xref: /dragonfly/sbin/growfs/growfs.c (revision 52f9f0d9)
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  * @(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz Copyright (c) 1980, 1989, 1993 The Regents of the University of California. All rights reserved.
41  * $FreeBSD: src/sbin/growfs/growfs.c,v 1.4.2.2 2001/08/14 12:45:11 chm Exp $
42  */
43 
44 /* ********************************************************** INCLUDES ***** */
45 #include <sys/param.h>
46 #include <sys/diskslice.h>
47 #include <sys/ioctl.h>
48 #include <sys/stat.h>
49 
50 #include <stdio.h>
51 #include <paths.h>
52 #include <ctype.h>
53 #include <err.h>
54 #include <fcntl.h>
55 #include <stdlib.h>
56 #include <string.h>
57 #include <unistd.h>
58 #include <vfs/ufs/dinode.h>
59 #include <vfs/ufs/fs.h>
60 
61 #include "debug.h"
62 
63 /* *************************************************** GLOBALS & TYPES ***** */
64 #ifdef FS_DEBUG
65 int	_dbg_lvl_ = (DL_INFO);	/* DL_TRC */
66 #endif /* FS_DEBUG */
67 
68 static union {
69 	struct fs	fs;
70 	char	pad[SBSIZE];
71 } fsun1, fsun2;
72 #define	sblock	fsun1.fs	/* the new superblock */
73 #define	osblock	fsun2.fs	/* the old superblock */
74 
75 static union {
76 	struct cg	cg;
77 	char	pad[MAXBSIZE];
78 } cgun1, cgun2;
79 #define	acg	cgun1.cg	/* a cylinder cgroup (new) */
80 #define	aocg	cgun2.cg	/* an old cylinder group */
81 
82 static char	ablk[MAXBSIZE];		/* a block */
83 static char	i1blk[MAXBSIZE];	/* some indirect blocks */
84 static char	i2blk[MAXBSIZE];
85 static char	i3blk[MAXBSIZE];
86 
87 	/* where to write back updated blocks */
88 static daddr_t	in_src, i1_src, i2_src, i3_src;
89 
90 	/* what object contains the reference */
91 enum pointer_source {
92 	GFS_PS_INODE,
93 	GFS_PS_IND_BLK_LVL1,
94 	GFS_PS_IND_BLK_LVL2,
95 	GFS_PS_IND_BLK_LVL3
96 };
97 
98 static struct csum	*fscs;		/* cylinder summary */
99 
100 static struct ufs1_dinode	zino[MAXBSIZE/sizeof(struct ufs1_dinode)]; /* some inodes */
101 
102 /*
103  * An  array of elements of type struct gfs_bpp describes all blocks  to
104  * be relocated in order to free the space needed for the cylinder group
105  * summary for all cylinder groups located in the first cylinder group.
106  */
107 struct gfs_bpp {
108 	daddr_t	old;		/* old block number */
109 	daddr_t	new;		/* new block number */
110 #define GFS_FL_FIRST	1
111 #define GFS_FL_LAST	2
112 	unsigned int	flags;	/* special handling required */
113 	int	found;		/* how many references were updated */
114 };
115 
116 /* ******************************************************** PROTOTYPES ***** */
117 static void	growfs(int, int, unsigned int);
118 static void	rdfs(daddr_t, size_t, void *, int);
119 static void	wtfs(daddr_t, size_t, void *, int, unsigned int);
120 static daddr_t	alloc(void);
121 static int	charsperline(void);
122 static void	usage(void);
123 static int	isblock(struct fs *, unsigned char *, int);
124 static void	clrblock(struct fs *, unsigned char *, int);
125 static void	setblock(struct fs *, unsigned char *, int);
126 static void	initcg(int, time_t, int, unsigned int);
127 static void	updjcg(int, time_t, int, int, unsigned int);
128 static void	updcsloc(time_t, int, int, unsigned int);
129 static struct ufs1_dinode	*ginode(ino_t, int, int);
130 static void	frag_adjust(daddr_t, int);
131 static void	cond_bl_upd(ufs_daddr_t *, struct gfs_bpp *,
132     enum pointer_source, int, unsigned int);
133 static void	updclst(int);
134 static void	updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
135 
136 /* ************************************************************ growfs ***** */
137 /*
138  * Here  we actually start growing the filesystem. We basically  read  the
139  * cylinder  summary  from the first cylinder group as we want  to  update
140  * this  on  the fly during our various operations. First  we  handle  the
141  * changes in the former last cylinder group. Afterwards we create all new
142  * cylinder  groups.  Now  we handle the  cylinder  group  containing  the
143  * cylinder  summary  which  might result in a  relocation  of  the  whole
144  * structure.  In the end we write back the updated cylinder summary,  the
145  * new superblock, and slightly patched versions of the super block
146  * copies.
147  */
148 static void
149 growfs(int fsi, int fso, unsigned int Nflag)
150 {
151 	DBG_FUNC("growfs")
152 	int	i;
153 	int	cylno, j;
154 	time_t	utime;
155 	int	width;
156 	char	tmpbuf[100];
157 #ifdef FSIRAND
158 	static int	randinit=0;
159 
160 	DBG_ENTER;
161 
162 	if (!randinit) {
163 		randinit = 1;
164 		srandomdev();
165 	}
166 #else /* not FSIRAND */
167 
168 	DBG_ENTER;
169 
170 #endif /* FSIRAND */
171 	time(&utime);
172 
173 	/*
174 	 * Get the cylinder summary into the memory.
175 	 */
176 	fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
177 	if(fscs == NULL) {
178 		errx(1, "calloc failed");
179 	}
180 	for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
181 		rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
182 		    numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
183 		    osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
184 	}
185 
186 #ifdef FS_DEBUG
187 {
188 	struct csum	*dbg_csp;
189 	int	dbg_csc;
190 	char	dbg_line[80];
191 
192 	dbg_csp=fscs;
193 	for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
194 		snprintf(dbg_line, sizeof(dbg_line),
195 		    "%d. old csum in old location", dbg_csc);
196 		DBG_DUMP_CSUM(&osblock,
197 		    dbg_line,
198 		    dbg_csp++);
199 	}
200 }
201 #endif /* FS_DEBUG */
202 	DBG_PRINT0("fscs read\n");
203 
204 	/*
205 	 * Do all needed changes in the former last cylinder group.
206 	 */
207 	updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
208 
209 	/*
210 	 * Dump out summary information about file system.
211 	 */
212 	printf("growfs:\t%d sectors in %d %s of %d tracks, %d sectors\n",
213 	    sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
214 	    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
215 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
216 	printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
217 	    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
218 	    sblock.fs_ncg, sblock.fs_cpg,
219 	    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
220 	    sblock.fs_ipg);
221 #undef B2MBFACTOR
222 
223 	/*
224 	 * Now build the cylinders group blocks and
225 	 * then print out indices of cylinder groups.
226 	 */
227 	printf("super-block backups (for fsck -b #) at:\n");
228 	i = 0;
229 	width = charsperline();
230 
231 	/*
232 	 * Iterate for only the new cylinder groups.
233 	 */
234 	for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
235 		initcg(cylno, utime, fso, Nflag);
236 		j = sprintf(tmpbuf, " %d%s",
237 		    (int)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
238 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
239 		if (i + j >= width) {
240 			printf("\n");
241 			i = 0;
242 		}
243 		i += j;
244 		printf("%s", tmpbuf);
245 		fflush(stdout);
246 	}
247 	printf("\n");
248 
249 	/*
250 	 * Do all needed changes in the first cylinder group.
251 	 * allocate blocks in new location
252 	 */
253 	updcsloc(utime, fsi, fso, Nflag);
254 
255 	/*
256 	 * Now write the cylinder summary back to disk.
257 	 */
258 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
259 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
260 		    (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
261 		    (void *)(((char *)fscs) + i), fso, Nflag);
262 	}
263 	DBG_PRINT0("fscs written\n");
264 
265 #ifdef FS_DEBUG
266 {
267 	struct csum	*dbg_csp;
268 	int	dbg_csc;
269 	char	dbg_line[80];
270 
271 	dbg_csp=fscs;
272 	for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
273 		snprintf(dbg_line, sizeof(dbg_line),
274 		    "%d. new csum in new location", dbg_csc);
275 		DBG_DUMP_CSUM(&sblock,
276 		    dbg_line,
277 		    dbg_csp++);
278 	}
279 }
280 #endif /* FS_DEBUG */
281 
282 	/*
283 	 * Now write the new superblock back to disk.
284 	 */
285 	sblock.fs_time = utime;
286 	wtfs((daddr_t)(SBOFF / DEV_BSIZE), (size_t)SBSIZE, (void *)&sblock,
287 	    fso, Nflag);
288 	DBG_PRINT0("sblock written\n");
289 	DBG_DUMP_FS(&sblock,
290 	    "new initial sblock");
291 
292 	/*
293 	 * Clean up the dynamic fields in our superblock copies.
294 	 */
295 	sblock.fs_fmod = 0;
296 	sblock.fs_clean = 1;
297 	sblock.fs_ronly = 0;
298 	sblock.fs_cgrotor = 0;
299 	sblock.fs_state = 0;
300 	memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
301 	sblock.fs_flags &= FS_DOSOFTDEP;
302 
303 	/*
304 	 * XXX
305 	 * The following fields are currently distributed from the  superblock
306 	 * to the copies:
307 	 *     fs_minfree
308 	 *     fs_rotdelay
309 	 *     fs_maxcontig
310 	 *     fs_maxbpg
311 	 *     fs_minfree,
312 	 *     fs_optim
313 	 *     fs_flags regarding SOFTPDATES
314 	 *
315 	 * We probably should rather change the summary for the cylinder group
316 	 * statistics here to the value of what would be in there, if the file
317 	 * system were created initially with the new size. Therefor we  still
318 	 * need to find an easy way of calculating that.
319 	 * Possibly we can try to read the first superblock copy and apply the
320 	 * "diffed" stats between the old and new superblock by still  copying
321 	 * certain parameters onto that.
322 	 */
323 
324 	/*
325 	 * Write out the duplicate super blocks.
326 	 */
327 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
328 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
329 		    (size_t)SBSIZE, (void *)&sblock, fso, Nflag);
330 	}
331 	DBG_PRINT0("sblock copies written\n");
332 	DBG_DUMP_FS(&sblock,
333 	    "new other sblocks");
334 
335 	DBG_LEAVE;
336 	return;
337 }
338 
339 /* ************************************************************ initcg ***** */
340 /*
341  * This creates a new cylinder group structure, for more details please  see
342  * the  source of newfs(8), as this function is taken over almost unchanged.
343  * As  this  is  never called for the  first  cylinder  group,  the  special
344  * provisions for that case are removed here.
345  */
346 static void
347 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
348 {
349 	DBG_FUNC("initcg")
350 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
351 	int i;
352 	struct csum *cs;
353 #ifdef FSIRAND
354 	int j;
355 #endif
356 
357 	DBG_ENTER;
358 
359 	/*
360 	 * Determine block bounds for cylinder group.
361 	 */
362 	cbase = cgbase(&sblock, cylno);
363 	dmax = cbase + sblock.fs_fpg;
364 	if (dmax > sblock.fs_size) {
365 		dmax = sblock.fs_size;
366 	}
367 	dlower = cgsblock(&sblock, cylno) - cbase;
368 	dupper = cgdmin(&sblock, cylno) - cbase;
369 	if (cylno == 0) { /* XXX fscs may be relocated */
370 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
371 	}
372 	cs = fscs + cylno;
373 	memset(&acg, 0, (size_t)sblock.fs_cgsize);
374 	acg.cg_time = utime;
375 	acg.cg_magic = CG_MAGIC;
376 	acg.cg_cgx = cylno;
377 	if (cylno == sblock.fs_ncg - 1) {
378 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
379 	} else {
380 		acg.cg_ncyl = sblock.fs_cpg;
381 	}
382 	acg.cg_niblk = sblock.fs_ipg;
383 	acg.cg_ndblk = dmax - cbase;
384 	if (sblock.fs_contigsumsize > 0) {
385 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
386 	}
387 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
388 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
389 	acg.cg_iusedoff = acg.cg_boff +
390 	    sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
391 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
392 	if (sblock.fs_contigsumsize <= 0) {
393 		acg.cg_nextfreeoff = acg.cg_freeoff +
394 		    howmany(sblock.fs_cpg* sblock.fs_spc/ NSPF(&sblock), NBBY);
395 	} else {
396 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
397 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
398 		    sizeof(u_int32_t);
399 		acg.cg_clustersumoff =
400 		    roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
401 		acg.cg_clusteroff = acg.cg_clustersumoff +
402 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
403 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
404 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
405 	}
406 	if (acg.cg_nextfreeoff-(intptr_t)(&acg.cg_firstfield) > sblock.fs_cgsize) {
407 		/*
408 		 * XXX This should never happen as we would have had that panic
409 		 *     already on filesystem creation
410 		 */
411 		errx(37, "panic: cylinder group too big");
412 	}
413 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
414 	if (cylno == 0)
415 		for (i = 0; (size_t)i < ROOTINO; i++) {
416 			setbit(cg_inosused(&acg), i);
417 			acg.cg_cs.cs_nifree--;
418 		}
419 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
420 #ifdef FSIRAND
421 		for (j = 0; j < sblock.fs_bsize / sizeof(struct ufs1_dinode); j++) {
422 			zino[j].di_gen = random();
423 		}
424 #endif
425 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
426 		    (size_t)sblock.fs_bsize, (void *)zino, fso, Nflag);
427 	}
428 	for (d = 0; d < dlower; d += sblock.fs_frag) {
429 		blkno = d / sblock.fs_frag;
430 		setblock(&sblock, cg_blksfree(&acg), blkno);
431 		if (sblock.fs_contigsumsize > 0) {
432 			setbit(cg_clustersfree(&acg), blkno);
433 		}
434 		acg.cg_cs.cs_nbfree++;
435 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
436 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
437 		    [cbtorpos(&sblock, d)]++;
438 	}
439 	sblock.fs_dsize += dlower;
440 	sblock.fs_dsize += acg.cg_ndblk - dupper;
441 	if ((i = dupper % sblock.fs_frag)) {
442 		acg.cg_frsum[sblock.fs_frag - i]++;
443 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
444 			setbit(cg_blksfree(&acg), dupper);
445 			acg.cg_cs.cs_nffree++;
446 		}
447 	}
448 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
449 		blkno = d / sblock.fs_frag;
450 		setblock(&sblock, cg_blksfree(&acg), blkno);
451 		if (sblock.fs_contigsumsize > 0) {
452 			setbit(cg_clustersfree(&acg), blkno);
453 		}
454 		acg.cg_cs.cs_nbfree++;
455 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
456 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
457 		    [cbtorpos(&sblock, d)]++;
458 		d += sblock.fs_frag;
459 	}
460 	if (d < dmax - cbase) {
461 		acg.cg_frsum[dmax - cbase - d]++;
462 		for (; d < dmax - cbase; d++) {
463 			setbit(cg_blksfree(&acg), d);
464 			acg.cg_cs.cs_nffree++;
465 		}
466 	}
467 	if (sblock.fs_contigsumsize > 0) {
468 		int32_t	*sump = cg_clustersum(&acg);
469 		u_char	*mapp = cg_clustersfree(&acg);
470 		int	map = *mapp++;
471 		int	bit = 1;
472 		int	run = 0;
473 
474 		for (i = 0; i < acg.cg_nclusterblks; i++) {
475 			if ((map & bit) != 0) {
476 				run++;
477 			} else if (run != 0) {
478 				if (run > sblock.fs_contigsumsize) {
479 					run = sblock.fs_contigsumsize;
480 				}
481 				sump[run]++;
482 				run = 0;
483 			}
484 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
485 				bit <<= 1;
486 			} else {
487 				map = *mapp++;
488 				bit = 1;
489 			}
490 		}
491 		if (run != 0) {
492 			if (run > sblock.fs_contigsumsize) {
493 				run = sblock.fs_contigsumsize;
494 			}
495 			sump[run]++;
496 		}
497 	}
498 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
499 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
500 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
501 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
502 	*cs = acg.cg_cs;
503 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
504 	    (size_t)sblock.fs_bsize, (void *)&acg, fso, Nflag);
505 	DBG_DUMP_CG(&sblock,
506 	    "new cg",
507 	    &acg);
508 
509 	DBG_LEAVE;
510 	return;
511 }
512 
513 /* ******************************************************* frag_adjust ***** */
514 /*
515  * Here  we add or subtract (sign +1/-1) the available fragments in  a  given
516  * block to or from the fragment statistics. By subtracting before and adding
517  * after  an operation on the free frag map we can easy update  the  fragment
518  * statistic, which seems to be otherwise an rather complex operation.
519  */
520 static void
521 frag_adjust(daddr_t frag, int sign)
522 {
523 	DBG_FUNC("frag_adjust")
524 	int fragsize;
525 	int f;
526 
527 	DBG_ENTER;
528 
529 	fragsize=0;
530 	/*
531 	 * Here frag only needs to point to any fragment in the block we want
532 	 * to examine.
533 	 */
534 	for(f=rounddown(frag, sblock.fs_frag);
535 	    f<roundup(frag+1, sblock.fs_frag);
536 	    f++) {
537 		/*
538 		 * Count contiguos free fragments.
539 		 */
540 		if(isset(cg_blksfree(&acg), f)) {
541 			fragsize++;
542 		} else {
543 			if(fragsize && fragsize<sblock.fs_frag) {
544 				/*
545 				 * We found something in between.
546 				 */
547 				acg.cg_frsum[fragsize]+=sign;
548 				DBG_PRINT2("frag_adjust [%d]+=%d\n",
549 				    fragsize,
550 				    sign);
551 			}
552 			fragsize=0;
553 		}
554 	}
555 	if(fragsize && fragsize<sblock.fs_frag) {
556 		/*
557 		 * We found something.
558 		 */
559 		acg.cg_frsum[fragsize]+=sign;
560 		DBG_PRINT2("frag_adjust [%d]+=%d\n",
561 		    fragsize,
562 		    sign);
563 	}
564 	DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
565 	    fragsize,
566 	    sign);
567 
568 	DBG_LEAVE;
569 	return;
570 }
571 
572 /* ******************************************************* cond_bl_upd ***** */
573 /*
574  * Here we conditionally update a pointer to a fragment. We check for all
575  * relocated blocks if any of it's fragments is referenced by the current
576  * field,  and update the pointer to the respective fragment in  our  new
577  * block.  If  we find a reference we write back the  block  immediately,
578  * as there is no easy way for our general block reading engine to figure
579  * out if a write back operation is needed.
580  */
581 static void
582 cond_bl_upd(ufs_daddr_t *block, struct gfs_bpp *field,
583     enum pointer_source source, int fso, unsigned int Nflag)
584 {
585 	DBG_FUNC("cond_bl_upd")
586 	struct gfs_bpp	*f;
587 	char *src;
588 	daddr_t dst=0;
589 
590 	DBG_ENTER;
591 
592 	f=field;
593 	while(f->old) { /* for all old blocks */
594 		if(*block/sblock.fs_frag == f->old) {
595 			/*
596 			 * The fragment is part of the block, so update.
597 			 */
598 			*block=(f->new*sblock.fs_frag+(*block%sblock.fs_frag));
599 			f->found++;
600 			DBG_PRINT3("scg (%d->%d)[%d] reference updated\n",
601 			    f->old,
602 			    f->new,
603 			    *block%sblock.fs_frag);
604 
605 			/* Write the block back to disk immediately */
606 			switch (source) {
607 			case GFS_PS_INODE:
608 				src=ablk;
609 				dst=in_src;
610 				break;
611 			case GFS_PS_IND_BLK_LVL1:
612 				src=i1blk;
613 				dst=i1_src;
614 				break;
615 			case GFS_PS_IND_BLK_LVL2:
616 				src=i2blk;
617 				dst=i2_src;
618 				break;
619 			case GFS_PS_IND_BLK_LVL3:
620 				src=i3blk;
621 				dst=i3_src;
622 				break;
623 			default:	/* error */
624 				src=NULL;
625 				break;
626 			}
627 			if(src) {
628 				/*
629 				 * XXX	If src is not of type inode we have to
630 				 *	implement  copy on write here in  case
631 				 *	of active snapshots.
632 				 */
633 				wtfs(dst, (size_t)sblock.fs_bsize, (void *)src,
634 				    fso, Nflag);
635 			}
636 
637 			/*
638 			 * The same block can't be found again in this loop.
639 			 */
640 			break;
641 		}
642 		f++;
643 	}
644 
645 	DBG_LEAVE;
646 	return;
647 }
648 
649 /* ************************************************************ updjcg ***** */
650 /*
651  * Here we do all needed work for the former last cylinder group. It has to be
652  * changed  in  any case, even if the filesystem ended exactly on the  end  of
653  * this  group, as there is some slightly inconsistent handling of the  number
654  * of cylinders in the cylinder group. We start again by reading the  cylinder
655  * group from disk. If the last block was not fully available, we first handle
656  * the  missing  fragments, then we handle all new full blocks  in  that  file
657  * system  and  finally we handle the new last fragmented block  in  the  file
658  * system.  We again have to handle the fragment statistics rotational  layout
659  * tables and cluster summary during all those operations.
660  */
661 static void
662 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
663 {
664 	DBG_FUNC("updjcg")
665 	daddr_t	cbase, dmax, dupper;
666 	struct csum	*cs;
667 	int	i,k;
668 	int	j=0;
669 
670 	DBG_ENTER;
671 
672 	/*
673 	 * Read the former last (joining) cylinder group from disk, and make
674 	 * a copy.
675 	 */
676 	rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
677 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
678 	DBG_PRINT0("jcg read\n");
679 	DBG_DUMP_CG(&sblock,
680 	    "old joining cg",
681 	    &aocg);
682 
683 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
684 
685 	/*
686 	 * If  the  cylinder  group had already it's  new  final  size  almost
687 	 * nothing is to be done ... except:
688 	 * For some reason the value of cg_ncyl in the last cylinder group has
689 	 * to  be  zero instead of fs_cpg. As this is now no longer  the  last
690 	 * cylinder group we have to change that value now to fs_cpg.
691 	 */
692 
693 	if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
694 		acg.cg_ncyl=sblock.fs_cpg;
695 
696 		wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
697 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
698 		DBG_PRINT0("jcg written\n");
699 		DBG_DUMP_CG(&sblock,
700 		    "new joining cg",
701 		    &acg);
702 
703 		DBG_LEAVE;
704 		return;
705 	}
706 
707 	/*
708 	 * Set up some variables needed later.
709 	 */
710 	cbase = cgbase(&sblock, cylno);
711 	dmax = cbase + sblock.fs_fpg;
712 	if (dmax > sblock.fs_size)
713 		dmax = sblock.fs_size;
714 	dupper = cgdmin(&sblock, cylno) - cbase;
715 	if (cylno == 0) { /* XXX fscs may be relocated */
716 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
717 	}
718 
719 	/*
720 	 * Set pointer to the cylinder summary for our cylinder group.
721 	 */
722 	cs = fscs + cylno;
723 
724 	/*
725 	 * Touch the cylinder group, update all fields in the cylinder group as
726 	 * needed, update the free space in the superblock.
727 	 */
728 	acg.cg_time = utime;
729 	if (cylno == sblock.fs_ncg - 1) {
730 		/*
731 		 * This is still the last cylinder group.
732 		 */
733 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
734 	} else {
735 		acg.cg_ncyl = sblock.fs_cpg;
736 	}
737 	DBG_PRINT4("jcg dbg: %d %u %d %u\n",
738 	    cylno,
739 	    sblock.fs_ncg,
740 	    acg.cg_ncyl,
741 	    sblock.fs_cpg);
742 	acg.cg_ndblk = dmax - cbase;
743 	sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
744 	if (sblock.fs_contigsumsize > 0) {
745 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
746 	}
747 
748 	/*
749 	 * Now  we have to update the free fragment bitmap for our new  free
750 	 * space.  There again we have to handle the fragmentation and  also
751 	 * the  rotational  layout tables and the cluster summary.  This  is
752 	 * also  done per fragment for the first new block if the  old  file
753 	 * system end was not on a block boundary, per fragment for the  new
754 	 * last block if the new file system end is not on a block boundary,
755 	 * and per block for all space in between.
756 	 *
757 	 * Handle the first new block here if it was partially available
758 	 * before.
759 	 */
760 	if(osblock.fs_size % sblock.fs_frag) {
761 		if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
762 			/*
763 			 * The new space is enough to fill at least this
764 			 * block
765 			 */
766 			j=0;
767 			for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
768 			    i>=osblock.fs_size-cbase;
769 			    i--) {
770 				setbit(cg_blksfree(&acg), i);
771 				acg.cg_cs.cs_nffree++;
772 				j++;
773 			}
774 
775 			/*
776 			 * Check  if the fragment just created could join  an
777 			 * already existing fragment at the former end of the
778 			 * file system.
779 			 */
780 			if(isblock(&sblock, cg_blksfree(&acg),
781 			    ((osblock.fs_size - cgbase(&sblock, cylno))/
782 			    sblock.fs_frag))) {
783 				/*
784 				 * The block is now completely available
785 				 */
786 				DBG_PRINT0("block was\n");
787 				acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
788 				acg.cg_cs.cs_nbfree++;
789 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
790 				k=rounddown(osblock.fs_size-cbase,
791 				    sblock.fs_frag);
792 				cg_blktot(&acg)[cbtocylno(&sblock, k)]++;
793 				cg_blks(&sblock, &acg, cbtocylno(&sblock, k))
794 		   		    [cbtorpos(&sblock, k)]++;
795 				updclst((osblock.fs_size-cbase)/sblock.fs_frag);
796 			} else {
797 				/*
798 				 * Lets rejoin a possible partially growed
799 				 * fragment.
800 				 */
801 				k=0;
802 				while(isset(cg_blksfree(&acg), i) &&
803 				    (i>=rounddown(osblock.fs_size-cbase,
804 				    sblock.fs_frag))) {
805 					i--;
806 					k++;
807 				}
808 				if(k) {
809 					acg.cg_frsum[k]--;
810 				}
811 				acg.cg_frsum[k+j]++;
812 			}
813 		} else {
814 			/*
815 			 * We only grow by some fragments within this last
816 			 * block.
817 			 */
818 			for(i=sblock.fs_size-cbase-1;
819 				i>=osblock.fs_size-cbase;
820 				i--) {
821 				setbit(cg_blksfree(&acg), i);
822 				acg.cg_cs.cs_nffree++;
823 				j++;
824 			}
825 			/*
826 			 * Lets rejoin a possible partially growed fragment.
827 			 */
828 			k=0;
829 			while(isset(cg_blksfree(&acg), i) &&
830 			    (i>=rounddown(osblock.fs_size-cbase,
831 			    sblock.fs_frag))) {
832 				i--;
833 				k++;
834 			}
835 			if(k) {
836 				acg.cg_frsum[k]--;
837 			}
838 			acg.cg_frsum[k+j]++;
839 		}
840 	}
841 
842 	/*
843 	 * Handle all new complete blocks here.
844 	 */
845 	for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
846 	    i+sblock.fs_frag<=dmax-cbase;	/* XXX <= or only < ? */
847 	    i+=sblock.fs_frag) {
848 		j = i / sblock.fs_frag;
849 		setblock(&sblock, cg_blksfree(&acg), j);
850 		updclst(j);
851 		acg.cg_cs.cs_nbfree++;
852 		cg_blktot(&acg)[cbtocylno(&sblock, i)]++;
853 		cg_blks(&sblock, &acg, cbtocylno(&sblock, i))
854 		    [cbtorpos(&sblock, i)]++;
855 	}
856 
857 	/*
858 	 * Handle the last new block if there are stll some new fragments left.
859 	 * Here  we don't have to bother about the cluster summary or the  even
860 	 * the rotational layout table.
861 	 */
862 	if (i < (dmax - cbase)) {
863 		acg.cg_frsum[dmax - cbase - i]++;
864 		for (; i < dmax - cbase; i++) {
865 			setbit(cg_blksfree(&acg), i);
866 			acg.cg_cs.cs_nffree++;
867 		}
868 	}
869 
870 	sblock.fs_cstotal.cs_nffree +=
871 	    (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
872 	sblock.fs_cstotal.cs_nbfree +=
873 	    (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
874 	/*
875 	 * The following statistics are not changed here:
876 	 *     sblock.fs_cstotal.cs_ndir
877 	 *     sblock.fs_cstotal.cs_nifree
878 	 * As the statistics for this cylinder group are ready, copy it to
879 	 * the summary information array.
880 	 */
881 	*cs = acg.cg_cs;
882 
883 	/*
884 	 * Write the updated "joining" cylinder group back to disk.
885 	 */
886 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
887 	    (void *)&acg, fso, Nflag);
888 	DBG_PRINT0("jcg written\n");
889 	DBG_DUMP_CG(&sblock,
890 	    "new joining cg",
891 	    &acg);
892 
893 	DBG_LEAVE;
894 	return;
895 }
896 
897 /* ********************************************************** updcsloc ***** */
898 /*
899  * Here  we update the location of the cylinder summary. We have  two  possible
900  * ways of growing the cylinder summary.
901  * (1)	We can try to grow the summary in the current location, and  relocate
902  *	possibly used blocks within the current cylinder group.
903  * (2)	Alternatively we can relocate the whole cylinder summary to the first
904  *	new completely empty cylinder group. Once the cylinder summary is  no
905  *	longer in the beginning of the first cylinder group you should  never
906  *	use  a version of fsck which is not aware of the possibility to  have
907  *	this structure in a non standard place.
908  * Option (1) is considered to be less intrusive to the structure of the  file-
909  * system. So we try to stick to that whenever possible. If there is not enough
910  * space  in the cylinder group containing the cylinder summary we have to  use
911  * method  (2). In case of active snapshots in the filesystem we  probably  can
912  * completely avoid implementing copy on write if we stick to method (2) only.
913  */
914 static void
915 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
916 {
917 	DBG_FUNC("updcsloc")
918 	struct csum	*cs;
919 	int	ocscg, ncscg;
920 	int	blocks;
921 	daddr_t	cbase, dupper, odupper, d, f, g;
922 	int	ind;
923 	int	cylno, inc;
924 	struct gfs_bpp	*bp;
925 	int	i, l;
926 	int	lcs=0;
927 	int	block;
928 
929 	DBG_ENTER;
930 
931 	if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
932 	    howmany(osblock.fs_cssize, osblock.fs_fsize)) {
933 		/*
934 		 * No new fragment needed.
935 		 */
936 		DBG_LEAVE;
937 		return;
938 	}
939 	ocscg=dtog(&osblock, osblock.fs_csaddr);
940 	cs=fscs+ocscg;
941 	blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
942 	    howmany(osblock.fs_cssize, osblock.fs_bsize);
943 
944 	/*
945 	 * Read original cylinder group from disk, and make a copy.
946 	 * XXX	If Nflag is set in some very rare cases we now miss
947 	 *	some changes done in updjcg by reading the unmodified
948 	 *	block from disk.
949 	 */
950 	rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
951 	    (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
952 	DBG_PRINT0("oscg read\n");
953 	DBG_DUMP_CG(&sblock,
954 	    "old summary cg",
955 	    &aocg);
956 
957 	memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
958 
959 	/*
960 	 * Touch the cylinder group, set up local variables needed later
961 	 * and update the superblock.
962 	 */
963 	acg.cg_time = utime;
964 
965 	/*
966 	 * XXX	In the case of having active snapshots we may need much more
967 	 *	blocks for the copy on write. We need each block twice,  and
968 	 *	also  up to 8*3 blocks for indirect blocks for all  possible
969 	 *	references.
970 	 */
971 	if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
972 		/*
973 		 * There  is  not enough space in the old cylinder  group  to
974 		 * relocate  all blocks as needed, so we relocate  the  whole
975 		 * cylinder  group summary to a new group. We try to use  the
976 		 * first complete new cylinder group just created. Within the
977 		 * cylinder  group we allign the area immediately  after  the
978 		 * cylinder  group  information location in order  to  be  as
979 		 * close as possible to the original implementation of ffs.
980 		 *
981 		 * First  we have to make sure we'll find enough space in  the
982 		 * new  cylinder  group. If not, then we  currently  give  up.
983 		 * We  start  with freeing everything which was  used  by  the
984 		 * fragments of the old cylinder summary in the current group.
985 		 * Now  we write back the group meta data, read in the  needed
986 		 * meta data from the new cylinder group, and start allocating
987 		 * within  that  group. Here we can assume, the  group  to  be
988 		 * completely empty. Which makes the handling of fragments and
989 		 * clusters a lot easier.
990 		 */
991 		DBG_TRC;
992 		if(sblock.fs_ncg-osblock.fs_ncg < 2) {
993 			errx(2, "panic: not enough space");
994 		}
995 
996 		/*
997 		 * Point "d" to the first fragment not used by the cylinder
998 		 * summary.
999 		 */
1000 		d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1001 
1002 		/*
1003 		 * Set up last cluster size ("lcs") already here. Calculate
1004 		 * the size for the trailing cluster just behind where  "d"
1005 		 * points to.
1006 		 */
1007 		if(sblock.fs_contigsumsize > 0) {
1008 			for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1009 			    lcs=0; lcs<sblock.fs_contigsumsize;
1010 			    block++, lcs++) {
1011 				if(isclr(cg_clustersfree(&acg), block)){
1012 					break;
1013 				}
1014 			}
1015 		}
1016 
1017 		/*
1018 		 * Point "d" to the last frag used by the cylinder summary.
1019 		 */
1020 		d--;
1021 
1022 		DBG_PRINT1("d=%d\n",
1023 		    d);
1024 		if((d+1)%sblock.fs_frag) {
1025 			/*
1026 			 * The end of the cylinder summary is not a complete
1027 			 * block.
1028 			 */
1029 			DBG_TRC;
1030 			frag_adjust(d%sblock.fs_fpg, -1);
1031 			for(; (d+1)%sblock.fs_frag; d--) {
1032 				DBG_PRINT1("d=%d\n",
1033 				    d);
1034 				setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1035 				acg.cg_cs.cs_nffree++;
1036 				sblock.fs_cstotal.cs_nffree++;
1037 			}
1038 			/*
1039 			 * Point  "d" to the last fragment of the  last
1040 			 * (incomplete) block of the clinder summary.
1041 			 */
1042 			d++;
1043 			frag_adjust(d%sblock.fs_fpg, 1);
1044 
1045 			if(isblock(&sblock, cg_blksfree(&acg),
1046 			    (d%sblock.fs_fpg)/sblock.fs_frag)) {
1047 				DBG_PRINT1("d=%d\n",
1048 				    d);
1049 				acg.cg_cs.cs_nffree-=sblock.fs_frag;
1050 				acg.cg_cs.cs_nbfree++;
1051 				sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1052 				sblock.fs_cstotal.cs_nbfree++;
1053 				cg_blktot(&acg)[cbtocylno(&sblock,
1054 				    d%sblock.fs_fpg)]++;
1055 				cg_blks(&sblock, &acg, cbtocylno(&sblock,
1056 				    d%sblock.fs_fpg))[cbtorpos(&sblock,
1057 				    d%sblock.fs_fpg)]++;
1058 				if(sblock.fs_contigsumsize > 0) {
1059 					setbit(cg_clustersfree(&acg),
1060 					    (d%sblock.fs_fpg)/sblock.fs_frag);
1061 					if(lcs < sblock.fs_contigsumsize) {
1062 						if(lcs) {
1063 							cg_clustersum(&acg)
1064 							    [lcs]--;
1065 						}
1066 						lcs++;
1067 						cg_clustersum(&acg)[lcs]++;
1068 					}
1069 				}
1070 			}
1071 			/*
1072 			 * Point "d" to the first fragment of the block before
1073 			 * the last incomplete block.
1074 			 */
1075 			d--;
1076 		}
1077 
1078 		DBG_PRINT1("d=%d\n",
1079 		    d);
1080 		for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1081 		    d-=sblock.fs_frag) {
1082 			DBG_TRC;
1083 			DBG_PRINT1("d=%d\n",
1084 			    d);
1085 			setblock(&sblock, cg_blksfree(&acg),
1086 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1087 			acg.cg_cs.cs_nbfree++;
1088 			sblock.fs_cstotal.cs_nbfree++;
1089 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]++;
1090 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1091 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1092 			    d%sblock.fs_fpg)]++;
1093 			if(sblock.fs_contigsumsize > 0) {
1094 				setbit(cg_clustersfree(&acg),
1095 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1096 				/*
1097 				 * The last cluster size is already set up.
1098 				 */
1099 				if(lcs < sblock.fs_contigsumsize) {
1100 					if(lcs) {
1101 						cg_clustersum(&acg)[lcs]--;
1102 					}
1103 					lcs++;
1104 					cg_clustersum(&acg)[lcs]++;
1105 				}
1106 			}
1107 		}
1108 		*cs = acg.cg_cs;
1109 
1110 		/*
1111 		 * Now write the former cylinder group containing the cylinder
1112 		 * summary back to disk.
1113 		 */
1114 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1115 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1116 		DBG_PRINT0("oscg written\n");
1117 		DBG_DUMP_CG(&sblock,
1118 		    "old summary cg",
1119 		    &acg);
1120 
1121 		/*
1122 		 * Find the beginning of the new cylinder group containing the
1123 		 * cylinder summary.
1124 		 */
1125 		sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1126 		ncscg=dtog(&sblock, sblock.fs_csaddr);
1127 		cs=fscs+ncscg;
1128 
1129 
1130 		/*
1131 		 * If Nflag is specified, we would now read random data instead
1132 		 * of an empty cg structure from disk. So we can't simulate that
1133 		 * part for now.
1134 		 */
1135 		if(Nflag) {
1136 			DBG_PRINT0("nscg update skipped\n");
1137 			DBG_LEAVE;
1138 			return;
1139 		}
1140 
1141 		/*
1142 		 * Read the future cylinder group containing the cylinder
1143 		 * summary from disk, and make a copy.
1144 		 */
1145 		rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1146 		    (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1147 		DBG_PRINT0("nscg read\n");
1148 		DBG_DUMP_CG(&sblock,
1149 		    "new summary cg",
1150 		    &aocg);
1151 
1152 		memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1153 
1154 		/*
1155 		 * Allocate all complete blocks used by the new cylinder
1156 		 * summary.
1157 		 */
1158 		for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1159 		    sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1160 		    d+=sblock.fs_frag) {
1161 			clrblock(&sblock, cg_blksfree(&acg),
1162 			    (d%sblock.fs_fpg)/sblock.fs_frag);
1163 			acg.cg_cs.cs_nbfree--;
1164 			sblock.fs_cstotal.cs_nbfree--;
1165 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1166 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1167 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1168 			    d%sblock.fs_fpg)]--;
1169 			if(sblock.fs_contigsumsize > 0) {
1170 				clrbit(cg_clustersfree(&acg),
1171 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1172 			}
1173 		}
1174 
1175 		/*
1176 		 * Allocate all fragments used by the cylinder summary in the
1177 		 * last block.
1178 		 */
1179 		if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1180 			for(; d-sblock.fs_csaddr<
1181 			    sblock.fs_cssize/sblock.fs_fsize;
1182 			    d++) {
1183 				clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1184 				acg.cg_cs.cs_nffree--;
1185 				sblock.fs_cstotal.cs_nffree--;
1186 			}
1187 			acg.cg_cs.cs_nbfree--;
1188 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1189 			sblock.fs_cstotal.cs_nbfree--;
1190 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1191 			cg_blktot(&acg)[cbtocylno(&sblock, d%sblock.fs_fpg)]--;
1192 			cg_blks(&sblock, &acg, cbtocylno(&sblock,
1193 			    d%sblock.fs_fpg))[cbtorpos(&sblock,
1194 			    d%sblock.fs_fpg)]--;
1195 			if(sblock.fs_contigsumsize > 0) {
1196 				clrbit(cg_clustersfree(&acg),
1197 				    (d%sblock.fs_fpg)/sblock.fs_frag);
1198 			}
1199 
1200 			frag_adjust(d%sblock.fs_fpg, +1);
1201 		}
1202 		/*
1203 		 * XXX	Handle the cluster statistics here in the case  this
1204 		 *	cylinder group is now almost full, and the remaining
1205 		 *	space is less then the maximum cluster size. This is
1206 		 *	probably not needed, as you would hardly find a file
1207 		 *	system which has only MAXCSBUFS+FS_MAXCONTIG of free
1208 		 *	space right behind the cylinder group information in
1209 		 *	any new cylinder group.
1210 		 */
1211 
1212 		/*
1213 		 * Update our statistics in the cylinder summary.
1214 		 */
1215 		*cs = acg.cg_cs;
1216 
1217 		/*
1218 		 * Write the new cylinder group containing the cylinder summary
1219 		 * back to disk.
1220 		 */
1221 		wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1222 		    (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1223 		DBG_PRINT0("nscg written\n");
1224 		DBG_DUMP_CG(&sblock,
1225 		    "new summary cg",
1226 		    &acg);
1227 
1228 		DBG_LEAVE;
1229 		return;
1230 	}
1231 	/*
1232 	 * We have got enough of space in the current cylinder group, so we
1233 	 * can relocate just a few blocks, and let the summary  information
1234 	 * grow in place where it is right now.
1235 	 */
1236 	DBG_TRC;
1237 
1238 	cbase = cgbase(&osblock, ocscg);	/* old and new are equal */
1239 	dupper = sblock.fs_csaddr - cbase +
1240 	    howmany(sblock.fs_cssize, sblock.fs_fsize);
1241 	odupper = osblock.fs_csaddr - cbase +
1242 	    howmany(osblock.fs_cssize, osblock.fs_fsize);
1243 
1244 	sblock.fs_dsize -= dupper-odupper;
1245 
1246 	/*
1247 	 * Allocate the space for the array of blocks to be relocated.
1248 	 */
1249  	bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1250 	    sizeof(struct gfs_bpp));
1251 	if(bp == NULL) {
1252 		errx(1, "malloc failed");
1253 	}
1254 	memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1255 	    sizeof(struct gfs_bpp));
1256 
1257 	/*
1258 	 * Lock all new frags needed for the cylinder group summary. This  is
1259 	 * done per fragment in the first and last block of the new  required
1260 	 * area, and per block for all other blocks.
1261 	 *
1262 	 * Handle the first new  block here (but only if some fragments where
1263 	 * already used for the cylinder summary).
1264 	 */
1265 	ind=0;
1266 	frag_adjust(odupper, -1);
1267 	for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1268 		DBG_PRINT1("scg first frag check loop d=%d\n",
1269 		    d);
1270 		if(isclr(cg_blksfree(&acg), d)) {
1271 			if (!ind) {
1272 				bp[ind].old=d/sblock.fs_frag;
1273 				bp[ind].flags|=GFS_FL_FIRST;
1274 				if(roundup(d, sblock.fs_frag) >= dupper) {
1275 					bp[ind].flags|=GFS_FL_LAST;
1276 				}
1277 				ind++;
1278 			}
1279 		} else {
1280 			clrbit(cg_blksfree(&acg), d);
1281 			acg.cg_cs.cs_nffree--;
1282 			sblock.fs_cstotal.cs_nffree--;
1283 		}
1284 		/*
1285 		 * No cluster handling is needed here, as there was at least
1286 		 * one  fragment in use by the cylinder summary in  the  old
1287 		 * file system.
1288 		 * No block-free counter handling here as this block was not
1289 		 * a free block.
1290 		 */
1291 	}
1292 	frag_adjust(odupper, 1);
1293 
1294 	/*
1295 	 * Handle all needed complete blocks here.
1296 	 */
1297 	for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1298 		DBG_PRINT1("scg block check loop d=%d\n",
1299 		    d);
1300 		if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1301 			for(f=d; f<d+sblock.fs_frag; f++) {
1302 				if(isset(cg_blksfree(&aocg), f)) {
1303 					acg.cg_cs.cs_nffree--;
1304 					sblock.fs_cstotal.cs_nffree--;
1305 				}
1306 			}
1307 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1308 			bp[ind].old=d/sblock.fs_frag;
1309 			ind++;
1310 		} else {
1311 			clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1312 			acg.cg_cs.cs_nbfree--;
1313 			sblock.fs_cstotal.cs_nbfree--;
1314 			cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1315 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1316 			    [cbtorpos(&sblock, d)]--;
1317 			if(sblock.fs_contigsumsize > 0) {
1318 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1319 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1320 				    lcs<sblock.fs_contigsumsize;
1321 				    l++, lcs++ ) {
1322 					if(isclr(cg_clustersfree(&acg),l)){
1323 						break;
1324 					}
1325 				}
1326 				if(lcs < sblock.fs_contigsumsize) {
1327 					cg_clustersum(&acg)[lcs+1]--;
1328 					if(lcs) {
1329 						cg_clustersum(&acg)[lcs]++;
1330 					}
1331 				}
1332 			}
1333 		}
1334 		/*
1335 		 * No fragment counter handling is needed here, as this finally
1336 		 * doesn't change after the relocation.
1337 		 */
1338 	}
1339 
1340 	/*
1341 	 * Handle all fragments needed in the last new affected block.
1342 	 */
1343 	if(d<dupper) {
1344 		frag_adjust(dupper-1, -1);
1345 
1346 		if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1347 			acg.cg_cs.cs_nbfree--;
1348 			sblock.fs_cstotal.cs_nbfree--;
1349 			acg.cg_cs.cs_nffree+=sblock.fs_frag;
1350 			sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1351 			cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1352 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
1353 			    [cbtorpos(&sblock, d)]--;
1354 			if(sblock.fs_contigsumsize > 0) {
1355 				clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1356 				for(lcs=0, l=(d/sblock.fs_frag)+1;
1357 				    lcs<sblock.fs_contigsumsize;
1358 				    l++, lcs++ ) {
1359 					if(isclr(cg_clustersfree(&acg),l)){
1360 						break;
1361 					}
1362 				}
1363 				if(lcs < sblock.fs_contigsumsize) {
1364 					cg_clustersum(&acg)[lcs+1]--;
1365 					if(lcs) {
1366 						cg_clustersum(&acg)[lcs]++;
1367 					}
1368 				}
1369 			}
1370 		}
1371 
1372 		for(; d<dupper; d++) {
1373 			DBG_PRINT1("scg second frag check loop d=%d\n",
1374 			    d);
1375 			if(isclr(cg_blksfree(&acg), d)) {
1376 				bp[ind].old=d/sblock.fs_frag;
1377 				bp[ind].flags|=GFS_FL_LAST;
1378 			} else {
1379 				clrbit(cg_blksfree(&acg), d);
1380 				acg.cg_cs.cs_nffree--;
1381 				sblock.fs_cstotal.cs_nffree--;
1382 			}
1383 		}
1384 		if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1385 			ind++;
1386 		}
1387 		frag_adjust(dupper-1, 1);
1388 	}
1389 
1390 	/*
1391 	 * If we found a block to relocate just do so.
1392 	 */
1393 	if(ind) {
1394 		for(i=0; i<ind; i++) {
1395 			if(!bp[i].old) { /* no more blocks listed */
1396 				/*
1397 				 * XXX	A relative blocknumber should not be
1398 				 *	zero,   which  is   not   explicitly
1399 				 *	guaranteed by our code.
1400 				 */
1401 				break;
1402 			}
1403 			/*
1404 			 * Allocate a complete block in the same (current)
1405 			 * cylinder group.
1406 			 */
1407 			bp[i].new=alloc()/sblock.fs_frag;
1408 
1409 			/*
1410 			 * There is no frag_adjust() needed for the new block
1411 			 * as it will have no fragments yet :-).
1412 			 */
1413 			for(f=bp[i].old*sblock.fs_frag,
1414 			    g=bp[i].new*sblock.fs_frag;
1415 			    f<(bp[i].old+1)*sblock.fs_frag;
1416 			    f++, g++) {
1417 				if(isset(cg_blksfree(&aocg), f)) {
1418 					setbit(cg_blksfree(&acg), g);
1419 					acg.cg_cs.cs_nffree++;
1420 					sblock.fs_cstotal.cs_nffree++;
1421 				}
1422 			}
1423 
1424 			/*
1425 			 * Special handling is required if this was the  first
1426 			 * block. We have to consider the fragments which were
1427 			 * used by the cylinder summary in the original  block
1428 			 * which  re to be free in the copy of our  block.  We
1429 			 * have  to be careful if this first block happens  to
1430 			 * be also the last block to be relocated.
1431 			 */
1432 			if(bp[i].flags & GFS_FL_FIRST) {
1433 				for(f=bp[i].old*sblock.fs_frag,
1434 				    g=bp[i].new*sblock.fs_frag;
1435 				    f<odupper;
1436 				    f++, g++) {
1437 					setbit(cg_blksfree(&acg), g);
1438 					acg.cg_cs.cs_nffree++;
1439 					sblock.fs_cstotal.cs_nffree++;
1440 				}
1441 				if(!(bp[i].flags & GFS_FL_LAST)) {
1442 					frag_adjust(bp[i].new*sblock.fs_frag,1);
1443 				}
1444 
1445 			}
1446 
1447 			/*
1448 			 * Special handling is required if this is the last
1449 			 * block to be relocated.
1450 			 */
1451 			if(bp[i].flags & GFS_FL_LAST) {
1452 				frag_adjust(bp[i].new*sblock.fs_frag, 1);
1453 				frag_adjust(bp[i].old*sblock.fs_frag, -1);
1454 				for(f=dupper;
1455 				    f<roundup(dupper, sblock.fs_frag);
1456 				    f++) {
1457 					if(isclr(cg_blksfree(&acg), f)) {
1458 						setbit(cg_blksfree(&acg), f);
1459 						acg.cg_cs.cs_nffree++;
1460 						sblock.fs_cstotal.cs_nffree++;
1461 					}
1462 				}
1463 				frag_adjust(bp[i].old*sblock.fs_frag, 1);
1464 			}
1465 
1466 			/*
1467 			 * !!! Attach the cylindergroup offset here.
1468 			 */
1469 			bp[i].old+=cbase/sblock.fs_frag;
1470 			bp[i].new+=cbase/sblock.fs_frag;
1471 
1472 			/*
1473 			 * Copy the content of the block.
1474 			 */
1475 			/*
1476 			 * XXX	Here we will have to implement a copy on write
1477 			 *	in the case we have any active snapshots.
1478 			 */
1479 			rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1480 			    (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1481 			wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1482 			    (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1483 			DBG_DUMP_HEX(&sblock,
1484 			    "copied full block",
1485 			    (unsigned char *)&ablk);
1486 
1487 			DBG_PRINT2("scg (%d->%d) block relocated\n",
1488 			    bp[i].old,
1489 			    bp[i].new);
1490 		}
1491 
1492 		/*
1493 		 * Now we have to update all references to any fragment which
1494 		 * belongs  to any block relocated. We iterate now  over  all
1495 		 * cylinder  groups,  within those over all non  zero  length
1496 		 * inodes.
1497 		 */
1498 		for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1499 			DBG_PRINT1("scg doing cg (%d)\n",
1500 			    cylno);
1501 			for(inc=osblock.fs_ipg-1 ; inc>=0 ; inc--) {
1502 				updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1503 			}
1504 		}
1505 
1506 		/*
1507 		 * All inodes are checked, now make sure the number of
1508 		 * references found make sense.
1509 		 */
1510 		for(i=0; i<ind; i++) {
1511 			if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1512 				warnx("error: %d refs found for block %d.",
1513 				    bp[i].found, bp[i].old);
1514 			}
1515 
1516 		}
1517 	}
1518 	/*
1519 	 * The following statistics are not changed here:
1520 	 *     sblock.fs_cstotal.cs_ndir
1521 	 *     sblock.fs_cstotal.cs_nifree
1522 	 * The following statistics were already updated on the fly:
1523 	 *     sblock.fs_cstotal.cs_nffree
1524 	 *     sblock.fs_cstotal.cs_nbfree
1525 	 * As the statistics for this cylinder group are ready, copy it to
1526 	 * the summary information array.
1527 	 */
1528 
1529 	*cs = acg.cg_cs;
1530 
1531 	/*
1532 	 * Write summary cylinder group back to disk.
1533 	 */
1534 	wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1535 	    (void *)&acg, fso, Nflag);
1536 	DBG_PRINT0("scg written\n");
1537 	DBG_DUMP_CG(&sblock,
1538 	    "new summary cg",
1539 	    &acg);
1540 
1541 	DBG_LEAVE;
1542 	return;
1543 }
1544 
1545 /* ************************************************************** rdfs ***** */
1546 /*
1547  * Here we read some block(s) from disk.
1548  */
1549 static void
1550 rdfs(daddr_t bno, size_t size, void *bf, int fsi)
1551 {
1552 	DBG_FUNC("rdfs")
1553 	ssize_t	n;
1554 
1555 	DBG_ENTER;
1556 
1557 	if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1558 		err(33, "rdfs: seek error: %ld", (long)bno);
1559 	}
1560 	n = read(fsi, bf, size);
1561 	if (n != (ssize_t)size) {
1562 		err(34, "rdfs: read error: %ld", (long)bno);
1563 	}
1564 
1565 	DBG_LEAVE;
1566 	return;
1567 }
1568 
1569 /* ************************************************************** wtfs ***** */
1570 /*
1571  * Here we write some block(s) to disk.
1572  */
1573 static void
1574 wtfs(daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1575 {
1576 	DBG_FUNC("wtfs")
1577 	ssize_t	n;
1578 
1579 	DBG_ENTER;
1580 
1581 	if (Nflag) {
1582 		DBG_LEAVE;
1583 		return;
1584 	}
1585 	if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1586 		err(35, "wtfs: seek error: %ld", (long)bno);
1587 	}
1588 	n = write(fso, bf, size);
1589 	if (n != (ssize_t)size) {
1590 		err(36, "wtfs: write error: %ld", (long)bno);
1591 	}
1592 
1593 	DBG_LEAVE;
1594 	return;
1595 }
1596 
1597 /* ************************************************************* alloc ***** */
1598 /*
1599  * Here we allocate a free block in the current cylinder group. It is assumed,
1600  * that  acg contains the current cylinder group. As we may take a block  from
1601  * somewhere in the filesystem we have to handle cluster summary here.
1602  */
1603 static daddr_t
1604 alloc(void)
1605 {
1606 	DBG_FUNC("alloc")
1607 	daddr_t	d, blkno;
1608 	int	lcs1, lcs2;
1609 	int	l;
1610 	int	csmin, csmax;
1611 	int	dlower, dupper, dmax;
1612 
1613 	DBG_ENTER;
1614 
1615 	if (acg.cg_magic != CG_MAGIC) {
1616 		warnx("acg: bad magic number");
1617 		DBG_LEAVE;
1618 		return (0);
1619 	}
1620 	if (acg.cg_cs.cs_nbfree == 0) {
1621 		warnx("error: cylinder group ran out of space");
1622 		DBG_LEAVE;
1623 		return (0);
1624 	}
1625 	/*
1626 	 * We start seeking for free blocks only from the space available after
1627 	 * the  end of the new grown cylinder summary. Otherwise we allocate  a
1628 	 * block here which we have to relocate a couple of seconds later again
1629 	 * again, and we are not prepared to to this anyway.
1630 	 */
1631 	blkno=-1;
1632 	dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1633 	dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1634 	dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1635 	if (dmax > sblock.fs_size) {
1636 		dmax = sblock.fs_size;
1637 	}
1638 	dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1639 	csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1640 	csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1641 	DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1642 	    dlower,
1643 	    dupper,
1644 	    dmax);
1645 	DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1646 	    csmin,
1647 	    csmax);
1648 
1649 	for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1650 		if(d>=csmin && d<=csmax) {
1651 			continue;
1652 		}
1653 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1654 		    d))) {
1655 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1656 			break;
1657 		}
1658 	}
1659 	for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1660 		if(d>=csmin && d<=csmax) {
1661 			continue;
1662 		}
1663 		if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1664 		    d))) {
1665 			blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1666 			break;
1667 		}
1668 	}
1669 	if(blkno==-1) {
1670 		warnx("internal error: couldn't find promised block in cg");
1671 		DBG_LEAVE;
1672 		return (0);
1673 	}
1674 
1675 	/*
1676 	 * This is needed if the block was found already in the first loop.
1677 	 */
1678 	d=blkstofrags(&sblock, blkno);
1679 
1680 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1681 	if (sblock.fs_contigsumsize > 0) {
1682 		/*
1683 		 * Handle the cluster allocation bitmap.
1684 		 */
1685 		clrbit(cg_clustersfree(&acg), blkno);
1686 		/*
1687 		 * We  possibly have split a cluster here, so we have  to  do
1688 		 * recalculate the sizes of the remaining cluster halves now,
1689 		 * and use them for updating the cluster summary information.
1690 		 *
1691 		 * Lets start with the blocks before our allocated block ...
1692 		 */
1693 		for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1694 		    l--, lcs1++ ) {
1695 			if(isclr(cg_clustersfree(&acg),l)){
1696 				break;
1697 			}
1698 		}
1699 		/*
1700 		 * ... and continue with the blocks right after our allocated
1701 		 * block.
1702 		 */
1703 		for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1704 		    l++, lcs2++ ) {
1705 			if(isclr(cg_clustersfree(&acg),l)){
1706 				break;
1707 			}
1708 		}
1709 
1710 		/*
1711 		 * Now update all counters.
1712 		 */
1713 		cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1714 		if(lcs1) {
1715 			cg_clustersum(&acg)[lcs1]++;
1716 		}
1717 		if(lcs2) {
1718 			cg_clustersum(&acg)[lcs2]++;
1719 		}
1720 	}
1721 	/*
1722 	 * Update all statistics based on blocks.
1723 	 */
1724 	acg.cg_cs.cs_nbfree--;
1725 	sblock.fs_cstotal.cs_nbfree--;
1726 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1727 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1728 
1729 	DBG_LEAVE;
1730 	return (d);
1731 }
1732 
1733 /* *********************************************************** isblock ***** */
1734 /*
1735  * Here  we check if all frags of a block are free. For more details  again
1736  * please see the source of newfs(8), as this function is taken over almost
1737  * unchanged.
1738  */
1739 static int
1740 isblock(struct fs *fs, unsigned char *cp, int h)
1741 {
1742 	DBG_FUNC("isblock")
1743 	unsigned char	mask;
1744 
1745 	DBG_ENTER;
1746 
1747 	switch (fs->fs_frag) {
1748 	case 8:
1749 		DBG_LEAVE;
1750 		return (cp[h] == 0xff);
1751 	case 4:
1752 		mask = 0x0f << ((h & 0x1) << 2);
1753 		DBG_LEAVE;
1754 		return ((cp[h >> 1] & mask) == mask);
1755 	case 2:
1756 		mask = 0x03 << ((h & 0x3) << 1);
1757 		DBG_LEAVE;
1758 		return ((cp[h >> 2] & mask) == mask);
1759 	case 1:
1760 		mask = 0x01 << (h & 0x7);
1761 		DBG_LEAVE;
1762 		return ((cp[h >> 3] & mask) == mask);
1763 	default:
1764 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1765 		DBG_LEAVE;
1766 		return (0);
1767 	}
1768 }
1769 
1770 /* ********************************************************** clrblock ***** */
1771 /*
1772  * Here we allocate a complete block in the block map. For more details again
1773  * please  see the source of newfs(8), as this function is taken over  almost
1774  * unchanged.
1775  */
1776 static void
1777 clrblock(struct fs *fs, unsigned char *cp, int h)
1778 {
1779 	DBG_FUNC("clrblock")
1780 
1781 	DBG_ENTER;
1782 
1783 	switch ((fs)->fs_frag) {
1784 	case 8:
1785 		cp[h] = 0;
1786 		break;
1787 	case 4:
1788 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1789 		break;
1790 	case 2:
1791 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1792 		break;
1793 	case 1:
1794 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1795 		break;
1796 	default:
1797 		warnx("clrblock bad fs_frag %d", fs->fs_frag);
1798 		break;
1799 	}
1800 
1801 	DBG_LEAVE;
1802 	return;
1803 }
1804 
1805 /* ********************************************************** setblock ***** */
1806 /*
1807  * Here we free a complete block in the free block map. For more details again
1808  * please  see the source of newfs(8), as this function is taken  over  almost
1809  * unchanged.
1810  */
1811 static void
1812 setblock(struct fs *fs, unsigned char *cp, int h)
1813 {
1814 	DBG_FUNC("setblock")
1815 
1816 	DBG_ENTER;
1817 
1818 	switch (fs->fs_frag) {
1819 	case 8:
1820 		cp[h] = 0xff;
1821 		break;
1822 	case 4:
1823 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1824 		break;
1825 	case 2:
1826 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1827 		break;
1828 	case 1:
1829 		cp[h >> 3] |= (0x01 << (h & 0x7));
1830 		break;
1831 	default:
1832 		warnx("setblock bad fs_frag %d", fs->fs_frag);
1833 		break;
1834 	}
1835 
1836 	DBG_LEAVE;
1837 	return;
1838 }
1839 
1840 /* ************************************************************ ginode ***** */
1841 /*
1842  * This function provides access to an individual inode. We find out in which
1843  * block  the  requested inode is located, read it from disk if  needed,  and
1844  * return  the pointer into that block. We maintain a cache of one  block  to
1845  * not  read the same block again and again if we iterate linearly  over  all
1846  * inodes.
1847  */
1848 static struct ufs1_dinode *
1849 ginode(ino_t inumber, int fsi, int cg)
1850 {
1851 	DBG_FUNC("ginode")
1852 	ufs_daddr_t	iblk;
1853 	static ino_t	startinum=0;	/* first inode in cached block */
1854 	struct ufs1_dinode	*pi;
1855 
1856 	DBG_ENTER;
1857 
1858 	pi=(struct ufs1_dinode *)(void *)ablk;
1859 	inumber+=(cg * sblock.fs_ipg);
1860 	if (startinum == 0 || inumber < startinum ||
1861 	    inumber >= startinum + INOPB(&sblock)) {
1862 		/*
1863 		 * The block needed is not cached, so we have to read it from
1864 		 * disk now.
1865 		 */
1866 		iblk = ino_to_fsba(&sblock, inumber);
1867 		in_src=fsbtodb(&sblock, iblk);
1868 		rdfs(in_src, (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1869 		startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1870 	}
1871 
1872 	DBG_LEAVE;
1873 	return (&(pi[inumber % INOPB(&sblock)]));
1874 }
1875 
1876 /* ****************************************************** charsperline ***** */
1877 /*
1878  * Figure out how many lines our current terminal has. For more details again
1879  * please  see the source of newfs(8), as this function is taken over  almost
1880  * unchanged.
1881  */
1882 static int
1883 charsperline(void)
1884 {
1885 	DBG_FUNC("charsperline")
1886 	int	columns;
1887 	char	*cp;
1888 	struct winsize	ws;
1889 
1890 	DBG_ENTER;
1891 
1892 	columns = 0;
1893 	if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1894 		columns = ws.ws_col;
1895 	}
1896 	if (columns == 0 && (cp = getenv("COLUMNS"))) {
1897 		columns = atoi(cp);
1898 	}
1899 	if (columns == 0) {
1900 		columns = 80;	/* last resort */
1901 	}
1902 
1903 	DBG_LEAVE;
1904 	return columns;
1905 }
1906 
1907 /* ************************************************************** main ***** */
1908 /*
1909  * growfs(8)  is a utility which allows to increase the size of  an  existing
1910  * ufs filesystem. Currently this can only be done on unmounted file  system.
1911  * It  recognizes some command line options to specify the new desired  size,
1912  * and  it does some basic checkings. The old file system size is  determined
1913  * and  after some more checks like we can really access the new  last  block
1914  * on the disk etc. we calculate the new parameters for the superblock. After
1915  * having  done  this we just call growfs() which will do  the  work.  Before
1916  * we finish the only thing left is to update the disklabel.
1917  * We still have to provide support for snapshots. Therefore we first have to
1918  * understand  what data structures are always replicated in the snapshot  on
1919  * creation,  for all other blocks we touch during our procedure, we have  to
1920  * keep the old blocks unchanged somewhere available for the snapshots. If we
1921  * are lucky, then we only have to handle our blocks to be relocated in  that
1922  * way.
1923  * Also  we  have to consider in what order we actually update  the  critical
1924  * data structures of the filesystem to make sure, that in case of a disaster
1925  * fsck(8) is still able to restore any lost data.
1926  * The  foreseen last step then will be to provide for growing  even  mounted
1927  * file  systems. There we have to extend the mount() system call to  provide
1928  * userland access to the file system locking facility.
1929  */
1930 int
1931 main(int argc, char **argv)
1932 {
1933 	DBG_FUNC("main")
1934 	struct partinfo pinfo;
1935 	char	*device, *special, *cp;
1936 	char	ch;
1937 	unsigned int	size=0;
1938 	size_t	len;
1939 	unsigned int	Nflag=0;
1940 	int	ExpertFlag=0;
1941 	struct stat	st;
1942 	int	fsi,fso;
1943 	char	reply[5];
1944 #ifdef FSMAXSNAP
1945 	int	j;
1946 #endif /* FSMAXSNAP */
1947 
1948 	DBG_ENTER;
1949 
1950 	while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1951 		switch(ch) {
1952 		case 'N':
1953 			Nflag=1;
1954 			break;
1955 		case 's':
1956 			size=(size_t)atol(optarg);
1957 			if(size<1) {
1958 				usage();
1959 			}
1960 			break;
1961 		case 'v': /* for compatibility to newfs */
1962 			break;
1963 		case 'y':
1964 			ExpertFlag=1;
1965 			break;
1966 		case '?':
1967 			/* FALLTHROUGH */
1968 		default:
1969 			usage();
1970 		}
1971 	}
1972 	argc -= optind;
1973 	argv += optind;
1974 
1975 	if(argc != 1) {
1976 		usage();
1977 	}
1978 	device=*argv;
1979 
1980 	/*
1981 	 * Now try to guess the (raw)device name.
1982 	 */
1983 	if (0 == strrchr(device, '/')) {
1984 		/*
1985 		 * No path prefix was given, so try in that order:
1986 		 *     /dev/r%s
1987 		 *     /dev/%s
1988 		 *     /dev/vinum/r%s
1989 		 *     /dev/vinum/%s.
1990 		 *
1991 		 * FreeBSD now doesn't distinguish between raw and  block
1992 		 * devices any longer, but it should still work this way.
1993 		 */
1994 		len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
1995 		special=(char *)malloc(len);
1996 		if(special == NULL) {
1997 			errx(1, "malloc failed");
1998 		}
1999 		snprintf(special, len, "%sr%s", _PATH_DEV, device);
2000 		if (stat(special, &st) == -1) {
2001 			snprintf(special, len, "%s%s", _PATH_DEV, device);
2002 			if (stat(special, &st) == -1) {
2003 				snprintf(special, len, "%svinum/r%s",
2004 				    _PATH_DEV, device);
2005 				if (stat(special, &st) == -1) {
2006 					/* For now this is the 'last resort' */
2007 					snprintf(special, len, "%svinum/%s",
2008 					    _PATH_DEV, device);
2009 				}
2010 			}
2011 		}
2012 		device = special;
2013 	}
2014 
2015 	/*
2016 	 * Try to access our devices for writing ...
2017 	 */
2018 	if (Nflag) {
2019 		fso = -1;
2020 	} else {
2021 		fso = open(device, O_WRONLY);
2022 		if (fso < 0) {
2023 			err(1, "%s", device);
2024 		}
2025 	}
2026 
2027 	/*
2028 	 * ... and reading.
2029 	 */
2030 	fsi = open(device, O_RDONLY);
2031 	if (fsi < 0) {
2032 		err(1, "%s", device);
2033 	}
2034 
2035 	/*
2036 	 * Try  to read a label and gess the slice if not  specified.  This
2037 	 * code  should guess the right thing and avaid to bother the  user
2038 	 * user with the task of specifying the option -v on vinum volumes.
2039 	 */
2040 	cp=device+strlen(device)-1;
2041 
2042 	if (ioctl(fsi, DIOCGPART, &pinfo) < 0) {
2043 		if (fstat(fsi, &st) < 0)
2044 			err(1, "unable to figure out the partition size");
2045 		pinfo.media_blocks  = st.st_size / DEV_BSIZE;
2046 		pinfo.media_blksize = DEV_BSIZE;
2047 	}
2048 
2049 	/*
2050 	 * Check if that partition looks suited for growing a file system.
2051 	 */
2052 	if (pinfo.media_blocks < 1) {
2053 		errx(1, "partition is unavailable");
2054 	}
2055 
2056 	/*
2057 	 * Read the current superblock, and take a backup.
2058 	 */
2059 	rdfs((daddr_t)(SBOFF/DEV_BSIZE), (size_t)SBSIZE, (void *)&(osblock),
2060 	    fsi);
2061 	if (osblock.fs_magic != FS_MAGIC) {
2062 		errx(1, "superblock not recognized");
2063 	}
2064 	memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2065 
2066 	DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2067 	DBG_DUMP_FS(&sblock,
2068 	    "old sblock");
2069 
2070 	/*
2071 	 * Determine size to grow to. Default to the full size specified in
2072 	 * the disk label.
2073 	 */
2074 	sblock.fs_size = dbtofsb(&osblock, pinfo.media_blocks);
2075 	if (size != 0) {
2076 		if (size > pinfo.media_blocks){
2077 			errx(1, "There is not enough space (%ju < %d)",
2078 			     (intmax_t)pinfo.media_blocks, size);
2079 		}
2080 		sblock.fs_size = dbtofsb(&osblock, size);
2081 	}
2082 
2083 	/*
2084 	 * Are we really growing ?
2085 	 */
2086 	if(osblock.fs_size >= sblock.fs_size) {
2087 		errx(1, "we are not growing (%d->%d)", osblock.fs_size,
2088 		    sblock.fs_size);
2089 	}
2090 
2091 
2092 #ifdef FSMAXSNAP
2093 	/*
2094 	 * Check if we find an active snapshot.
2095 	 */
2096 	if(ExpertFlag == 0) {
2097 		for(j=0; j<FSMAXSNAP; j++) {
2098 			if(sblock.fs_snapinum[j]) {
2099 				errx(1, "active snapshot found in filesystem\n"
2100 				    "	please remove all snapshots before "
2101 				    "using growfs\n");
2102 			}
2103 			if(!sblock.fs_snapinum[j]) { /* list is dense */
2104 				break;
2105 			}
2106 		}
2107 	}
2108 #endif
2109 
2110 	if (ExpertFlag == 0 && Nflag == 0) {
2111 		printf("We strongly recommend you to make a backup "
2112 		    "before growing the Filesystem\n\n"
2113 		    " Did you backup your data (Yes/No) ? ");
2114 		fgets(reply, (int)sizeof(reply), stdin);
2115 		if (strcmp(reply, "Yes\n")){
2116 			printf("\n Nothing done \n");
2117 			exit (0);
2118 		}
2119 	}
2120 
2121 	printf("new filesystemsize is: %d frags\n", sblock.fs_size);
2122 
2123 	/*
2124 	 * Try to access our new last block in the filesystem. Even if we
2125 	 * later on realize we have to abort our operation, on that block
2126 	 * there should be no data, so we can't destroy something yet.
2127 	 */
2128 	wtfs((daddr_t)pinfo.media_blocks-1, (size_t)DEV_BSIZE, (void *)&sblock, fso,
2129 	    Nflag);
2130 
2131 	/*
2132 	 * Now calculate new superblock values and check for reasonable
2133 	 * bound for new file system size:
2134 	 *     fs_size:    is derived from label or user input
2135 	 *     fs_dsize:   should get updated in the routines creating or
2136 	 *                 updating the cylinder groups on the fly
2137 	 *     fs_cstotal: should get updated in the routines creating or
2138 	 *                 updating the cylinder groups
2139 	 */
2140 
2141 	/*
2142 	 * Update the number of cylinders in the filesystem.
2143 	 */
2144 	sblock.fs_ncyl = sblock.fs_size * NSPF(&sblock) / sblock.fs_spc;
2145 	if (sblock.fs_size * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
2146 		sblock.fs_ncyl++;
2147 	}
2148 
2149 	/*
2150 	 * Update the number of cylinder groups in the filesystem.
2151 	 */
2152 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
2153 	if (sblock.fs_ncyl % sblock.fs_cpg) {
2154 		sblock.fs_ncg++;
2155 	}
2156 
2157 	if ((sblock.fs_size - (sblock.fs_ncg-1) * sblock.fs_fpg) <
2158 	    sblock.fs_fpg && cgdmin(&sblock, (sblock.fs_ncg-1))-
2159 	    cgbase(&sblock, (sblock.fs_ncg-1)) > (sblock.fs_size -
2160 	    (sblock.fs_ncg-1) * sblock.fs_fpg )) {
2161 		/*
2162 		 * The space in the new last cylinder group is too small,
2163 		 * so revert back.
2164 		 */
2165 		sblock.fs_ncg--;
2166 #if 1 /* this is a bit more safe */
2167 		sblock.fs_ncyl = sblock.fs_ncg * sblock.fs_cpg;
2168 #else
2169 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2170 #endif
2171 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
2172 		printf( "Warning: %d sector(s) cannot be allocated.\n",
2173 		    (sblock.fs_size-(sblock.fs_ncg)*sblock.fs_fpg) *
2174 		    NSPF(&sblock));
2175 		sblock.fs_size = sblock.fs_ncyl * sblock.fs_spc / NSPF(&sblock);
2176 	}
2177 
2178 	/*
2179 	 * Update the space for the cylinder group summary information in the
2180 	 * respective cylinder group data area.
2181 	 */
2182 	sblock.fs_cssize =
2183 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2184 
2185 	if(osblock.fs_size >= sblock.fs_size) {
2186 		errx(1, "not enough new space");
2187 	}
2188 
2189 	DBG_PRINT0("sblock calculated\n");
2190 
2191 	/*
2192 	 * Ok, everything prepared, so now let's do the tricks.
2193 	 */
2194 	growfs(fsi, fso, Nflag);
2195 
2196 	close(fsi);
2197 	if(fso>-1) close(fso);
2198 
2199 	DBG_CLOSE;
2200 
2201 	DBG_LEAVE;
2202 	return 0;
2203 }
2204 
2205 /* ************************************************************* usage ***** */
2206 /*
2207  * Dump a line of usage.
2208  */
2209 static void
2210 usage(void)
2211 {
2212 	DBG_FUNC("usage")
2213 
2214 	DBG_ENTER;
2215 
2216 	fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2217 
2218 	DBG_LEAVE;
2219 	exit(1);
2220 }
2221 
2222 /* *********************************************************** updclst ***** */
2223 /*
2224  * This updates most paramters and the bitmap related to cluster. We have to
2225  * assume, that sblock, osblock, acg are set up.
2226  */
2227 static void
2228 updclst(int block)
2229 {
2230 	DBG_FUNC("updclst")
2231 	static int	lcs=0;
2232 
2233 	DBG_ENTER;
2234 
2235 	if(sblock.fs_contigsumsize < 1) { /* no clustering */
2236 		return;
2237 	}
2238 	/*
2239 	 * update cluster allocation map
2240 	 */
2241 	setbit(cg_clustersfree(&acg), block);
2242 
2243 	/*
2244 	 * update cluster summary table
2245 	 */
2246 	if(!lcs) {
2247 		/*
2248 		 * calculate size for the trailing cluster
2249 		 */
2250 		for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2251 			if(isclr(cg_clustersfree(&acg), block)){
2252 				break;
2253 			}
2254 		}
2255 	}
2256 	if(lcs < sblock.fs_contigsumsize) {
2257 		if(lcs) {
2258 			cg_clustersum(&acg)[lcs]--;
2259 		}
2260 		lcs++;
2261 		cg_clustersum(&acg)[lcs]++;
2262 	}
2263 
2264 	DBG_LEAVE;
2265 	return;
2266 }
2267 
2268 /* *********************************************************** updrefs ***** */
2269 /*
2270  * This updates all references to relocated blocks for the given inode.  The
2271  * inode is given as number within the cylinder group, and the number of the
2272  * cylinder group.
2273  */
2274 static void
2275 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2276     Nflag)
2277 {
2278 	DBG_FUNC("updrefs")
2279 	unsigned int	ictr, ind2ctr, ind3ctr;
2280 	ufs_daddr_t	*iptr, *ind2ptr, *ind3ptr;
2281 	struct ufs1_dinode	*ino;
2282 	int	remaining_blocks;
2283 
2284 	DBG_ENTER;
2285 
2286 	/*
2287 	 * XXX We should skip unused inodes even from beeing read from disk
2288 	 *     here by using the bitmap.
2289 	 */
2290 	ino=ginode(in, fsi, cg);
2291 	if(!((ino->di_mode & IFMT)==IFDIR || (ino->di_mode & IFMT)==IFREG ||
2292 	    (ino->di_mode & IFMT)==IFLNK)) {
2293 		DBG_LEAVE;
2294 		return; /* only check DIR, FILE, LINK */
2295 	}
2296 	if(((ino->di_mode & IFMT)==IFLNK) && (ino->di_size<MAXSYMLINKLEN)) {
2297 		DBG_LEAVE;
2298 		return;	/* skip short symlinks */
2299 	}
2300 	if(!ino->di_size) {
2301 		DBG_LEAVE;
2302 		return;	/* skip empty file */
2303 	}
2304 	if(!ino->di_blocks) {
2305 		DBG_LEAVE;
2306 		return;	/* skip empty swiss cheesy file or old fastlink */
2307 	}
2308 	DBG_PRINT2("scg checking inode (%d in %d)\n",
2309 	    in,
2310 	    cg);
2311 
2312 	/*
2313 	 * Start checking all direct blocks.
2314 	 */
2315 	remaining_blocks=howmany(ino->di_size, sblock.fs_bsize);
2316 	for(ictr=0; ictr < MIN(NDADDR, (unsigned int)remaining_blocks);
2317 	    ictr++) {
2318 		iptr=&(ino->di_db[ictr]);
2319 		if(*iptr) {
2320 			cond_bl_upd(iptr, bp, GFS_PS_INODE, fso, Nflag);
2321 		}
2322 	}
2323 	DBG_PRINT0("~~scg direct blocks checked\n");
2324 
2325 	remaining_blocks-=NDADDR;
2326 	if(remaining_blocks<0) {
2327 		DBG_LEAVE;
2328 		return;
2329 	}
2330 	if(ino->di_ib[0]) {
2331 		/*
2332 		 * Start checking first indirect block
2333 		 */
2334 		cond_bl_upd(&(ino->di_ib[0]), bp, GFS_PS_INODE, fso, Nflag);
2335 		i1_src=fsbtodb(&sblock, ino->di_ib[0]);
2336 		rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk, fsi);
2337 		for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2338 		    sizeof(ufs_daddr_t)), (unsigned int)remaining_blocks);
2339 		    ictr++) {
2340 			iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2341 			if(*iptr) {
2342 				cond_bl_upd(iptr, bp, GFS_PS_IND_BLK_LVL1,
2343 				    fso, Nflag);
2344 			}
2345 		}
2346 	}
2347 	DBG_PRINT0("scg indirect_1 blocks checked\n");
2348 
2349 	remaining_blocks-= howmany(sblock.fs_bsize, sizeof(ufs_daddr_t));
2350 	if(remaining_blocks<0) {
2351 		DBG_LEAVE;
2352 		return;
2353 	}
2354 	if(ino->di_ib[1]) {
2355 		/*
2356 		 * Start checking second indirect block
2357 		 */
2358 		cond_bl_upd(&(ino->di_ib[1]), bp, GFS_PS_INODE, fso, Nflag);
2359 		i2_src=fsbtodb(&sblock, ino->di_ib[1]);
2360 		rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk, fsi);
2361 		for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2362 		    sizeof(ufs_daddr_t)); ind2ctr++) {
2363 			ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)[ind2ctr];
2364 			if(!*ind2ptr) {
2365 				continue;
2366 			}
2367 			cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2, fso,
2368 			    Nflag);
2369 			i1_src=fsbtodb(&sblock, *ind2ptr);
2370 			rdfs(i1_src, (size_t)sblock.fs_bsize, (void *)&i1blk,
2371 			    fsi);
2372 			for(ictr=0; ictr<MIN(howmany((unsigned int)
2373 			    sblock.fs_bsize, sizeof(ufs_daddr_t)),
2374 			    (unsigned int)remaining_blocks); ictr++) {
2375 				iptr=&((ufs_daddr_t *)(void *)&i1blk)[ictr];
2376 				if(*iptr) {
2377 					cond_bl_upd(iptr, bp,
2378 					    GFS_PS_IND_BLK_LVL1, fso, Nflag);
2379 				}
2380 			}
2381 		}
2382 	}
2383 	DBG_PRINT0("scg indirect_2 blocks checked\n");
2384 
2385 #define SQUARE(a) ((a)*(a))
2386 	remaining_blocks-=SQUARE(howmany(sblock.fs_bsize, sizeof(ufs_daddr_t)));
2387 #undef SQUARE
2388 	if(remaining_blocks<0) {
2389 		DBG_LEAVE;
2390 		return;
2391 	}
2392 
2393 	if(ino->di_ib[2]) {
2394 		/*
2395 		 * Start checking third indirect block
2396 		 */
2397 		cond_bl_upd(&(ino->di_ib[2]), bp, GFS_PS_INODE, fso, Nflag);
2398 		i3_src=fsbtodb(&sblock, ino->di_ib[2]);
2399 		rdfs(i3_src, (size_t)sblock.fs_bsize, (void *)&i3blk, fsi);
2400 		for(ind3ctr=0; ind3ctr < howmany(sblock.fs_bsize,
2401 		    sizeof(ufs_daddr_t)); ind3ctr ++) {
2402 			ind3ptr=&((ufs_daddr_t *)(void *)&i3blk)[ind3ctr];
2403 			if(!*ind3ptr) {
2404 				continue;
2405 			}
2406 			cond_bl_upd(ind3ptr, bp, GFS_PS_IND_BLK_LVL3, fso,
2407 			    Nflag);
2408 			i2_src=fsbtodb(&sblock, *ind3ptr);
2409 			rdfs(i2_src, (size_t)sblock.fs_bsize, (void *)&i2blk,
2410 			    fsi);
2411 			for(ind2ctr=0; ind2ctr < howmany(sblock.fs_bsize,
2412 			    sizeof(ufs_daddr_t)); ind2ctr ++) {
2413 				ind2ptr=&((ufs_daddr_t *)(void *)&i2blk)
2414 				    [ind2ctr];
2415 				if(!*ind2ptr) {
2416 					continue;
2417 				}
2418 				cond_bl_upd(ind2ptr, bp, GFS_PS_IND_BLK_LVL2,
2419 				    fso, Nflag);
2420 				i1_src=fsbtodb(&sblock, *ind2ptr);
2421 				rdfs(i1_src, (size_t)sblock.fs_bsize,
2422 				    (void *)&i1blk, fsi);
2423 				for(ictr=0; ictr < MIN(howmany(sblock.fs_bsize,
2424 				    sizeof(ufs_daddr_t)),
2425 				    (unsigned int)remaining_blocks); ictr++) {
2426 					iptr=&((ufs_daddr_t *)(void *)&i1blk)
2427 					    [ictr];
2428 					if(*iptr) {
2429 						cond_bl_upd(iptr, bp,
2430 						    GFS_PS_IND_BLK_LVL1, fso,
2431 						    Nflag);
2432 					}
2433 				}
2434 			}
2435 		}
2436 	}
2437 
2438 	DBG_PRINT0("scg indirect_3 blocks checked\n");
2439 
2440 	DBG_LEAVE;
2441 	return;
2442 }
2443 
2444