2185 	    obj->z_nodelete = obj->ref_nodel = true;
2186 	}
2187     }
2188 
2189     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2190 	name);
2191     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2192 
2193     /* Call the init functions. */
2194     objlist_call_init(&initlist, &lockstate);
2195     objlist_clear(&initlist);
2196     lock_release(rtld_bind_lock, &lockstate);
2197     return obj;
2198 trace:
2199     trace_loaded_objects(obj);
2200     lock_release(rtld_bind_lock, &lockstate);
2201     exit(0);
2202 }
2203 
2204 static void *
2205 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
2206     int flags)
2207 {
2208     DoneList donelist;
2209     const Obj_Entry *obj, *defobj;
2210     const Elf_Sym *def, *symp;
2211     unsigned long hash;
2212     RtldLockState lockstate;
2213 
2214     hash = elf_hash(name);
2215     def = NULL;
2216     defobj = NULL;
2217     flags |= SYMLOOK_IN_PLT;
2218 
2219     rlock_acquire(rtld_bind_lock, &lockstate);
2220     if (sigsetjmp(lockstate.env, 0) != 0)
2221 	    lock_upgrade(rtld_bind_lock, &lockstate);
2222     if (handle == NULL || handle == RTLD_NEXT ||
2223 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
2224 
2225 	if ((obj = obj_from_addr(retaddr)) == NULL) {
2226 	    _rtld_error("Cannot determine caller's shared object");
2227 	    lock_release(rtld_bind_lock, &lockstate);
2228 	    return NULL;
2229 	}
2230 	if (handle == NULL) {	/* Just the caller's shared object. */
2231 	    def = symlook_obj(name, hash, obj, ve, flags);
2232 	    defobj = obj;
2233 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
2234 		   handle == RTLD_SELF) { /* ... caller included */
2235 	    if (handle == RTLD_NEXT)
2236 		obj = obj->next;
2237 	    for (; obj != NULL; obj = obj->next) {
2238 		if ((symp = symlook_obj(name, hash, obj, ve, flags)) != NULL) {
2239 		    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2240 			def = symp;
2241 			defobj = obj;
2242 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2243 			    break;
2244 		    }
2245 		}
2246 	    }
2247 	    /*
2248 	     * Search the dynamic linker itself, and possibly resolve the
2249 	     * symbol from there.  This is how the application links to
2250 	     * dynamic linker services such as dlopen.
2251 	     */
2252 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2253 		symp = symlook_obj(name, hash, &obj_rtld, ve, flags);
2254 		if (symp != NULL) {
2255 		    def = symp;
2256 		    defobj = &obj_rtld;
2257 		}
2258 	    }
2259 	} else {
2260 	    assert(handle == RTLD_DEFAULT);
2261 	    def = symlook_default(name, hash, obj, &defobj, ve, flags);
2262 	}
2263     } else {
2264 	if ((obj = dlcheck(handle)) == NULL) {
2265 	    lock_release(rtld_bind_lock, &lockstate);
2266 	    return NULL;
2267 	}
2268 
2269 	donelist_init(&donelist);
2270 	if (obj->mainprog) {
2271 	    /* Search main program and all libraries loaded by it. */
2272 	    def = symlook_list(name, hash, &list_main, &defobj, ve, flags,
2273 			       &donelist);
2274 
2275 	    /*
2276 	     * We do not distinguish between 'main' object and global scope.
2277 	     * If symbol is not defined by objects loaded at startup, continue
2278 	     * search among dynamically loaded objects with RTLD_GLOBAL
2279 	     * scope.
2280 	     */
2281 	    if (def == NULL)
2282 		def = symlook_list(name, hash, &list_global, &defobj, ve,
2283 				   flags, &donelist);
2284 	} else {
2285 	    Needed_Entry fake;
2286 
2287 	    /* Search the whole DAG rooted at the given object. */
2288 	    fake.next = NULL;
2289 	    fake.obj = (Obj_Entry *)obj;
2290 	    fake.name = 0;
2291 	    def = symlook_needed(name, hash, &fake, &defobj, ve, flags,
2292 				 &donelist);
2293 	}
2294     }
2295 
2296     if (def != NULL) {
2297 	lock_release(rtld_bind_lock, &lockstate);
2298 
2299 	/*
2300 	 * The value required by the caller is derived from the value
2301 	 * of the symbol. For the ia64 architecture, we need to
2302 	 * construct a function descriptor which the caller can use to
2303 	 * call the function with the right 'gp' value. For other
2304 	 * architectures and for non-functions, the value is simply
2305 	 * the relocated value of the symbol.
2306 	 */
2307 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
2308 	    return make_function_pointer(def, defobj);
2309 	else
2310 	    return defobj->relocbase + def->st_value;
2311     }
2312 
2313     _rtld_error("Undefined symbol \"%s\"", name);
2314     lock_release(rtld_bind_lock, &lockstate);
2315     return NULL;
2316 }
2317 
2318 void *
2319 dlsym(void *handle, const char *name)
2320 {
2321 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
2322 	    SYMLOOK_DLSYM);
2323 }
2324 
2325 dlfunc_t
2326 dlfunc(void *handle, const char *name)
2327 {
2328 	union {
2329 		void *d;
2330 		dlfunc_t f;
2331 	} rv;
2332 
2333 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
2334 	    SYMLOOK_DLSYM);
2335 	return (rv.f);
2336 }
2337 
2338 void *
2339 dlvsym(void *handle, const char *name, const char *version)
2340 {
2341 	Ver_Entry ventry;
2342 
2343 	ventry.name = version;
2344 	ventry.file = NULL;
2345 	ventry.hash = elf_hash(version);
2346 	ventry.flags= 0;
2347 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
2348 	    SYMLOOK_DLSYM);
2349 }
2350 
2351 int
2352 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
2353 {
2354     const Obj_Entry *obj;
2355     RtldLockState lockstate;
2356 
2357     rlock_acquire(rtld_bind_lock, &lockstate);
2358     obj = obj_from_addr(addr);
2359     if (obj == NULL) {
2360         _rtld_error("No shared object contains address");
2361 	lock_release(rtld_bind_lock, &lockstate);
2362         return (0);
2363     }
2364     rtld_fill_dl_phdr_info(obj, phdr_info);
2365     lock_release(rtld_bind_lock, &lockstate);
2366     return (1);
2367 }
2368 
2369 int
2370 dladdr(const void *addr, Dl_info *info)
2371 {
2372     const Obj_Entry *obj;
2373     const Elf_Sym *def;
2374     void *symbol_addr;
2375     unsigned long symoffset;
2376     RtldLockState lockstate;
2377 
2378     rlock_acquire(rtld_bind_lock, &lockstate);
2379     obj = obj_from_addr(addr);
2380     if (obj == NULL) {
2381         _rtld_error("No shared object contains address");
2382 	lock_release(rtld_bind_lock, &lockstate);
2383         return 0;
2384     }
2385     info->dli_fname = obj->path;
2386     info->dli_fbase = obj->mapbase;
2387     info->dli_saddr = NULL;
2388     info->dli_sname = NULL;
2389 
2390     /*
2391      * Walk the symbol list looking for the symbol whose address is
2392      * closest to the address sent in.
2393      */
2394     for (symoffset = 0; symoffset < obj->nchains; symoffset++) {
2395         def = obj->symtab + symoffset;
2396 
2397         /*
2398          * For skip the symbol if st_shndx is either SHN_UNDEF or
2399          * SHN_COMMON.
2400          */
2401         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
2402             continue;
2403 
2404         /*
2405          * If the symbol is greater than the specified address, or if it
2406          * is further away from addr than the current nearest symbol,
2407          * then reject it.
2408          */
2409         symbol_addr = obj->relocbase + def->st_value;
2410         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
2411             continue;
2412 
2413         /* Update our idea of the nearest symbol. */
2414         info->dli_sname = obj->strtab + def->st_name;
2415         info->dli_saddr = symbol_addr;
2416 
2417         /* Exact match? */
2418         if (info->dli_saddr == addr)
2419             break;
2420     }
2421     lock_release(rtld_bind_lock, &lockstate);
2422     return 1;
2423 }
2424 
2425 int
2426 dlinfo(void *handle, int request, void *p)
2427 {
2428     const Obj_Entry *obj;
2429     RtldLockState lockstate;
2430     int error;
2431 
2432     rlock_acquire(rtld_bind_lock, &lockstate);
2433 
2434     if (handle == NULL || handle == RTLD_SELF) {
2435 	void *retaddr;
2436 
2437 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
2438 	if ((obj = obj_from_addr(retaddr)) == NULL)
2439 	    _rtld_error("Cannot determine caller's shared object");
2440     } else
2441 	obj = dlcheck(handle);
2442 
2443     if (obj == NULL) {
2444 	lock_release(rtld_bind_lock, &lockstate);
2445 	return (-1);
2446     }
2447 
2448     error = 0;
2449     switch (request) {
2450     case RTLD_DI_LINKMAP:
2451 	*((struct link_map const **)p) = &obj->linkmap;
2452 	break;
2453     case RTLD_DI_ORIGIN:
2454 	error = rtld_dirname(obj->path, p);
2455 	break;
2456 
2457     case RTLD_DI_SERINFOSIZE:
2458     case RTLD_DI_SERINFO:
2459 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
2460 	break;
2461 
2462     default:
2463 	_rtld_error("Invalid request %d passed to dlinfo()", request);
2464 	error = -1;
2465     }
2466 
2467     lock_release(rtld_bind_lock, &lockstate);
2468 
2469     return (error);
2470 }
2471 
2472 static void
2473 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
2474 {
2475 
2476 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
2477 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
2478 	    STAILQ_FIRST(&obj->names)->name : obj->path;
2479 	phdr_info->dlpi_phdr = obj->phdr;
2480 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
2481 	phdr_info->dlpi_tls_modid = obj->tlsindex;
2482 	phdr_info->dlpi_tls_data = obj->tlsinit;
2483 	phdr_info->dlpi_adds = obj_loads;
2484 	phdr_info->dlpi_subs = obj_loads - obj_count;
2485 }
2486 
2487 int
2488 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
2489 {
2490     struct dl_phdr_info phdr_info;
2491     const Obj_Entry *obj;
2492     RtldLockState bind_lockstate, phdr_lockstate;
2493     int error;
2494 
2495     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
2496     rlock_acquire(rtld_bind_lock, &bind_lockstate);
2497 
2498     error = 0;
2499 
2500     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2501 	rtld_fill_dl_phdr_info(obj, &phdr_info);
2502 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
2503 		break;
2504 
2505     }
2506     lock_release(rtld_bind_lock, &bind_lockstate);
2507     lock_release(rtld_phdr_lock, &phdr_lockstate);
2508 
2509     return (error);
2510 }
2511 
2512 struct fill_search_info_args {
2513     int		 request;
2514     unsigned int flags;
2515     Dl_serinfo  *serinfo;
2516     Dl_serpath  *serpath;
2517     char	*strspace;
2518 };
2519 
2520 static void *
2521 fill_search_info(const char *dir, size_t dirlen, void *param)
2522 {
2523     struct fill_search_info_args *arg;
2524 
2525     arg = param;
2526 
2527     if (arg->request == RTLD_DI_SERINFOSIZE) {
2528 	arg->serinfo->dls_cnt ++;
2529 	arg->serinfo->dls_size += sizeof(Dl_serpath) + dirlen + 1;
2530     } else {
2531 	struct dl_serpath *s_entry;
2532 
2533 	s_entry = arg->serpath;
2534 	s_entry->dls_name  = arg->strspace;
2535 	s_entry->dls_flags = arg->flags;
2536 
2537 	strncpy(arg->strspace, dir, dirlen);
2538 	arg->strspace[dirlen] = '\0';
2539 
2540 	arg->strspace += dirlen + 1;
2541 	arg->serpath++;
2542     }
2543 
2544     return (NULL);
2545 }
2546 
2547 static int
2548 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
2549 {
2550     struct dl_serinfo _info;
2551     struct fill_search_info_args args;
2552 
2553     args.request = RTLD_DI_SERINFOSIZE;
2554     args.serinfo = &_info;
2555 
2556     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
2557     _info.dls_cnt  = 0;
2558 
2559     path_enumerate(ld_library_path, fill_search_info, &args);
2560     path_enumerate(obj->rpath, fill_search_info, &args);
2561     path_enumerate(gethints(), fill_search_info, &args);
2562     path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
2563 
2564 
2565     if (request == RTLD_DI_SERINFOSIZE) {
2566 	info->dls_size = _info.dls_size;
2567 	info->dls_cnt = _info.dls_cnt;
2568 	return (0);
2569     }
2570 
2571     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
2572 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
2573 	return (-1);
2574     }
2575 
2576     args.request  = RTLD_DI_SERINFO;
2577     args.serinfo  = info;
2578     args.serpath  = &info->dls_serpath[0];
2579     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
2580 
2581     args.flags = LA_SER_LIBPATH;
2582     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
2583 	return (-1);
2584 
2585     args.flags = LA_SER_RUNPATH;
2586     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
2587 	return (-1);
2588 
2589     args.flags = LA_SER_CONFIG;
2590     if (path_enumerate(gethints(), fill_search_info, &args) != NULL)
2591 	return (-1);
2592 
2593     args.flags = LA_SER_DEFAULT;
2594     if (path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
2595 	return (-1);
2596     return (0);
2597 }
2598 
2599 static int
2600 rtld_dirname(const char *path, char *bname)
2601 {
2602     const char *endp;
2603 
2604     /* Empty or NULL string gets treated as "." */
2605     if (path == NULL || *path == '\0') {
2606 	bname[0] = '.';
2607 	bname[1] = '\0';
2608 	return (0);
2609     }
2610 
2611     /* Strip trailing slashes */
2612     endp = path + strlen(path) - 1;
2613     while (endp > path && *endp == '/')
2614 	endp--;
2615 
2616     /* Find the start of the dir */
2617     while (endp > path && *endp != '/')
2618 	endp--;
2619 
2620     /* Either the dir is "/" or there are no slashes */
2621     if (endp == path) {
2622 	bname[0] = *endp == '/' ? '/' : '.';
2623 	bname[1] = '\0';
2624 	return (0);
2625     } else {
2626 	do {
2627 	    endp--;
2628 	} while (endp > path && *endp == '/');
2629     }
2630 
2631     if (endp - path + 2 > PATH_MAX)
2632     {
2633 	_rtld_error("Filename is too long: %s", path);
2634 	return(-1);
2635     }
2636 
2637     strncpy(bname, path, endp - path + 1);
2638     bname[endp - path + 1] = '\0';
2639     return (0);
2640 }
2641 
2642 static int
2643 rtld_dirname_abs(const char *path, char *base)
2644 {
2645 	char base_rel[PATH_MAX];
2646 
2647 	if (rtld_dirname(path, base) == -1)
2648 		return (-1);
2649 	if (base[0] == '/')
2650 		return (0);
2651 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
2652 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
2653 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
2654 		return (-1);
2655 	strcpy(base, base_rel);
2656 	return (0);
2657 }
2658 
2659 static void
2660 linkmap_add(Obj_Entry *obj)
2661 {
2662     struct link_map *l = &obj->linkmap;
2663     struct link_map *prev;
2664 
2665     obj->linkmap.l_name = obj->path;
2666     obj->linkmap.l_addr = obj->mapbase;
2667     obj->linkmap.l_ld = obj->dynamic;
2668 #ifdef __mips__
2669     /* GDB needs load offset on MIPS to use the symbols */
2670     obj->linkmap.l_offs = obj->relocbase;
2671 #endif
2672 
2673     if (r_debug.r_map == NULL) {
2674 	r_debug.r_map = l;
2675 	return;
2676     }
2677 
2678     /*
2679      * Scan to the end of the list, but not past the entry for the
2680      * dynamic linker, which we want to keep at the very end.
2681      */
2682     for (prev = r_debug.r_map;
2683       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
2684       prev = prev->l_next)
2685 	;
2686 
2687     /* Link in the new entry. */
2688     l->l_prev = prev;
2689     l->l_next = prev->l_next;
2690     if (l->l_next != NULL)
2691 	l->l_next->l_prev = l;
2692     prev->l_next = l;
2693 }
2694 
2695 static void
2696 linkmap_delete(Obj_Entry *obj)
2697 {
2698     struct link_map *l = &obj->linkmap;
2699 
2700     if (l->l_prev == NULL) {
2701 	if ((r_debug.r_map = l->l_next) != NULL)
2702 	    l->l_next->l_prev = NULL;
2703 	return;
2704     }
2705 
2706     if ((l->l_prev->l_next = l->l_next) != NULL)
2707 	l->l_next->l_prev = l->l_prev;
2708 }
2709 
2710 /*
2711  * Function for the debugger to set a breakpoint on to gain control.
2712  *
2713  * The two parameters allow the debugger to easily find and determine
2714  * what the runtime loader is doing and to whom it is doing it.
2715  *
2716  * When the loadhook trap is hit (r_debug_state, set at program
2717  * initialization), the arguments can be found on the stack:
2718  *
2719  *  +8   struct link_map *m
2720  *  +4   struct r_debug  *rd
2721  *  +0   RetAddr
2722  */
2723 void
2724 r_debug_state(struct r_debug* rd, struct link_map *m)
2725 {
2726 }
2727 
2728 /*
2729  * Get address of the pointer variable in the main program.
2730  */
2731 static const void **
2732 get_program_var_addr(const char *name)
2733 {
2734     const Obj_Entry *obj;
2735     unsigned long hash;
2736 
2737     hash = elf_hash(name);
2738     for (obj = obj_main;  obj != NULL;  obj = obj->next) {
2739 	const Elf_Sym *def;
2740 
2741 	if ((def = symlook_obj(name, hash, obj, NULL, 0)) != NULL) {
2742 	    const void **addr;
2743 
2744 	    addr = (const void **)(obj->relocbase + def->st_value);
2745 	    return addr;
2746 	}
2747     }
2748     return (NULL);
2749 }
2750 
2751 /*
2752  * Set a pointer variable in the main program to the given value.  This
2753  * is used to set key variables such as "environ" before any of the
2754  * init functions are called.
2755  */
2756 static void
2757 set_program_var(const char *name, const void *value)
2758 {
2759     const void **addr;
2760 
2761     if ((addr = get_program_var_addr(name)) != NULL) {
2762 	dbg("\"%s\": *%p <-- %p", name, addr, value);
2763 	*addr = value;
2764     }
2765 }
2766 
2767 /*
2768  * This is a special version of getenv which is far more efficient
2769  * at finding LD_ environment vars.
2770  */
2771 static
2772 const char *
2773 _getenv_ld(const char *id)
2774 {
2775     const char *envp;
2776     int i, j;
2777     int idlen = strlen(id);
2778 
2779     if (ld_index == LD_ARY_CACHE)
2780 	return(getenv(id));
2781     if (ld_index == 0) {
2782 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
2783 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
2784 		ld_ary[j++] = envp;
2785 	}
2786 	if (j == 0)
2787 		ld_ary[j++] = "";
2788 	ld_index = j;
2789     }
2790     for (i = ld_index - 1; i >= 0; --i) {
2791 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
2792 	    return(ld_ary[i] + idlen + 1);
2793     }
2794     return(NULL);
2795 }
2796 
2797 /*
2798  * Given a symbol name in a referencing object, find the corresponding
2799  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
2800  * no definition was found.  Returns a pointer to the Obj_Entry of the
2801  * defining object via the reference parameter DEFOBJ_OUT.
2802  */
2803 static const Elf_Sym *
2804 symlook_default(const char *name, unsigned long hash, const Obj_Entry *refobj,
2805     const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags)
2806 {
2807     DoneList donelist;
2808     const Elf_Sym *def;
2809     const Elf_Sym *symp;
2810     const Obj_Entry *obj;
2811     const Obj_Entry *defobj;
2812     const Objlist_Entry *elm;
2813     def = NULL;
2814     defobj = NULL;
2815     donelist_init(&donelist);
2816 
2817     /* Look first in the referencing object if linked symbolically. */
2818     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
2819 	symp = symlook_obj(name, hash, refobj, ventry, flags);
2820 	if (symp != NULL) {
2821 	    def = symp;
2822 	    defobj = refobj;
2823 	}
2824     }
2825 
2826     /* Search all objects loaded at program start up. */
2827     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2828 	symp = symlook_list(name, hash, &list_main, &obj, ventry, flags,
2829 	    &donelist);
2830 	if (symp != NULL &&
2831 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2832 	    def = symp;
2833 	    defobj = obj;
2834 	}
2835     }
2836 
2837     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
2838     STAILQ_FOREACH(elm, &list_global, link) {
2839        if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2840            break;
2841        symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2842 	   flags, &donelist);
2843 	if (symp != NULL &&
2844 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2845 	    def = symp;
2846 	    defobj = obj;
2847 	}
2848     }
2849 
2850     /* Search all dlopened DAGs containing the referencing object. */
2851     STAILQ_FOREACH(elm, &refobj->dldags, link) {
2852 	if (def != NULL && ELF_ST_BIND(def->st_info) != STB_WEAK)
2853 	    break;
2854 	symp = symlook_list(name, hash, &elm->obj->dagmembers, &obj, ventry,
2855 	    flags, &donelist);
2856 	if (symp != NULL &&
2857 	  (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK)) {
2858 	    def = symp;
2859 	    defobj = obj;
2860 	}
2861     }
2862 
2863     /*
2864      * Search the dynamic linker itself, and possibly resolve the
2865      * symbol from there.  This is how the application links to
2866      * dynamic linker services such as dlopen.  Only the values listed
2867      * in the "exports" array can be resolved from the dynamic linker.
2868      */
2869     if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
2870 	symp = symlook_obj(name, hash, &obj_rtld, ventry, flags);
2871 	if (symp != NULL && is_exported(symp)) {
2872 	    def = symp;
2873 	    defobj = &obj_rtld;
2874 	}
2875     }
2876 
2877     if (def != NULL)
2878 	*defobj_out = defobj;
2879     return def;
2880 }
2881 
2882 static const Elf_Sym *
2883 symlook_list(const char *name, unsigned long hash, const Objlist *objlist,
2884   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2885   DoneList *dlp)
2886 {
2887     const Elf_Sym *symp;
2888     const Elf_Sym *def;
2889     const Obj_Entry *defobj;
2890     const Objlist_Entry *elm;
2891 
2892     def = NULL;
2893     defobj = NULL;
2894     STAILQ_FOREACH(elm, objlist, link) {
2895 	if (donelist_check(dlp, elm->obj))
2896 	    continue;
2897 	if ((symp = symlook_obj(name, hash, elm->obj, ventry, flags)) != NULL) {
2898 	    if (def == NULL || ELF_ST_BIND(symp->st_info) != STB_WEAK) {
2899 		def = symp;
2900 		defobj = elm->obj;
2901 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
2902 		    break;
2903 	    }
2904 	}
2905     }
2906     if (def != NULL)
2907 	*defobj_out = defobj;
2908     return def;
2909 }
2910 
2911 /*
2912  * Search the symbol table of a shared object and all objects needed
2913  * by it for a symbol of the given name.  Search order is
2914  * breadth-first.  Returns a pointer to the symbol, or NULL if no
2915  * definition was found.
2916  */
2917 static const Elf_Sym *
2918 symlook_needed(const char *name, unsigned long hash, const Needed_Entry *needed,
2919   const Obj_Entry **defobj_out, const Ver_Entry *ventry, int flags,
2920   DoneList *dlp)
2921 {
2922     const Elf_Sym *def, *def_w;
2923     const Needed_Entry *n;
2924     const Obj_Entry *obj, *defobj, *defobj1;
2925 
2926     def = def_w = NULL;
2927     defobj = NULL;
2928     for (n = needed; n != NULL; n = n->next) {
2929 	if ((obj = n->obj) == NULL ||
2930 	    donelist_check(dlp, obj) ||
2931 	    (def = symlook_obj(name, hash, obj, ventry, flags)) == NULL)
2932 	    continue;
2933 	defobj = obj;
2934 	if (ELF_ST_BIND(def->st_info) != STB_WEAK) {
2935 	    *defobj_out = defobj;
2936 	    return (def);
2937 	}
2938     }
2939     /*
2940      * There we come when either symbol definition is not found in
2941      * directly needed objects, or found symbol is weak.
2942      */
2943     for (n = needed; n != NULL; n = n->next) {
2944 	if ((obj = n->obj) == NULL)
2945 	    continue;
2946 	def_w = symlook_needed(name, hash, obj->needed, &defobj1,
2947 			       ventry, flags, dlp);
2948 	if (def_w == NULL)
2949 	    continue;
2950 	if (def == NULL || ELF_ST_BIND(def_w->st_info) != STB_WEAK) {
2951 	    def = def_w;
2952 	    defobj = defobj1;
2953 	}
2954 	if (ELF_ST_BIND(def_w->st_info) != STB_WEAK)
2955 	    break;
2956     }
2957     if (def != NULL)
2958 	*defobj_out = defobj;
2959     return (def);
2960 }
2961 
2962 /*
2963  * Search the symbol table of a single shared object for a symbol of
2964  * the given name and version, if requested.  Returns a pointer to the
2965  * symbol, or NULL if no definition was found.
2966  *
2967  * The symbol's hash value is passed in for efficiency reasons; that
2968  * eliminates many recomputations of the hash value.
2969  */
2970 const Elf_Sym *
2971 symlook_obj(const char *name, unsigned long hash, const Obj_Entry *obj,
2972     const Ver_Entry *ventry, int flags)
2973 {
2974     unsigned long symnum;
2975     const Elf_Sym *vsymp;
2976     Elf_Versym verndx;
2977     int vcount;
2978 
2979     if (obj->buckets == NULL)
2980 	return NULL;
2981 
2982     vsymp = NULL;
2983     vcount = 0;
2984     symnum = obj->buckets[hash % obj->nbuckets];
2985 
2986     for (; symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
2987 	const Elf_Sym *symp;
2988 	const char *strp;
2989 
2990 	if (symnum >= obj->nchains)
2991 	    return NULL;	/* Bad object */
2992 
2993 	symp = obj->symtab + symnum;
2994 	strp = obj->strtab + symp->st_name;
2995 
2996 	switch (ELF_ST_TYPE(symp->st_info)) {
2997 	case STT_FUNC:
2998 	case STT_NOTYPE:
2999 	case STT_OBJECT:
3000 	    if (symp->st_value == 0)
3001 		continue;
3002 		/* fallthrough */
3003 	case STT_TLS:
3004 	    if (symp->st_shndx != SHN_UNDEF)
3005 		break;
3006 	    else if (((flags & SYMLOOK_IN_PLT) == 0) &&
3007 		 (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3008 		break;
3009 		/* fallthrough */
3010 	default:
3011 	    continue;
3012 	}
3013 	if (name[0] != strp[0] || strcmp(name, strp) != 0)
3014 	    continue;
3015 
3016 	if (ventry == NULL) {
3017 	    if (obj->versyms != NULL) {
3018 		verndx = VER_NDX(obj->versyms[symnum]);
3019 		if (verndx > obj->vernum) {
3020 		    _rtld_error("%s: symbol %s references wrong version %d",
3021 			obj->path, obj->strtab + symnum, verndx);
3022 		    continue;
3023 		}
3024 		/*
3025 		 * If we are not called from dlsym (i.e. this is a normal
3026 		 * relocation from unversioned binary), accept the symbol
3027 		 * immediately if it happens to have first version after
3028 		 * this shared object became versioned. Otherwise, if
3029 		 * symbol is versioned and not hidden, remember it. If it
3030 		 * is the only symbol with this name exported by the
3031 		 * shared object, it will be returned as a match at the
3032 		 * end of the function. If symbol is global (verndx < 2)
3033 		 * accept it unconditionally.
3034 		 */
3035 		if ((flags & SYMLOOK_DLSYM) == 0 && verndx == VER_NDX_GIVEN)
3036 		    return symp;
3037 		else if (verndx >= VER_NDX_GIVEN) {
3038 		    if ((obj->versyms[symnum] & VER_NDX_HIDDEN) == 0) {
3039 			if (vsymp == NULL)
3040 			    vsymp = symp;
3041 			vcount ++;
3042 		    }
3043 		    continue;
3044 		}
3045 	    }
3046 	    return symp;
3047 	} else {
3048 	    if (obj->versyms == NULL) {
3049 		if (object_match_name(obj, ventry->name)) {
3050 		    _rtld_error("%s: object %s should provide version %s for "
3051 			"symbol %s", obj_rtld.path, obj->path, ventry->name,
3052 			obj->strtab + symnum);
3053 		    continue;
3054 		}
3055 	    } else {
3056 		verndx = VER_NDX(obj->versyms[symnum]);
3057 		if (verndx > obj->vernum) {
3058 		    _rtld_error("%s: symbol %s references wrong version %d",
3059 			obj->path, obj->strtab + symnum, verndx);
3060 		    continue;
3061 		}
3062 		if (obj->vertab[verndx].hash != ventry->hash ||
3063 		    strcmp(obj->vertab[verndx].name, ventry->name)) {
3064 		    /*
3065 		     * Version does not match. Look if this is a global symbol
3066 		     * and if it is not hidden. If global symbol (verndx < 2)
3067 		     * is available, use it. Do not return symbol if we are
3068 		     * called by dlvsym, because dlvsym looks for a specific
3069 		     * version and default one is not what dlvsym wants.
3070 		     */
3071 		    if ((flags & SYMLOOK_DLSYM) ||
3072 			(obj->versyms[symnum] & VER_NDX_HIDDEN) ||
3073 			(verndx >= VER_NDX_GIVEN))
3074 			continue;
3075 		}
3076 	    }
3077 	    return symp;
3078 	}
3079     }
3080     return (vcount == 1) ? vsymp : NULL;
3081 }
3082 
3083 static void
3084 trace_loaded_objects(Obj_Entry *obj)
3085 {
3086     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
3087     int		c;
3088 
3089     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
3090 	main_local = "";
3091 
3092     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
3093 	fmt1 = "\t%o => %p (%x)\n";
3094 
3095     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
3096 	fmt2 = "\t%o (%x)\n";
3097 
3098     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
3099 
3100     for (; obj; obj = obj->next) {
3101 	Needed_Entry		*needed;
3102 	char			*name, *path;
3103 	bool			is_lib;
3104 
3105 	if (list_containers && obj->needed != NULL)
3106 	    printf("%s:\n", obj->path);
3107 	for (needed = obj->needed; needed; needed = needed->next) {
3108 	    if (needed->obj != NULL) {
3109 		if (needed->obj->traced && !list_containers)
3110 		    continue;
3111 		needed->obj->traced = true;
3112 		path = needed->obj->path;
3113 	    } else
3114 		path = "not found";
3115 
3116 	    name = (char *)obj->strtab + needed->name;
3117 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
3118 
3119 	    fmt = is_lib ? fmt1 : fmt2;
3120 	    while ((c = *fmt++) != '\0') {
3121 		switch (c) {
3122 		default:
3123 		    putchar(c);
3124 		    continue;
3125 		case '\\':
3126 		    switch (c = *fmt) {
3127 		    case '\0':
3128 			continue;
3129 		    case 'n':
3130 			putchar('\n');
3131 			break;
3132 		    case 't':
3133 			putchar('\t');
3134 			break;
3135 		    }
3136 		    break;
3137 		case '%':
3138 		    switch (c = *fmt) {
3139 		    case '\0':
3140 			continue;
3141 		    case '%':
3142 		    default:
3143 			putchar(c);
3144 			break;
3145 		    case 'A':
3146 			printf("%s", main_local);
3147 			break;
3148 		    case 'a':
3149 			printf("%s", obj_main->path);
3150 			break;
3151 		    case 'o':
3152 			printf("%s", name);
3153 			break;
3154 		    case 'p':
3155 			printf("%s", path);
3156 			break;
3157 		    case 'x':
3158 			printf("%p", needed->obj ? needed->obj->mapbase : 0);
3159 			break;
3160 		    }
3161 		    break;
3162 		}
3163 		++fmt;
3164 	    }
3165 	}
3166     }
3167 }
3168 
3169 /*
3170  * Unload a dlopened object and its dependencies from memory and from
3171  * our data structures.  It is assumed that the DAG rooted in the
3172  * object has already been unreferenced, and that the object has a
3173  * reference count of 0.
3174  */
3175 static void
3176 unload_object(Obj_Entry *root)
3177 {
3178     Obj_Entry *obj;
3179     Obj_Entry **linkp;
3180 
3181     assert(root->refcount == 0);
3182 
3183     /*
3184      * Pass over the DAG removing unreferenced objects from
3185      * appropriate lists.
3186      */
3187     unlink_object(root);
3188 
3189     /* Unmap all objects that are no longer referenced. */
3190     linkp = &obj_list->next;
3191     while ((obj = *linkp) != NULL) {
3192 	if (obj->refcount == 0) {
3193 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
3194 		obj->path);
3195 	    dbg("unloading \"%s\"", obj->path);
3196 	    munmap(obj->mapbase, obj->mapsize);
3197 	    linkmap_delete(obj);
3198 	    *linkp = obj->next;
3199 	    obj_count--;
3200 	    obj_free(obj);
3201 	} else
3202 	    linkp = &obj->next;
3203     }
3204     obj_tail = linkp;
3205 }
3206 
3207 static void
3208 unlink_object(Obj_Entry *root)
3209 {
3210     Objlist_Entry *elm;
3211 
3212     if (root->refcount == 0) {
3213 	/* Remove the object from the RTLD_GLOBAL list. */
3214 	objlist_remove(&list_global, root);
3215 
3216     	/* Remove the object from all objects' DAG lists. */
3217 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
3218 	    objlist_remove(&elm->obj->dldags, root);
3219 	    if (elm->obj != root)
3220 		unlink_object(elm->obj);
3221 	}
3222     }
3223 }
3224 
3225 static void
3226 ref_dag(Obj_Entry *root)
3227 {
3228     Objlist_Entry *elm;
3229 
3230     assert(root->dag_inited);
3231     STAILQ_FOREACH(elm, &root->dagmembers, link)
3232 	elm->obj->refcount++;
3233 }
3234 
3235 static void
3236 unref_dag(Obj_Entry *root)
3237 {
3238     Objlist_Entry *elm;
3239 
3240     assert(root->dag_inited);
3241     STAILQ_FOREACH(elm, &root->dagmembers, link)
3242 	elm->obj->refcount--;
3243 }
3244 
3245 /*
3246  * Common code for MD __tls_get_addr().
3247  */
3248 void *
3249 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
3250 {
3251     Elf_Addr* dtv = *dtvp;
3252     RtldLockState lockstate;
3253 
3254     /* Check dtv generation in case new modules have arrived */
3255     if (dtv[0] != tls_dtv_generation) {
3256 	Elf_Addr* newdtv;
3257 	int to_copy;
3258 
3259 	wlock_acquire(rtld_bind_lock, &lockstate);
3260 	newdtv = calloc(1, (tls_max_index + 2) * sizeof(Elf_Addr));
3261 	to_copy = dtv[1];
3262 	if (to_copy > tls_max_index)
3263 	    to_copy = tls_max_index;
3264 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
3265 	newdtv[0] = tls_dtv_generation;
3266 	newdtv[1] = tls_max_index;
3267 	free(dtv);
3268 	lock_release(rtld_bind_lock, &lockstate);
3269 	*dtvp = newdtv;
3270     }
3271 
3272     /* Dynamically allocate module TLS if necessary */
3273     if (!dtv[index + 1]) {
3274 	/* Signal safe, wlock will block out signals. */
3275 	wlock_acquire(rtld_bind_lock, &lockstate);
3276 	if (!dtv[index + 1])
3277 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
3278 	lock_release(rtld_bind_lock, &lockstate);
3279     }
3280     return (void*) (dtv[index + 1] + offset);
3281 }
3282 
3283 #if defined(RTLD_STATIC_TLS_VARIANT_II)
3284 
3285 /*
3286  * Allocate the static TLS area.  Return a pointer to the TCB.  The
3287  * static area is based on negative offsets relative to the tcb.
3288  *
3289  * The TCB contains an errno pointer for the system call layer, but because
3290  * we are the RTLD we really have no idea how the caller was compiled so
3291  * the information has to be passed in.  errno can either be:
3292  *
3293  *	type 0	errno is a simple non-TLS global pointer.
3294  *		(special case for e.g. libc_rtld)
3295  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
3296  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
3297  */
3298 struct tls_tcb *
3299 allocate_tls(Obj_Entry *objs)
3300 {
3301     Obj_Entry *obj;
3302     size_t data_size;
3303     size_t dtv_size;
3304     struct tls_tcb *tcb;
3305     Elf_Addr *dtv;
3306     Elf_Addr addr;
3307 
3308     /*
3309      * Allocate the new TCB.  static TLS storage is placed just before the
3310      * TCB to support the %gs:OFFSET (negative offset) model.
3311      */
3312     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
3313 		~RTLD_STATIC_TLS_ALIGN_MASK;
3314     tcb = malloc(data_size + sizeof(*tcb));
3315     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
3316 
3317     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
3318     dtv = malloc(dtv_size);
3319     bzero(dtv, dtv_size);
3320 
3321 #ifdef RTLD_TCB_HAS_SELF_POINTER
3322     tcb->tcb_self = tcb;
3323 #endif
3324     tcb->tcb_dtv = dtv;
3325     tcb->tcb_pthread = NULL;
3326 
3327     dtv[0] = tls_dtv_generation;
3328     dtv[1] = tls_max_index;
3329 
3330     for (obj = objs; obj; obj = obj->next) {
3331 	if (obj->tlsoffset) {
3332 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
3333 	    memset((void *)(addr + obj->tlsinitsize),
3334 		   0, obj->tlssize - obj->tlsinitsize);
3335 	    if (obj->tlsinit)
3336 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
3337 	    dtv[obj->tlsindex + 1] = addr;
3338 	}
3339     }
3340     return(tcb);
3341 }
3342 
3343 void
3344 free_tls(struct tls_tcb *tcb)
3345 {
3346     Elf_Addr *dtv;
3347     int dtv_size, i;
3348     Elf_Addr tls_start, tls_end;
3349     size_t data_size;
3350 
3351     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
3352 		~RTLD_STATIC_TLS_ALIGN_MASK;
3353 
3354     dtv = tcb->tcb_dtv;
3355     dtv_size = dtv[1];
3356     tls_end = (Elf_Addr)tcb;
3357     tls_start = (Elf_Addr)tcb - data_size;
3358     for (i = 0; i < dtv_size; i++) {
3359 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
3360 	    free((void *)dtv[i+2]);
3361 	}
3362     }
3363 
3364     free((void*) tls_start);
3365 }
3366 
3367 #else
3368 #error "Unsupported TLS layout"
3369 #endif
3370 
3371 /*
3372  * Allocate TLS block for module with given index.
3373  */
3374 void *
3375 allocate_module_tls(int index)
3376 {
3377     Obj_Entry* obj;
3378     char* p;
3379 
3380     for (obj = obj_list; obj; obj = obj->next) {
3381 	if (obj->tlsindex == index)
3382 	    break;
3383     }
3384     if (!obj) {
3385 	_rtld_error("Can't find module with TLS index %d", index);
3386 	die();
3387     }
3388 
3389     p = malloc(obj->tlssize);
3390     if (p == NULL) {
3391 	_rtld_error("Cannot allocate TLS block for index %d", index);
3392 	die();
3393     }
3394     memcpy(p, obj->tlsinit, obj->tlsinitsize);
3395     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
3396 
3397     return p;
3398 }
3399 
3400 bool
3401 allocate_tls_offset(Obj_Entry *obj)
3402 {
3403     size_t off;
3404 
3405     if (obj->tls_done)
3406 	return true;
3407 
3408     if (obj->tlssize == 0) {
3409 	obj->tls_done = true;
3410 	return true;
3411     }
3412 
3413     if (obj->tlsindex == 1)
3414 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
3415     else
3416 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
3417 				   obj->tlssize, obj->tlsalign);
3418 
3419     /*
3420      * If we have already fixed the size of the static TLS block, we
3421      * must stay within that size. When allocating the static TLS, we
3422      * leave a small amount of space spare to be used for dynamically
3423      * loading modules which use static TLS.
3424      */
3425     if (tls_static_space) {
3426 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
3427 	    return false;
3428     }
3429 
3430     tls_last_offset = obj->tlsoffset = off;
3431     tls_last_size = obj->tlssize;
3432     obj->tls_done = true;
3433 
3434     return true;
3435 }
3436 
3437 void
3438 free_tls_offset(Obj_Entry *obj)
3439 {
3440 #ifdef RTLD_STATIC_TLS_VARIANT_II
3441     /*
3442      * If we were the last thing to allocate out of the static TLS
3443      * block, we give our space back to the 'allocator'. This is a
3444      * simplistic workaround to allow libGL.so.1 to be loaded and
3445      * unloaded multiple times. We only handle the Variant II
3446      * mechanism for now - this really needs a proper allocator.
3447      */
3448     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
3449 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
3450 	tls_last_offset -= obj->tlssize;
3451 	tls_last_size = 0;
3452     }
3453 #endif
3454 }
3455 
3456 struct tls_tcb *
3457 _rtld_allocate_tls(void)
3458 {
3459     struct tls_tcb *new_tcb;
3460     RtldLockState lockstate;
3461 
3462     wlock_acquire(rtld_bind_lock, &lockstate);
3463     new_tcb = allocate_tls(obj_list);
3464     lock_release(rtld_bind_lock, &lockstate);
3465     return (new_tcb);
3466 }
3467 
3468 void
3469 _rtld_free_tls(struct tls_tcb *tcb)
3470 {
3471     RtldLockState lockstate;
3472 
3473     wlock_acquire(rtld_bind_lock, &lockstate);
3474     free_tls(tcb);
3475     lock_release(rtld_bind_lock, &lockstate);
3476 }
3477 
3478 static void
3479 object_add_name(Obj_Entry *obj, const char *name)
3480 {
3481     Name_Entry *entry;
3482     size_t len;
3483 
3484     len = strlen(name);
3485     entry = malloc(sizeof(Name_Entry) + len);
3486 
3487     if (entry != NULL) {
3488 	strcpy(entry->name, name);
3489 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
3490     }
3491 }
3492 
3493 static int
3494 object_match_name(const Obj_Entry *obj, const char *name)
3495 {
3496     Name_Entry *entry;
3497 
3498     STAILQ_FOREACH(entry, &obj->names, link) {
3499 	if (strcmp(name, entry->name) == 0)
3500 	    return (1);
3501     }
3502     return (0);
3503 }
3504 
3505 static Obj_Entry *
3506 locate_dependency(const Obj_Entry *obj, const char *name)
3507 {
3508     const Objlist_Entry *entry;
3509     const Needed_Entry *needed;
3510 
3511     STAILQ_FOREACH(entry, &list_main, link) {
3512 	if (object_match_name(entry->obj, name))
3513 	    return entry->obj;
3514     }
3515 
3516     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
3517 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
3518 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
3519 	    /*
3520 	     * If there is DT_NEEDED for the name we are looking for,
3521 	     * we are all set.  Note that object might not be found if
3522 	     * dependency was not loaded yet, so the function can
3523 	     * return NULL here.  This is expected and handled
3524 	     * properly by the caller.
3525 	     */
3526 	    return (needed->obj);
3527 	}
3528     }
3529     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
3530 	obj->path, name);
3531     die();
3532 }
3533 
3534 static int
3535 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
3536     const Elf_Vernaux *vna)
3537 {
3538     const Elf_Verdef *vd;
3539     const char *vername;
3540 
3541     vername = refobj->strtab + vna->vna_name;
3542     vd = depobj->verdef;
3543     if (vd == NULL) {
3544 	_rtld_error("%s: version %s required by %s not defined",
3545 	    depobj->path, vername, refobj->path);
3546 	return (-1);
3547     }
3548     for (;;) {
3549 	if (vd->vd_version != VER_DEF_CURRENT) {
3550 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3551 		depobj->path, vd->vd_version);
3552 	    return (-1);
3553 	}
3554 	if (vna->vna_hash == vd->vd_hash) {
3555 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
3556 		((char *)vd + vd->vd_aux);
3557 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
3558 		return (0);
3559 	}
3560 	if (vd->vd_next == 0)
3561 	    break;
3562 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3563     }
3564     if (vna->vna_flags & VER_FLG_WEAK)
3565 	return (0);
3566     _rtld_error("%s: version %s required by %s not found",
3567 	depobj->path, vername, refobj->path);
3568     return (-1);
3569 }
3570 
3571 static int
3572 rtld_verify_object_versions(Obj_Entry *obj)
3573 {
3574     const Elf_Verneed *vn;
3575     const Elf_Verdef  *vd;
3576     const Elf_Verdaux *vda;
3577     const Elf_Vernaux *vna;
3578     const Obj_Entry *depobj;
3579     int maxvernum, vernum;
3580 
3581     maxvernum = 0;
3582     /*
3583      * Walk over defined and required version records and figure out
3584      * max index used by any of them. Do very basic sanity checking
3585      * while there.
3586      */
3587     vn = obj->verneed;
3588     while (vn != NULL) {
3589 	if (vn->vn_version != VER_NEED_CURRENT) {
3590 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
3591 		obj->path, vn->vn_version);
3592 	    return (-1);
3593 	}
3594 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3595 	for (;;) {
3596 	    vernum = VER_NEED_IDX(vna->vna_other);
3597 	    if (vernum > maxvernum)
3598 		maxvernum = vernum;
3599 	    if (vna->vna_next == 0)
3600 		 break;
3601 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3602 	}
3603 	if (vn->vn_next == 0)
3604 	    break;
3605 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3606     }
3607 
3608     vd = obj->verdef;
3609     while (vd != NULL) {
3610 	if (vd->vd_version != VER_DEF_CURRENT) {
3611 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
3612 		obj->path, vd->vd_version);
3613 	    return (-1);
3614 	}
3615 	vernum = VER_DEF_IDX(vd->vd_ndx);
3616 	if (vernum > maxvernum)
3617 		maxvernum = vernum;
3618 	if (vd->vd_next == 0)
3619 	    break;
3620 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3621     }
3622 
3623     if (maxvernum == 0)
3624 	return (0);
3625 
3626     /*
3627      * Store version information in array indexable by version index.
3628      * Verify that object version requirements are satisfied along the
3629      * way.
3630      */
3631     obj->vernum = maxvernum + 1;
3632     obj->vertab = calloc(obj->vernum, sizeof(Ver_Entry));
3633 
3634     vd = obj->verdef;
3635     while (vd != NULL) {
3636 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
3637 	    vernum = VER_DEF_IDX(vd->vd_ndx);
3638 	    assert(vernum <= maxvernum);
3639 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
3640 	    obj->vertab[vernum].hash = vd->vd_hash;
3641 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
3642 	    obj->vertab[vernum].file = NULL;
3643 	    obj->vertab[vernum].flags = 0;
3644 	}
3645 	if (vd->vd_next == 0)
3646 	    break;
3647 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
3648     }
3649 
3650     vn = obj->verneed;
3651     while (vn != NULL) {
3652 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
3653 	if (depobj == NULL)
3654 	    return (-1);
3655 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
3656 	for (;;) {
3657 	    if (check_object_provided_version(obj, depobj, vna))
3658 		return (-1);
3659 	    vernum = VER_NEED_IDX(vna->vna_other);
3660 	    assert(vernum <= maxvernum);
3661 	    obj->vertab[vernum].hash = vna->vna_hash;
3662 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
3663 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
3664 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
3665 		VER_INFO_HIDDEN : 0;
3666 	    if (vna->vna_next == 0)
3667 		 break;
3668 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
3669 	}
3670 	if (vn->vn_next == 0)
3671 	    break;
3672 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
3673     }
3674     return 0;
3675 }
3676 
3677 static int
3678 rtld_verify_versions(const Objlist *objlist)
3679 {
3680     Objlist_Entry *entry;
3681     int rc;
3682 
3683     rc = 0;
3684     STAILQ_FOREACH(entry, objlist, link) {
3685 	/*
3686 	 * Skip dummy objects or objects that have their version requirements
3687 	 * already checked.
3688 	 */
3689 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
3690 	    continue;
3691 	if (rtld_verify_object_versions(entry->obj) == -1) {
3692 	    rc = -1;
3693 	    if (ld_tracing == NULL)
3694 		break;
3695 	}
3696     }
3697     if (rc == 0 || ld_tracing != NULL)
3698 	rc = rtld_verify_object_versions(&obj_rtld);
3699     return rc;
3700 }
3701 
3702 const Ver_Entry *
3703 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
3704 {
3705     Elf_Versym vernum;
3706 
3707     if (obj->vertab) {
3708 	vernum = VER_NDX(obj->versyms[symnum]);
3709 	if (vernum >= obj->vernum) {
3710 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
3711 		obj->path, obj->strtab + symnum, vernum);
3712 	} else if (obj->vertab[vernum].hash != 0) {
3713 	    return &obj->vertab[vernum];
3714 	}
3715     }
3716     return NULL;
3717 }
3718 
3719 /*
3720  * No unresolved symbols for rtld.
3721  */
3722 void
3723 __pthread_cxa_finalize(struct dl_phdr_info *a)
3724 {
3725 }
3726