xref: /dragonfly/libexec/rtld-elf/rtld.c (revision f503b4c4)
1 /*-
2  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
3  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
4  * Copyright 2009-2012 Konstantin Belousov <kib@FreeBSD.ORG>.
5  * Copyright 2012 John Marino <draco@marino.st>.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 /*
32  * Dynamic linker for ELF.
33  *
34  * John Polstra <jdp@polstra.com>.
35  */
36 
37 #ifndef __GNUC__
38 #error "GCC is needed to compile this file"
39 #endif
40 
41 #include <sys/param.h>
42 #include <sys/mount.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/sysctl.h>
46 #include <sys/uio.h>
47 #include <sys/utsname.h>
48 #include <sys/ktrace.h>
49 #include <sys/resident.h>
50 #include <sys/tls.h>
51 
52 #include <machine/tls.h>
53 
54 #include <dlfcn.h>
55 #include <err.h>
56 #include <errno.h>
57 #include <fcntl.h>
58 #include <stdarg.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <string.h>
62 #include <unistd.h>
63 
64 #include "debug.h"
65 #include "rtld.h"
66 #include "libmap.h"
67 #include "rtld_printf.h"
68 #include "notes.h"
69 
70 #define PATH_RTLD	"/usr/libexec/ld-elf.so.2"
71 #define LD_ARY_CACHE	16
72 
73 /* Types. */
74 typedef void (*func_ptr_type)();
75 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
76 
77 /*
78  * Function declarations.
79  */
80 static const char *_getenv_ld(const char *id);
81 static void die(void) __dead2;
82 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
83     const Elf_Dyn **, const Elf_Dyn **);
84 static void digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
85     const Elf_Dyn *);
86 static void digest_dynamic(Obj_Entry *, int);
87 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
88 static Obj_Entry *dlcheck(void *);
89 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
90     int lo_flags, int mode, RtldLockState *lockstate);
91 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
92 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
93 static bool donelist_check(DoneList *, const Obj_Entry *);
94 static void errmsg_restore(char *);
95 static char *errmsg_save(void);
96 static void *fill_search_info(const char *, size_t, void *);
97 static char *find_library(const char *, const Obj_Entry *);
98 static const char *gethints(bool);
99 static void init_dag(Obj_Entry *);
100 static void init_rtld(caddr_t, Elf_Auxinfo **);
101 static void initlist_add_neededs(Needed_Entry *, Objlist *);
102 static void initlist_add_objects(Obj_Entry *, Obj_Entry **, Objlist *);
103 static void linkmap_add(Obj_Entry *);
104 static void linkmap_delete(Obj_Entry *);
105 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
106 static void unload_filtees(Obj_Entry *);
107 static int load_needed_objects(Obj_Entry *, int);
108 static int load_preload_objects(void);
109 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
110 static void map_stacks_exec(RtldLockState *);
111 static Obj_Entry *obj_from_addr(const void *);
112 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
113 static void objlist_call_init(Objlist *, RtldLockState *);
114 static void objlist_clear(Objlist *);
115 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
116 static void objlist_init(Objlist *);
117 static void objlist_push_head(Objlist *, Obj_Entry *);
118 static void objlist_push_tail(Objlist *, Obj_Entry *);
119 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
120 static void objlist_remove(Objlist *, Obj_Entry *);
121 static void *path_enumerate(const char *, path_enum_proc, void *);
122 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
123     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
124 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
125     int flags, RtldLockState *lockstate);
126 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
127     RtldLockState *);
128 static int resolve_objects_ifunc(Obj_Entry *first, bool bind_now,
129     int flags, RtldLockState *lockstate);
130 static int rtld_dirname(const char *, char *);
131 static int rtld_dirname_abs(const char *, char *);
132 static void *rtld_dlopen(const char *name, int fd, int mode);
133 static void rtld_exit(void);
134 static char *search_library_path(const char *, const char *);
135 static const void **get_program_var_addr(const char *, RtldLockState *);
136 static void set_program_var(const char *, const void *);
137 static int symlook_default(SymLook *, const Obj_Entry *refobj);
138 static int symlook_global(SymLook *, DoneList *);
139 static void symlook_init_from_req(SymLook *, const SymLook *);
140 static int symlook_list(SymLook *, const Objlist *, DoneList *);
141 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
142 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
143 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
144 static void trace_loaded_objects(Obj_Entry *);
145 static void unlink_object(Obj_Entry *);
146 static void unload_object(Obj_Entry *);
147 static void unref_dag(Obj_Entry *);
148 static void ref_dag(Obj_Entry *);
149 static char *origin_subst_one(char *, const char *, const char *, bool);
150 static char *origin_subst(char *, const char *);
151 static void preinit_main(void);
152 static int  rtld_verify_versions(const Objlist *);
153 static int  rtld_verify_object_versions(Obj_Entry *);
154 static void object_add_name(Obj_Entry *, const char *);
155 static int  object_match_name(const Obj_Entry *, const char *);
156 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
157 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
158     struct dl_phdr_info *phdr_info);
159 static uint_fast32_t gnu_hash (const char *);
160 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
161     const unsigned long);
162 
163 void r_debug_state(struct r_debug *, struct link_map *) __noinline;
164 
165 /*
166  * Data declarations.
167  */
168 static char *error_message;	/* Message for dlerror(), or NULL */
169 struct r_debug r_debug;		/* for GDB; */
170 static bool libmap_disable;	/* Disable libmap */
171 static bool ld_loadfltr;	/* Immediate filters processing */
172 static char *libmap_override;	/* Maps to use in addition to libmap.conf */
173 static bool trust;		/* False for setuid and setgid programs */
174 static bool dangerous_ld_env;	/* True if environment variables have been
175 				   used to affect the libraries loaded */
176 static const char *ld_bind_now;	/* Environment variable for immediate binding */
177 static const char *ld_debug;	/* Environment variable for debugging */
178 static const char *ld_library_path; /* Environment variable for search path */
179 static char *ld_preload;	/* Environment variable for libraries to
180 				   load first */
181 static const char *ld_elf_hints_path; /* Environment variable for alternative hints path */
182 static const char *ld_tracing;	/* Called from ldd to print libs */
183 static const char *ld_utrace;	/* Use utrace() to log events. */
184 static int (*rtld_functrace)(   /* Optional function call tracing hook */
185 	const char *caller_obj,
186 	const char *callee_obj,
187 	const char *callee_func,
188 	void *stack);
189 static const Obj_Entry *rtld_functrace_obj;	/* Object thereof */
190 static Obj_Entry *obj_list;	/* Head of linked list of shared objects */
191 static Obj_Entry **obj_tail;	/* Link field of last object in list */
192 static Obj_Entry **preload_tail;
193 static Obj_Entry *obj_main;	/* The main program shared object */
194 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
195 static unsigned int obj_count;	/* Number of objects in obj_list */
196 static unsigned int obj_loads;	/* Number of objects in obj_list */
197 
198 static int	ld_resident;	/* Non-zero if resident */
199 static const char *ld_ary[LD_ARY_CACHE];
200 static int	ld_index;
201 static Objlist initlist;
202 
203 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
204   STAILQ_HEAD_INITIALIZER(list_global);
205 static Objlist list_main =	/* Objects loaded at program startup */
206   STAILQ_HEAD_INITIALIZER(list_main);
207 static Objlist list_fini =	/* Objects needing fini() calls */
208   STAILQ_HEAD_INITIALIZER(list_fini);
209 
210 static Elf_Sym sym_zero;	/* For resolving undefined weak refs. */
211 const char *__ld_sharedlib_base;
212 
213 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
214 
215 extern Elf_Dyn _DYNAMIC;
216 #pragma weak _DYNAMIC
217 #ifndef RTLD_IS_DYNAMIC
218 #define	RTLD_IS_DYNAMIC()	(&_DYNAMIC != NULL)
219 #endif
220 
221 #ifdef ENABLE_OSRELDATE
222 int osreldate;
223 #endif
224 
225 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
226 #if 0
227 static int max_stack_flags;
228 #endif
229 
230 /*
231  * Global declarations normally provided by crt1.  The dynamic linker is
232  * not built with crt1, so we have to provide them ourselves.
233  */
234 char *__progname;
235 char **environ;
236 
237 /*
238  * Used to pass argc, argv to init functions.
239  */
240 int main_argc;
241 char **main_argv;
242 
243 /*
244  * Globals to control TLS allocation.
245  */
246 size_t tls_last_offset;		/* Static TLS offset of last module */
247 size_t tls_last_size;		/* Static TLS size of last module */
248 size_t tls_static_space;	/* Static TLS space allocated */
249 int tls_dtv_generation = 1;	/* Used to detect when dtv size changes  */
250 int tls_max_index = 1;		/* Largest module index allocated */
251 
252 /*
253  * Fill in a DoneList with an allocation large enough to hold all of
254  * the currently-loaded objects.  Keep this as a macro since it calls
255  * alloca and we want that to occur within the scope of the caller.
256  */
257 #define donelist_init(dlp)					\
258     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
259     assert((dlp)->objs != NULL),				\
260     (dlp)->num_alloc = obj_count,				\
261     (dlp)->num_used = 0)
262 
263 #define	UTRACE_DLOPEN_START		1
264 #define	UTRACE_DLOPEN_STOP		2
265 #define	UTRACE_DLCLOSE_START		3
266 #define	UTRACE_DLCLOSE_STOP		4
267 #define	UTRACE_LOAD_OBJECT		5
268 #define	UTRACE_UNLOAD_OBJECT		6
269 #define	UTRACE_ADD_RUNDEP		7
270 #define	UTRACE_PRELOAD_FINISHED		8
271 #define	UTRACE_INIT_CALL		9
272 #define	UTRACE_FINI_CALL		10
273 
274 struct utrace_rtld {
275 	char sig[4];			/* 'RTLD' */
276 	int event;
277 	void *handle;
278 	void *mapbase;			/* Used for 'parent' and 'init/fini' */
279 	size_t mapsize;
280 	int refcnt;			/* Used for 'mode' */
281 	char name[MAXPATHLEN];
282 };
283 
284 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
285 	if (ld_utrace != NULL)					\
286 		ld_utrace_log(e, h, mb, ms, r, n);		\
287 } while (0)
288 
289 static void
290 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
291     int refcnt, const char *name)
292 {
293 	struct utrace_rtld ut;
294 
295 	ut.sig[0] = 'R';
296 	ut.sig[1] = 'T';
297 	ut.sig[2] = 'L';
298 	ut.sig[3] = 'D';
299 	ut.event = event;
300 	ut.handle = handle;
301 	ut.mapbase = mapbase;
302 	ut.mapsize = mapsize;
303 	ut.refcnt = refcnt;
304 	bzero(ut.name, sizeof(ut.name));
305 	if (name)
306 		strlcpy(ut.name, name, sizeof(ut.name));
307 	utrace(&ut, sizeof(ut));
308 }
309 
310 /*
311  * Main entry point for dynamic linking.  The first argument is the
312  * stack pointer.  The stack is expected to be laid out as described
313  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
314  * Specifically, the stack pointer points to a word containing
315  * ARGC.  Following that in the stack is a null-terminated sequence
316  * of pointers to argument strings.  Then comes a null-terminated
317  * sequence of pointers to environment strings.  Finally, there is a
318  * sequence of "auxiliary vector" entries.
319  *
320  * The second argument points to a place to store the dynamic linker's
321  * exit procedure pointer and the third to a place to store the main
322  * program's object.
323  *
324  * The return value is the main program's entry point.
325  */
326 func_ptr_type
327 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
328 {
329     Obj_Entry *last_interposer;
330     Elf_Auxinfo *aux_info[AT_COUNT];
331     int i;
332     int argc;
333     char **argv;
334     char **env;
335     Elf_Auxinfo *aux;
336     Elf_Auxinfo *auxp;
337     const char *argv0;
338     Objlist_Entry *entry;
339     Obj_Entry *obj;
340 
341     /* marino: DO NOT MOVE THESE VARIABLES TO _rtld
342              Obj_Entry **preload_tail;
343              Objlist initlist;
344        from global to here.  It will break the DWARF2 unwind scheme.
345        The system compilers were unaffected, but not gcc 4.6
346     */
347 
348     /*
349      * On entry, the dynamic linker itself has not been relocated yet.
350      * Be very careful not to reference any global data until after
351      * init_rtld has returned.  It is OK to reference file-scope statics
352      * and string constants, and to call static and global functions.
353      */
354 
355     /* Find the auxiliary vector on the stack. */
356     argc = *sp++;
357     argv = (char **) sp;
358     sp += argc + 1;	/* Skip over arguments and NULL terminator */
359     env = (char **) sp;
360 
361     /*
362      * If we aren't already resident we have to dig out some more info.
363      * Note that auxinfo does not exist when we are resident.
364      *
365      * I'm not sure about the ld_resident check.  It seems to read zero
366      * prior to relocation, which is what we want.  When running from a
367      * resident copy everything will be relocated so we are definitely
368      * good there.
369      */
370     if (ld_resident == 0)  {
371 	while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
372 	    ;
373 	aux = (Elf_Auxinfo *) sp;
374 
375 	/* Digest the auxiliary vector. */
376 	for (i = 0;  i < AT_COUNT;  i++)
377 	    aux_info[i] = NULL;
378 	for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
379 	    if (auxp->a_type < AT_COUNT)
380 		aux_info[auxp->a_type] = auxp;
381 	}
382 
383 	/* Initialize and relocate ourselves. */
384 	assert(aux_info[AT_BASE] != NULL);
385 	init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
386     }
387 
388     ld_index = 0;	/* don't use old env cache in case we are resident */
389     __progname = obj_rtld.path;
390     argv0 = argv[0] != NULL ? argv[0] : "(null)";
391     environ = env;
392     main_argc = argc;
393     main_argv = argv;
394 
395     trust = !issetugid();
396 
397     ld_bind_now = _getenv_ld("LD_BIND_NOW");
398     /*
399      * If the process is tainted, then we un-set the dangerous environment
400      * variables.  The process will be marked as tainted until setuid(2)
401      * is called.  If any child process calls setuid(2) we do not want any
402      * future processes to honor the potentially un-safe variables.
403      */
404     if (!trust) {
405 	if (   unsetenv("LD_DEBUG")
406 	    || unsetenv("LD_PRELOAD")
407 	    || unsetenv("LD_LIBRARY_PATH")
408 	    || unsetenv("LD_ELF_HINTS_PATH")
409 	    || unsetenv("LD_LIBMAP")
410 	    || unsetenv("LD_LIBMAP_DISABLE")
411 	    || unsetenv("LD_LOADFLTR")
412 	    || unsetenv("LD_SHAREDLIB_BASE")
413 	) {
414 	    _rtld_error("environment corrupt; aborting");
415 	    die();
416 	}
417     }
418     __ld_sharedlib_base = _getenv_ld("LD_SHAREDLIB_BASE");
419     ld_debug = _getenv_ld("LD_DEBUG");
420     libmap_disable = _getenv_ld("LD_LIBMAP_DISABLE") != NULL;
421     libmap_override = (char *)_getenv_ld("LD_LIBMAP");
422     ld_library_path = _getenv_ld("LD_LIBRARY_PATH");
423     ld_preload = (char *)_getenv_ld("LD_PRELOAD");
424     ld_elf_hints_path = _getenv_ld("LD_ELF_HINTS_PATH");
425     ld_loadfltr = _getenv_ld("LD_LOADFLTR") != NULL;
426     dangerous_ld_env = (ld_library_path != NULL)
427 			|| (ld_preload != NULL)
428 			|| (ld_elf_hints_path != NULL)
429 			|| ld_loadfltr
430 			|| (libmap_override != NULL)
431 			|| libmap_disable
432 			;
433     ld_tracing = _getenv_ld("LD_TRACE_LOADED_OBJECTS");
434     ld_utrace = _getenv_ld("LD_UTRACE");
435 
436     if ((ld_elf_hints_path == NULL) || strlen(ld_elf_hints_path) == 0)
437 	ld_elf_hints_path = _PATH_ELF_HINTS;
438 
439     if (ld_debug != NULL && *ld_debug != '\0')
440 	debug = 1;
441     dbg("%s is initialized, base address = %p", __progname,
442 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
443     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
444     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
445 
446     dbg("initializing thread locks");
447     lockdflt_init();
448 
449     /*
450      * If we are resident we can skip work that we have already done.
451      * Note that the stack is reset and there is no Elf_Auxinfo
452      * when running from a resident image, and the static globals setup
453      * between here and resident_skip will have already been setup.
454      */
455     if (ld_resident)
456 	goto resident_skip1;
457 
458     /*
459      * Load the main program, or process its program header if it is
460      * already loaded.
461      */
462     if (aux_info[AT_EXECFD] != NULL) {	/* Load the main program. */
463 	int fd = aux_info[AT_EXECFD]->a_un.a_val;
464 	dbg("loading main program");
465 	obj_main = map_object(fd, argv0, NULL);
466 	close(fd);
467 	if (obj_main == NULL)
468 	    die();
469 #if 0
470 	max_stack_flags = obj_main->stack_flags;
471 #endif
472     } else {				/* Main program already loaded. */
473 	const Elf_Phdr *phdr;
474 	int phnum;
475 	caddr_t entry;
476 
477 	dbg("processing main program's program header");
478 	assert(aux_info[AT_PHDR] != NULL);
479 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
480 	assert(aux_info[AT_PHNUM] != NULL);
481 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
482 	assert(aux_info[AT_PHENT] != NULL);
483 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
484 	assert(aux_info[AT_ENTRY] != NULL);
485 	entry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
486 	if ((obj_main = digest_phdr(phdr, phnum, entry, argv0)) == NULL)
487 	    die();
488     }
489 
490     char buf[MAXPATHLEN];
491     if (aux_info[AT_EXECPATH] != NULL) {
492 	char *kexecpath;
493 
494 	kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
495 	dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
496 	if (kexecpath[0] == '/')
497 		obj_main->path = kexecpath;
498 	else if (getcwd(buf, sizeof(buf)) == NULL ||
499 		strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
500 		strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
501 		obj_main->path = xstrdup(argv0);
502 	else
503 		obj_main->path = xstrdup(buf);
504     } else {
505 	char resolved[MAXPATHLEN];
506 	dbg("No AT_EXECPATH");
507 	if (argv0[0] == '/') {
508 		if (realpath(argv0, resolved) != NULL)
509 			obj_main->path = xstrdup(resolved);
510 		else
511 			obj_main->path = xstrdup(argv0);
512 	} else {
513 		if (getcwd(buf, sizeof(buf)) != NULL
514 		    && strlcat(buf, "/", sizeof(buf)) < sizeof(buf)
515 		    && strlcat(buf, argv0, sizeof (buf)) < sizeof(buf)
516 		    && access(buf, R_OK) == 0
517 		    && realpath(buf, resolved) != NULL)
518 			obj_main->path = xstrdup(resolved);
519 		else
520 			obj_main->path = xstrdup(argv0);
521 	}
522     }
523     dbg("obj_main path %s", obj_main->path);
524     obj_main->mainprog = true;
525 
526     if (aux_info[AT_STACKPROT] != NULL &&
527       aux_info[AT_STACKPROT]->a_un.a_val != 0)
528 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
529 
530     /*
531      * Get the actual dynamic linker pathname from the executable if
532      * possible.  (It should always be possible.)  That ensures that
533      * gdb will find the right dynamic linker even if a non-standard
534      * one is being used.
535      */
536     if (obj_main->interp != NULL &&
537       strcmp(obj_main->interp, obj_rtld.path) != 0) {
538 	free(obj_rtld.path);
539 	obj_rtld.path = xstrdup(obj_main->interp);
540 	__progname = obj_rtld.path;
541     }
542 
543     digest_dynamic(obj_main, 0);
544     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
545 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
546 	obj_main->dynsymcount);
547 
548     linkmap_add(obj_main);
549     linkmap_add(&obj_rtld);
550 
551     /* Link the main program into the list of objects. */
552     *obj_tail = obj_main;
553     obj_tail = &obj_main->next;
554     obj_count++;
555     obj_loads++;
556 
557     /* Initialize a fake symbol for resolving undefined weak references. */
558     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
559     sym_zero.st_shndx = SHN_UNDEF;
560     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
561 
562     if (!libmap_disable)
563         libmap_disable = (bool)lm_init(libmap_override);
564 
565     dbg("loading LD_PRELOAD libraries");
566     if (load_preload_objects() == -1)
567 	die();
568     preload_tail = obj_tail;
569 
570     dbg("loading needed objects");
571     if (load_needed_objects(obj_main, 0) == -1)
572 	die();
573 
574     /* Make a list of all objects loaded at startup. */
575     last_interposer = obj_main;
576     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
577        if (obj->z_interpose && obj != obj_main) {
578 	   objlist_put_after(&list_main, last_interposer, obj);
579 	   last_interposer = obj;
580        } else {
581 	   objlist_push_tail(&list_main, obj);
582        }
583 	obj->refcount++;
584     }
585 
586     dbg("checking for required versions");
587     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
588 	die();
589 
590 resident_skip1:
591 
592     if (ld_tracing) {		/* We're done */
593 	trace_loaded_objects(obj_main);
594 	exit(0);
595     }
596 
597     if (ld_resident)		/* XXX clean this up! */
598 	goto resident_skip2;
599 
600     if (_getenv_ld("LD_DUMP_REL_PRE") != NULL) {
601        dump_relocations(obj_main);
602        exit (0);
603     }
604 
605     /* setup TLS for main thread */
606     dbg("initializing initial thread local storage");
607     STAILQ_FOREACH(entry, &list_main, link) {
608 	/*
609 	 * Allocate all the initial objects out of the static TLS
610 	 * block even if they didn't ask for it.
611 	 */
612 	allocate_tls_offset(entry->obj);
613     }
614 
615     tls_static_space = tls_last_offset + RTLD_STATIC_TLS_EXTRA;
616 
617     /*
618      * Do not try to allocate the TLS here, let libc do it itself.
619      * (crt1 for the program will call _init_tls())
620      */
621 
622     if (relocate_objects(obj_main,
623       ld_bind_now != NULL && *ld_bind_now != '\0',
624       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
625 	die();
626 
627     dbg("doing copy relocations");
628     if (do_copy_relocations(obj_main) == -1)
629 	die();
630 
631 resident_skip2:
632 
633     if (_getenv_ld("LD_RESIDENT_UNREGISTER_NOW")) {
634 	if (exec_sys_unregister(-1) < 0) {
635 	    dbg("exec_sys_unregister failed %d\n", errno);
636 	    exit(errno);
637 	}
638 	dbg("exec_sys_unregister success\n");
639 	exit(0);
640     }
641 
642     if (_getenv_ld("LD_DUMP_REL_POST") != NULL) {
643        dump_relocations(obj_main);
644        exit (0);
645     }
646 
647     dbg("initializing key program variables");
648     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
649     set_program_var("environ", env);
650     set_program_var("__elf_aux_vector", aux);
651 
652     if (_getenv_ld("LD_RESIDENT_REGISTER_NOW")) {
653 	extern void resident_start(void);
654 	ld_resident = 1;
655 	if (exec_sys_register(resident_start) < 0) {
656 	    dbg("exec_sys_register failed %d\n", errno);
657 	    exit(errno);
658 	}
659 	dbg("exec_sys_register success\n");
660 	exit(0);
661     }
662 
663     /* Make a list of init functions to call. */
664     objlist_init(&initlist);
665     initlist_add_objects(obj_list, preload_tail, &initlist);
666 
667     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
668 
669     map_stacks_exec(NULL);
670 
671     dbg("resolving ifuncs");
672     if (resolve_objects_ifunc(obj_main,
673       ld_bind_now != NULL && *ld_bind_now != '\0', SYMLOOK_EARLY,
674       NULL) == -1)
675 	die();
676 
677     /*
678      * Do NOT call the initlist here, give libc a chance to set up
679      * the initial TLS segment.  crt1 will then call _rtld_call_init().
680      */
681 
682     dbg("transferring control to program entry point = %p", obj_main->entry);
683 
684     /* Return the exit procedure and the program entry point. */
685     *exit_proc = rtld_exit;
686     *objp = obj_main;
687     return (func_ptr_type) obj_main->entry;
688 }
689 
690 /*
691  * Call the initialization list for dynamically loaded libraries.
692  * (called from crt1.c).
693  */
694 void
695 _rtld_call_init(void)
696 {
697     RtldLockState lockstate;
698     Obj_Entry *obj;
699 
700     if (!obj_main->note_present && obj_main->valid_hash_gnu) {
701 	/*
702 	 * The use of a linker script with a PHDRS directive that does not include
703 	 * PT_NOTE will block the crt_no_init note.  In this case we'll look for the
704 	 * recently added GNU hash dynamic tag which gets built by default.  It is
705 	 * extremely unlikely to find a pre-3.1 binary without a PT_NOTE header and
706 	 * a gnu hash tag.  If gnu hash found, consider binary to use new crt code.
707 	 */
708 	obj_main->crt_no_init = true;
709 	dbg("Setting crt_no_init without presence of PT_NOTE header");
710     }
711 
712     wlock_acquire(rtld_bind_lock, &lockstate);
713     if (obj_main->crt_no_init)
714 	preinit_main();
715     else {
716 	/*
717 	 * Make sure we don't call the main program's init and fini functions
718 	 * for binaries linked with old crt1 which calls _init itself.
719 	 */
720 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
721 	obj_main->init_array = obj_main->fini_array = (Elf_Addr)NULL;
722     }
723     objlist_call_init(&initlist, &lockstate);
724     objlist_clear(&initlist);
725     dbg("loading filtees");
726     for (obj = obj_list->next; obj != NULL; obj = obj->next) {
727 	if (ld_loadfltr || obj->z_loadfltr)
728 	    load_filtees(obj, 0, &lockstate);
729     }
730     lock_release(rtld_bind_lock, &lockstate);
731 }
732 
733 void *
734 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
735 {
736 	void *ptr;
737 	Elf_Addr target;
738 
739 	ptr = (void *)make_function_pointer(def, obj);
740 	target = ((Elf_Addr (*)(void))ptr)();
741 	return ((void *)target);
742 }
743 
744 Elf_Addr
745 _rtld_bind(Obj_Entry *obj, Elf_Size reloff, void *stack)
746 {
747     const Elf_Rel *rel;
748     const Elf_Sym *def;
749     const Obj_Entry *defobj;
750     Elf_Addr *where;
751     Elf_Addr target;
752     RtldLockState lockstate;
753 
754     rlock_acquire(rtld_bind_lock, &lockstate);
755     if (sigsetjmp(lockstate.env, 0) != 0)
756 	    lock_upgrade(rtld_bind_lock, &lockstate);
757     if (obj->pltrel)
758 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrel + reloff);
759     else
760 	rel = (const Elf_Rel *) ((caddr_t) obj->pltrela + reloff);
761 
762     where = (Elf_Addr *) (obj->relocbase + rel->r_offset);
763     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, true, NULL,
764 	&lockstate);
765     if (def == NULL)
766 	die();
767     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
768 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
769     else
770         target = (Elf_Addr)(defobj->relocbase + def->st_value);
771 
772     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
773       defobj->strtab + def->st_name, basename(obj->path),
774       (void *)target, basename(defobj->path));
775 
776     /*
777      * If we have a function call tracing hook, and the
778      * hook would like to keep tracing this one function,
779      * prevent the relocation so we will wind up here
780      * the next time again.
781      *
782      * We don't want to functrace calls from the functracer
783      * to avoid recursive loops.
784      */
785     if (rtld_functrace != NULL && obj != rtld_functrace_obj) {
786 	if (rtld_functrace(obj->path,
787 			   defobj->path,
788 			   defobj->strtab + def->st_name,
789 			   stack)) {
790 	    lock_release(rtld_bind_lock, &lockstate);
791 	    return target;
792 	}
793     }
794 
795     /*
796      * Write the new contents for the jmpslot. Note that depending on
797      * architecture, the value which we need to return back to the
798      * lazy binding trampoline may or may not be the target
799      * address. The value returned from reloc_jmpslot() is the value
800      * that the trampoline needs.
801      */
802     target = reloc_jmpslot(where, target, defobj, obj, rel);
803     lock_release(rtld_bind_lock, &lockstate);
804     return target;
805 }
806 
807 /*
808  * Error reporting function.  Use it like printf.  If formats the message
809  * into a buffer, and sets things up so that the next call to dlerror()
810  * will return the message.
811  */
812 void
813 _rtld_error(const char *fmt, ...)
814 {
815     static char buf[512];
816     va_list ap;
817 
818     va_start(ap, fmt);
819     rtld_vsnprintf(buf, sizeof buf, fmt, ap);
820     error_message = buf;
821     va_end(ap);
822 }
823 
824 /*
825  * Return a dynamically-allocated copy of the current error message, if any.
826  */
827 static char *
828 errmsg_save(void)
829 {
830     return error_message == NULL ? NULL : xstrdup(error_message);
831 }
832 
833 /*
834  * Restore the current error message from a copy which was previously saved
835  * by errmsg_save().  The copy is freed.
836  */
837 static void
838 errmsg_restore(char *saved_msg)
839 {
840     if (saved_msg == NULL)
841 	error_message = NULL;
842     else {
843 	_rtld_error("%s", saved_msg);
844 	free(saved_msg);
845     }
846 }
847 
848 const char *
849 basename(const char *name)
850 {
851     const char *p = strrchr(name, '/');
852     return p != NULL ? p + 1 : name;
853 }
854 
855 static struct utsname uts;
856 
857 static char *
858 origin_subst_one(char *real, const char *kw, const char *subst,
859     bool may_free)
860 {
861 	char *p, *p1, *res, *resp;
862 	int subst_len, kw_len, subst_count, old_len, new_len;
863 
864 	kw_len = strlen(kw);
865 
866 	/*
867 	 * First, count the number of the keyword occurences, to
868 	 * preallocate the final string.
869 	 */
870 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
871 		p1 = strstr(p, kw);
872 		if (p1 == NULL)
873 			break;
874 	}
875 
876 	/*
877 	 * If the keyword is not found, just return.
878 	 */
879 	if (subst_count == 0)
880 		return (may_free ? real : xstrdup(real));
881 
882 	/*
883 	 * There is indeed something to substitute.  Calculate the
884 	 * length of the resulting string, and allocate it.
885 	 */
886 	subst_len = strlen(subst);
887 	old_len = strlen(real);
888 	new_len = old_len + (subst_len - kw_len) * subst_count;
889 	res = xmalloc(new_len + 1);
890 
891 	/*
892 	 * Now, execute the substitution loop.
893 	 */
894 	for (p = real, resp = res, *resp = '\0';;) {
895 		p1 = strstr(p, kw);
896 		if (p1 != NULL) {
897 			/* Copy the prefix before keyword. */
898 			memcpy(resp, p, p1 - p);
899 			resp += p1 - p;
900 			/* Keyword replacement. */
901 			memcpy(resp, subst, subst_len);
902 			resp += subst_len;
903 			*resp = '\0';
904 			p = p1 + kw_len;
905 		} else
906 			break;
907 	}
908 
909 	/* Copy to the end of string and finish. */
910 	strcat(resp, p);
911 	if (may_free)
912 		free(real);
913 	return (res);
914 }
915 
916 static char *
917 origin_subst(char *real, const char *origin_path)
918 {
919 	char *res1, *res2, *res3, *res4;
920 
921 	if (uts.sysname[0] == '\0') {
922 		if (uname(&uts) != 0) {
923 			_rtld_error("utsname failed: %d", errno);
924 			return (NULL);
925 		}
926 	}
927 	res1 = origin_subst_one(real, "$ORIGIN", origin_path, false);
928 	res2 = origin_subst_one(res1, "$OSNAME", uts.sysname, true);
929 	res3 = origin_subst_one(res2, "$OSREL", uts.release, true);
930 	res4 = origin_subst_one(res3, "$PLATFORM", uts.machine, true);
931 	return (res4);
932 }
933 
934 static void
935 die(void)
936 {
937     const char *msg = dlerror();
938 
939     if (msg == NULL)
940 	msg = "Fatal error";
941     rtld_fdputstr(STDERR_FILENO, msg);
942     rtld_fdputchar(STDERR_FILENO, '\n');
943     _exit(1);
944 }
945 
946 /*
947  * Process a shared object's DYNAMIC section, and save the important
948  * information in its Obj_Entry structure.
949  */
950 static void
951 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
952     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
953 {
954     const Elf_Dyn *dynp;
955     Needed_Entry **needed_tail = &obj->needed;
956     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
957     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
958     const Elf_Hashelt *hashtab;
959     const Elf32_Word *hashval;
960     Elf32_Word bkt, nmaskwords;
961     int bloom_size32;
962     bool nmw_power2;
963     int plttype = DT_REL;
964 
965     *dyn_rpath = NULL;
966     *dyn_soname = NULL;
967     *dyn_runpath = NULL;
968 
969     obj->bind_now = false;
970     for (dynp = obj->dynamic;  dynp->d_tag != DT_NULL;  dynp++) {
971 	switch (dynp->d_tag) {
972 
973 	case DT_REL:
974 	    obj->rel = (const Elf_Rel *) (obj->relocbase + dynp->d_un.d_ptr);
975 	    break;
976 
977 	case DT_RELSZ:
978 	    obj->relsize = dynp->d_un.d_val;
979 	    break;
980 
981 	case DT_RELENT:
982 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
983 	    break;
984 
985 	case DT_JMPREL:
986 	    obj->pltrel = (const Elf_Rel *)
987 	      (obj->relocbase + dynp->d_un.d_ptr);
988 	    break;
989 
990 	case DT_PLTRELSZ:
991 	    obj->pltrelsize = dynp->d_un.d_val;
992 	    break;
993 
994 	case DT_RELA:
995 	    obj->rela = (const Elf_Rela *) (obj->relocbase + dynp->d_un.d_ptr);
996 	    break;
997 
998 	case DT_RELASZ:
999 	    obj->relasize = dynp->d_un.d_val;
1000 	    break;
1001 
1002 	case DT_RELAENT:
1003 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
1004 	    break;
1005 
1006 	case DT_PLTREL:
1007 	    plttype = dynp->d_un.d_val;
1008 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
1009 	    break;
1010 
1011 	case DT_SYMTAB:
1012 	    obj->symtab = (const Elf_Sym *)
1013 	      (obj->relocbase + dynp->d_un.d_ptr);
1014 	    break;
1015 
1016 	case DT_SYMENT:
1017 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
1018 	    break;
1019 
1020 	case DT_STRTAB:
1021 	    obj->strtab = (const char *) (obj->relocbase + dynp->d_un.d_ptr);
1022 	    break;
1023 
1024 	case DT_STRSZ:
1025 	    obj->strsize = dynp->d_un.d_val;
1026 	    break;
1027 
1028 	case DT_VERNEED:
1029 	    obj->verneed = (const Elf_Verneed *) (obj->relocbase +
1030 		dynp->d_un.d_val);
1031 	    break;
1032 
1033 	case DT_VERNEEDNUM:
1034 	    obj->verneednum = dynp->d_un.d_val;
1035 	    break;
1036 
1037 	case DT_VERDEF:
1038 	    obj->verdef = (const Elf_Verdef *) (obj->relocbase +
1039 		dynp->d_un.d_val);
1040 	    break;
1041 
1042 	case DT_VERDEFNUM:
1043 	    obj->verdefnum = dynp->d_un.d_val;
1044 	    break;
1045 
1046 	case DT_VERSYM:
1047 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
1048 		dynp->d_un.d_val);
1049 	    break;
1050 
1051 	case DT_HASH:
1052 	    {
1053 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1054 		    dynp->d_un.d_ptr);
1055 		obj->nbuckets = hashtab[0];
1056 		obj->nchains = hashtab[1];
1057 		obj->buckets = hashtab + 2;
1058 		obj->chains = obj->buckets + obj->nbuckets;
1059 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
1060 		  obj->buckets != NULL;
1061 	    }
1062 	    break;
1063 
1064 	case DT_GNU_HASH:
1065 	    {
1066 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
1067 		    dynp->d_un.d_ptr);
1068 		obj->nbuckets_gnu = hashtab[0];
1069 		obj->symndx_gnu = hashtab[1];
1070 		nmaskwords = hashtab[2];
1071 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
1072 		/* Number of bitmask words is required to be power of 2 */
1073 		nmw_power2 = ((nmaskwords & (nmaskwords - 1)) == 0);
1074 		obj->maskwords_bm_gnu = nmaskwords - 1;
1075 		obj->shift2_gnu = hashtab[3];
1076 		obj->bloom_gnu = (Elf_Addr *) (hashtab + 4);
1077 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
1078 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
1079 		  obj->symndx_gnu;
1080 		obj->valid_hash_gnu = nmw_power2 && obj->nbuckets_gnu > 0 &&
1081 		  obj->buckets_gnu != NULL;
1082 	    }
1083 	    break;
1084 
1085 	case DT_NEEDED:
1086 	    if (!obj->rtld) {
1087 		Needed_Entry *nep = NEW(Needed_Entry);
1088 		nep->name = dynp->d_un.d_val;
1089 		nep->obj = NULL;
1090 		nep->next = NULL;
1091 
1092 		*needed_tail = nep;
1093 		needed_tail = &nep->next;
1094 	    }
1095 	    break;
1096 
1097 	case DT_FILTER:
1098 	    if (!obj->rtld) {
1099 		Needed_Entry *nep = NEW(Needed_Entry);
1100 		nep->name = dynp->d_un.d_val;
1101 		nep->obj = NULL;
1102 		nep->next = NULL;
1103 
1104 		*needed_filtees_tail = nep;
1105 		needed_filtees_tail = &nep->next;
1106 	    }
1107 	    break;
1108 
1109 	case DT_AUXILIARY:
1110 	    if (!obj->rtld) {
1111 		Needed_Entry *nep = NEW(Needed_Entry);
1112 		nep->name = dynp->d_un.d_val;
1113 		nep->obj = NULL;
1114 		nep->next = NULL;
1115 
1116 		*needed_aux_filtees_tail = nep;
1117 		needed_aux_filtees_tail = &nep->next;
1118 	    }
1119 	    break;
1120 
1121 	case DT_PLTGOT:
1122 	    obj->pltgot = (Elf_Addr *) (obj->relocbase + dynp->d_un.d_ptr);
1123 	    break;
1124 
1125 	case DT_TEXTREL:
1126 	    obj->textrel = true;
1127 	    break;
1128 
1129 	case DT_SYMBOLIC:
1130 	    obj->symbolic = true;
1131 	    break;
1132 
1133 	case DT_RPATH:
1134 	    /*
1135 	     * We have to wait until later to process this, because we
1136 	     * might not have gotten the address of the string table yet.
1137 	     */
1138 	    *dyn_rpath = dynp;
1139 	    break;
1140 
1141 	case DT_SONAME:
1142 	    *dyn_soname = dynp;
1143 	    break;
1144 
1145 	case DT_RUNPATH:
1146 	    *dyn_runpath = dynp;
1147 	    break;
1148 
1149 	case DT_INIT:
1150 	    obj->init = (Elf_Addr) (obj->relocbase + dynp->d_un.d_ptr);
1151 	    break;
1152 
1153 	case DT_FINI:
1154 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1155 	    break;
1156 
1157 	case DT_PREINIT_ARRAY:
1158 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1159 	    break;
1160 
1161 	case DT_INIT_ARRAY:
1162 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1163 	    break;
1164 
1165 	case DT_FINI_ARRAY:
1166 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
1167 	    break;
1168 
1169 	case DT_PREINIT_ARRAYSZ:
1170 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1171 	    break;
1172 
1173 	case DT_INIT_ARRAYSZ:
1174 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1175 	    break;
1176 
1177 	case DT_FINI_ARRAYSZ:
1178 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
1179 	    break;
1180 
1181 	case DT_DEBUG:
1182 	    /* XXX - not implemented yet */
1183 	    if (!early)
1184 		dbg("Filling in DT_DEBUG entry");
1185 	    ((Elf_Dyn*)dynp)->d_un.d_ptr = (Elf_Addr) &r_debug;
1186 	    break;
1187 
1188 	case DT_FLAGS:
1189 		if ((dynp->d_un.d_val & DF_ORIGIN) && trust)
1190 		    obj->z_origin = true;
1191 		if (dynp->d_un.d_val & DF_SYMBOLIC)
1192 		    obj->symbolic = true;
1193 		if (dynp->d_un.d_val & DF_TEXTREL)
1194 		    obj->textrel = true;
1195 		if (dynp->d_un.d_val & DF_BIND_NOW)
1196 		    obj->bind_now = true;
1197 		/*if (dynp->d_un.d_val & DF_STATIC_TLS)
1198 		    ;*/
1199 	    break;
1200 
1201 	case DT_FLAGS_1:
1202 		if (dynp->d_un.d_val & DF_1_NOOPEN)
1203 		    obj->z_noopen = true;
1204 		if ((dynp->d_un.d_val & DF_1_ORIGIN) && trust)
1205 		    obj->z_origin = true;
1206 		/*if (dynp->d_un.d_val & DF_1_GLOBAL)
1207 		    XXX ;*/
1208 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
1209 		    obj->bind_now = true;
1210 		if (dynp->d_un.d_val & DF_1_NODELETE)
1211 		    obj->z_nodelete = true;
1212 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
1213 		    obj->z_loadfltr = true;
1214                if (dynp->d_un.d_val & DF_1_INTERPOSE)
1215                    obj->z_interpose = true;
1216 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
1217 		    obj->z_nodeflib = true;
1218 	    break;
1219 
1220 	default:
1221 	    if (!early) {
1222 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
1223 		    (long)dynp->d_tag);
1224 	    }
1225 	    break;
1226 	}
1227     }
1228 
1229     obj->traced = false;
1230 
1231     if (plttype == DT_RELA) {
1232 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
1233 	obj->pltrel = NULL;
1234 	obj->pltrelasize = obj->pltrelsize;
1235 	obj->pltrelsize = 0;
1236     }
1237 
1238     /* Determine size of dynsym table (equal to nchains of sysv hash) */
1239     if (obj->valid_hash_sysv)
1240 	obj->dynsymcount = obj->nchains;
1241     else if (obj->valid_hash_gnu) {
1242 	obj->dynsymcount = 0;
1243 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
1244 	    if (obj->buckets_gnu[bkt] == 0)
1245 		continue;
1246 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
1247 	    do
1248 		obj->dynsymcount++;
1249 	    while ((*hashval++ & 1u) == 0);
1250 	}
1251 	obj->dynsymcount += obj->symndx_gnu;
1252     }
1253 }
1254 
1255 static void
1256 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
1257     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
1258 {
1259 
1260     if (obj->z_origin && obj->origin_path == NULL) {
1261 	obj->origin_path = xmalloc(PATH_MAX);
1262 	if (rtld_dirname_abs(obj->path, obj->origin_path) == -1)
1263 	    die();
1264     }
1265 
1266     if (dyn_runpath != NULL) {
1267 	obj->runpath = (char *)obj->strtab + dyn_runpath->d_un.d_val;
1268 	if (obj->z_origin)
1269 	    obj->runpath = origin_subst(obj->runpath, obj->origin_path);
1270     }
1271     else if (dyn_rpath != NULL) {
1272 	obj->rpath = (char *)obj->strtab + dyn_rpath->d_un.d_val;
1273 	if (obj->z_origin)
1274 	    obj->rpath = origin_subst(obj->rpath, obj->origin_path);
1275     }
1276 
1277     if (dyn_soname != NULL)
1278 	object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
1279 }
1280 
1281 static void
1282 digest_dynamic(Obj_Entry *obj, int early)
1283 {
1284 	const Elf_Dyn *dyn_rpath;
1285 	const Elf_Dyn *dyn_soname;
1286 	const Elf_Dyn *dyn_runpath;
1287 
1288 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
1289 	digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath);
1290 }
1291 
1292 /*
1293  * Process a shared object's program header.  This is used only for the
1294  * main program, when the kernel has already loaded the main program
1295  * into memory before calling the dynamic linker.  It creates and
1296  * returns an Obj_Entry structure.
1297  */
1298 static Obj_Entry *
1299 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
1300 {
1301     Obj_Entry *obj;
1302     const Elf_Phdr *phlimit = phdr + phnum;
1303     const Elf_Phdr *ph;
1304     Elf_Addr note_start, note_end;
1305     int nsegs = 0;
1306 
1307     obj = obj_new();
1308     for (ph = phdr;  ph < phlimit;  ph++) {
1309 	if (ph->p_type != PT_PHDR)
1310 	    continue;
1311 
1312 	obj->phdr = phdr;
1313 	obj->phsize = ph->p_memsz;
1314 	obj->relocbase = (caddr_t)phdr - ph->p_vaddr;
1315 	break;
1316     }
1317 
1318     obj->stack_flags = PF_X | PF_R | PF_W;
1319 
1320     for (ph = phdr;  ph < phlimit;  ph++) {
1321 	switch (ph->p_type) {
1322 
1323 	case PT_INTERP:
1324 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
1325 	    break;
1326 
1327 	case PT_LOAD:
1328 	    if (nsegs == 0) {	/* First load segment */
1329 		obj->vaddrbase = trunc_page(ph->p_vaddr);
1330 		obj->mapbase = obj->vaddrbase + obj->relocbase;
1331 		obj->textsize = round_page(ph->p_vaddr + ph->p_memsz) -
1332 		  obj->vaddrbase;
1333 	    } else {		/* Last load segment */
1334 		obj->mapsize = round_page(ph->p_vaddr + ph->p_memsz) -
1335 		  obj->vaddrbase;
1336 	    }
1337 	    nsegs++;
1338 	    break;
1339 
1340 	case PT_DYNAMIC:
1341 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
1342 	    break;
1343 
1344 	case PT_TLS:
1345 	    obj->tlsindex = 1;
1346 	    obj->tlssize = ph->p_memsz;
1347 	    obj->tlsalign = ph->p_align;
1348 	    obj->tlsinitsize = ph->p_filesz;
1349 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
1350 	    break;
1351 
1352 	case PT_GNU_STACK:
1353 	    obj->stack_flags = ph->p_flags;
1354 	    break;
1355 
1356 	case PT_GNU_RELRO:
1357 	    obj->relro_page = obj->relocbase + trunc_page(ph->p_vaddr);
1358 	    obj->relro_size = round_page(ph->p_memsz);
1359 	    break;
1360 
1361 	case PT_NOTE:
1362 	    obj->note_present = true;
1363 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
1364 	    note_end = note_start + ph->p_filesz;
1365 	    digest_notes(obj, note_start, note_end);
1366 	    break;
1367 	}
1368     }
1369     if (nsegs < 1) {
1370 	_rtld_error("%s: too few PT_LOAD segments", path);
1371 	return NULL;
1372     }
1373 
1374     obj->entry = entry;
1375     return obj;
1376 }
1377 
1378 void
1379 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
1380 {
1381 	const Elf_Note *note;
1382 	const char *note_name;
1383 	uintptr_t p;
1384 
1385 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
1386 	    note = (const Elf_Note *)((const char *)(note + 1) +
1387 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
1388 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
1389 		if (note->n_namesz != sizeof(NOTE_VENDOR) ||
1390 		    note->n_descsz != sizeof(int32_t))
1391 			continue;
1392 		if (note->n_type != ABI_NOTETYPE &&
1393 		    note->n_type != CRT_NOINIT_NOTETYPE)
1394 			continue;
1395 		note_name = (const char *)(note + 1);
1396 		if (strncmp(NOTE_VENDOR, note_name, sizeof(NOTE_VENDOR)) != 0)
1397 			continue;
1398 		switch (note->n_type) {
1399 		case ABI_NOTETYPE:
1400 			/* DragonFly osrel note */
1401 			p = (uintptr_t)(note + 1);
1402 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
1403 			obj->osrel = *(const int32_t *)(p);
1404 			dbg("note osrel %d", obj->osrel);
1405 			break;
1406 		case CRT_NOINIT_NOTETYPE:
1407 			/* DragonFly 'crt does not call init' note */
1408 			obj->crt_no_init = true;
1409 			dbg("note crt_no_init");
1410 			break;
1411 		}
1412 	}
1413 }
1414 
1415 static Obj_Entry *
1416 dlcheck(void *handle)
1417 {
1418     Obj_Entry *obj;
1419 
1420     for (obj = obj_list;  obj != NULL;  obj = obj->next)
1421 	if (obj == (Obj_Entry *) handle)
1422 	    break;
1423 
1424     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
1425 	_rtld_error("Invalid shared object handle %p", handle);
1426 	return NULL;
1427     }
1428     return obj;
1429 }
1430 
1431 /*
1432  * If the given object is already in the donelist, return true.  Otherwise
1433  * add the object to the list and return false.
1434  */
1435 static bool
1436 donelist_check(DoneList *dlp, const Obj_Entry *obj)
1437 {
1438     unsigned int i;
1439 
1440     for (i = 0;  i < dlp->num_used;  i++)
1441 	if (dlp->objs[i] == obj)
1442 	    return true;
1443     /*
1444      * Our donelist allocation should always be sufficient.  But if
1445      * our threads locking isn't working properly, more shared objects
1446      * could have been loaded since we allocated the list.  That should
1447      * never happen, but we'll handle it properly just in case it does.
1448      */
1449     if (dlp->num_used < dlp->num_alloc)
1450 	dlp->objs[dlp->num_used++] = obj;
1451     return false;
1452 }
1453 
1454 /*
1455  * Hash function for symbol table lookup.  Don't even think about changing
1456  * this.  It is specified by the System V ABI.
1457  */
1458 unsigned long
1459 elf_hash(const char *name)
1460 {
1461     const unsigned char *p = (const unsigned char *) name;
1462     unsigned long h = 0;
1463     unsigned long g;
1464 
1465     while (*p != '\0') {
1466 	h = (h << 4) + *p++;
1467 	if ((g = h & 0xf0000000) != 0)
1468 	    h ^= g >> 24;
1469 	h &= ~g;
1470     }
1471     return h;
1472 }
1473 
1474 /*
1475  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
1476  * unsigned in case it's implemented with a wider type.
1477  */
1478 static uint_fast32_t
1479 gnu_hash(const char *s)
1480 {
1481 	uint_fast32_t h;
1482 	unsigned char c;
1483 
1484 	h = 5381;
1485 	for (c = *s; c != '\0'; c = *++s)
1486 		h = h * 33 + c;
1487 	return (h & 0xffffffff);
1488 }
1489 
1490 /*
1491  * Find the library with the given name, and return its full pathname.
1492  * The returned string is dynamically allocated.  Generates an error
1493  * message and returns NULL if the library cannot be found.
1494  *
1495  * If the second argument is non-NULL, then it refers to an already-
1496  * loaded shared object, whose library search path will be searched.
1497  *
1498  * The search order is:
1499  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
1500  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
1501  *   LD_LIBRARY_PATH
1502  *   DT_RUNPATH in the referencing file
1503  *   ldconfig hints (if -z nodefaultlib, filter out /usr/lib from list)
1504  *   /usr/lib _unless_ the referencing file is linked with -z nodefaultlib
1505  *
1506  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
1507  */
1508 static char *
1509 find_library(const char *xname, const Obj_Entry *refobj)
1510 {
1511     char *pathname;
1512     char *name;
1513     bool nodeflib, objgiven;
1514 
1515     objgiven = refobj != NULL;
1516     if (strchr(xname, '/') != NULL) {	/* Hard coded pathname */
1517 	if (xname[0] != '/' && !trust) {
1518 	    _rtld_error("Absolute pathname required for shared object \"%s\"",
1519 	      xname);
1520 	    return NULL;
1521 	}
1522 	if (objgiven && refobj->z_origin) {
1523 		return (origin_subst(__DECONST(char *, xname),
1524 		    refobj->origin_path));
1525 	} else {
1526 		return (xstrdup(xname));
1527 	}
1528     }
1529 
1530     if (libmap_disable || !objgiven ||
1531 	(name = lm_find(refobj->path, xname)) == NULL)
1532 	name = (char *)xname;
1533 
1534     dbg(" Searching for \"%s\"", name);
1535 
1536     nodeflib = objgiven ? refobj->z_nodeflib : false;
1537     if ((objgiven &&
1538       (pathname = search_library_path(name, refobj->rpath)) != NULL) ||
1539       (objgiven && refobj->runpath == NULL && refobj != obj_main &&
1540       (pathname = search_library_path(name, obj_main->rpath)) != NULL) ||
1541       (pathname = search_library_path(name, ld_library_path)) != NULL ||
1542       (objgiven &&
1543       (pathname = search_library_path(name, refobj->runpath)) != NULL) ||
1544 	  (pathname = search_library_path(name, gethints(nodeflib))) != NULL ||
1545 	  (objgiven && !nodeflib &&
1546       (pathname = search_library_path(name, STANDARD_LIBRARY_PATH)) != NULL))
1547 	return (pathname);
1548 
1549     if (objgiven && refobj->path != NULL) {
1550 	_rtld_error("Shared object \"%s\" not found, required by \"%s\"",
1551 	  name, basename(refobj->path));
1552     } else {
1553 	_rtld_error("Shared object \"%s\" not found", name);
1554     }
1555     return NULL;
1556 }
1557 
1558 /*
1559  * Given a symbol number in a referencing object, find the corresponding
1560  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
1561  * no definition was found.  Returns a pointer to the Obj_Entry of the
1562  * defining object via the reference parameter DEFOBJ_OUT.
1563  */
1564 const Elf_Sym *
1565 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
1566     const Obj_Entry **defobj_out, int flags, SymCache *cache,
1567     RtldLockState *lockstate)
1568 {
1569     const Elf_Sym *ref;
1570     const Elf_Sym *def;
1571     const Obj_Entry *defobj;
1572     SymLook req;
1573     const char *name;
1574     int res;
1575 
1576     /*
1577      * If we have already found this symbol, get the information from
1578      * the cache.
1579      */
1580     if (symnum >= refobj->dynsymcount)
1581 	return NULL;	/* Bad object */
1582     if (cache != NULL && cache[symnum].sym != NULL) {
1583 	*defobj_out = cache[symnum].obj;
1584 	return cache[symnum].sym;
1585     }
1586 
1587     ref = refobj->symtab + symnum;
1588     name = refobj->strtab + ref->st_name;
1589     def = NULL;
1590     defobj = NULL;
1591 
1592     /*
1593      * We don't have to do a full scale lookup if the symbol is local.
1594      * We know it will bind to the instance in this load module; to
1595      * which we already have a pointer (ie ref). By not doing a lookup,
1596      * we not only improve performance, but it also avoids unresolvable
1597      * symbols when local symbols are not in the hash table.
1598      *
1599      * This might occur for TLS module relocations, which simply use
1600      * symbol 0.
1601      */
1602     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
1603 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
1604 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
1605 		symnum);
1606 	}
1607 	symlook_init(&req, name);
1608 	req.flags = flags;
1609 	req.ventry = fetch_ventry(refobj, symnum);
1610 	req.lockstate = lockstate;
1611 	res = symlook_default(&req, refobj);
1612 	if (res == 0) {
1613 	    def = req.sym_out;
1614 	    defobj = req.defobj_out;
1615 	}
1616     } else {
1617 	def = ref;
1618 	defobj = refobj;
1619     }
1620 
1621     /*
1622      * If we found no definition and the reference is weak, treat the
1623      * symbol as having the value zero.
1624      */
1625     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
1626 	def = &sym_zero;
1627 	defobj = obj_main;
1628     }
1629 
1630     if (def != NULL) {
1631 	*defobj_out = defobj;
1632 	/* Record the information in the cache to avoid subsequent lookups. */
1633 	if (cache != NULL) {
1634 	    cache[symnum].sym = def;
1635 	    cache[symnum].obj = defobj;
1636 	}
1637     } else {
1638 	if (refobj != &obj_rtld)
1639 	    _rtld_error("%s: Undefined symbol \"%s\"", refobj->path, name);
1640     }
1641     return def;
1642 }
1643 
1644 /*
1645  * Return the search path from the ldconfig hints file, reading it if
1646  * necessary.  If nostdlib is true, then the default search paths are
1647  * not added to result.
1648  *
1649  * Returns NULL if there are problems with the hints file,
1650  * or if the search path there is empty.
1651  */
1652 static const char *
1653 gethints(bool nostdlib)
1654 {
1655 	static char *hints, *filtered_path;
1656 	struct elfhints_hdr hdr;
1657 	struct fill_search_info_args sargs, hargs;
1658 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
1659 	struct dl_serpath *SLPpath, *hintpath;
1660 	char *p;
1661 	unsigned int SLPndx, hintndx, fndx, fcount;
1662 	int fd;
1663 	size_t flen;
1664 	bool skip;
1665 
1666 	/* First call, read the hints file */
1667 	if (hints == NULL) {
1668 		/* Keep from trying again in case the hints file is bad. */
1669 		hints = "";
1670 
1671 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
1672 			return (NULL);
1673 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
1674 		    hdr.magic != ELFHINTS_MAGIC ||
1675 		    hdr.version != 1) {
1676 			close(fd);
1677 			return (NULL);
1678 		}
1679 		p = xmalloc(hdr.dirlistlen + 1);
1680 		if (lseek(fd, hdr.strtab + hdr.dirlist, SEEK_SET) == -1 ||
1681 		    read(fd, p, hdr.dirlistlen + 1) !=
1682 		    (ssize_t)hdr.dirlistlen + 1) {
1683 			free(p);
1684 			close(fd);
1685 			return (NULL);
1686 		}
1687 		hints = p;
1688 		close(fd);
1689 	}
1690 
1691 	/*
1692 	 * If caller agreed to receive list which includes the default
1693 	 * paths, we are done. Otherwise, if we still have not
1694 	 * calculated filtered result, do it now.
1695 	 */
1696 	if (!nostdlib)
1697 		return (hints[0] != '\0' ? hints : NULL);
1698 	if (filtered_path != NULL)
1699 		goto filt_ret;
1700 
1701 	/*
1702 	 * Obtain the list of all configured search paths, and the
1703 	 * list of the default paths.
1704 	 *
1705 	 * First estimate the size of the results.
1706 	 */
1707 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1708 	smeta.dls_cnt = 0;
1709 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
1710 	hmeta.dls_cnt = 0;
1711 
1712 	sargs.request = RTLD_DI_SERINFOSIZE;
1713 	sargs.serinfo = &smeta;
1714 	hargs.request = RTLD_DI_SERINFOSIZE;
1715 	hargs.serinfo = &hmeta;
1716 
1717 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1718 	path_enumerate(p, fill_search_info, &hargs);
1719 
1720 	SLPinfo = xmalloc(smeta.dls_size);
1721 	hintinfo = xmalloc(hmeta.dls_size);
1722 
1723 	/*
1724 	 * Next fetch both sets of paths.
1725 	 */
1726 	sargs.request = RTLD_DI_SERINFO;
1727 	sargs.serinfo = SLPinfo;
1728 	sargs.serpath = &SLPinfo->dls_serpath[0];
1729 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
1730 
1731 	hargs.request = RTLD_DI_SERINFO;
1732 	hargs.serinfo = hintinfo;
1733 	hargs.serpath = &hintinfo->dls_serpath[0];
1734 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
1735 
1736 	path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &sargs);
1737 	path_enumerate(p, fill_search_info, &hargs);
1738 
1739 	/*
1740 	 * Now calculate the difference between two sets, by excluding
1741 	 * standard paths from the full set.
1742 	 */
1743 	fndx = 0;
1744 	fcount = 0;
1745 	filtered_path = xmalloc(hdr.dirlistlen + 1);
1746 	hintpath = &hintinfo->dls_serpath[0];
1747 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
1748 		skip = false;
1749 		SLPpath = &SLPinfo->dls_serpath[0];
1750 		/*
1751 		 * Check each standard path against current.
1752 		 */
1753 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
1754 			/* matched, skip the path */
1755 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
1756 				skip = true;
1757 				break;
1758 			}
1759 		}
1760 		if (skip)
1761 			continue;
1762 		/*
1763 		 * Not matched against any standard path, add the path
1764 		 * to result. Separate consecutive paths with ':'.
1765 		 */
1766 		if (fcount > 0) {
1767 			filtered_path[fndx] = ':';
1768 			fndx++;
1769 		}
1770 		fcount++;
1771 		flen = strlen(hintpath->dls_name);
1772 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
1773 		fndx += flen;
1774 	}
1775 	filtered_path[fndx] = '\0';
1776 
1777 	free(SLPinfo);
1778 	free(hintinfo);
1779 
1780 filt_ret:
1781 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
1782 }
1783 
1784 static void
1785 init_dag(Obj_Entry *root)
1786 {
1787     const Needed_Entry *needed;
1788     const Objlist_Entry *elm;
1789     DoneList donelist;
1790 
1791     if (root->dag_inited)
1792 	return;
1793     donelist_init(&donelist);
1794 
1795     /* Root object belongs to own DAG. */
1796     objlist_push_tail(&root->dldags, root);
1797     objlist_push_tail(&root->dagmembers, root);
1798     donelist_check(&donelist, root);
1799 
1800     /*
1801      * Add dependencies of root object to DAG in breadth order
1802      * by exploiting the fact that each new object get added
1803      * to the tail of the dagmembers list.
1804      */
1805     STAILQ_FOREACH(elm, &root->dagmembers, link) {
1806 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
1807 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
1808 		continue;
1809 	    objlist_push_tail(&needed->obj->dldags, root);
1810 	    objlist_push_tail(&root->dagmembers, needed->obj);
1811 	}
1812     }
1813     root->dag_inited = true;
1814 }
1815 
1816 static void
1817 process_nodelete(Obj_Entry *root)
1818 {
1819 	const Objlist_Entry *elm;
1820 
1821 	/*
1822 	 * Walk over object DAG and process every dependent object that
1823 	 * is marked as DF_1_NODELETE. They need to grow their own DAG,
1824 	 * which then should have its reference upped separately.
1825 	 */
1826 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
1827 		if (elm->obj != NULL && elm->obj->z_nodelete &&
1828 		    !elm->obj->ref_nodel) {
1829 			dbg("obj %s nodelete", elm->obj->path);
1830 			init_dag(elm->obj);
1831 			ref_dag(elm->obj);
1832 			elm->obj->ref_nodel = true;
1833 		}
1834 	}
1835 }
1836 
1837 /*
1838  * Initialize the dynamic linker.  The argument is the address at which
1839  * the dynamic linker has been mapped into memory.  The primary task of
1840  * this function is to relocate the dynamic linker.
1841  */
1842 static void
1843 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
1844 {
1845     Obj_Entry objtmp;	/* Temporary rtld object */
1846     const Elf_Dyn *dyn_rpath;
1847     const Elf_Dyn *dyn_soname;
1848     const Elf_Dyn *dyn_runpath;
1849 
1850     /*
1851      * Conjure up an Obj_Entry structure for the dynamic linker.
1852      *
1853      * The "path" member can't be initialized yet because string constants
1854      * cannot yet be accessed. Below we will set it correctly.
1855      */
1856     memset(&objtmp, 0, sizeof(objtmp));
1857     objtmp.path = NULL;
1858     objtmp.rtld = true;
1859     objtmp.mapbase = mapbase;
1860 #ifdef PIC
1861     objtmp.relocbase = mapbase;
1862 #endif
1863     if (RTLD_IS_DYNAMIC()) {
1864 	objtmp.dynamic = rtld_dynamic(&objtmp);
1865 	digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
1866 	assert(objtmp.needed == NULL);
1867 	assert(!objtmp.textrel);
1868 
1869 	/*
1870 	 * Temporarily put the dynamic linker entry into the object list, so
1871 	 * that symbols can be found.
1872 	 */
1873 
1874 	relocate_objects(&objtmp, true, &objtmp, 0, NULL);
1875     }
1876 
1877     /* Initialize the object list. */
1878     obj_tail = &obj_list;
1879 
1880     /* Now that non-local variables can be accesses, copy out obj_rtld. */
1881     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
1882 
1883 #ifdef ENABLE_OSRELDATE
1884     if (aux_info[AT_OSRELDATE] != NULL)
1885 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
1886 #endif
1887 
1888     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
1889 
1890     /* Replace the path with a dynamically allocated copy. */
1891     obj_rtld.path = xstrdup(PATH_RTLD);
1892 
1893     r_debug.r_brk = r_debug_state;
1894     r_debug.r_state = RT_CONSISTENT;
1895 }
1896 
1897 /*
1898  * Add the init functions from a needed object list (and its recursive
1899  * needed objects) to "list".  This is not used directly; it is a helper
1900  * function for initlist_add_objects().  The write lock must be held
1901  * when this function is called.
1902  */
1903 static void
1904 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
1905 {
1906     /* Recursively process the successor needed objects. */
1907     if (needed->next != NULL)
1908 	initlist_add_neededs(needed->next, list);
1909 
1910     /* Process the current needed object. */
1911     if (needed->obj != NULL)
1912 	initlist_add_objects(needed->obj, &needed->obj->next, list);
1913 }
1914 
1915 /*
1916  * Scan all of the DAGs rooted in the range of objects from "obj" to
1917  * "tail" and add their init functions to "list".  This recurses over
1918  * the DAGs and ensure the proper init ordering such that each object's
1919  * needed libraries are initialized before the object itself.  At the
1920  * same time, this function adds the objects to the global finalization
1921  * list "list_fini" in the opposite order.  The write lock must be
1922  * held when this function is called.
1923  */
1924 static void
1925 initlist_add_objects(Obj_Entry *obj, Obj_Entry **tail, Objlist *list)
1926 {
1927 
1928     if (obj->init_scanned || obj->init_done)
1929 	return;
1930     obj->init_scanned = true;
1931 
1932     /* Recursively process the successor objects. */
1933     if (&obj->next != tail)
1934 	initlist_add_objects(obj->next, tail, list);
1935 
1936     /* Recursively process the needed objects. */
1937     if (obj->needed != NULL)
1938 	initlist_add_neededs(obj->needed, list);
1939     if (obj->needed_filtees != NULL)
1940 	initlist_add_neededs(obj->needed_filtees, list);
1941     if (obj->needed_aux_filtees != NULL)
1942 	initlist_add_neededs(obj->needed_aux_filtees, list);
1943 
1944     /* Add the object to the init list. */
1945     if (obj->preinit_array != (Elf_Addr)NULL || obj->init != (Elf_Addr)NULL ||
1946       obj->init_array != (Elf_Addr)NULL)
1947 	objlist_push_tail(list, obj);
1948 
1949     /* Add the object to the global fini list in the reverse order. */
1950     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
1951       && !obj->on_fini_list) {
1952 	objlist_push_head(&list_fini, obj);
1953 	obj->on_fini_list = true;
1954     }
1955 }
1956 
1957 #ifndef FPTR_TARGET
1958 #define FPTR_TARGET(f)	((Elf_Addr) (f))
1959 #endif
1960 
1961 static void
1962 free_needed_filtees(Needed_Entry *n)
1963 {
1964     Needed_Entry *needed, *needed1;
1965 
1966     for (needed = n; needed != NULL; needed = needed->next) {
1967 	if (needed->obj != NULL) {
1968 	    dlclose(needed->obj);
1969 	    needed->obj = NULL;
1970 	}
1971     }
1972     for (needed = n; needed != NULL; needed = needed1) {
1973 	needed1 = needed->next;
1974 	free(needed);
1975     }
1976 }
1977 
1978 static void
1979 unload_filtees(Obj_Entry *obj)
1980 {
1981 
1982     free_needed_filtees(obj->needed_filtees);
1983     obj->needed_filtees = NULL;
1984     free_needed_filtees(obj->needed_aux_filtees);
1985     obj->needed_aux_filtees = NULL;
1986     obj->filtees_loaded = false;
1987 }
1988 
1989 static void
1990 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
1991     RtldLockState *lockstate)
1992 {
1993 
1994     for (; needed != NULL; needed = needed->next) {
1995 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
1996 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
1997 	  RTLD_LOCAL, lockstate);
1998     }
1999 }
2000 
2001 static void
2002 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
2003 {
2004 
2005     lock_restart_for_upgrade(lockstate);
2006     if (!obj->filtees_loaded) {
2007 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
2008 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
2009 	obj->filtees_loaded = true;
2010     }
2011 }
2012 
2013 static int
2014 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
2015 {
2016     Obj_Entry *obj1;
2017 
2018     for (; needed != NULL; needed = needed->next) {
2019 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
2020 	  flags & ~RTLD_LO_NOLOAD);
2021 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
2022 	    return (-1);
2023     }
2024     return (0);
2025 }
2026 
2027 /*
2028  * Given a shared object, traverse its list of needed objects, and load
2029  * each of them.  Returns 0 on success.  Generates an error message and
2030  * returns -1 on failure.
2031  */
2032 static int
2033 load_needed_objects(Obj_Entry *first, int flags)
2034 {
2035     Obj_Entry *obj;
2036 
2037     for (obj = first;  obj != NULL;  obj = obj->next) {
2038 	if (process_needed(obj, obj->needed, flags) == -1)
2039 	    return (-1);
2040     }
2041     return (0);
2042 }
2043 
2044 static int
2045 load_preload_objects(void)
2046 {
2047     char *p = ld_preload;
2048     Obj_Entry *obj;
2049     static const char delim[] = " \t:;";
2050 
2051     if (p == NULL)
2052 	return 0;
2053 
2054     p += strspn(p, delim);
2055     while (*p != '\0') {
2056 	size_t len = strcspn(p, delim);
2057 	char savech;
2058 	SymLook req;
2059 	int res;
2060 
2061 	savech = p[len];
2062 	p[len] = '\0';
2063 	obj = load_object(p, -1, NULL, 0);
2064 	if (obj == NULL)
2065 	    return -1;	/* XXX - cleanup */
2066 	obj->z_interpose = true;
2067 	p[len] = savech;
2068 	p += len;
2069 	p += strspn(p, delim);
2070 
2071 	/* Check for the magic tracing function */
2072 	symlook_init(&req, RTLD_FUNCTRACE);
2073 	res = symlook_obj(&req, obj);
2074 	if (res == 0) {
2075 	    rtld_functrace = (void *)(req.defobj_out->relocbase +
2076 				      req.sym_out->st_value);
2077 	    rtld_functrace_obj = req.defobj_out;
2078 	}
2079     }
2080     LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
2081     return 0;
2082 }
2083 
2084 static const char *
2085 printable_path(const char *path)
2086 {
2087 
2088 	return (path == NULL ? "<unknown>" : path);
2089 }
2090 
2091 /*
2092  * Load a shared object into memory, if it is not already loaded.  The
2093  * object may be specified by name or by user-supplied file descriptor
2094  * fd_u. In the later case, the fd_u descriptor is not closed, but its
2095  * duplicate is.
2096  *
2097  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
2098  * on failure.
2099  */
2100 static Obj_Entry *
2101 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
2102 {
2103     Obj_Entry *obj;
2104     int fd;
2105     struct stat sb;
2106     char *path;
2107 
2108     if (name != NULL) {
2109 	for (obj = obj_list->next;  obj != NULL;  obj = obj->next) {
2110 	    if (object_match_name(obj, name))
2111 		return (obj);
2112 	}
2113 
2114 	path = find_library(name, refobj);
2115 	if (path == NULL)
2116 	    return (NULL);
2117     } else
2118 	path = NULL;
2119 
2120     /*
2121      * If we didn't find a match by pathname, or the name is not
2122      * supplied, open the file and check again by device and inode.
2123      * This avoids false mismatches caused by multiple links or ".."
2124      * in pathnames.
2125      *
2126      * To avoid a race, we open the file and use fstat() rather than
2127      * using stat().
2128      */
2129     fd = -1;
2130     if (fd_u == -1) {
2131 	if ((fd = open(path, O_RDONLY | O_CLOEXEC)) == -1) {
2132 	    _rtld_error("Cannot open \"%s\"", path);
2133 	    free(path);
2134 	    return (NULL);
2135 	}
2136     } else {
2137 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
2138 	if (fd == -1) {
2139 	    /*
2140 	     * Temporary, remove at 3.6 branch
2141 	     * User might not have latest kernel installed
2142 	     * so fall back to old command for a while
2143 	     */
2144 	    fd = dup(fd_u);
2145 	    if (fd == -1 || (fcntl(fd, F_SETFD, FD_CLOEXEC) == -1)) {
2146 		_rtld_error("Cannot dup fd");
2147 		free(path);
2148 		return (NULL);
2149 	    }
2150 	}
2151     }
2152     if (fstat(fd, &sb) == -1) {
2153 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
2154 	close(fd);
2155 	free(path);
2156 	return NULL;
2157     }
2158     for (obj = obj_list->next;  obj != NULL;  obj = obj->next)
2159 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
2160 	    break;
2161     if (obj != NULL && name != NULL) {
2162 	object_add_name(obj, name);
2163 	free(path);
2164 	close(fd);
2165 	return obj;
2166     }
2167     if (flags & RTLD_LO_NOLOAD) {
2168 	free(path);
2169 	close(fd);
2170 	return (NULL);
2171     }
2172 
2173     /* First use of this object, so we must map it in */
2174     obj = do_load_object(fd, name, path, &sb, flags);
2175     if (obj == NULL)
2176 	free(path);
2177     close(fd);
2178 
2179     return obj;
2180 }
2181 
2182 static Obj_Entry *
2183 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
2184   int flags)
2185 {
2186     Obj_Entry *obj;
2187     struct statfs fs;
2188 
2189     /*
2190      * but first, make sure that environment variables haven't been
2191      * used to circumvent the noexec flag on a filesystem.
2192      */
2193     if (dangerous_ld_env) {
2194 	if (fstatfs(fd, &fs) != 0) {
2195 	    _rtld_error("Cannot fstatfs \"%s\"", printable_path(path));
2196 		return NULL;
2197 	}
2198 	if (fs.f_flags & MNT_NOEXEC) {
2199 	    _rtld_error("Cannot execute objects on %s\n", fs.f_mntonname);
2200 	    return NULL;
2201 	}
2202     }
2203     dbg("loading \"%s\"", printable_path(path));
2204     obj = map_object(fd, printable_path(path), sbp);
2205     if (obj == NULL)
2206         return NULL;
2207 
2208     /*
2209      * If DT_SONAME is present in the object, digest_dynamic2 already
2210      * added it to the object names.
2211      */
2212     if (name != NULL)
2213 	object_add_name(obj, name);
2214     obj->path = path;
2215     digest_dynamic(obj, 0);
2216     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
2217 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
2218     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
2219       RTLD_LO_DLOPEN) {
2220 	dbg("refusing to load non-loadable \"%s\"", obj->path);
2221 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
2222 	munmap(obj->mapbase, obj->mapsize);
2223 	obj_free(obj);
2224 	return (NULL);
2225     }
2226 
2227     *obj_tail = obj;
2228     obj_tail = &obj->next;
2229     obj_count++;
2230     obj_loads++;
2231     linkmap_add(obj);	/* for GDB & dlinfo() */
2232 #if 0
2233     max_stack_flags |= obj->stack_flags;
2234 #endif
2235 
2236     dbg("  %p .. %p: %s", obj->mapbase,
2237          obj->mapbase + obj->mapsize - 1, obj->path);
2238     if (obj->textrel)
2239 	dbg("  WARNING: %s has impure text", obj->path);
2240     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
2241 	obj->path);
2242 
2243     return obj;
2244 }
2245 
2246 static Obj_Entry *
2247 obj_from_addr(const void *addr)
2248 {
2249     Obj_Entry *obj;
2250 
2251     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
2252 	if (addr < (void *) obj->mapbase)
2253 	    continue;
2254 	if (addr < (void *) (obj->mapbase + obj->mapsize))
2255 	    return obj;
2256     }
2257     return NULL;
2258 }
2259 
2260 /*
2261  * If the main program is defined with a .preinit_array section, call
2262  * each function in order.  This must occur before the initialization
2263  * of any shared object or the main program.
2264  */
2265 static void
2266 preinit_main(void)
2267 {
2268     Elf_Addr *preinit_addr;
2269     int index;
2270 
2271     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
2272     if (preinit_addr == NULL)
2273 	return;
2274 
2275     for (index = 0; index < obj_main->preinit_array_num; index++) {
2276 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
2277 	    dbg("calling preinit function for %s at %p", obj_main->path,
2278 		(void *)preinit_addr[index]);
2279 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
2280 		0, 0, obj_main->path);
2281 	    call_init_pointer(obj_main, preinit_addr[index]);
2282 	}
2283     }
2284 }
2285 
2286 /*
2287  * Call the finalization functions for each of the objects in "list"
2288  * belonging to the DAG of "root" and referenced once. If NULL "root"
2289  * is specified, every finalization function will be called regardless
2290  * of the reference count and the list elements won't be freed. All of
2291  * the objects are expected to have non-NULL fini functions.
2292  */
2293 static void
2294 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
2295 {
2296     Objlist_Entry *elm;
2297     char *saved_msg;
2298     Elf_Addr *fini_addr;
2299     int index;
2300 
2301     assert(root == NULL || root->refcount == 1);
2302 
2303     /*
2304      * Preserve the current error message since a fini function might
2305      * call into the dynamic linker and overwrite it.
2306      */
2307     saved_msg = errmsg_save();
2308     do {
2309 	STAILQ_FOREACH(elm, list, link) {
2310 	    if (root != NULL && (elm->obj->refcount != 1 ||
2311 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
2312 		continue;
2313 
2314 	    /* Remove object from fini list to prevent recursive invocation. */
2315 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2316 	    /*
2317 	     * XXX: If a dlopen() call references an object while the
2318 	     * fini function is in progress, we might end up trying to
2319 	     * unload the referenced object in dlclose() or the object
2320 	     * won't be unloaded although its fini function has been
2321 	     * called.
2322 	     */
2323 	    lock_release(rtld_bind_lock, lockstate);
2324 
2325 	    /*
2326 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.  When this
2327 	     * happens, DT_FINI_ARRAY is processed first, and it is also processed
2328 	     * backwards.  It is possible to encounter DT_FINI_ARRAY elements with
2329 	     * values of 0 or 1, but they need to be ignored.
2330 	     */
2331 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
2332 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
2333 		for (index = elm->obj->fini_array_num - 1; index >= 0; index--) {
2334 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
2335 			dbg("calling fini array function for %s at %p",
2336 		            elm->obj->path, (void *)fini_addr[index]);
2337 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
2338 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
2339 			call_initfini_pointer(elm->obj, fini_addr[index]);
2340 		    }
2341 	        }
2342 	    }
2343 	    if (elm->obj->fini != (Elf_Addr)NULL) {
2344 		dbg("calling fini function for %s at %p", elm->obj->path,
2345 		    (void *)elm->obj->fini);
2346 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
2347 		    0, 0, elm->obj->path);
2348 	        call_initfini_pointer(elm->obj, elm->obj->fini);
2349 	    }
2350 	    wlock_acquire(rtld_bind_lock, lockstate);
2351 	    /* No need to free anything if process is going down. */
2352 	    if (root != NULL)
2353 		free(elm);
2354 	    /*
2355 	     * We must restart the list traversal after every fini call
2356 	     * because a dlclose() call from the fini function or from
2357 	     * another thread might have modified the reference counts.
2358 	     */
2359 	    break;
2360 	}
2361     } while (elm != NULL);
2362     errmsg_restore(saved_msg);
2363 }
2364 
2365 /*
2366  * Call the initialization functions for each of the objects in
2367  * "list".  All of the objects are expected to have non-NULL init
2368  * functions.
2369  */
2370 static void
2371 objlist_call_init(Objlist *list, RtldLockState *lockstate)
2372 {
2373     Objlist_Entry *elm;
2374     Obj_Entry *obj;
2375     char *saved_msg;
2376     Elf_Addr *init_addr;
2377     int index;
2378 
2379     /*
2380      * Clean init_scanned flag so that objects can be rechecked and
2381      * possibly initialized earlier if any of vectors called below
2382      * cause the change by using dlopen.
2383      */
2384     for (obj = obj_list;  obj != NULL;  obj = obj->next)
2385 	obj->init_scanned = false;
2386 
2387     /*
2388      * Preserve the current error message since an init function might
2389      * call into the dynamic linker and overwrite it.
2390      */
2391     saved_msg = errmsg_save();
2392     STAILQ_FOREACH(elm, list, link) {
2393 	if (elm->obj->init_done) /* Initialized early. */
2394 	    continue;
2395 
2396 	/*
2397 	 * Race: other thread might try to use this object before current
2398 	 * one completes the initilization. Not much can be done here
2399 	 * without better locking.
2400 	 */
2401 	elm->obj->init_done = true;
2402 	lock_release(rtld_bind_lock, lockstate);
2403 
2404         /*
2405          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.  When
2406          * this happens, DT_INIT is processed first.  It is possible to
2407          * encounter DT_INIT_ARRAY elements with values of 0 or 1, but they
2408          * need to be ignored.
2409          */
2410          if (elm->obj->init != (Elf_Addr)NULL) {
2411 	    dbg("calling init function for %s at %p", elm->obj->path,
2412 	        (void *)elm->obj->init);
2413 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
2414 	        0, 0, elm->obj->path);
2415 	    call_initfini_pointer(elm->obj, elm->obj->init);
2416 	}
2417 	init_addr = (Elf_Addr *)elm->obj->init_array;
2418 	if (init_addr != NULL) {
2419 	    for (index = 0; index < elm->obj->init_array_num; index++) {
2420 		if (init_addr[index] != 0 && init_addr[index] != 1) {
2421 		    dbg("calling init array function for %s at %p", elm->obj->path,
2422 			(void *)init_addr[index]);
2423 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
2424 			(void *)init_addr[index], 0, 0, elm->obj->path);
2425 		    call_init_pointer(elm->obj, init_addr[index]);
2426 		}
2427 	    }
2428 	}
2429 	wlock_acquire(rtld_bind_lock, lockstate);
2430     }
2431     errmsg_restore(saved_msg);
2432 }
2433 
2434 static void
2435 objlist_clear(Objlist *list)
2436 {
2437     Objlist_Entry *elm;
2438 
2439     while (!STAILQ_EMPTY(list)) {
2440 	elm = STAILQ_FIRST(list);
2441 	STAILQ_REMOVE_HEAD(list, link);
2442 	free(elm);
2443     }
2444 }
2445 
2446 static Objlist_Entry *
2447 objlist_find(Objlist *list, const Obj_Entry *obj)
2448 {
2449     Objlist_Entry *elm;
2450 
2451     STAILQ_FOREACH(elm, list, link)
2452 	if (elm->obj == obj)
2453 	    return elm;
2454     return NULL;
2455 }
2456 
2457 static void
2458 objlist_init(Objlist *list)
2459 {
2460     STAILQ_INIT(list);
2461 }
2462 
2463 static void
2464 objlist_push_head(Objlist *list, Obj_Entry *obj)
2465 {
2466     Objlist_Entry *elm;
2467 
2468     elm = NEW(Objlist_Entry);
2469     elm->obj = obj;
2470     STAILQ_INSERT_HEAD(list, elm, link);
2471 }
2472 
2473 static void
2474 objlist_push_tail(Objlist *list, Obj_Entry *obj)
2475 {
2476     Objlist_Entry *elm;
2477 
2478     elm = NEW(Objlist_Entry);
2479     elm->obj = obj;
2480     STAILQ_INSERT_TAIL(list, elm, link);
2481 }
2482 
2483 static void
2484 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
2485 {
2486        Objlist_Entry *elm, *listelm;
2487 
2488        STAILQ_FOREACH(listelm, list, link) {
2489                if (listelm->obj == listobj)
2490                        break;
2491        }
2492        elm = NEW(Objlist_Entry);
2493        elm->obj = obj;
2494        if (listelm != NULL)
2495                STAILQ_INSERT_AFTER(list, listelm, elm, link);
2496        else
2497                STAILQ_INSERT_TAIL(list, elm, link);
2498 }
2499 
2500 static void
2501 objlist_remove(Objlist *list, Obj_Entry *obj)
2502 {
2503     Objlist_Entry *elm;
2504 
2505     if ((elm = objlist_find(list, obj)) != NULL) {
2506 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
2507 	free(elm);
2508     }
2509 }
2510 
2511 /*
2512  * Relocate dag rooted in the specified object.
2513  * Returns 0 on success, or -1 on failure.
2514  */
2515 
2516 static int
2517 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
2518     int flags, RtldLockState *lockstate)
2519 {
2520 	Objlist_Entry *elm;
2521 	int error;
2522 
2523 	error = 0;
2524 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
2525 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
2526 		    lockstate);
2527 		if (error == -1)
2528 			break;
2529 	}
2530 	return (error);
2531 }
2532 
2533 /*
2534  * Relocate single object.
2535  * Returns 0 on success, or -1 on failure.
2536  */
2537 static int
2538 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
2539     int flags, RtldLockState *lockstate)
2540 {
2541 
2542 	if (obj->relocated)
2543 	    return (0);
2544 	obj->relocated = true;
2545 	if (obj != rtldobj)
2546 	    dbg("relocating \"%s\"", obj->path);
2547 
2548 	if (obj->symtab == NULL || obj->strtab == NULL ||
2549 	  !(obj->valid_hash_sysv || obj->valid_hash_gnu)) {
2550 	    _rtld_error("%s: Shared object has no run-time symbol table",
2551 	      obj->path);
2552 	    return (-1);
2553 	}
2554 
2555 	if (obj->textrel) {
2556 	    /* There are relocations to the write-protected text segment. */
2557 	    if (mprotect(obj->mapbase, obj->textsize,
2558 	      PROT_READ|PROT_WRITE|PROT_EXEC) == -1) {
2559 		_rtld_error("%s: Cannot write-enable text segment: %s",
2560 		  obj->path, rtld_strerror(errno));
2561 		return (-1);
2562 	    }
2563 	}
2564 
2565 	/* Process the non-PLT relocations. */
2566 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
2567 		return (-1);
2568 
2569 	/*
2570 	 * Reprotect the text segment.  Make sure it is included in the
2571 	 * core dump since we modified it.  This unfortunately causes the
2572 	 * entire text segment to core-out but we don't have much of a
2573 	 * choice.  We could try to only reenable core dumps on pages
2574 	 * in which relocations occured but that is likely most of the text
2575 	 * pages anyway, and even that would not work because the rest of
2576 	 * the text pages would wind up as a read-only OBJT_DEFAULT object
2577 	 * (created due to our modifications) backed by the original OBJT_VNODE
2578 	 * object, and the ELF coredump code is currently only able to dump
2579 	 * vnode records for pure vnode-backed mappings, not vnode backings
2580 	 * to memory objects.
2581 	 */
2582 	if (obj->textrel) {
2583 	    madvise(obj->mapbase, obj->textsize, MADV_CORE);
2584 	    if (mprotect(obj->mapbase, obj->textsize,
2585 	      PROT_READ|PROT_EXEC) == -1) {
2586 		_rtld_error("%s: Cannot write-protect text segment: %s",
2587 		  obj->path, rtld_strerror(errno));
2588 		return (-1);
2589 	    }
2590 	}
2591 
2592 
2593 	/* Set the special PLT or GOT entries. */
2594 	init_pltgot(obj);
2595 
2596 	/* Process the PLT relocations. */
2597 	if (reloc_plt(obj) == -1)
2598 	    return (-1);
2599 	/* Relocate the jump slots if we are doing immediate binding. */
2600 	if (obj->bind_now || bind_now)
2601 	    if (reloc_jmpslots(obj, flags, lockstate) == -1)
2602 		return (-1);
2603 
2604 	/*
2605 	 * Set up the magic number and version in the Obj_Entry.  These
2606 	 * were checked in the crt1.o from the original ElfKit, so we
2607 	 * set them for backward compatibility.
2608 	 */
2609 	obj->magic = RTLD_MAGIC;
2610 	obj->version = RTLD_VERSION;
2611 
2612 	/*
2613 	 * Set relocated data to read-only status if protection specified
2614 	 */
2615 
2616 	if (obj->relro_size) {
2617 	    if (mprotect(obj->relro_page, obj->relro_size, PROT_READ) == -1) {
2618 		_rtld_error("%s: Cannot enforce relro relocation: %s",
2619 		  obj->path, rtld_strerror(errno));
2620 		return (-1);
2621 	    }
2622 	}
2623 	return (0);
2624 }
2625 
2626 /*
2627  * Relocate newly-loaded shared objects.  The argument is a pointer to
2628  * the Obj_Entry for the first such object.  All objects from the first
2629  * to the end of the list of objects are relocated.  Returns 0 on success,
2630  * or -1 on failure.
2631  */
2632 static int
2633 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
2634     int flags, RtldLockState *lockstate)
2635 {
2636 	Obj_Entry *obj;
2637 	int error;
2638 
2639 	for (error = 0, obj = first;  obj != NULL;  obj = obj->next) {
2640 		error = relocate_object(obj, bind_now, rtldobj, flags,
2641 		    lockstate);
2642 		if (error == -1)
2643 			break;
2644 	}
2645 	return (error);
2646 }
2647 
2648 /*
2649  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
2650  * referencing STT_GNU_IFUNC symbols is postponed till the other
2651  * relocations are done.  The indirect functions specified as
2652  * ifunc are allowed to call other symbols, so we need to have
2653  * objects relocated before asking for resolution from indirects.
2654  *
2655  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
2656  * instead of the usual lazy handling of PLT slots.  It is
2657  * consistent with how GNU does it.
2658  */
2659 static int
2660 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
2661     RtldLockState *lockstate)
2662 {
2663 	if (obj->irelative && reloc_iresolve(obj, lockstate) == -1)
2664 		return (-1);
2665 	if ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
2666 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1)
2667 		return (-1);
2668 	return (0);
2669 }
2670 
2671 static int
2672 resolve_objects_ifunc(Obj_Entry *first, bool bind_now, int flags,
2673     RtldLockState *lockstate)
2674 {
2675 	Obj_Entry *obj;
2676 
2677 	for (obj = first;  obj != NULL;  obj = obj->next) {
2678 		if (resolve_object_ifunc(obj, bind_now, flags, lockstate) == -1)
2679 			return (-1);
2680 	}
2681 	return (0);
2682 }
2683 
2684 static int
2685 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
2686     RtldLockState *lockstate)
2687 {
2688 	Objlist_Entry *elm;
2689 
2690 	STAILQ_FOREACH(elm, list, link) {
2691 		if (resolve_object_ifunc(elm->obj, bind_now, flags,
2692 		    lockstate) == -1)
2693 			return (-1);
2694 	}
2695 	return (0);
2696 }
2697 
2698 /*
2699  * Cleanup procedure.  It will be called (by the atexit mechanism) just
2700  * before the process exits.
2701  */
2702 static void
2703 rtld_exit(void)
2704 {
2705     RtldLockState lockstate;
2706 
2707     wlock_acquire(rtld_bind_lock, &lockstate);
2708     dbg("rtld_exit()");
2709     objlist_call_fini(&list_fini, NULL, &lockstate);
2710     /* No need to remove the items from the list, since we are exiting. */
2711     if (!libmap_disable)
2712         lm_fini();
2713     lock_release(rtld_bind_lock, &lockstate);
2714 }
2715 
2716 /*
2717  * Iterate over a search path, translate each element, and invoke the
2718  * callback on the result.
2719  */
2720 static void *
2721 path_enumerate(const char *path, path_enum_proc callback, void *arg)
2722 {
2723     const char *trans;
2724     if (path == NULL)
2725 	return (NULL);
2726 
2727     path += strspn(path, ":;");
2728     while (*path != '\0') {
2729 	size_t len;
2730 	char  *res;
2731 
2732 	len = strcspn(path, ":;");
2733 	trans = lm_findn(NULL, path, len);
2734 	if (trans)
2735 	    res = callback(trans, strlen(trans), arg);
2736 	else
2737 	    res = callback(path, len, arg);
2738 
2739 	if (res != NULL)
2740 	    return (res);
2741 
2742 	path += len;
2743 	path += strspn(path, ":;");
2744     }
2745 
2746     return (NULL);
2747 }
2748 
2749 struct try_library_args {
2750     const char	*name;
2751     size_t	 namelen;
2752     char	*buffer;
2753     size_t	 buflen;
2754 };
2755 
2756 static void *
2757 try_library_path(const char *dir, size_t dirlen, void *param)
2758 {
2759     struct try_library_args *arg;
2760 
2761     arg = param;
2762     if (*dir == '/' || trust) {
2763 	char *pathname;
2764 
2765 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
2766 		return (NULL);
2767 
2768 	pathname = arg->buffer;
2769 	strncpy(pathname, dir, dirlen);
2770 	pathname[dirlen] = '/';
2771 	strcpy(pathname + dirlen + 1, arg->name);
2772 
2773 	dbg("  Trying \"%s\"", pathname);
2774 	if (access(pathname, F_OK) == 0) {		/* We found it */
2775 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
2776 	    strcpy(pathname, arg->buffer);
2777 	    return (pathname);
2778 	}
2779     }
2780     return (NULL);
2781 }
2782 
2783 static char *
2784 search_library_path(const char *name, const char *path)
2785 {
2786     char *p;
2787     struct try_library_args arg;
2788 
2789     if (path == NULL)
2790 	return NULL;
2791 
2792     arg.name = name;
2793     arg.namelen = strlen(name);
2794     arg.buffer = xmalloc(PATH_MAX);
2795     arg.buflen = PATH_MAX;
2796 
2797     p = path_enumerate(path, try_library_path, &arg);
2798 
2799     free(arg.buffer);
2800 
2801     return (p);
2802 }
2803 
2804 int
2805 dlclose(void *handle)
2806 {
2807     Obj_Entry *root;
2808     RtldLockState lockstate;
2809 
2810     wlock_acquire(rtld_bind_lock, &lockstate);
2811     root = dlcheck(handle);
2812     if (root == NULL) {
2813 	lock_release(rtld_bind_lock, &lockstate);
2814 	return -1;
2815     }
2816     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
2817 	root->path);
2818 
2819     /* Unreference the object and its dependencies. */
2820     root->dl_refcount--;
2821 
2822     if (root->refcount == 1) {
2823 	/*
2824 	 * The object will be no longer referenced, so we must unload it.
2825 	 * First, call the fini functions.
2826 	 */
2827 	objlist_call_fini(&list_fini, root, &lockstate);
2828 
2829 	unref_dag(root);
2830 
2831 	/* Finish cleaning up the newly-unreferenced objects. */
2832 	GDB_STATE(RT_DELETE,&root->linkmap);
2833 	unload_object(root);
2834 	GDB_STATE(RT_CONSISTENT,NULL);
2835     } else
2836 	unref_dag(root);
2837 
2838     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
2839     lock_release(rtld_bind_lock, &lockstate);
2840     return 0;
2841 }
2842 
2843 char *
2844 dlerror(void)
2845 {
2846     char *msg = error_message;
2847     error_message = NULL;
2848     return msg;
2849 }
2850 
2851 void *
2852 dlopen(const char *name, int mode)
2853 {
2854 
2855 	return (rtld_dlopen(name, -1, mode));
2856 }
2857 
2858 void *
2859 fdlopen(int fd, int mode)
2860 {
2861 
2862 	return (rtld_dlopen(NULL, fd, mode));
2863 }
2864 
2865 static void *
2866 rtld_dlopen(const char *name, int fd, int mode)
2867 {
2868     RtldLockState lockstate;
2869     int lo_flags;
2870 
2871     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
2872     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
2873     if (ld_tracing != NULL) {
2874 	rlock_acquire(rtld_bind_lock, &lockstate);
2875 	if (sigsetjmp(lockstate.env, 0) != 0)
2876 	    lock_upgrade(rtld_bind_lock, &lockstate);
2877 	environ = (char **)*get_program_var_addr("environ", &lockstate);
2878 	lock_release(rtld_bind_lock, &lockstate);
2879     }
2880     lo_flags = RTLD_LO_DLOPEN;
2881     if (mode & RTLD_NODELETE)
2882 	    lo_flags |= RTLD_LO_NODELETE;
2883     if (mode & RTLD_NOLOAD)
2884 	    lo_flags |= RTLD_LO_NOLOAD;
2885     if (ld_tracing != NULL)
2886 	    lo_flags |= RTLD_LO_TRACE;
2887 
2888     return (dlopen_object(name, fd, obj_main, lo_flags,
2889       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
2890 }
2891 
2892 static void
2893 dlopen_cleanup(Obj_Entry *obj)
2894 {
2895 
2896 	obj->dl_refcount--;
2897 	unref_dag(obj);
2898 	if (obj->refcount == 0)
2899 		unload_object(obj);
2900 }
2901 
2902 static Obj_Entry *
2903 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
2904     int mode, RtldLockState *lockstate)
2905 {
2906     Obj_Entry **old_obj_tail;
2907     Obj_Entry *obj;
2908     Objlist initlist;
2909     RtldLockState mlockstate;
2910     int result;
2911 
2912     objlist_init(&initlist);
2913 
2914     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
2915 	wlock_acquire(rtld_bind_lock, &mlockstate);
2916 	lockstate = &mlockstate;
2917     }
2918     GDB_STATE(RT_ADD,NULL);
2919 
2920     old_obj_tail = obj_tail;
2921     obj = NULL;
2922     if (name == NULL && fd == -1) {
2923 	obj = obj_main;
2924 	obj->refcount++;
2925     } else {
2926 	obj = load_object(name, fd, refobj, lo_flags);
2927     }
2928 
2929     if (obj) {
2930 	obj->dl_refcount++;
2931 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
2932 	    objlist_push_tail(&list_global, obj);
2933 	if (*old_obj_tail != NULL) {		/* We loaded something new. */
2934 	    assert(*old_obj_tail == obj);
2935 	    result = load_needed_objects(obj,
2936 		lo_flags & (RTLD_LO_DLOPEN | RTLD_LO_EARLY));
2937 	    init_dag(obj);
2938 	    ref_dag(obj);
2939 	    if (result != -1)
2940 		result = rtld_verify_versions(&obj->dagmembers);
2941 	    if (result != -1 && ld_tracing)
2942 		goto trace;
2943 	    if (result == -1 || relocate_object_dag(obj,
2944 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
2945 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
2946 	      lockstate) == -1) {
2947 		dlopen_cleanup(obj);
2948 		obj = NULL;
2949 	    } else if (lo_flags & RTLD_LO_EARLY) {
2950 		/*
2951 		 * Do not call the init functions for early loaded
2952 		 * filtees.  The image is still not initialized enough
2953 		 * for them to work.
2954 		 *
2955 		 * Our object is found by the global object list and
2956 		 * will be ordered among all init calls done right
2957 		 * before transferring control to main.
2958 		 */
2959 	    } else {
2960 		/* Make list of init functions to call. */
2961 		initlist_add_objects(obj, &obj->next, &initlist);
2962 	    }
2963 	    /*
2964 	     * Process all no_delete objects here, given them own
2965 	     * DAGs to prevent their dependencies from being unloaded.
2966 	     * This has to be done after we have loaded all of the
2967 	     * dependencies, so that we do not miss any.
2968 	     */
2969 	     if (obj != NULL)
2970 		process_nodelete(obj);
2971 	} else {
2972 	    /*
2973 	     * Bump the reference counts for objects on this DAG.  If
2974 	     * this is the first dlopen() call for the object that was
2975 	     * already loaded as a dependency, initialize the dag
2976 	     * starting at it.
2977 	     */
2978 	    init_dag(obj);
2979 	    ref_dag(obj);
2980 
2981 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
2982 		goto trace;
2983 	}
2984 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
2985 	  obj->z_nodelete) && !obj->ref_nodel) {
2986 	    dbg("obj %s nodelete", obj->path);
2987 	    ref_dag(obj);
2988 	    obj->z_nodelete = obj->ref_nodel = true;
2989 	}
2990     }
2991 
2992     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
2993 	name);
2994     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
2995 
2996     if (!(lo_flags & RTLD_LO_EARLY)) {
2997 	map_stacks_exec(lockstate);
2998     }
2999 
3000     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
3001       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
3002       lockstate) == -1) {
3003 	objlist_clear(&initlist);
3004 	dlopen_cleanup(obj);
3005 	if (lockstate == &mlockstate)
3006 	    lock_release(rtld_bind_lock, lockstate);
3007 	return (NULL);
3008     }
3009 
3010     if (!(lo_flags & RTLD_LO_EARLY)) {
3011 	/* Call the init functions. */
3012 	objlist_call_init(&initlist, lockstate);
3013     }
3014     objlist_clear(&initlist);
3015     if (lockstate == &mlockstate)
3016 	lock_release(rtld_bind_lock, lockstate);
3017     return obj;
3018 trace:
3019     trace_loaded_objects(obj);
3020     if (lockstate == &mlockstate)
3021 	lock_release(rtld_bind_lock, lockstate);
3022     exit(0);
3023 }
3024 
3025 static void *
3026 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
3027     int flags)
3028 {
3029     DoneList donelist;
3030     const Obj_Entry *obj, *defobj;
3031     const Elf_Sym *def;
3032     SymLook req;
3033     RtldLockState lockstate;
3034     tls_index ti;
3035     int res;
3036 
3037     def = NULL;
3038     defobj = NULL;
3039     symlook_init(&req, name);
3040     req.ventry = ve;
3041     req.flags = flags | SYMLOOK_IN_PLT;
3042     req.lockstate = &lockstate;
3043 
3044     rlock_acquire(rtld_bind_lock, &lockstate);
3045     if (sigsetjmp(lockstate.env, 0) != 0)
3046 	    lock_upgrade(rtld_bind_lock, &lockstate);
3047     if (handle == NULL || handle == RTLD_NEXT ||
3048 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
3049 
3050 	if ((obj = obj_from_addr(retaddr)) == NULL) {
3051 	    _rtld_error("Cannot determine caller's shared object");
3052 	    lock_release(rtld_bind_lock, &lockstate);
3053 	    return NULL;
3054 	}
3055 	if (handle == NULL) {	/* Just the caller's shared object. */
3056 	    res = symlook_obj(&req, obj);
3057 	    if (res == 0) {
3058 		def = req.sym_out;
3059 		defobj = req.defobj_out;
3060 	    }
3061 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
3062 		   handle == RTLD_SELF) { /* ... caller included */
3063 	    if (handle == RTLD_NEXT)
3064 		obj = obj->next;
3065 	    for (; obj != NULL; obj = obj->next) {
3066 		res = symlook_obj(&req, obj);
3067 		if (res == 0) {
3068 		    if (def == NULL ||
3069 		      ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK) {
3070 			def = req.sym_out;
3071 			defobj = req.defobj_out;
3072 			if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3073 			    break;
3074 		    }
3075 		}
3076 	    }
3077 	    /*
3078 	     * Search the dynamic linker itself, and possibly resolve the
3079 	     * symbol from there.  This is how the application links to
3080 	     * dynamic linker services such as dlopen.
3081 	     */
3082 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3083 		res = symlook_obj(&req, &obj_rtld);
3084 		if (res == 0) {
3085 		    def = req.sym_out;
3086 		    defobj = req.defobj_out;
3087 		}
3088 	    }
3089 	} else {
3090 	    assert(handle == RTLD_DEFAULT);
3091 	    res = symlook_default(&req, obj);
3092 	    if (res == 0) {
3093 		defobj = req.defobj_out;
3094 		def = req.sym_out;
3095 	    }
3096 	}
3097     } else {
3098 	if ((obj = dlcheck(handle)) == NULL) {
3099 	    lock_release(rtld_bind_lock, &lockstate);
3100 	    return NULL;
3101 	}
3102 
3103 	donelist_init(&donelist);
3104 	if (obj->mainprog) {
3105             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
3106 	    res = symlook_global(&req, &donelist);
3107 	    if (res == 0) {
3108 		def = req.sym_out;
3109 		defobj = req.defobj_out;
3110 	    }
3111 	    /*
3112 	     * Search the dynamic linker itself, and possibly resolve the
3113 	     * symbol from there.  This is how the application links to
3114 	     * dynamic linker services such as dlopen.
3115 	     */
3116 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
3117 		res = symlook_obj(&req, &obj_rtld);
3118 		if (res == 0) {
3119 		    def = req.sym_out;
3120 		    defobj = req.defobj_out;
3121 		}
3122 	    }
3123 	}
3124 	else {
3125 	    /* Search the whole DAG rooted at the given object. */
3126 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
3127 	    if (res == 0) {
3128 		def = req.sym_out;
3129 		defobj = req.defobj_out;
3130 	    }
3131 	}
3132     }
3133 
3134     if (def != NULL) {
3135 	lock_release(rtld_bind_lock, &lockstate);
3136 
3137 	/*
3138 	 * The value required by the caller is derived from the value
3139 	 * of the symbol. For the ia64 architecture, we need to
3140 	 * construct a function descriptor which the caller can use to
3141 	 * call the function with the right 'gp' value. For other
3142 	 * architectures and for non-functions, the value is simply
3143 	 * the relocated value of the symbol.
3144 	 */
3145 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
3146 	    return (make_function_pointer(def, defobj));
3147 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
3148 	    return (rtld_resolve_ifunc(defobj, def));
3149 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
3150 	    ti.ti_module = defobj->tlsindex;
3151 	    ti.ti_offset = def->st_value;
3152 	    return (__tls_get_addr(&ti));
3153 	} else
3154 	    return (defobj->relocbase + def->st_value);
3155     }
3156 
3157     _rtld_error("Undefined symbol \"%s\"", name);
3158     lock_release(rtld_bind_lock, &lockstate);
3159     return NULL;
3160 }
3161 
3162 void *
3163 dlsym(void *handle, const char *name)
3164 {
3165 	return do_dlsym(handle, name, __builtin_return_address(0), NULL,
3166 	    SYMLOOK_DLSYM);
3167 }
3168 
3169 dlfunc_t
3170 dlfunc(void *handle, const char *name)
3171 {
3172 	union {
3173 		void *d;
3174 		dlfunc_t f;
3175 	} rv;
3176 
3177 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
3178 	    SYMLOOK_DLSYM);
3179 	return (rv.f);
3180 }
3181 
3182 void *
3183 dlvsym(void *handle, const char *name, const char *version)
3184 {
3185 	Ver_Entry ventry;
3186 
3187 	ventry.name = version;
3188 	ventry.file = NULL;
3189 	ventry.hash = elf_hash(version);
3190 	ventry.flags= 0;
3191 	return do_dlsym(handle, name, __builtin_return_address(0), &ventry,
3192 	    SYMLOOK_DLSYM);
3193 }
3194 
3195 int
3196 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
3197 {
3198     const Obj_Entry *obj;
3199     RtldLockState lockstate;
3200 
3201     rlock_acquire(rtld_bind_lock, &lockstate);
3202     obj = obj_from_addr(addr);
3203     if (obj == NULL) {
3204         _rtld_error("No shared object contains address");
3205 	lock_release(rtld_bind_lock, &lockstate);
3206         return (0);
3207     }
3208     rtld_fill_dl_phdr_info(obj, phdr_info);
3209     lock_release(rtld_bind_lock, &lockstate);
3210     return (1);
3211 }
3212 
3213 int
3214 dladdr(const void *addr, Dl_info *info)
3215 {
3216     const Obj_Entry *obj;
3217     const Elf_Sym *def;
3218     void *symbol_addr;
3219     unsigned long symoffset;
3220     RtldLockState lockstate;
3221 
3222     rlock_acquire(rtld_bind_lock, &lockstate);
3223     obj = obj_from_addr(addr);
3224     if (obj == NULL) {
3225         _rtld_error("No shared object contains address");
3226 	lock_release(rtld_bind_lock, &lockstate);
3227         return 0;
3228     }
3229     info->dli_fname = obj->path;
3230     info->dli_fbase = obj->mapbase;
3231     info->dli_saddr = NULL;
3232     info->dli_sname = NULL;
3233 
3234     /*
3235      * Walk the symbol list looking for the symbol whose address is
3236      * closest to the address sent in.
3237      */
3238     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
3239         def = obj->symtab + symoffset;
3240 
3241         /*
3242          * For skip the symbol if st_shndx is either SHN_UNDEF or
3243          * SHN_COMMON.
3244          */
3245         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
3246             continue;
3247 
3248         /*
3249          * If the symbol is greater than the specified address, or if it
3250          * is further away from addr than the current nearest symbol,
3251          * then reject it.
3252          */
3253         symbol_addr = obj->relocbase + def->st_value;
3254         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
3255             continue;
3256 
3257         /* Update our idea of the nearest symbol. */
3258         info->dli_sname = obj->strtab + def->st_name;
3259         info->dli_saddr = symbol_addr;
3260 
3261         /* Exact match? */
3262         if (info->dli_saddr == addr)
3263             break;
3264     }
3265     lock_release(rtld_bind_lock, &lockstate);
3266     return 1;
3267 }
3268 
3269 int
3270 dlinfo(void *handle, int request, void *p)
3271 {
3272     const Obj_Entry *obj;
3273     RtldLockState lockstate;
3274     int error;
3275 
3276     rlock_acquire(rtld_bind_lock, &lockstate);
3277 
3278     if (handle == NULL || handle == RTLD_SELF) {
3279 	void *retaddr;
3280 
3281 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
3282 	if ((obj = obj_from_addr(retaddr)) == NULL)
3283 	    _rtld_error("Cannot determine caller's shared object");
3284     } else
3285 	obj = dlcheck(handle);
3286 
3287     if (obj == NULL) {
3288 	lock_release(rtld_bind_lock, &lockstate);
3289 	return (-1);
3290     }
3291 
3292     error = 0;
3293     switch (request) {
3294     case RTLD_DI_LINKMAP:
3295 	*((struct link_map const **)p) = &obj->linkmap;
3296 	break;
3297     case RTLD_DI_ORIGIN:
3298 	error = rtld_dirname(obj->path, p);
3299 	break;
3300 
3301     case RTLD_DI_SERINFOSIZE:
3302     case RTLD_DI_SERINFO:
3303 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
3304 	break;
3305 
3306     default:
3307 	_rtld_error("Invalid request %d passed to dlinfo()", request);
3308 	error = -1;
3309     }
3310 
3311     lock_release(rtld_bind_lock, &lockstate);
3312 
3313     return (error);
3314 }
3315 
3316 static void
3317 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
3318 {
3319 
3320 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
3321 	phdr_info->dlpi_name = STAILQ_FIRST(&obj->names) ?
3322 	    STAILQ_FIRST(&obj->names)->name : obj->path;
3323 	phdr_info->dlpi_phdr = obj->phdr;
3324 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
3325 	phdr_info->dlpi_tls_modid = obj->tlsindex;
3326 	phdr_info->dlpi_tls_data = obj->tlsinit;
3327 	phdr_info->dlpi_adds = obj_loads;
3328 	phdr_info->dlpi_subs = obj_loads - obj_count;
3329 }
3330 
3331 int
3332 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
3333 {
3334     struct dl_phdr_info phdr_info;
3335     const Obj_Entry *obj;
3336     RtldLockState bind_lockstate, phdr_lockstate;
3337     int error;
3338 
3339     wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
3340     rlock_acquire(rtld_bind_lock, &bind_lockstate);
3341 
3342     error = 0;
3343 
3344     for (obj = obj_list;  obj != NULL;  obj = obj->next) {
3345 	rtld_fill_dl_phdr_info(obj, &phdr_info);
3346 	if ((error = callback(&phdr_info, sizeof phdr_info, param)) != 0)
3347 		break;
3348 
3349     }
3350     if (error == 0) {
3351 	rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
3352 	error = callback(&phdr_info, sizeof(phdr_info), param);
3353     }
3354 
3355     lock_release(rtld_bind_lock, &bind_lockstate);
3356     lock_release(rtld_phdr_lock, &phdr_lockstate);
3357 
3358     return (error);
3359 }
3360 
3361 static void *
3362 fill_search_info(const char *dir, size_t dirlen, void *param)
3363 {
3364     struct fill_search_info_args *arg;
3365 
3366     arg = param;
3367 
3368     if (arg->request == RTLD_DI_SERINFOSIZE) {
3369 	arg->serinfo->dls_cnt ++;
3370 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
3371     } else {
3372 	struct dl_serpath *s_entry;
3373 
3374 	s_entry = arg->serpath;
3375 	s_entry->dls_name  = arg->strspace;
3376 	s_entry->dls_flags = arg->flags;
3377 
3378 	strncpy(arg->strspace, dir, dirlen);
3379 	arg->strspace[dirlen] = '\0';
3380 
3381 	arg->strspace += dirlen + 1;
3382 	arg->serpath++;
3383     }
3384 
3385     return (NULL);
3386 }
3387 
3388 static int
3389 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
3390 {
3391     struct dl_serinfo _info;
3392     struct fill_search_info_args args;
3393 
3394     args.request = RTLD_DI_SERINFOSIZE;
3395     args.serinfo = &_info;
3396 
3397     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
3398     _info.dls_cnt  = 0;
3399 
3400     path_enumerate(obj->rpath, fill_search_info, &args);
3401     path_enumerate(ld_library_path, fill_search_info, &args);
3402     path_enumerate(obj->runpath, fill_search_info, &args);
3403     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args);
3404     if (!obj->z_nodeflib)
3405       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args);
3406 
3407 
3408     if (request == RTLD_DI_SERINFOSIZE) {
3409 	info->dls_size = _info.dls_size;
3410 	info->dls_cnt = _info.dls_cnt;
3411 	return (0);
3412     }
3413 
3414     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
3415 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
3416 	return (-1);
3417     }
3418 
3419     args.request  = RTLD_DI_SERINFO;
3420     args.serinfo  = info;
3421     args.serpath  = &info->dls_serpath[0];
3422     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
3423 
3424     args.flags = LA_SER_RUNPATH;
3425     if (path_enumerate(obj->rpath, fill_search_info, &args) != NULL)
3426 	return (-1);
3427 
3428     args.flags = LA_SER_LIBPATH;
3429     if (path_enumerate(ld_library_path, fill_search_info, &args) != NULL)
3430 	return (-1);
3431 
3432     args.flags = LA_SER_RUNPATH;
3433     if (path_enumerate(obj->runpath, fill_search_info, &args) != NULL)
3434 	return (-1);
3435 
3436     args.flags = LA_SER_CONFIG;
3437     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, &args)
3438       != NULL)
3439 	return (-1);
3440 
3441     args.flags = LA_SER_DEFAULT;
3442     if (!obj->z_nodeflib &&
3443       path_enumerate(STANDARD_LIBRARY_PATH, fill_search_info, &args) != NULL)
3444 	return (-1);
3445     return (0);
3446 }
3447 
3448 static int
3449 rtld_dirname(const char *path, char *bname)
3450 {
3451     const char *endp;
3452 
3453     /* Empty or NULL string gets treated as "." */
3454     if (path == NULL || *path == '\0') {
3455 	bname[0] = '.';
3456 	bname[1] = '\0';
3457 	return (0);
3458     }
3459 
3460     /* Strip trailing slashes */
3461     endp = path + strlen(path) - 1;
3462     while (endp > path && *endp == '/')
3463 	endp--;
3464 
3465     /* Find the start of the dir */
3466     while (endp > path && *endp != '/')
3467 	endp--;
3468 
3469     /* Either the dir is "/" or there are no slashes */
3470     if (endp == path) {
3471 	bname[0] = *endp == '/' ? '/' : '.';
3472 	bname[1] = '\0';
3473 	return (0);
3474     } else {
3475 	do {
3476 	    endp--;
3477 	} while (endp > path && *endp == '/');
3478     }
3479 
3480     if (endp - path + 2 > PATH_MAX)
3481     {
3482 	_rtld_error("Filename is too long: %s", path);
3483 	return(-1);
3484     }
3485 
3486     strncpy(bname, path, endp - path + 1);
3487     bname[endp - path + 1] = '\0';
3488     return (0);
3489 }
3490 
3491 static int
3492 rtld_dirname_abs(const char *path, char *base)
3493 {
3494 	char base_rel[PATH_MAX];
3495 
3496 	if (rtld_dirname(path, base) == -1)
3497 		return (-1);
3498 	if (base[0] == '/')
3499 		return (0);
3500 	if (getcwd(base_rel, sizeof(base_rel)) == NULL ||
3501 	    strlcat(base_rel, "/", sizeof(base_rel)) >= sizeof(base_rel) ||
3502 	    strlcat(base_rel, base, sizeof(base_rel)) >= sizeof(base_rel))
3503 		return (-1);
3504 	strcpy(base, base_rel);
3505 	return (0);
3506 }
3507 
3508 static void
3509 linkmap_add(Obj_Entry *obj)
3510 {
3511     struct link_map *l = &obj->linkmap;
3512     struct link_map *prev;
3513 
3514     obj->linkmap.l_name = obj->path;
3515     obj->linkmap.l_addr = obj->mapbase;
3516     obj->linkmap.l_ld = obj->dynamic;
3517 #ifdef __mips__
3518     /* GDB needs load offset on MIPS to use the symbols */
3519     obj->linkmap.l_offs = obj->relocbase;
3520 #endif
3521 
3522     if (r_debug.r_map == NULL) {
3523 	r_debug.r_map = l;
3524 	return;
3525     }
3526 
3527     /*
3528      * Scan to the end of the list, but not past the entry for the
3529      * dynamic linker, which we want to keep at the very end.
3530      */
3531     for (prev = r_debug.r_map;
3532       prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
3533       prev = prev->l_next)
3534 	;
3535 
3536     /* Link in the new entry. */
3537     l->l_prev = prev;
3538     l->l_next = prev->l_next;
3539     if (l->l_next != NULL)
3540 	l->l_next->l_prev = l;
3541     prev->l_next = l;
3542 }
3543 
3544 static void
3545 linkmap_delete(Obj_Entry *obj)
3546 {
3547     struct link_map *l = &obj->linkmap;
3548 
3549     if (l->l_prev == NULL) {
3550 	if ((r_debug.r_map = l->l_next) != NULL)
3551 	    l->l_next->l_prev = NULL;
3552 	return;
3553     }
3554 
3555     if ((l->l_prev->l_next = l->l_next) != NULL)
3556 	l->l_next->l_prev = l->l_prev;
3557 }
3558 
3559 /*
3560  * Function for the debugger to set a breakpoint on to gain control.
3561  *
3562  * The two parameters allow the debugger to easily find and determine
3563  * what the runtime loader is doing and to whom it is doing it.
3564  *
3565  * When the loadhook trap is hit (r_debug_state, set at program
3566  * initialization), the arguments can be found on the stack:
3567  *
3568  *  +8   struct link_map *m
3569  *  +4   struct r_debug  *rd
3570  *  +0   RetAddr
3571  */
3572 void
3573 r_debug_state(struct r_debug* rd, struct link_map *m)
3574 {
3575     /*
3576      * The following is a hack to force the compiler to emit calls to
3577      * this function, even when optimizing.  If the function is empty,
3578      * the compiler is not obliged to emit any code for calls to it,
3579      * even when marked __noinline.  However, gdb depends on those
3580      * calls being made.
3581      */
3582     __asm __volatile("" : : : "memory");
3583 }
3584 
3585 /*
3586  * Get address of the pointer variable in the main program.
3587  * Prefer non-weak symbol over the weak one.
3588  */
3589 static const void **
3590 get_program_var_addr(const char *name, RtldLockState *lockstate)
3591 {
3592     SymLook req;
3593     DoneList donelist;
3594 
3595     symlook_init(&req, name);
3596     req.lockstate = lockstate;
3597     donelist_init(&donelist);
3598     if (symlook_global(&req, &donelist) != 0)
3599 	return (NULL);
3600     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
3601 	return ((const void **)make_function_pointer(req.sym_out,
3602 	  req.defobj_out));
3603     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
3604 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
3605     else
3606 	return ((const void **)(req.defobj_out->relocbase +
3607 	  req.sym_out->st_value));
3608 }
3609 
3610 /*
3611  * Set a pointer variable in the main program to the given value.  This
3612  * is used to set key variables such as "environ" before any of the
3613  * init functions are called.
3614  */
3615 static void
3616 set_program_var(const char *name, const void *value)
3617 {
3618     const void **addr;
3619 
3620     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
3621 	dbg("\"%s\": *%p <-- %p", name, addr, value);
3622 	*addr = value;
3623     }
3624 }
3625 
3626 /*
3627  * Search the global objects, including dependencies and main object,
3628  * for the given symbol.
3629  */
3630 static int
3631 symlook_global(SymLook *req, DoneList *donelist)
3632 {
3633     SymLook req1;
3634     const Objlist_Entry *elm;
3635     int res;
3636 
3637     symlook_init_from_req(&req1, req);
3638 
3639     /* Search all objects loaded at program start up. */
3640     if (req->defobj_out == NULL ||
3641       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3642 	res = symlook_list(&req1, &list_main, donelist);
3643 	if (res == 0 && (req->defobj_out == NULL ||
3644 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3645 	    req->sym_out = req1.sym_out;
3646 	    req->defobj_out = req1.defobj_out;
3647 	    assert(req->defobj_out != NULL);
3648 	}
3649     }
3650 
3651     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
3652     STAILQ_FOREACH(elm, &list_global, link) {
3653 	if (req->defobj_out != NULL &&
3654 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3655 	    break;
3656 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
3657 	if (res == 0 && (req->defobj_out == NULL ||
3658 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3659 	    req->sym_out = req1.sym_out;
3660 	    req->defobj_out = req1.defobj_out;
3661 	    assert(req->defobj_out != NULL);
3662 	}
3663     }
3664 
3665     return (req->sym_out != NULL ? 0 : ESRCH);
3666 }
3667 
3668 /*
3669  * This is a special version of getenv which is far more efficient
3670  * at finding LD_ environment vars.
3671  */
3672 static
3673 const char *
3674 _getenv_ld(const char *id)
3675 {
3676     const char *envp;
3677     int i, j;
3678     int idlen = strlen(id);
3679 
3680     if (ld_index == LD_ARY_CACHE)
3681 	return(getenv(id));
3682     if (ld_index == 0) {
3683 	for (i = j = 0; (envp = environ[i]) != NULL && j < LD_ARY_CACHE; ++i) {
3684 	    if (envp[0] == 'L' && envp[1] == 'D' && envp[2] == '_')
3685 		ld_ary[j++] = envp;
3686 	}
3687 	if (j == 0)
3688 		ld_ary[j++] = "";
3689 	ld_index = j;
3690     }
3691     for (i = ld_index - 1; i >= 0; --i) {
3692 	if (strncmp(ld_ary[i], id, idlen) == 0 && ld_ary[i][idlen] == '=')
3693 	    return(ld_ary[i] + idlen + 1);
3694     }
3695     return(NULL);
3696 }
3697 
3698 /*
3699  * Given a symbol name in a referencing object, find the corresponding
3700  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
3701  * no definition was found.  Returns a pointer to the Obj_Entry of the
3702  * defining object via the reference parameter DEFOBJ_OUT.
3703  */
3704 static int
3705 symlook_default(SymLook *req, const Obj_Entry *refobj)
3706 {
3707     DoneList donelist;
3708     const Objlist_Entry *elm;
3709     SymLook req1;
3710     int res;
3711 
3712     donelist_init(&donelist);
3713     symlook_init_from_req(&req1, req);
3714 
3715     /* Look first in the referencing object if linked symbolically. */
3716     if (refobj->symbolic && !donelist_check(&donelist, refobj)) {
3717 	res = symlook_obj(&req1, refobj);
3718 	if (res == 0) {
3719 	    req->sym_out = req1.sym_out;
3720 	    req->defobj_out = req1.defobj_out;
3721 	    assert(req->defobj_out != NULL);
3722 	}
3723     }
3724 
3725     symlook_global(req, &donelist);
3726 
3727     /* Search all dlopened DAGs containing the referencing object. */
3728     STAILQ_FOREACH(elm, &refobj->dldags, link) {
3729 	if (req->sym_out != NULL &&
3730 	  ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK)
3731 	    break;
3732 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
3733 	if (res == 0 && (req->sym_out == NULL ||
3734 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
3735 	    req->sym_out = req1.sym_out;
3736 	    req->defobj_out = req1.defobj_out;
3737 	    assert(req->defobj_out != NULL);
3738 	}
3739     }
3740 
3741     /*
3742      * Search the dynamic linker itself, and possibly resolve the
3743      * symbol from there.  This is how the application links to
3744      * dynamic linker services such as dlopen.
3745      */
3746     if (req->sym_out == NULL ||
3747       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
3748 	res = symlook_obj(&req1, &obj_rtld);
3749 	if (res == 0) {
3750 	    req->sym_out = req1.sym_out;
3751 	    req->defobj_out = req1.defobj_out;
3752 	    assert(req->defobj_out != NULL);
3753 	}
3754     }
3755 
3756     return (req->sym_out != NULL ? 0 : ESRCH);
3757 }
3758 
3759 static int
3760 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
3761 {
3762     const Elf_Sym *def;
3763     const Obj_Entry *defobj;
3764     const Objlist_Entry *elm;
3765     SymLook req1;
3766     int res;
3767 
3768     def = NULL;
3769     defobj = NULL;
3770     STAILQ_FOREACH(elm, objlist, link) {
3771 	if (donelist_check(dlp, elm->obj))
3772 	    continue;
3773 	symlook_init_from_req(&req1, req);
3774 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
3775 	    if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3776 		def = req1.sym_out;
3777 		defobj = req1.defobj_out;
3778 		if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3779 		    break;
3780 	    }
3781 	}
3782     }
3783     if (def != NULL) {
3784 	req->sym_out = def;
3785 	req->defobj_out = defobj;
3786 	return (0);
3787     }
3788     return (ESRCH);
3789 }
3790 
3791 /*
3792  * Search the chain of DAGS cointed to by the given Needed_Entry
3793  * for a symbol of the given name.  Each DAG is scanned completely
3794  * before advancing to the next one.  Returns a pointer to the symbol,
3795  * or NULL if no definition was found.
3796  */
3797 static int
3798 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
3799 {
3800     const Elf_Sym *def;
3801     const Needed_Entry *n;
3802     const Obj_Entry *defobj;
3803     SymLook req1;
3804     int res;
3805 
3806     def = NULL;
3807     defobj = NULL;
3808     symlook_init_from_req(&req1, req);
3809     for (n = needed; n != NULL; n = n->next) {
3810 	if (n->obj == NULL ||
3811 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
3812 	    continue;
3813 	if (def == NULL || ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK) {
3814 	def = req1.sym_out;
3815 	defobj = req1.defobj_out;
3816 	    if (ELF_ST_BIND(def->st_info) != STB_WEAK)
3817 		break;
3818 	}
3819     }
3820     if (def != NULL) {
3821 	req->sym_out = def;
3822 	req->defobj_out = defobj;
3823 	return (0);
3824     }
3825     return (ESRCH);
3826 }
3827 
3828 /*
3829  * Search the symbol table of a single shared object for a symbol of
3830  * the given name and version, if requested.  Returns a pointer to the
3831  * symbol, or NULL if no definition was found.  If the object is
3832  * filter, return filtered symbol from filtee.
3833  *
3834  * The symbol's hash value is passed in for efficiency reasons; that
3835  * eliminates many recomputations of the hash value.
3836  */
3837 int
3838 symlook_obj(SymLook *req, const Obj_Entry *obj)
3839 {
3840     DoneList donelist;
3841     SymLook req1;
3842     int flags, res, mres;
3843 
3844     /*
3845      * If there is at least one valid hash at this point, we prefer to
3846      * use the faster GNU version if available.
3847      */
3848     if (obj->valid_hash_gnu)
3849 	mres = symlook_obj1_gnu(req, obj);
3850     else if (obj->valid_hash_sysv)
3851 	mres = symlook_obj1_sysv(req, obj);
3852     else
3853 	return (EINVAL);
3854 
3855     if (mres == 0) {
3856 	if (obj->needed_filtees != NULL) {
3857 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3858 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3859 	    donelist_init(&donelist);
3860 	    symlook_init_from_req(&req1, req);
3861 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
3862 	    if (res == 0) {
3863 		req->sym_out = req1.sym_out;
3864 		req->defobj_out = req1.defobj_out;
3865 	    }
3866 	    return (res);
3867 	}
3868 	if (obj->needed_aux_filtees != NULL) {
3869 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
3870 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
3871 	    donelist_init(&donelist);
3872 	    symlook_init_from_req(&req1, req);
3873 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
3874 	    if (res == 0) {
3875 		req->sym_out = req1.sym_out;
3876 		req->defobj_out = req1.defobj_out;
3877 		return (res);
3878 	    }
3879 	}
3880     }
3881     return (mres);
3882 }
3883 
3884 /* Symbol match routine common to both hash functions */
3885 static bool
3886 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
3887 	const unsigned long symnum)
3888 {
3889 	Elf_Versym verndx;
3890 	const Elf_Sym *symp;
3891 	const char *strp;
3892 
3893 	symp = obj->symtab + symnum;
3894 	strp = obj->strtab + symp->st_name;
3895 
3896 	switch (ELF_ST_TYPE(symp->st_info)) {
3897 	case STT_FUNC:
3898 	case STT_NOTYPE:
3899 	case STT_OBJECT:
3900 	case STT_COMMON:
3901 	case STT_GNU_IFUNC:
3902 		if (symp->st_value == 0)
3903 			return (false);
3904 		/* fallthrough */
3905 	case STT_TLS:
3906 		if (symp->st_shndx != SHN_UNDEF)
3907 			break;
3908 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
3909 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
3910 			break;
3911 		/* fallthrough */
3912 	default:
3913 		return (false);
3914 	}
3915 	if (strcmp(req->name, strp) != 0)
3916 		return (false);
3917 
3918 	if (req->ventry == NULL) {
3919 		if (obj->versyms != NULL) {
3920 			verndx = VER_NDX(obj->versyms[symnum]);
3921 			if (verndx > obj->vernum) {
3922 				_rtld_error(
3923 				    "%s: symbol %s references wrong version %d",
3924 				    obj->path, obj->strtab + symnum, verndx);
3925 				return (false);
3926 			}
3927 			/*
3928 			 * If we are not called from dlsym (i.e. this
3929 			 * is a normal relocation from unversioned
3930 			 * binary), accept the symbol immediately if
3931 			 * it happens to have first version after this
3932 			 * shared object became versioned.  Otherwise,
3933 			 * if symbol is versioned and not hidden,
3934 			 * remember it. If it is the only symbol with
3935 			 * this name exported by the shared object, it
3936 			 * will be returned as a match by the calling
3937 			 * function. If symbol is global (verndx < 2)
3938 			 * accept it unconditionally.
3939 			 */
3940 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
3941 			    verndx == VER_NDX_GIVEN) {
3942 				result->sym_out = symp;
3943 				return (true);
3944 			}
3945 			else if (verndx >= VER_NDX_GIVEN) {
3946 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
3947 				  == 0) {
3948 					if (result->vsymp == NULL)
3949 						result->vsymp = symp;
3950 					result->vcount++;
3951 				}
3952 				return (false);
3953 			}
3954 		}
3955 		result->sym_out = symp;
3956 		return (true);
3957 	}
3958 	if (obj->versyms == NULL) {
3959 		if (object_match_name(obj, req->ventry->name)) {
3960 			_rtld_error("%s: object %s should provide version %s "
3961 			    "for symbol %s", obj_rtld.path, obj->path,
3962 			    req->ventry->name, obj->strtab + symnum);
3963 			return (false);
3964 		}
3965 	} else {
3966 		verndx = VER_NDX(obj->versyms[symnum]);
3967 		if (verndx > obj->vernum) {
3968 			_rtld_error("%s: symbol %s references wrong version %d",
3969 			    obj->path, obj->strtab + symnum, verndx);
3970 			return (false);
3971 		}
3972 		if (obj->vertab[verndx].hash != req->ventry->hash ||
3973 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
3974 			/*
3975 			 * Version does not match. Look if this is a
3976 			 * global symbol and if it is not hidden. If
3977 			 * global symbol (verndx < 2) is available,
3978 			 * use it. Do not return symbol if we are
3979 			 * called by dlvsym, because dlvsym looks for
3980 			 * a specific version and default one is not
3981 			 * what dlvsym wants.
3982 			 */
3983 			if ((req->flags & SYMLOOK_DLSYM) ||
3984 			    (verndx >= VER_NDX_GIVEN) ||
3985 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
3986 				return (false);
3987 		}
3988 	}
3989 	result->sym_out = symp;
3990 	return (true);
3991 }
3992 
3993 /*
3994  * Search for symbol using SysV hash function.
3995  * obj->buckets is known not to be NULL at this point; the test for this was
3996  * performed with the obj->valid_hash_sysv assignment.
3997  */
3998 static int
3999 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
4000 {
4001 	unsigned long symnum;
4002 	Sym_Match_Result matchres;
4003 
4004 	matchres.sym_out = NULL;
4005 	matchres.vsymp = NULL;
4006 	matchres.vcount = 0;
4007 
4008 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
4009 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
4010 		if (symnum >= obj->nchains)
4011 			return (ESRCH);	/* Bad object */
4012 
4013 		if (matched_symbol(req, obj, &matchres, symnum)) {
4014 			req->sym_out = matchres.sym_out;
4015 			req->defobj_out = obj;
4016 			return (0);
4017 		}
4018 	}
4019 	if (matchres.vcount == 1) {
4020 		req->sym_out = matchres.vsymp;
4021 		req->defobj_out = obj;
4022 		return (0);
4023 	}
4024 	return (ESRCH);
4025 }
4026 
4027 /* Search for symbol using GNU hash function */
4028 static int
4029 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
4030 {
4031 	Elf_Addr bloom_word;
4032 	const Elf32_Word *hashval;
4033 	Elf32_Word bucket;
4034 	Sym_Match_Result matchres;
4035 	unsigned int h1, h2;
4036 	unsigned long symnum;
4037 
4038 	matchres.sym_out = NULL;
4039 	matchres.vsymp = NULL;
4040 	matchres.vcount = 0;
4041 
4042 	/* Pick right bitmask word from Bloom filter array */
4043 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
4044 	    obj->maskwords_bm_gnu];
4045 
4046 	/* Calculate modulus word size of gnu hash and its derivative */
4047 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
4048 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
4049 
4050 	/* Filter out the "definitely not in set" queries */
4051 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
4052 		return (ESRCH);
4053 
4054 	/* Locate hash chain and corresponding value element*/
4055 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
4056 	if (bucket == 0)
4057 		return (ESRCH);
4058 	hashval = &obj->chain_zero_gnu[bucket];
4059 	do {
4060 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
4061 			symnum = hashval - obj->chain_zero_gnu;
4062 			if (matched_symbol(req, obj, &matchres, symnum)) {
4063 				req->sym_out = matchres.sym_out;
4064 				req->defobj_out = obj;
4065 				return (0);
4066 			}
4067 		}
4068 	} while ((*hashval++ & 1) == 0);
4069 	if (matchres.vcount == 1) {
4070 		req->sym_out = matchres.vsymp;
4071 		req->defobj_out = obj;
4072 		return (0);
4073 	}
4074 	return (ESRCH);
4075 }
4076 
4077 static void
4078 trace_loaded_objects(Obj_Entry *obj)
4079 {
4080     const char *fmt1, *fmt2, *fmt, *main_local, *list_containers;
4081     int		c;
4082 
4083     if ((main_local = _getenv_ld("LD_TRACE_LOADED_OBJECTS_PROGNAME")) == NULL)
4084 	main_local = "";
4085 
4086     if ((fmt1 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT1")) == NULL)
4087 	fmt1 = "\t%o => %p (%x)\n";
4088 
4089     if ((fmt2 = _getenv_ld("LD_TRACE_LOADED_OBJECTS_FMT2")) == NULL)
4090 	fmt2 = "\t%o (%x)\n";
4091 
4092     list_containers = _getenv_ld("LD_TRACE_LOADED_OBJECTS_ALL");
4093 
4094     for (; obj; obj = obj->next) {
4095 	Needed_Entry		*needed;
4096 	char			*name, *path;
4097 	bool			is_lib;
4098 
4099 	if (list_containers && obj->needed != NULL)
4100 	    rtld_printf("%s:\n", obj->path);
4101 	for (needed = obj->needed; needed; needed = needed->next) {
4102 	    if (needed->obj != NULL) {
4103 		if (needed->obj->traced && !list_containers)
4104 		    continue;
4105 		needed->obj->traced = true;
4106 		path = needed->obj->path;
4107 	    } else
4108 		path = "not found";
4109 
4110 	    name = (char *)obj->strtab + needed->name;
4111 	    is_lib = strncmp(name, "lib", 3) == 0;	/* XXX - bogus */
4112 
4113 	    fmt = is_lib ? fmt1 : fmt2;
4114 	    while ((c = *fmt++) != '\0') {
4115 		switch (c) {
4116 		default:
4117 		    rtld_putchar(c);
4118 		    continue;
4119 		case '\\':
4120 		    switch (c = *fmt) {
4121 		    case '\0':
4122 			continue;
4123 		    case 'n':
4124 			rtld_putchar('\n');
4125 			break;
4126 		    case 't':
4127 			rtld_putchar('\t');
4128 			break;
4129 		    }
4130 		    break;
4131 		case '%':
4132 		    switch (c = *fmt) {
4133 		    case '\0':
4134 			continue;
4135 		    case '%':
4136 		    default:
4137 			rtld_putchar(c);
4138 			break;
4139 		    case 'A':
4140 			rtld_putstr(main_local);
4141 			break;
4142 		    case 'a':
4143 			rtld_putstr(obj_main->path);
4144 			break;
4145 		    case 'o':
4146 			rtld_putstr(name);
4147 			break;
4148 		    case 'p':
4149 			rtld_putstr(path);
4150 			break;
4151 		    case 'x':
4152 			rtld_printf("%p", needed->obj ? needed->obj->mapbase :
4153 			  0);
4154 			break;
4155 		    }
4156 		    break;
4157 		}
4158 		++fmt;
4159 	    }
4160 	}
4161     }
4162 }
4163 
4164 /*
4165  * Unload a dlopened object and its dependencies from memory and from
4166  * our data structures.  It is assumed that the DAG rooted in the
4167  * object has already been unreferenced, and that the object has a
4168  * reference count of 0.
4169  */
4170 static void
4171 unload_object(Obj_Entry *root)
4172 {
4173     Obj_Entry *obj;
4174     Obj_Entry **linkp;
4175 
4176     assert(root->refcount == 0);
4177 
4178     /*
4179      * Pass over the DAG removing unreferenced objects from
4180      * appropriate lists.
4181      */
4182     unlink_object(root);
4183 
4184     /* Unmap all objects that are no longer referenced. */
4185     linkp = &obj_list->next;
4186     while ((obj = *linkp) != NULL) {
4187 	if (obj->refcount == 0) {
4188 	    LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
4189 		obj->path);
4190 	    dbg("unloading \"%s\"", obj->path);
4191 	    unload_filtees(root);
4192 	    munmap(obj->mapbase, obj->mapsize);
4193 	    linkmap_delete(obj);
4194 	    *linkp = obj->next;
4195 	    obj_count--;
4196 	    obj_free(obj);
4197 	} else
4198 	    linkp = &obj->next;
4199     }
4200     obj_tail = linkp;
4201 }
4202 
4203 static void
4204 unlink_object(Obj_Entry *root)
4205 {
4206     Objlist_Entry *elm;
4207 
4208     if (root->refcount == 0) {
4209 	/* Remove the object from the RTLD_GLOBAL list. */
4210 	objlist_remove(&list_global, root);
4211 
4212     	/* Remove the object from all objects' DAG lists. */
4213 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
4214 	    objlist_remove(&elm->obj->dldags, root);
4215 	    if (elm->obj != root)
4216 		unlink_object(elm->obj);
4217 	}
4218     }
4219 }
4220 
4221 static void
4222 ref_dag(Obj_Entry *root)
4223 {
4224     Objlist_Entry *elm;
4225 
4226     assert(root->dag_inited);
4227     STAILQ_FOREACH(elm, &root->dagmembers, link)
4228 	elm->obj->refcount++;
4229 }
4230 
4231 static void
4232 unref_dag(Obj_Entry *root)
4233 {
4234     Objlist_Entry *elm;
4235 
4236     assert(root->dag_inited);
4237     STAILQ_FOREACH(elm, &root->dagmembers, link)
4238 	elm->obj->refcount--;
4239 }
4240 
4241 /*
4242  * Common code for MD __tls_get_addr().
4243  */
4244 void *
4245 tls_get_addr_common(Elf_Addr** dtvp, int index, size_t offset)
4246 {
4247     Elf_Addr* dtv = *dtvp;
4248     RtldLockState lockstate;
4249 
4250     /* Check dtv generation in case new modules have arrived */
4251     if (dtv[0] != tls_dtv_generation) {
4252 	Elf_Addr* newdtv;
4253 	int to_copy;
4254 
4255 	wlock_acquire(rtld_bind_lock, &lockstate);
4256 	newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
4257 	to_copy = dtv[1];
4258 	if (to_copy > tls_max_index)
4259 	    to_copy = tls_max_index;
4260 	memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
4261 	newdtv[0] = tls_dtv_generation;
4262 	newdtv[1] = tls_max_index;
4263 	free(dtv);
4264 	lock_release(rtld_bind_lock, &lockstate);
4265 	dtv = *dtvp = newdtv;
4266     }
4267 
4268     /* Dynamically allocate module TLS if necessary */
4269     if (!dtv[index + 1]) {
4270 	/* Signal safe, wlock will block out signals. */
4271 	wlock_acquire(rtld_bind_lock, &lockstate);
4272 	if (!dtv[index + 1])
4273 	    dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
4274 	lock_release(rtld_bind_lock, &lockstate);
4275     }
4276     return (void*) (dtv[index + 1] + offset);
4277 }
4278 
4279 #if defined(RTLD_STATIC_TLS_VARIANT_II)
4280 
4281 /*
4282  * Allocate the static TLS area.  Return a pointer to the TCB.  The
4283  * static area is based on negative offsets relative to the tcb.
4284  *
4285  * The TCB contains an errno pointer for the system call layer, but because
4286  * we are the RTLD we really have no idea how the caller was compiled so
4287  * the information has to be passed in.  errno can either be:
4288  *
4289  *	type 0	errno is a simple non-TLS global pointer.
4290  *		(special case for e.g. libc_rtld)
4291  *	type 1	errno accessed by GOT entry	(dynamically linked programs)
4292  *	type 2	errno accessed by %gs:OFFSET	(statically linked programs)
4293  */
4294 struct tls_tcb *
4295 allocate_tls(Obj_Entry *objs)
4296 {
4297     Obj_Entry *obj;
4298     size_t data_size;
4299     size_t dtv_size;
4300     struct tls_tcb *tcb;
4301     Elf_Addr *dtv;
4302     Elf_Addr addr;
4303 
4304     /*
4305      * Allocate the new TCB.  static TLS storage is placed just before the
4306      * TCB to support the %gs:OFFSET (negative offset) model.
4307      */
4308     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4309 		~RTLD_STATIC_TLS_ALIGN_MASK;
4310     tcb = malloc(data_size + sizeof(*tcb));
4311     tcb = (void *)((char *)tcb + data_size);	/* actual tcb location */
4312 
4313     dtv_size = (tls_max_index + 2) * sizeof(Elf_Addr);
4314     dtv = malloc(dtv_size);
4315     bzero(dtv, dtv_size);
4316 
4317 #ifdef RTLD_TCB_HAS_SELF_POINTER
4318     tcb->tcb_self = tcb;
4319 #endif
4320     tcb->tcb_dtv = dtv;
4321     tcb->tcb_pthread = NULL;
4322 
4323     dtv[0] = tls_dtv_generation;
4324     dtv[1] = tls_max_index;
4325 
4326     for (obj = objs; obj; obj = obj->next) {
4327 	if (obj->tlsoffset) {
4328 	    addr = (Elf_Addr)tcb - obj->tlsoffset;
4329 	    memset((void *)(addr + obj->tlsinitsize),
4330 		   0, obj->tlssize - obj->tlsinitsize);
4331 	    if (obj->tlsinit)
4332 		memcpy((void*) addr, obj->tlsinit, obj->tlsinitsize);
4333 	    dtv[obj->tlsindex + 1] = addr;
4334 	}
4335     }
4336     return(tcb);
4337 }
4338 
4339 void
4340 free_tls(struct tls_tcb *tcb)
4341 {
4342     Elf_Addr *dtv;
4343     int dtv_size, i;
4344     Elf_Addr tls_start, tls_end;
4345     size_t data_size;
4346 
4347     data_size = (tls_static_space + RTLD_STATIC_TLS_ALIGN_MASK) &
4348 		~RTLD_STATIC_TLS_ALIGN_MASK;
4349 
4350     dtv = tcb->tcb_dtv;
4351     dtv_size = dtv[1];
4352     tls_end = (Elf_Addr)tcb;
4353     tls_start = (Elf_Addr)tcb - data_size;
4354     for (i = 0; i < dtv_size; i++) {
4355 	if (dtv[i+2] != 0 && (dtv[i+2] < tls_start || dtv[i+2] > tls_end)) {
4356 	    free((void *)dtv[i+2]);
4357 	}
4358     }
4359 
4360     free((void*) tls_start);
4361 }
4362 
4363 #else
4364 #error "Unsupported TLS layout"
4365 #endif
4366 
4367 /*
4368  * Allocate TLS block for module with given index.
4369  */
4370 void *
4371 allocate_module_tls(int index)
4372 {
4373     Obj_Entry* obj;
4374     char* p;
4375 
4376     for (obj = obj_list; obj; obj = obj->next) {
4377 	if (obj->tlsindex == index)
4378 	    break;
4379     }
4380     if (!obj) {
4381 	_rtld_error("Can't find module with TLS index %d", index);
4382 	die();
4383     }
4384 
4385     p = malloc(obj->tlssize);
4386     if (p == NULL) {
4387 	_rtld_error("Cannot allocate TLS block for index %d", index);
4388 	die();
4389     }
4390     memcpy(p, obj->tlsinit, obj->tlsinitsize);
4391     memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
4392 
4393     return p;
4394 }
4395 
4396 bool
4397 allocate_tls_offset(Obj_Entry *obj)
4398 {
4399     size_t off;
4400 
4401     if (obj->tls_done)
4402 	return true;
4403 
4404     if (obj->tlssize == 0) {
4405 	obj->tls_done = true;
4406 	return true;
4407     }
4408 
4409     if (obj->tlsindex == 1)
4410 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign);
4411     else
4412 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
4413 				   obj->tlssize, obj->tlsalign);
4414 
4415     /*
4416      * If we have already fixed the size of the static TLS block, we
4417      * must stay within that size. When allocating the static TLS, we
4418      * leave a small amount of space spare to be used for dynamically
4419      * loading modules which use static TLS.
4420      */
4421     if (tls_static_space) {
4422 	if (calculate_tls_end(off, obj->tlssize) > tls_static_space)
4423 	    return false;
4424     }
4425 
4426     tls_last_offset = obj->tlsoffset = off;
4427     tls_last_size = obj->tlssize;
4428     obj->tls_done = true;
4429 
4430     return true;
4431 }
4432 
4433 void
4434 free_tls_offset(Obj_Entry *obj)
4435 {
4436 #ifdef RTLD_STATIC_TLS_VARIANT_II
4437     /*
4438      * If we were the last thing to allocate out of the static TLS
4439      * block, we give our space back to the 'allocator'. This is a
4440      * simplistic workaround to allow libGL.so.1 to be loaded and
4441      * unloaded multiple times. We only handle the Variant II
4442      * mechanism for now - this really needs a proper allocator.
4443      */
4444     if (calculate_tls_end(obj->tlsoffset, obj->tlssize)
4445 	== calculate_tls_end(tls_last_offset, tls_last_size)) {
4446 	tls_last_offset -= obj->tlssize;
4447 	tls_last_size = 0;
4448     }
4449 #endif
4450 }
4451 
4452 struct tls_tcb *
4453 _rtld_allocate_tls(void)
4454 {
4455     struct tls_tcb *new_tcb;
4456     RtldLockState lockstate;
4457 
4458     wlock_acquire(rtld_bind_lock, &lockstate);
4459     new_tcb = allocate_tls(obj_list);
4460     lock_release(rtld_bind_lock, &lockstate);
4461     return (new_tcb);
4462 }
4463 
4464 void
4465 _rtld_free_tls(struct tls_tcb *tcb)
4466 {
4467     RtldLockState lockstate;
4468 
4469     wlock_acquire(rtld_bind_lock, &lockstate);
4470     free_tls(tcb);
4471     lock_release(rtld_bind_lock, &lockstate);
4472 }
4473 
4474 static void
4475 object_add_name(Obj_Entry *obj, const char *name)
4476 {
4477     Name_Entry *entry;
4478     size_t len;
4479 
4480     len = strlen(name);
4481     entry = malloc(sizeof(Name_Entry) + len);
4482 
4483     if (entry != NULL) {
4484 	strcpy(entry->name, name);
4485 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
4486     }
4487 }
4488 
4489 static int
4490 object_match_name(const Obj_Entry *obj, const char *name)
4491 {
4492     Name_Entry *entry;
4493 
4494     STAILQ_FOREACH(entry, &obj->names, link) {
4495 	if (strcmp(name, entry->name) == 0)
4496 	    return (1);
4497     }
4498     return (0);
4499 }
4500 
4501 static Obj_Entry *
4502 locate_dependency(const Obj_Entry *obj, const char *name)
4503 {
4504     const Objlist_Entry *entry;
4505     const Needed_Entry *needed;
4506 
4507     STAILQ_FOREACH(entry, &list_main, link) {
4508 	if (object_match_name(entry->obj, name))
4509 	    return entry->obj;
4510     }
4511 
4512     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
4513 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
4514 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
4515 	    /*
4516 	     * If there is DT_NEEDED for the name we are looking for,
4517 	     * we are all set.  Note that object might not be found if
4518 	     * dependency was not loaded yet, so the function can
4519 	     * return NULL here.  This is expected and handled
4520 	     * properly by the caller.
4521 	     */
4522 	    return (needed->obj);
4523 	}
4524     }
4525     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
4526 	obj->path, name);
4527     die();
4528 }
4529 
4530 static int
4531 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
4532     const Elf_Vernaux *vna)
4533 {
4534     const Elf_Verdef *vd;
4535     const char *vername;
4536 
4537     vername = refobj->strtab + vna->vna_name;
4538     vd = depobj->verdef;
4539     if (vd == NULL) {
4540 	_rtld_error("%s: version %s required by %s not defined",
4541 	    depobj->path, vername, refobj->path);
4542 	return (-1);
4543     }
4544     for (;;) {
4545 	if (vd->vd_version != VER_DEF_CURRENT) {
4546 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4547 		depobj->path, vd->vd_version);
4548 	    return (-1);
4549 	}
4550 	if (vna->vna_hash == vd->vd_hash) {
4551 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
4552 		((char *)vd + vd->vd_aux);
4553 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
4554 		return (0);
4555 	}
4556 	if (vd->vd_next == 0)
4557 	    break;
4558 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4559     }
4560     if (vna->vna_flags & VER_FLG_WEAK)
4561 	return (0);
4562     _rtld_error("%s: version %s required by %s not found",
4563 	depobj->path, vername, refobj->path);
4564     return (-1);
4565 }
4566 
4567 static int
4568 rtld_verify_object_versions(Obj_Entry *obj)
4569 {
4570     const Elf_Verneed *vn;
4571     const Elf_Verdef  *vd;
4572     const Elf_Verdaux *vda;
4573     const Elf_Vernaux *vna;
4574     const Obj_Entry *depobj;
4575     int maxvernum, vernum;
4576 
4577     if (obj->ver_checked)
4578 	return (0);
4579     obj->ver_checked = true;
4580 
4581     maxvernum = 0;
4582     /*
4583      * Walk over defined and required version records and figure out
4584      * max index used by any of them. Do very basic sanity checking
4585      * while there.
4586      */
4587     vn = obj->verneed;
4588     while (vn != NULL) {
4589 	if (vn->vn_version != VER_NEED_CURRENT) {
4590 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
4591 		obj->path, vn->vn_version);
4592 	    return (-1);
4593 	}
4594 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4595 	for (;;) {
4596 	    vernum = VER_NEED_IDX(vna->vna_other);
4597 	    if (vernum > maxvernum)
4598 		maxvernum = vernum;
4599 	    if (vna->vna_next == 0)
4600 		 break;
4601 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4602 	}
4603 	if (vn->vn_next == 0)
4604 	    break;
4605 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4606     }
4607 
4608     vd = obj->verdef;
4609     while (vd != NULL) {
4610 	if (vd->vd_version != VER_DEF_CURRENT) {
4611 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
4612 		obj->path, vd->vd_version);
4613 	    return (-1);
4614 	}
4615 	vernum = VER_DEF_IDX(vd->vd_ndx);
4616 	if (vernum > maxvernum)
4617 		maxvernum = vernum;
4618 	if (vd->vd_next == 0)
4619 	    break;
4620 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4621     }
4622 
4623     if (maxvernum == 0)
4624 	return (0);
4625 
4626     /*
4627      * Store version information in array indexable by version index.
4628      * Verify that object version requirements are satisfied along the
4629      * way.
4630      */
4631     obj->vernum = maxvernum + 1;
4632     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
4633 
4634     vd = obj->verdef;
4635     while (vd != NULL) {
4636 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
4637 	    vernum = VER_DEF_IDX(vd->vd_ndx);
4638 	    assert(vernum <= maxvernum);
4639 	    vda = (const Elf_Verdaux *)((char *)vd + vd->vd_aux);
4640 	    obj->vertab[vernum].hash = vd->vd_hash;
4641 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
4642 	    obj->vertab[vernum].file = NULL;
4643 	    obj->vertab[vernum].flags = 0;
4644 	}
4645 	if (vd->vd_next == 0)
4646 	    break;
4647 	vd = (const Elf_Verdef *) ((char *)vd + vd->vd_next);
4648     }
4649 
4650     vn = obj->verneed;
4651     while (vn != NULL) {
4652 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
4653 	if (depobj == NULL)
4654 	    return (-1);
4655 	vna = (const Elf_Vernaux *) ((char *)vn + vn->vn_aux);
4656 	for (;;) {
4657 	    if (check_object_provided_version(obj, depobj, vna))
4658 		return (-1);
4659 	    vernum = VER_NEED_IDX(vna->vna_other);
4660 	    assert(vernum <= maxvernum);
4661 	    obj->vertab[vernum].hash = vna->vna_hash;
4662 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
4663 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
4664 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
4665 		VER_INFO_HIDDEN : 0;
4666 	    if (vna->vna_next == 0)
4667 		 break;
4668 	    vna = (const Elf_Vernaux *) ((char *)vna + vna->vna_next);
4669 	}
4670 	if (vn->vn_next == 0)
4671 	    break;
4672 	vn = (const Elf_Verneed *) ((char *)vn + vn->vn_next);
4673     }
4674     return 0;
4675 }
4676 
4677 static int
4678 rtld_verify_versions(const Objlist *objlist)
4679 {
4680     Objlist_Entry *entry;
4681     int rc;
4682 
4683     rc = 0;
4684     STAILQ_FOREACH(entry, objlist, link) {
4685 	/*
4686 	 * Skip dummy objects or objects that have their version requirements
4687 	 * already checked.
4688 	 */
4689 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
4690 	    continue;
4691 	if (rtld_verify_object_versions(entry->obj) == -1) {
4692 	    rc = -1;
4693 	    if (ld_tracing == NULL)
4694 		break;
4695 	}
4696     }
4697     if (rc == 0 || ld_tracing != NULL)
4698 	rc = rtld_verify_object_versions(&obj_rtld);
4699     return rc;
4700 }
4701 
4702 const Ver_Entry *
4703 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
4704 {
4705     Elf_Versym vernum;
4706 
4707     if (obj->vertab) {
4708 	vernum = VER_NDX(obj->versyms[symnum]);
4709 	if (vernum >= obj->vernum) {
4710 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
4711 		obj->path, obj->strtab + symnum, vernum);
4712 	} else if (obj->vertab[vernum].hash != 0) {
4713 	    return &obj->vertab[vernum];
4714 	}
4715     }
4716     return NULL;
4717 }
4718 
4719 int
4720 _rtld_get_stack_prot(void)
4721 {
4722 
4723 	return (stack_prot);
4724 }
4725 
4726 static void
4727 map_stacks_exec(RtldLockState *lockstate)
4728 {
4729 	return;
4730 	/*
4731 	 * Stack protection must be implemented in the kernel before the dynamic
4732 	 * linker can handle PT_GNU_STACK sections.
4733 	 * The following is the FreeBSD implementation of map_stacks_exec()
4734 	 * void (*thr_map_stacks_exec)(void);
4735 	 *
4736 	 * if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
4737 	 *     return;
4738 	 * thr_map_stacks_exec = (void (*)(void))(uintptr_t)
4739 	 *     get_program_var_addr("__pthread_map_stacks_exec", lockstate);
4740 	 * if (thr_map_stacks_exec != NULL) {
4741 	 *     stack_prot |= PROT_EXEC;
4742 	 *     thr_map_stacks_exec();
4743 	 * }
4744 	 */
4745 }
4746 
4747 void
4748 symlook_init(SymLook *dst, const char *name)
4749 {
4750 
4751 	bzero(dst, sizeof(*dst));
4752 	dst->name = name;
4753 	dst->hash = elf_hash(name);
4754 	dst->hash_gnu = gnu_hash(name);
4755 }
4756 
4757 static void
4758 symlook_init_from_req(SymLook *dst, const SymLook *src)
4759 {
4760 
4761 	dst->name = src->name;
4762 	dst->hash = src->hash;
4763 	dst->hash_gnu = src->hash_gnu;
4764 	dst->ventry = src->ventry;
4765 	dst->flags = src->flags;
4766 	dst->defobj_out = NULL;
4767 	dst->sym_out = NULL;
4768 	dst->lockstate = src->lockstate;
4769 }
4770 
4771 #ifdef ENABLE_OSRELDATE
4772 /*
4773  * Overrides for libc_pic-provided functions.
4774  */
4775 
4776 int
4777 __getosreldate(void)
4778 {
4779 	size_t len;
4780 	int oid[2];
4781 	int error, osrel;
4782 
4783 	if (osreldate != 0)
4784 		return (osreldate);
4785 
4786 	oid[0] = CTL_KERN;
4787 	oid[1] = KERN_OSRELDATE;
4788 	osrel = 0;
4789 	len = sizeof(osrel);
4790 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
4791 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
4792 		osreldate = osrel;
4793 	return (osreldate);
4794 }
4795 #endif
4796 
4797 /*
4798  * No unresolved symbols for rtld.
4799  */
4800 void
4801 __pthread_cxa_finalize(struct dl_phdr_info *a)
4802 {
4803 }
4804 
4805 const char *
4806 rtld_strerror(int errnum)
4807 {
4808 
4809 	if (errnum < 0 || errnum >= sys_nerr)
4810 		return ("Unknown error");
4811 	return (sys_errlist[errnum]);
4812 }
4813