xref: /dragonfly/sbin/hammer/ondisk.c (revision 4bde49b7)
1 /*
2  * Copyright (c) 2007 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@backplane.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in
15  *    the documentation and/or other materials provided with the
16  *    distribution.
17  * 3. Neither the name of The DragonFly Project nor the names of its
18  *    contributors may be used to endorse or promote products derived
19  *    from this software without specific, prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
25  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
29  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
30  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
31  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/diskslice.h>
36 #include <sys/diskmbr.h>
37 
38 #include "hammer_util.h"
39 
40 static void get_buffer_readahead(struct buffer_info *base);
41 static void *get_ondisk(hammer_off_t buf_offset, struct buffer_info **bufferp,
42 			int isnew);
43 static __inline int readhammervol(struct volume_info *vol);
44 static __inline int readhammerbuf(struct buffer_info *buf);
45 static __inline int writehammervol(struct volume_info *vol);
46 static __inline int writehammerbuf(struct buffer_info *buf);
47 
48 int DebugOpt;
49 
50 uuid_t Hammer_FSType;
51 uuid_t Hammer_FSId;
52 int	UseReadBehind = -4;
53 int	UseReadAhead = 4;
54 int	AssertOnFailure = 1;
55 struct volume_list VolList = TAILQ_HEAD_INITIALIZER(VolList);
56 static int valid_hammer_volumes;
57 
58 static __inline
59 int
60 buffer_hash(hammer_off_t buf_offset)
61 {
62 	int hi;
63 
64 	hi = (int)(buf_offset / HAMMER_BUFSIZE) & HAMMER_BUFLISTMASK;
65 	return(hi);
66 }
67 
68 static struct buffer_info*
69 find_buffer(struct volume_info *volume, hammer_off_t buf_offset)
70 {
71 	int hi;
72 	struct buffer_info *buf;
73 
74 	hi = buffer_hash(buf_offset);
75 	TAILQ_FOREACH(buf, &volume->buffer_lists[hi], entry)
76 		if (buf->buf_offset == buf_offset)
77 			return(buf);
78 	return(NULL);
79 }
80 
81 static
82 struct volume_info *
83 __alloc_volume(const char *volname, int oflags)
84 {
85 	struct volume_info *vol;
86 	int i;
87 
88 	vol = malloc(sizeof(*vol));
89 	if (vol == NULL)
90 		err(1, "alloc_volume");
91 	bzero(vol, sizeof(*vol));
92 
93 	vol->vol_no = -1;
94 	vol->rdonly = (oflags == O_RDONLY);
95 	vol->name = strdup(volname);
96 	vol->fd = open(vol->name, oflags);
97 	if (vol->fd < 0)
98 		err(1, "alloc_volume: Failed to open %s", vol->name);
99 
100 	vol->size = 0;
101 	vol->device_offset = 0;
102 	vol->type = NULL;
103 
104 	vol->ondisk = malloc(HAMMER_BUFSIZE);
105 	if (vol->ondisk == NULL)
106 		err(1, "alloc_volume");
107 	bzero(vol->ondisk, HAMMER_BUFSIZE);
108 
109 	for (i = 0; i < HAMMER_BUFLISTS; ++i)
110 		TAILQ_INIT(&vol->buffer_lists[i]);
111 
112 	return(vol);
113 }
114 
115 static void
116 __add_volume(struct volume_info *vol)
117 {
118 	struct volume_info *scan;
119 	struct stat st1, st2;
120 
121 	if (fstat(vol->fd, &st1) != 0)
122 		errx(1, "add_volume: %s: Failed to stat", vol->name);
123 
124 	TAILQ_FOREACH(scan, &VolList, entry) {
125 		if (scan->vol_no == vol->vol_no) {
126 			errx(1, "add_volume: %s: Duplicate volume number %d "
127 				"against %s",
128 				vol->name, vol->vol_no, scan->name);
129 		}
130 		if (fstat(scan->fd, &st2) != 0) {
131 			errx(1, "add_volume: %s: Failed to stat %s",
132 				vol->name, scan->name);
133 		}
134 		if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev)) {
135 			errx(1, "add_volume: %s: Specified more than once",
136 				vol->name);
137 		}
138 	}
139 
140 	TAILQ_INSERT_TAIL(&VolList, vol, entry);
141 }
142 
143 /*
144  * Initialize a volume structure and ondisk vol_no field.
145  */
146 struct volume_info *
147 init_volume(int32_t vol_no, const char *filename, int oflags)
148 {
149 	struct volume_info *vol;
150 
151 	vol = __alloc_volume(filename, oflags);
152 	vol->vol_no = vol->ondisk->vol_no = vol_no;
153 
154 	__add_volume(vol);
155 
156 	return(vol);
157 }
158 
159 /*
160  * Initialize a volume structure and read ondisk volume header.
161  */
162 struct volume_info*
163 load_volume(const char *filename, int oflags)
164 {
165 	struct volume_info *vol;
166 	struct hammer_volume_ondisk *ondisk;
167 	int n;
168 
169 	vol = __alloc_volume(filename, oflags);
170 
171 	n = readhammervol(vol);
172 	if (n == -1) {
173 		err(1, "load_volume: %s: Read failed at offset 0", vol->name);
174 	}
175 	ondisk = vol->ondisk;
176 	vol->vol_no = ondisk->vol_no;
177 
178 	if (ondisk->vol_rootvol != HAMMER_ROOT_VOLNO) {
179 		errx(1, "load_volume: Invalid root volume# %d",
180 			ondisk->vol_rootvol);
181 	}
182 
183 	if (bcmp(&Hammer_FSType, &ondisk->vol_fstype, sizeof(Hammer_FSType))) {
184 		errx(1, "load_volume: %s: Header does not indicate "
185 			"that this is a hammer volume", vol->name);
186 	}
187 
188 	if (valid_hammer_volumes++ == 0) {
189 		Hammer_FSId = ondisk->vol_fsid;
190 	} else if (bcmp(&Hammer_FSId, &ondisk->vol_fsid, sizeof(Hammer_FSId))) {
191 		errx(1, "load_volume: %s: FSId does match other volumes!",
192 			vol->name);
193 	}
194 
195 	__add_volume(vol);
196 
197 	return(vol);
198 }
199 
200 /*
201  * Check basic volume characteristics.
202  */
203 void
204 check_volume(struct volume_info *vol)
205 {
206 	struct partinfo pinfo;
207 	struct stat st;
208 
209 	/*
210 	 * Get basic information about the volume
211 	 */
212 	if (ioctl(vol->fd, DIOCGPART, &pinfo) < 0) {
213 		/*
214 		 * Allow the formatting of regular files as HAMMER volumes
215 		 */
216 		if (fstat(vol->fd, &st) < 0)
217 			err(1, "Unable to stat %s", vol->name);
218 		vol->size = st.st_size;
219 		vol->type = "REGFILE";
220 	} else {
221 		/*
222 		 * When formatting a block device as a HAMMER volume the
223 		 * sector size must be compatible.  HAMMER uses 16384 byte
224 		 * filesystem buffers.
225 		 */
226 		if (pinfo.reserved_blocks) {
227 			errx(1, "HAMMER cannot be placed in a partition "
228 				"which overlaps the disklabel or MBR");
229 		}
230 		if (pinfo.media_blksize > HAMMER_BUFSIZE ||
231 		    HAMMER_BUFSIZE % pinfo.media_blksize) {
232 			errx(1, "A media sector size of %d is not supported",
233 			     pinfo.media_blksize);
234 		}
235 
236 		vol->size = pinfo.media_size;
237 		vol->device_offset = pinfo.media_offset;
238 		vol->type = "DEVICE";
239 	}
240 }
241 
242 struct volume_info *
243 get_volume(int32_t vol_no)
244 {
245 	struct volume_info *vol;
246 
247 	TAILQ_FOREACH(vol, &VolList, entry) {
248 		if (vol->vol_no == vol_no)
249 			break;
250 	}
251 	if (vol == NULL)
252 		errx(1, "get_volume: Volume %d does not exist!", vol_no);
253 
254 	/* not added to or removed from hammer cache */
255 	return(vol);
256 }
257 
258 struct volume_info *
259 get_root_volume(void)
260 {
261 	return(get_volume(HAMMER_ROOT_VOLNO));
262 }
263 
264 /*
265  * Acquire the specified buffer.  isnew is -1 only when called
266  * via get_buffer_readahead() to prevent another readahead.
267  */
268 struct buffer_info *
269 get_buffer(hammer_off_t buf_offset, int isnew)
270 {
271 	struct buffer_info *buf;
272 	struct volume_info *volume;
273 	int vol_no;
274 	int zone;
275 	int hi;
276 	int dora = 0;
277 
278 	zone = HAMMER_ZONE_DECODE(buf_offset);
279 	if (zone > HAMMER_ZONE_RAW_BUFFER_INDEX) {
280 		buf_offset = blockmap_lookup(buf_offset, NULL, NULL, NULL);
281 	}
282 	if (buf_offset == HAMMER_OFF_BAD)
283 		return(NULL);
284 	assert(hammer_is_zone_raw_buffer(buf_offset));
285 
286 	vol_no = HAMMER_VOL_DECODE(buf_offset);
287 	volume = get_volume(vol_no);
288 
289 	buf_offset &= ~HAMMER_BUFMASK64;
290 	buf = find_buffer(volume, buf_offset);
291 
292 	if (buf == NULL) {
293 		buf = malloc(sizeof(*buf));
294 		bzero(buf, sizeof(*buf));
295 		buf->buf_offset = buf_offset;
296 		buf->raw_offset = hammer_xlate_to_phys(volume->ondisk,
297 							buf_offset);
298 		buf->volume = volume;
299 		buf->ondisk = malloc(HAMMER_BUFSIZE);
300 		if (isnew <= 0) {
301 			if (readhammerbuf(buf) == -1) {
302 				err(1, "get_buffer: %s:%016jx "
303 				    "Read failed at offset %016jx",
304 				    volume->name,
305 				    (intmax_t)buf->buf_offset,
306 				    (intmax_t)buf->raw_offset);
307 			}
308 		}
309 
310 		hi = buffer_hash(buf_offset);
311 		TAILQ_INSERT_TAIL(&volume->buffer_lists[hi], buf, entry);
312 		buf->cache.buffer = buf;
313 		hammer_cache_add(&buf->cache);
314 		dora = (isnew == 0);
315 	} else {
316 		assert(buf->ondisk != NULL);
317 		assert(isnew != -1);
318 		hammer_cache_used(&buf->cache);
319 	}
320 
321 	++buf->cache.refs;
322 	hammer_cache_flush();
323 
324 	if (isnew > 0) {
325 		assert(buf->cache.modified == 0);
326 		bzero(buf->ondisk, HAMMER_BUFSIZE);
327 		buf->cache.modified = 1;
328 	}
329 	if (dora)
330 		get_buffer_readahead(buf);
331 	return(buf);
332 }
333 
334 static void
335 get_buffer_readahead(struct buffer_info *base)
336 {
337 	struct buffer_info *buf;
338 	struct volume_info *vol;
339 	hammer_off_t buf_offset;
340 	int64_t raw_offset;
341 	int ri = UseReadBehind;
342 	int re = UseReadAhead;
343 
344 	raw_offset = base->raw_offset + ri * HAMMER_BUFSIZE;
345 	vol = base->volume;
346 
347 	while (ri < re) {
348 		if (raw_offset >= vol->ondisk->vol_buf_end)
349 			break;
350 		if (raw_offset < vol->ondisk->vol_buf_beg || ri == 0) {
351 			++ri;
352 			raw_offset += HAMMER_BUFSIZE;
353 			continue;
354 		}
355 		buf_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no,
356 			raw_offset - vol->ondisk->vol_buf_beg);
357 		buf = find_buffer(vol, buf_offset);
358 		if (buf == NULL) {
359 			buf = get_buffer(buf_offset, -1);
360 			rel_buffer(buf);
361 		}
362 		++ri;
363 		raw_offset += HAMMER_BUFSIZE;
364 	}
365 }
366 
367 void
368 rel_buffer(struct buffer_info *buffer)
369 {
370 	struct volume_info *volume;
371 	int hi;
372 
373 	if (buffer == NULL)
374 		return;
375 	assert(buffer->cache.refs > 0);
376 	if (--buffer->cache.refs == 0) {
377 		if (buffer->cache.delete) {
378 			hi = buffer_hash(buffer->buf_offset);
379 			volume = buffer->volume;
380 			if (buffer->cache.modified)
381 				flush_buffer(buffer);
382 			TAILQ_REMOVE(&volume->buffer_lists[hi], buffer, entry);
383 			hammer_cache_del(&buffer->cache);
384 			free(buffer->ondisk);
385 			free(buffer);
386 		}
387 	}
388 }
389 
390 /*
391  * Retrieve a pointer to a buffer data given a buffer offset.  The underlying
392  * bufferp is freed if isnew or the offset is out of range of the cached data.
393  * If bufferp is freed a referenced buffer is loaded into it.
394  */
395 void *
396 get_buffer_data(hammer_off_t buf_offset, struct buffer_info **bufferp,
397 		int isnew)
398 {
399 	if (*bufferp != NULL) {
400 		if (isnew > 0 ||
401 		    (((*bufferp)->buf_offset ^ buf_offset) & ~HAMMER_BUFMASK64)) {
402 			rel_buffer(*bufferp);
403 			*bufferp = NULL;
404 		}
405 	}
406 	return(get_ondisk(buf_offset, bufferp, isnew));
407 }
408 
409 /*
410  * Retrieve a pointer to a B-Tree node given a zone offset.  The underlying
411  * bufferp is freed if non-NULL and a referenced buffer is loaded into it.
412  */
413 hammer_node_ondisk_t
414 get_node(hammer_off_t node_offset, struct buffer_info **bufferp)
415 {
416 	if (*bufferp != NULL) {
417 		rel_buffer(*bufferp);
418 		*bufferp = NULL;
419 	}
420 	return(get_ondisk(node_offset, bufferp, 0));
421 }
422 
423 /*
424  * Return a pointer to a buffer data given a buffer offset.
425  * If *bufferp is NULL acquire the buffer otherwise use that buffer.
426  */
427 static void *
428 get_ondisk(hammer_off_t buf_offset, struct buffer_info **bufferp, int isnew)
429 {
430 	struct buffer_info *buffer;
431 
432 	buffer = *bufferp;
433 	if (buffer == NULL) {
434 		buffer = *bufferp = get_buffer(buf_offset, isnew);
435 		if (buffer == NULL)
436 			return(NULL);
437 	}
438 
439 	return((char *)buffer->ondisk +
440 		((int32_t)buf_offset & HAMMER_BUFMASK));
441 }
442 
443 /*
444  * Allocate HAMMER elements - B-Tree nodes
445  */
446 void *
447 alloc_btree_element(hammer_off_t *offp, struct buffer_info **data_bufferp)
448 {
449 	hammer_node_ondisk_t node;
450 
451 	node = alloc_blockmap(HAMMER_ZONE_BTREE_INDEX, sizeof(*node),
452 			      offp, data_bufferp);
453 	bzero(node, sizeof(*node));
454 	return (node);
455 }
456 
457 /*
458  * Allocate HAMMER elements - meta data (inode, direntry, PFS, etc)
459  */
460 void *
461 alloc_meta_element(hammer_off_t *offp, int32_t data_len,
462 		   struct buffer_info **data_bufferp)
463 {
464 	void *data;
465 
466 	data = alloc_blockmap(HAMMER_ZONE_META_INDEX, data_len,
467 			      offp, data_bufferp);
468 	bzero(data, data_len);
469 	return (data);
470 }
471 
472 /*
473  * Allocate HAMMER elements - data storage
474  *
475  * The only data_len supported by HAMMER userspace for large data zone
476  * (zone 10) is HAMMER_BUFSIZE which is 16KB.  >16KB data does not fit
477  * in a buffer allocated by get_buffer().  Also alloc_blockmap() does
478  * not consider >16KB buffer size.
479  */
480 void *
481 alloc_data_element(hammer_off_t *offp, int32_t data_len,
482 		   struct buffer_info **data_bufferp)
483 {
484 	void *data;
485 	int zone;
486 
487 	if (data_len == 0)
488 		return(NULL);
489 
490 	zone = hammer_data_zone_index(data_len);
491 	assert(data_len <= HAMMER_BUFSIZE); /* just one buffer */
492 	assert(zone == HAMMER_ZONE_LARGE_DATA_INDEX ||
493 	       zone == HAMMER_ZONE_SMALL_DATA_INDEX);
494 
495 	data = alloc_blockmap(zone, data_len, offp, data_bufferp);
496 	bzero(data, data_len);
497 	return(data);
498 }
499 
500 /*
501  * Format a new blockmap.  This is mostly a degenerate case because
502  * all allocations are now actually done from the freemap.
503  */
504 void
505 format_blockmap(struct volume_info *root_vol, int zone, hammer_off_t offset)
506 {
507 	hammer_blockmap_t blockmap;
508 	hammer_off_t zone_base;
509 
510 	/* Only root volume needs formatting */
511 	assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
512 
513 	assert(hammer_is_zone2_mapped_index(zone));
514 
515 	blockmap = &root_vol->ondisk->vol0_blockmap[zone];
516 	zone_base = HAMMER_ZONE_ENCODE(zone, offset);
517 
518 	bzero(blockmap, sizeof(*blockmap));
519 	blockmap->phys_offset = 0;
520 	blockmap->first_offset = zone_base;
521 	blockmap->next_offset = zone_base;
522 	blockmap->alloc_offset = HAMMER_ENCODE(zone, 255, -1);
523 	blockmap->entry_crc = crc32(blockmap, HAMMER_BLOCKMAP_CRCSIZE);
524 }
525 
526 /*
527  * Format a new freemap.  Set all layer1 entries to UNAVAIL.  The initialize
528  * code will load each volume's freemap.
529  */
530 void
531 format_freemap(struct volume_info *root_vol)
532 {
533 	struct buffer_info *buffer = NULL;
534 	hammer_off_t layer1_offset;
535 	hammer_blockmap_t blockmap;
536 	struct hammer_blockmap_layer1 *layer1;
537 	int i, isnew;
538 
539 	/* Only root volume needs formatting */
540 	assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
541 
542 	layer1_offset = alloc_bigblock(root_vol, HAMMER_ZONE_FREEMAP_INDEX);
543 	for (i = 0; i < HAMMER_BIGBLOCK_SIZE; i += sizeof(*layer1)) {
544 		isnew = ((i % HAMMER_BUFSIZE) == 0);
545 		layer1 = get_buffer_data(layer1_offset + i, &buffer, isnew);
546 		bzero(layer1, sizeof(*layer1));
547 		layer1->phys_offset = HAMMER_BLOCKMAP_UNAVAIL;
548 		layer1->blocks_free = 0;
549 		layer1->layer1_crc = crc32(layer1, HAMMER_LAYER1_CRCSIZE);
550 	}
551 	assert(i == HAMMER_BIGBLOCK_SIZE);
552 	rel_buffer(buffer);
553 
554 	blockmap = &root_vol->ondisk->vol0_blockmap[HAMMER_ZONE_FREEMAP_INDEX];
555 	bzero(blockmap, sizeof(*blockmap));
556 	blockmap->phys_offset = layer1_offset;
557 	blockmap->first_offset = 0;
558 	blockmap->next_offset = HAMMER_ENCODE_RAW_BUFFER(0, 0);
559 	blockmap->alloc_offset = HAMMER_ENCODE_RAW_BUFFER(255, -1);
560 	blockmap->entry_crc = crc32(blockmap, HAMMER_BLOCKMAP_CRCSIZE);
561 }
562 
563 /*
564  * Load the volume's remaining free space into the freemap.
565  *
566  * Returns the number of big-blocks available.
567  */
568 int64_t
569 initialize_freemap(struct volume_info *vol)
570 {
571 	struct volume_info *root_vol;
572 	struct buffer_info *buffer1 = NULL;
573 	struct buffer_info *buffer2 = NULL;
574 	struct hammer_blockmap_layer1 *layer1;
575 	struct hammer_blockmap_layer2 *layer2;
576 	hammer_off_t layer1_offset;
577 	hammer_off_t layer2_offset;
578 	hammer_off_t phys_offset;
579 	hammer_off_t block_offset;
580 	hammer_off_t aligned_vol_free_end;
581 	hammer_blockmap_t freemap;
582 	int64_t count = 0;
583 	int64_t layer1_count = 0;
584 
585 	root_vol = get_root_volume();
586 	aligned_vol_free_end = (vol->vol_free_end + HAMMER_BLOCKMAP_LAYER2_MASK)
587 				& ~HAMMER_BLOCKMAP_LAYER2_MASK;
588 
589 	printf("initialize freemap volume %d\n", vol->vol_no);
590 
591 	/*
592 	 * Initialize the freemap.  First preallocate the big-blocks required
593 	 * to implement layer2.   This preallocation is a bootstrap allocation
594 	 * using blocks from the target volume.
595 	 */
596 	freemap = &root_vol->ondisk->vol0_blockmap[HAMMER_ZONE_FREEMAP_INDEX];
597 
598 	for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
599 	     phys_offset < aligned_vol_free_end;
600 	     phys_offset += HAMMER_BLOCKMAP_LAYER2) {
601 		layer1_offset = freemap->phys_offset +
602 				HAMMER_BLOCKMAP_LAYER1_OFFSET(phys_offset);
603 		layer1 = get_buffer_data(layer1_offset, &buffer1, 0);
604 		if (layer1->phys_offset == HAMMER_BLOCKMAP_UNAVAIL) {
605 			layer1->phys_offset = alloc_bigblock(vol,
606 						HAMMER_ZONE_FREEMAP_INDEX);
607 			layer1->blocks_free = 0;
608 			buffer1->cache.modified = 1;
609 			layer1->layer1_crc = crc32(layer1,
610 						   HAMMER_LAYER1_CRCSIZE);
611 		}
612 	}
613 
614 	/*
615 	 * Now fill everything in.
616 	 */
617 	for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
618 	     phys_offset < aligned_vol_free_end;
619 	     phys_offset += HAMMER_BLOCKMAP_LAYER2) {
620 		layer1_count = 0;
621 		layer1_offset = freemap->phys_offset +
622 				HAMMER_BLOCKMAP_LAYER1_OFFSET(phys_offset);
623 		layer1 = get_buffer_data(layer1_offset, &buffer1, 0);
624 		assert(layer1->phys_offset != HAMMER_BLOCKMAP_UNAVAIL);
625 
626 		for (block_offset = 0;
627 		     block_offset < HAMMER_BLOCKMAP_LAYER2;
628 		     block_offset += HAMMER_BIGBLOCK_SIZE) {
629 			layer2_offset = layer1->phys_offset +
630 				        HAMMER_BLOCKMAP_LAYER2_OFFSET(block_offset);
631 			layer2 = get_buffer_data(layer2_offset, &buffer2, 0);
632 			bzero(layer2, sizeof(*layer2));
633 
634 			if (phys_offset + block_offset < vol->vol_free_off) {
635 				/*
636 				 * Fixups XXX - big-blocks already allocated as part
637 				 * of the freemap bootstrap.
638 				 */
639 				layer2->zone = HAMMER_ZONE_FREEMAP_INDEX;
640 				layer2->append_off = HAMMER_BIGBLOCK_SIZE;
641 				layer2->bytes_free = 0;
642 			} else if (phys_offset + block_offset < vol->vol_free_end) {
643 				layer2->zone = 0;
644 				layer2->append_off = 0;
645 				layer2->bytes_free = HAMMER_BIGBLOCK_SIZE;
646 				++count;
647 				++layer1_count;
648 			} else {
649 				layer2->zone = HAMMER_ZONE_UNAVAIL_INDEX;
650 				layer2->append_off = HAMMER_BIGBLOCK_SIZE;
651 				layer2->bytes_free = 0;
652 			}
653 			layer2->entry_crc = crc32(layer2, HAMMER_LAYER2_CRCSIZE);
654 			buffer2->cache.modified = 1;
655 		}
656 
657 		layer1->blocks_free += layer1_count;
658 		layer1->layer1_crc = crc32(layer1, HAMMER_LAYER1_CRCSIZE);
659 		buffer1->cache.modified = 1;
660 	}
661 
662 	rel_buffer(buffer1);
663 	rel_buffer(buffer2);
664 	return(count);
665 }
666 
667 /*
668  * Returns the number of big-blocks available for filesystem data and undos
669  * without formatting.
670  */
671 int64_t
672 count_freemap(struct volume_info *vol)
673 {
674 	hammer_off_t phys_offset;
675 	hammer_off_t vol_free_off;
676 	hammer_off_t aligned_vol_free_end;
677 	int64_t count = 0;
678 
679 	vol_free_off = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
680 	aligned_vol_free_end = (vol->vol_free_end + HAMMER_BLOCKMAP_LAYER2_MASK)
681 				& ~HAMMER_BLOCKMAP_LAYER2_MASK;
682 
683 	if (vol->vol_no == HAMMER_ROOT_VOLNO)
684 		vol_free_off += HAMMER_BIGBLOCK_SIZE;
685 
686 	for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
687 	     phys_offset < aligned_vol_free_end;
688 	     phys_offset += HAMMER_BLOCKMAP_LAYER2) {
689 		vol_free_off += HAMMER_BIGBLOCK_SIZE;
690 	}
691 
692 	for (phys_offset = HAMMER_ENCODE_RAW_BUFFER(vol->vol_no, 0);
693 	     phys_offset < aligned_vol_free_end;
694 	     phys_offset += HAMMER_BIGBLOCK_SIZE) {
695 		if (phys_offset < vol_free_off) {
696 			;
697 		} else if (phys_offset < vol->vol_free_end) {
698 			++count;
699 		}
700 	}
701 
702 	return(count);
703 }
704 
705 /*
706  * Format the undomap for the root volume.
707  */
708 void
709 format_undomap(struct volume_info *root_vol, int64_t *undo_buffer_size)
710 {
711 	const int undo_zone = HAMMER_ZONE_UNDO_INDEX;
712 	hammer_off_t undo_limit;
713 	hammer_blockmap_t blockmap;
714 	struct hammer_volume_ondisk *ondisk;
715 	struct buffer_info *buffer = NULL;
716 	hammer_off_t scan;
717 	int n;
718 	int limit_index;
719 	uint32_t seqno;
720 
721 	/* Only root volume needs formatting */
722 	assert(root_vol->vol_no == HAMMER_ROOT_VOLNO);
723 	ondisk = root_vol->ondisk;
724 
725 	/*
726 	 * Size the undo buffer in multiples of HAMMER_BIGBLOCK_SIZE,
727 	 * up to HAMMER_UNDO_LAYER2 big-blocks.  Size to approximately
728 	 * 0.1% of the disk.
729 	 *
730 	 * The minimum UNDO fifo size is 500MB, or approximately 1% of
731 	 * the recommended 50G disk.
732 	 *
733 	 * Changing this minimum is rather dangerous as complex filesystem
734 	 * operations can cause the UNDO FIFO to fill up otherwise.
735 	 */
736 	undo_limit = *undo_buffer_size;
737 	if (undo_limit == 0) {
738 		undo_limit = HAMMER_VOL_BUF_SIZE(ondisk) / 1000;
739 		if (undo_limit < 500*1024*1024)
740 			undo_limit = 500*1024*1024;
741 	}
742 	undo_limit = (undo_limit + HAMMER_BIGBLOCK_MASK64) &
743 		     ~HAMMER_BIGBLOCK_MASK64;
744 	if (undo_limit < HAMMER_BIGBLOCK_SIZE)
745 		undo_limit = HAMMER_BIGBLOCK_SIZE;
746 	if (undo_limit > HAMMER_BIGBLOCK_SIZE * HAMMER_UNDO_LAYER2)
747 		undo_limit = HAMMER_BIGBLOCK_SIZE * HAMMER_UNDO_LAYER2;
748 	*undo_buffer_size = undo_limit;
749 
750 	blockmap = &ondisk->vol0_blockmap[undo_zone];
751 	bzero(blockmap, sizeof(*blockmap));
752 	blockmap->phys_offset = HAMMER_BLOCKMAP_UNAVAIL;
753 	blockmap->first_offset = HAMMER_ZONE_ENCODE(undo_zone, 0);
754 	blockmap->next_offset = blockmap->first_offset;
755 	blockmap->alloc_offset = HAMMER_ZONE_ENCODE(undo_zone, undo_limit);
756 	blockmap->entry_crc = crc32(blockmap, HAMMER_BLOCKMAP_CRCSIZE);
757 
758 	limit_index = undo_limit / HAMMER_BIGBLOCK_SIZE;
759 	assert(limit_index <= HAMMER_UNDO_LAYER2);
760 
761 	for (n = 0; n < limit_index; ++n) {
762 		ondisk->vol0_undo_array[n] = alloc_bigblock(root_vol,
763 							HAMMER_ZONE_UNDO_INDEX);
764 	}
765 	while (n < HAMMER_UNDO_LAYER2) {
766 		ondisk->vol0_undo_array[n++] = HAMMER_BLOCKMAP_UNAVAIL;
767 	}
768 
769 	/*
770 	 * Pre-initialize the UNDO blocks (HAMMER version 4+)
771 	 */
772 	printf("initializing the undo map (%jd MB)\n",
773 		(intmax_t)(blockmap->alloc_offset & HAMMER_OFF_LONG_MASK) /
774 		(1024 * 1024));
775 
776 	scan = blockmap->first_offset;
777 	seqno = 0;
778 
779 	while (scan < blockmap->alloc_offset) {
780 		hammer_fifo_head_t head;
781 		hammer_fifo_tail_t tail;
782 		int isnew;
783 		int bytes = HAMMER_UNDO_ALIGN;
784 
785 		isnew = ((scan & HAMMER_BUFMASK64) == 0);
786 		head = get_buffer_data(scan, &buffer, isnew);
787 		buffer->cache.modified = 1;
788 		tail = (void *)((char *)head + bytes - sizeof(*tail));
789 
790 		bzero(head, bytes);
791 		head->hdr_signature = HAMMER_HEAD_SIGNATURE;
792 		head->hdr_type = HAMMER_HEAD_TYPE_DUMMY;
793 		head->hdr_size = bytes;
794 		head->hdr_seq = seqno++;
795 
796 		tail->tail_signature = HAMMER_TAIL_SIGNATURE;
797 		tail->tail_type = HAMMER_HEAD_TYPE_DUMMY;
798 		tail->tail_size = bytes;
799 
800 		head->hdr_crc = crc32(head, HAMMER_FIFO_HEAD_CRCOFF) ^
801 				crc32(head + 1, bytes - sizeof(*head));
802 
803 		scan += bytes;
804 	}
805 	rel_buffer(buffer);
806 }
807 
808 /*
809  * Flush various tracking structures to disk
810  */
811 void
812 flush_all_volumes(void)
813 {
814 	struct volume_info *vol;
815 
816 	TAILQ_FOREACH(vol, &VolList, entry)
817 		flush_volume(vol);
818 }
819 
820 void
821 flush_volume(struct volume_info *volume)
822 {
823 	struct buffer_info *buffer;
824 	int i;
825 
826 	for (i = 0; i < HAMMER_BUFLISTS; ++i) {
827 		TAILQ_FOREACH(buffer, &volume->buffer_lists[i], entry)
828 			flush_buffer(buffer);
829 	}
830 	if (writehammervol(volume) == -1)
831 		err(1, "Write volume %d (%s)", volume->vol_no, volume->name);
832 }
833 
834 void
835 flush_buffer(struct buffer_info *buffer)
836 {
837 	struct volume_info *vol;
838 
839 	vol = buffer->volume;
840 	if (writehammerbuf(buffer) == -1)
841 		err(1, "Write volume %d (%s)", vol->vol_no, vol->name);
842 	buffer->cache.modified = 0;
843 }
844 
845 /*
846  * Core I/O operations
847  */
848 static int
849 __read(struct volume_info *vol, void *data, int64_t offset, int size)
850 {
851 	ssize_t n;
852 
853 	n = pread(vol->fd, data, size, offset);
854 	if (n != size)
855 		return(-1);
856 	return(0);
857 }
858 
859 static __inline int
860 readhammervol(struct volume_info *vol)
861 {
862 	return(__read(vol, vol->ondisk, 0, HAMMER_BUFSIZE));
863 }
864 
865 static __inline int
866 readhammerbuf(struct buffer_info *buf)
867 {
868 	return(__read(buf->volume, buf->ondisk, buf->raw_offset, HAMMER_BUFSIZE));
869 }
870 
871 static int
872 __write(struct volume_info *vol, const void *data, int64_t offset, int size)
873 {
874 	ssize_t n;
875 
876 	if (vol->rdonly)
877 		return(0);
878 
879 	n = pwrite(vol->fd, data, size, offset);
880 	if (n != size)
881 		return(-1);
882 	return(0);
883 }
884 
885 static __inline int
886 writehammervol(struct volume_info *vol)
887 {
888 	return(__write(vol, vol->ondisk, 0, HAMMER_BUFSIZE));
889 }
890 
891 static __inline int
892 writehammerbuf(struct buffer_info *buf)
893 {
894 	return(__write(buf->volume, buf->ondisk, buf->raw_offset, HAMMER_BUFSIZE));
895 }
896 
897 int64_t init_boot_area_size(int64_t value, off_t avg_vol_size)
898 {
899 	if (value == 0) {
900 		value = HAMMER_BOOT_NOMBYTES;
901 		while (value > avg_vol_size / HAMMER_MAX_VOLUMES)
902 			value >>= 1;
903 		if (value < HAMMER_BOOT_MINBYTES)
904 			value = 0;
905 	} else if (value < HAMMER_BOOT_MINBYTES) {
906 		value = HAMMER_BOOT_MINBYTES;
907 	}
908 
909 	return(value);
910 }
911 
912 int64_t init_mem_area_size(int64_t value, off_t avg_vol_size)
913 {
914 	if (value == 0) {
915 		value = HAMMER_MEM_NOMBYTES;
916 		while (value > avg_vol_size / HAMMER_MAX_VOLUMES)
917 			value >>= 1;
918 		if (value < HAMMER_MEM_MINBYTES)
919 			value = 0;
920 	} else if (value < HAMMER_MEM_MINBYTES) {
921 		value = HAMMER_MEM_MINBYTES;
922 	}
923 
924 	return(value);
925 }
926