1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2012 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  *  ALGORITHM
9  *
10  *      The "deflation" process uses several Huffman trees. The more
11  *      common source values are represented by shorter bit sequences.
12  *
13  *      Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values).  The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  *  REFERENCES
20  *
21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  *      Storer, James A.
25  *          Data Compression:  Methods and Theory, pp. 49-50.
26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27  *
28  *      Sedgewick, R.
29  *          Algorithms, p290.
30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* @(#) $Id$ */
34 
35 /* #define GEN_TREES_H */
36 
37 #include "hammer2_zlib_deflate.h"
38 
39 #ifdef H2_ZLIB_DEBUG
40 #  include <ctype.h>
41 #endif
42 
43 /* ===========================================================================
44  * Constants
45  */
46 
47 #define MAX_BL_BITS 7
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
49 
50 #define END_BLOCK 256
51 /* end of block literal code */
52 
53 #define REP_3_6      16
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
55 
56 #define REPZ_3_10    17
57 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
58 
59 #define REPZ_11_138  18
60 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
61 
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64 
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67 
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70 
71 local const uch bl_order[BL_CODES]
72    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73 /* The lengths of the bit length codes are sent in order of decreasing
74  * probability, to avoid transmitting the lengths for unused bit length codes.
75  */
76 
77 /* ===========================================================================
78  * Local data. These are initialized only once.
79  */
80 
81 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
82 
83 #if defined(GEN_TREES_H) || !defined(STDC)
84 /* non ANSI compilers may not accept trees.h */
85 
86 local ct_data static_ltree[L_CODES+2];
87 /* The static literal tree. Since the bit lengths are imposed, there is no
88  * need for the L_CODES extra codes used during heap construction. However
89  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
90  * below).
91  */
92 
93 local ct_data static_dtree[D_CODES];
94 /* The static distance tree. (Actually a trivial tree since all codes use
95  * 5 bits.)
96  */
97 
98 uch _dist_code[DIST_CODE_LEN];
99 /* Distance codes. The first 256 values correspond to the distances
100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
101  * the 15 bit distances.
102  */
103 
104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
105 /* length code for each normalized match length (0 == MIN_MATCH) */
106 
107 local int base_length[LENGTH_CODES];
108 /* First normalized length for each code (0 = MIN_MATCH) */
109 
110 local int base_dist[D_CODES];
111 /* First normalized distance for each code (0 = distance of 1) */
112 
113 #else
114 #  include "hammer2_zlib_trees.h"
115 #endif /* GEN_TREES_H */
116 
117 struct static_tree_desc_s {
118     const ct_data *static_tree;  /* static tree or NULL */
119     const intf *extra_bits;      /* extra bits for each code or NULL */
120     int     extra_base;          /* base index for extra_bits */
121     int     elems;               /* max number of elements in the tree */
122     int     max_length;          /* max bit length for the codes */
123 };
124 
125 local static_tree_desc  static_l_desc =
126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
127 
128 local static_tree_desc  static_d_desc =
129 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
130 
131 local static_tree_desc  static_bl_desc =
132 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
133 
134 /* ===========================================================================
135  * Local (static) routines in this file.
136  */
137 
138 local void tr_static_init (void);
139 local void init_block     (deflate_state *s);
140 local void pqdownheap     (deflate_state *s, ct_data *tree, int k);
141 local void gen_bitlen     (deflate_state *s, tree_desc *desc);
142 local void gen_codes      (ct_data *tree, int max_code, ushf *bl_count);
143 local void build_tree     (deflate_state *s, tree_desc *desc);
144 local void scan_tree      (deflate_state *s, ct_data *tree, int max_code);
145 local void send_tree      (deflate_state *s, ct_data *tree, int max_code);
146 local int  build_bl_tree  (deflate_state *s);
147 local void send_all_trees (deflate_state *s, int lcodes, int dcodes,
148                               int blcodes);
149 local void compress_block (deflate_state *s, const ct_data *ltree,
150                               const ct_data *dtree);
151 local int  detect_data_type (deflate_state *s);
152 local unsigned bi_reverse (unsigned value, int length);
153 local void bi_windup      (deflate_state *s);
154 local void bi_flush       (deflate_state *s);
155 local void copy_block     (deflate_state *s, charf *buf, unsigned len,
156                               int header);
157 
158 #ifdef GEN_TREES_H
159 local void gen_trees_header (void);
160 #endif
161 
162 #ifndef H2_ZLIB_DEBUG
163 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
164    /* Send a code of the given tree. c and tree must not have side effects */
165 
166 #else /* H2_ZLIB_DEBUG */
167 #  define send_code(s, c, tree) \
168      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
169        send_bits(s, tree[c].Code, tree[c].Len); }
170 #endif
171 
172 /* ===========================================================================
173  * Output a short LSB first on the stream.
174  * IN assertion: there is enough room in pendingBuf.
175  */
176 #define put_short(s, w) { \
177     put_byte(s, (uch)((w) & 0xff)); \
178     put_byte(s, (uch)((ush)(w) >> 8)); \
179 }
180 
181 /* ===========================================================================
182  * Send a value on a given number of bits.
183  * IN assertion: length <= 16 and value fits in length bits.
184  */
185 #ifdef H2_ZLIB_DEBUG
186 local void send_bits      (deflate_state *s, int value, int length);
187 
188 local
189 void
190 send_bits(deflate_state *s, int value, int length)
191 {
192     Tracevv((stderr," l %2d v %4x ", length, value));
193     Assert(length > 0 && length <= 15, "invalid length");
194     s->bits_sent += (ulg)length;
195 
196     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
197      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
198      * unused bits in value.
199      */
200     if (s->bi_valid > (int)Buf_size - length) {
201         s->bi_buf |= (ush)value << s->bi_valid;
202         put_short(s, s->bi_buf);
203         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
204         s->bi_valid += length - Buf_size;
205     } else {
206         s->bi_buf |= (ush)value << s->bi_valid;
207         s->bi_valid += length;
208     }
209 }
210 #else /* !H2_ZLIB_DEBUG */
211 
212 #define send_bits(s, value, length) \
213 { int len = length;\
214   if (s->bi_valid > (int)Buf_size - len) {\
215     int val = value;\
216     s->bi_buf |= (ush)val << s->bi_valid;\
217     put_short(s, s->bi_buf);\
218     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
219     s->bi_valid += len - Buf_size;\
220   } else {\
221     s->bi_buf |= (ush)(value) << s->bi_valid;\
222     s->bi_valid += len;\
223   }\
224 }
225 #endif /* H2_ZLIB_DEBUG */
226 
227 
228 /* the arguments must not have side effects */
229 
230 /* ===========================================================================
231  * Initialize the various 'constant' tables.
232  */
233 local
234 void
235 tr_static_init(void)
236 {
237 #if defined(GEN_TREES_H) || !defined(STDC)
238     static int static_init_done = 0;
239     int n;        /* iterates over tree elements */
240     int bits;     /* bit counter */
241     int length;   /* length value */
242     int code;     /* code value */
243     int dist;     /* distance index */
244     ush bl_count[MAX_BITS+1];
245     /* number of codes at each bit length for an optimal tree */
246 
247     if (static_init_done) return;
248 
249     /* For some embedded targets, global variables are not initialized: */
250 #ifdef NO_INIT_GLOBAL_POINTERS
251     static_l_desc.static_tree = static_ltree;
252     static_l_desc.extra_bits = extra_lbits;
253     static_d_desc.static_tree = static_dtree;
254     static_d_desc.extra_bits = extra_dbits;
255     static_bl_desc.extra_bits = extra_blbits;
256 #endif
257 
258     /* Initialize the mapping length (0..255) -> length code (0..28) */
259     length = 0;
260     for (code = 0; code < LENGTH_CODES-1; code++) {
261         base_length[code] = length;
262         for (n = 0; n < (1<<extra_lbits[code]); n++) {
263             _length_code[length++] = (uch)code;
264         }
265     }
266     Assert (length == 256, "tr_static_init: length != 256");
267     /* Note that the length 255 (match length 258) can be represented
268      * in two different ways: code 284 + 5 bits or code 285, so we
269      * overwrite length_code[255] to use the best encoding:
270      */
271     _length_code[length-1] = (uch)code;
272 
273     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
274     dist = 0;
275     for (code = 0 ; code < 16; code++) {
276         base_dist[code] = dist;
277         for (n = 0; n < (1<<extra_dbits[code]); n++) {
278             _dist_code[dist++] = (uch)code;
279         }
280     }
281     Assert (dist == 256, "tr_static_init: dist != 256");
282     dist >>= 7; /* from now on, all distances are divided by 128 */
283     for ( ; code < D_CODES; code++) {
284         base_dist[code] = dist << 7;
285         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
286             _dist_code[256 + dist++] = (uch)code;
287         }
288     }
289     Assert (dist == 256, "tr_static_init: 256+dist != 512");
290 
291     /* Construct the codes of the static literal tree */
292     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
293     n = 0;
294     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
295     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
296     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
297     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
298     /* Codes 286 and 287 do not exist, but we must include them in the
299      * tree construction to get a canonical Huffman tree (longest code
300      * all ones)
301      */
302     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
303 
304     /* The static distance tree is trivial: */
305     for (n = 0; n < D_CODES; n++) {
306         static_dtree[n].Len = 5;
307         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
308     }
309     static_init_done = 1;
310 
311 #  ifdef GEN_TREES_H
312     gen_trees_header();
313 #  endif
314 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
315 }
316 
317 /* ===========================================================================
318  * Genererate the file trees.h describing the static trees.
319  */
320 #ifdef GEN_TREES_H
321 #  ifndef H2_ZLIB_DEBUG
322 #    include <stdio.h>
323 #  endif
324 
325 #  define SEPARATOR(i, last, width) \
326       ((i) == (last)? "\n};\n\n" :    \
327        ((i) % (width) == (width)-1 ? ",\n" : ", "))
328 
329 void
330 gen_trees_header()
331 {
332     FILE *header = fopen("trees.h", "w");
333     int i;
334 
335     Assert (header != NULL, "Can't open trees.h");
336     fprintf(header,
337             "/* header created automatically with -DGEN_TREES_H */\n\n");
338 
339     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
340     for (i = 0; i < L_CODES+2; i++) {
341         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
342                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
343     }
344 
345     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
346     for (i = 0; i < D_CODES; i++) {
347         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
348                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
349     }
350 
351     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
352     for (i = 0; i < DIST_CODE_LEN; i++) {
353         fprintf(header, "%2u%s", _dist_code[i],
354                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
355     }
356 
357     fprintf(header,
358         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
359     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
360         fprintf(header, "%2u%s", _length_code[i],
361                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
362     }
363 
364     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
365     for (i = 0; i < LENGTH_CODES; i++) {
366         fprintf(header, "%1u%s", base_length[i],
367                 SEPARATOR(i, LENGTH_CODES-1, 20));
368     }
369 
370     fprintf(header, "local const int base_dist[D_CODES] = {\n");
371     for (i = 0; i < D_CODES; i++) {
372         fprintf(header, "%5u%s", base_dist[i],
373                 SEPARATOR(i, D_CODES-1, 10));
374     }
375 
376     fclose(header);
377 }
378 #endif /* GEN_TREES_H */
379 
380 /* ===========================================================================
381  * Initialize the tree data structures for a new zlib stream.
382  */
383 void
384 ZLIB_INTERNAL
385 _tr_init(deflate_state *s)
386 {
387     tr_static_init();
388 
389     s->l_desc.dyn_tree = s->dyn_ltree;
390     s->l_desc.stat_desc = &static_l_desc;
391 
392     s->d_desc.dyn_tree = s->dyn_dtree;
393     s->d_desc.stat_desc = &static_d_desc;
394 
395     s->bl_desc.dyn_tree = s->bl_tree;
396     s->bl_desc.stat_desc = &static_bl_desc;
397 
398     s->bi_buf = 0;
399     s->bi_valid = 0;
400 #ifdef H2_ZLIB_DEBUG
401     s->compressed_len = 0L;
402     s->bits_sent = 0L;
403 #endif
404 
405     /* Initialize the first block of the first file: */
406     init_block(s);
407 }
408 
409 /* ===========================================================================
410  * Initialize a new block.
411  */
412 local
413 void
414 init_block(deflate_state *s)
415 {
416     int n; /* iterates over tree elements */
417 
418     /* Initialize the trees. */
419     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
420     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
421     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
422 
423     s->dyn_ltree[END_BLOCK].Freq = 1;
424     s->opt_len = s->static_len = 0L;
425     s->last_lit = s->matches = 0;
426 }
427 
428 #define SMALLEST 1
429 /* Index within the heap array of least frequent node in the Huffman tree */
430 
431 
432 /* ===========================================================================
433  * Remove the smallest element from the heap and recreate the heap with
434  * one less element. Updates heap and heap_len.
435  */
436 #define pqremove(s, tree, top) \
437 {\
438     top = s->heap[SMALLEST]; \
439     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
440     pqdownheap(s, tree, SMALLEST); \
441 }
442 
443 /* ===========================================================================
444  * Compares to subtrees, using the tree depth as tie breaker when
445  * the subtrees have equal frequency. This minimizes the worst case length.
446  */
447 #define smaller(tree, n, m, depth) \
448    (tree[n].Freq < tree[m].Freq || \
449    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
450 
451 /* ===========================================================================
452  * Restore the heap property by moving down the tree starting at node k,
453  * exchanging a node with the smallest of its two sons if necessary, stopping
454  * when the heap property is re-established (each father smaller than its
455  * two sons).
456  */
457 local
458 void
459 pqdownheap(deflate_state *s, ct_data *tree, int k) /* the tree to restore, node to move down */
460 {
461     int v = s->heap[k];
462     int j = k << 1;  /* left son of k */
463     while (j <= s->heap_len) {
464         /* Set j to the smallest of the two sons: */
465         if (j < s->heap_len &&
466             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
467             j++;
468         }
469         /* Exit if v is smaller than both sons */
470         if (smaller(tree, v, s->heap[j], s->depth)) break;
471 
472         /* Exchange v with the smallest son */
473         s->heap[k] = s->heap[j];  k = j;
474 
475         /* And continue down the tree, setting j to the left son of k */
476         j <<= 1;
477     }
478     s->heap[k] = v;
479 }
480 
481 /* ===========================================================================
482  * Compute the optimal bit lengths for a tree and update the total bit length
483  * for the current block.
484  * IN assertion: the fields freq and dad are set, heap[heap_max] and
485  *    above are the tree nodes sorted by increasing frequency.
486  * OUT assertions: the field len is set to the optimal bit length, the
487  *     array bl_count contains the frequencies for each bit length.
488  *     The length opt_len is updated; static_len is also updated if stree is
489  *     not null.
490  */
491 local
492 void
493 gen_bitlen(deflate_state *s, tree_desc *desc)
494 {
495     ct_data *tree        = desc->dyn_tree;
496     int max_code         = desc->max_code;
497     const ct_data *stree = desc->stat_desc->static_tree;
498     const intf *extra    = desc->stat_desc->extra_bits;
499     int base             = desc->stat_desc->extra_base;
500     int max_length       = desc->stat_desc->max_length;
501     int h;              /* heap index */
502     int n, m;           /* iterate over the tree elements */
503     int bits;           /* bit length */
504     int xbits;          /* extra bits */
505     ush f;              /* frequency */
506     int overflow = 0;   /* number of elements with bit length too large */
507 
508     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
509 
510     /* In a first pass, compute the optimal bit lengths (which may
511      * overflow in the case of the bit length tree).
512      */
513     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
514 
515     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
516         n = s->heap[h];
517         bits = tree[tree[n].Dad].Len + 1;
518         if (bits > max_length) bits = max_length, overflow++;
519         tree[n].Len = (ush)bits;
520         /* We overwrite tree[n].Dad which is no longer needed */
521 
522         if (n > max_code) continue; /* not a leaf node */
523 
524         s->bl_count[bits]++;
525         xbits = 0;
526         if (n >= base) xbits = extra[n-base];
527         f = tree[n].Freq;
528         s->opt_len += (ulg)f * (bits + xbits);
529         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
530     }
531     if (overflow == 0) return;
532 
533     Trace((stderr,"\nbit length overflow\n"));
534     /* This happens for example on obj2 and pic of the Calgary corpus */
535 
536     /* Find the first bit length which could increase: */
537     do {
538         bits = max_length-1;
539         while (s->bl_count[bits] == 0) bits--;
540         s->bl_count[bits]--;      /* move one leaf down the tree */
541         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
542         s->bl_count[max_length]--;
543         /* The brother of the overflow item also moves one step up,
544          * but this does not affect bl_count[max_length]
545          */
546         overflow -= 2;
547     } while (overflow > 0);
548 
549     /* Now recompute all bit lengths, scanning in increasing frequency.
550      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
551      * lengths instead of fixing only the wrong ones. This idea is taken
552      * from 'ar' written by Haruhiko Okumura.)
553      */
554     for (bits = max_length; bits != 0; bits--) {
555         n = s->bl_count[bits];
556         while (n != 0) {
557             m = s->heap[--h];
558             if (m > max_code) continue;
559             if ((unsigned) tree[m].Len != (unsigned) bits) {
560                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
561                 s->opt_len += ((long)bits - (long)tree[m].Len)
562                               *(long)tree[m].Freq;
563                 tree[m].Len = (ush)bits;
564             }
565             n--;
566         }
567     }
568 }
569 
570 /* ===========================================================================
571  * Generate the codes for a given tree and bit counts (which need not be
572  * optimal).
573  * IN assertion: the array bl_count contains the bit length statistics for
574  * the given tree and the field len is set for all tree elements.
575  * OUT assertion: the field code is set for all tree elements of non
576  *     zero code length.
577  */
578 local
579 void
580 gen_codes (ct_data *tree, int max_code, ushf *bl_count)
581     /* the tree to decorate */
582     /* max_code = largest code with non zero frequency */
583     /* *bl_count = number of codes at each bit length */
584 {
585     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
586     ush code = 0;              /* running code value */
587     int bits;                  /* bit index */
588     int n;                     /* code index */
589 
590     /* The distribution counts are first used to generate the code values
591      * without bit reversal.
592      */
593     for (bits = 1; bits <= MAX_BITS; bits++) {
594         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
595     }
596     /* Check that the bit counts in bl_count are consistent. The last code
597      * must be all ones.
598      */
599     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
600             "inconsistent bit counts");
601     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
602 
603     for (n = 0;  n <= max_code; n++) {
604         int len = tree[n].Len;
605         if (len == 0) continue;
606         /* Now reverse the bits */
607         tree[n].Code = bi_reverse(next_code[len]++, len);
608 
609         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
610              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
611     }
612 }
613 
614 /* ===========================================================================
615  * Construct one Huffman tree and assigns the code bit strings and lengths.
616  * Update the total bit length for the current block.
617  * IN assertion: the field freq is set for all tree elements.
618  * OUT assertions: the fields len and code are set to the optimal bit length
619  *     and corresponding code. The length opt_len is updated; static_len is
620  *     also updated if stree is not null. The field max_code is set.
621  */
622 local
623 void
624 build_tree(deflate_state *s, tree_desc *desc) /* the tree descriptor */
625 {
626     ct_data *tree         = desc->dyn_tree;
627     const ct_data *stree  = desc->stat_desc->static_tree;
628     int elems             = desc->stat_desc->elems;
629     int n, m;          /* iterate over heap elements */
630     int max_code = -1; /* largest code with non zero frequency */
631     int node;          /* new node being created */
632 
633     /* Construct the initial heap, with least frequent element in
634      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
635      * heap[0] is not used.
636      */
637     s->heap_len = 0, s->heap_max = HEAP_SIZE;
638 
639     for (n = 0; n < elems; n++) {
640         if (tree[n].Freq != 0) {
641             s->heap[++(s->heap_len)] = max_code = n;
642             s->depth[n] = 0;
643         } else {
644             tree[n].Len = 0;
645         }
646     }
647 
648     /* The pkzip format requires that at least one distance code exists,
649      * and that at least one bit should be sent even if there is only one
650      * possible code. So to avoid special checks later on we force at least
651      * two codes of non zero frequency.
652      */
653     while (s->heap_len < 2) {
654         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
655         tree[node].Freq = 1;
656         s->depth[node] = 0;
657         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
658         /* node is 0 or 1 so it does not have extra bits */
659     }
660     desc->max_code = max_code;
661 
662     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
663      * establish sub-heaps of increasing lengths:
664      */
665     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
666 
667     /* Construct the Huffman tree by repeatedly combining the least two
668      * frequent nodes.
669      */
670     node = elems;              /* next internal node of the tree */
671     do {
672         pqremove(s, tree, n);  /* n = node of least frequency */
673         m = s->heap[SMALLEST]; /* m = node of next least frequency */
674 
675         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
676         s->heap[--(s->heap_max)] = m;
677 
678         /* Create a new node father of n and m */
679         tree[node].Freq = tree[n].Freq + tree[m].Freq;
680         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
681                                 s->depth[n] : s->depth[m]) + 1);
682         tree[n].Dad = tree[m].Dad = (ush)node;
683 #ifdef DUMP_BL_TREE
684         if (tree == s->bl_tree) {
685             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
686                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
687         }
688 #endif
689         /* and insert the new node in the heap */
690         s->heap[SMALLEST] = node++;
691         pqdownheap(s, tree, SMALLEST);
692 
693     } while (s->heap_len >= 2);
694 
695     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
696 
697     /* At this point, the fields freq and dad are set. We can now
698      * generate the bit lengths.
699      */
700     gen_bitlen(s, (tree_desc *)desc);
701 
702     /* The field len is now set, we can generate the bit codes */
703     gen_codes ((ct_data *)tree, max_code, s->bl_count);
704 }
705 
706 /* ===========================================================================
707  * Scan a literal or distance tree to determine the frequencies of the codes
708  * in the bit length tree.
709  */
710 local
711 void
712 scan_tree (deflate_state *s, ct_data *tree, int max_code)
713     /* the tree to be scanned */
714     /* and its largest code of non zero frequency */
715 {
716     int n;                     /* iterates over all tree elements */
717     int prevlen = -1;          /* last emitted length */
718     int curlen;                /* length of current code */
719     int nextlen = tree[0].Len; /* length of next code */
720     int count = 0;             /* repeat count of the current code */
721     int max_count = 7;         /* max repeat count */
722     int min_count = 4;         /* min repeat count */
723 
724     if (nextlen == 0) max_count = 138, min_count = 3;
725     tree[max_code+1].Len = (ush)0xffff; /* guard */
726 
727     for (n = 0; n <= max_code; n++) {
728         curlen = nextlen; nextlen = tree[n+1].Len;
729         if (++count < max_count && curlen == nextlen) {
730             continue;
731         } else if (count < min_count) {
732             s->bl_tree[curlen].Freq += count;
733         } else if (curlen != 0) {
734             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
735             s->bl_tree[REP_3_6].Freq++;
736         } else if (count <= 10) {
737             s->bl_tree[REPZ_3_10].Freq++;
738         } else {
739             s->bl_tree[REPZ_11_138].Freq++;
740         }
741         count = 0; prevlen = curlen;
742         if (nextlen == 0) {
743             max_count = 138, min_count = 3;
744         } else if (curlen == nextlen) {
745             max_count = 6, min_count = 3;
746         } else {
747             max_count = 7, min_count = 4;
748         }
749     }
750 }
751 
752 /* ===========================================================================
753  * Send a literal or distance tree in compressed form, using the codes in
754  * bl_tree.
755  */
756 local
757 void
758 send_tree (deflate_state *s, ct_data *tree, int max_code) /* same as above */
759 {
760     int n;                     /* iterates over all tree elements */
761     int prevlen = -1;          /* last emitted length */
762     int curlen;                /* length of current code */
763     int nextlen = tree[0].Len; /* length of next code */
764     int count = 0;             /* repeat count of the current code */
765     int max_count = 7;         /* max repeat count */
766     int min_count = 4;         /* min repeat count */
767 
768     /* tree[max_code+1].Len = -1; */  /* guard already set */
769     if (nextlen == 0) max_count = 138, min_count = 3;
770 
771     for (n = 0; n <= max_code; n++) {
772         curlen = nextlen; nextlen = tree[n+1].Len;
773         if (++count < max_count && curlen == nextlen) {
774             continue;
775         } else if (count < min_count) {
776             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
777 
778         } else if (curlen != 0) {
779             if (curlen != prevlen) {
780                 send_code(s, curlen, s->bl_tree); count--;
781             }
782             Assert(count >= 3 && count <= 6, " 3_6?");
783             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
784 
785         } else if (count <= 10) {
786             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
787 
788         } else {
789             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
790         }
791         count = 0; prevlen = curlen;
792         if (nextlen == 0) {
793             max_count = 138, min_count = 3;
794         } else if (curlen == nextlen) {
795             max_count = 6, min_count = 3;
796         } else {
797             max_count = 7, min_count = 4;
798         }
799     }
800 }
801 
802 /* ===========================================================================
803  * Construct the Huffman tree for the bit lengths and return the index in
804  * bl_order of the last bit length code to send.
805  */
806 local
807 int
808 build_bl_tree(deflate_state *s)
809 {
810     int max_blindex;  /* index of last bit length code of non zero freq */
811 
812     /* Determine the bit length frequencies for literal and distance trees */
813     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
814     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
815 
816     /* Build the bit length tree: */
817     build_tree(s, (tree_desc *)(&(s->bl_desc)));
818     /* opt_len now includes the length of the tree representations, except
819      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
820      */
821 
822     /* Determine the number of bit length codes to send. The pkzip format
823      * requires that at least 4 bit length codes be sent. (appnote.txt says
824      * 3 but the actual value used is 4.)
825      */
826     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
827         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
828     }
829     /* Update opt_len to include the bit length tree and counts */
830     s->opt_len += 3*(max_blindex+1) + 5+5+4;
831     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
832             s->opt_len, s->static_len));
833 
834     return max_blindex;
835 }
836 
837 /* ===========================================================================
838  * Send the header for a block using dynamic Huffman trees: the counts, the
839  * lengths of the bit length codes, the literal tree and the distance tree.
840  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
841  */
842 local
843 void
844 send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
845 /* number of codes for each tree */
846 {
847     int rank;                    /* index in bl_order */
848 
849     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
850     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
851             "too many codes");
852     Tracev((stderr, "\nbl counts: "));
853     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
854     send_bits(s, dcodes-1,   5);
855     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
856     for (rank = 0; rank < blcodes; rank++) {
857         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
858         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
859     }
860     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
861 
862     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
863     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
864 
865     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
866     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
867 }
868 
869 /* ===========================================================================
870  * Send a stored block
871  */
872 void
873 ZLIB_INTERNAL
874 _tr_stored_block(deflate_state *s, charf *buf,
875 			ulg stored_len, int last) /* one if this is the last block for a file */
876 {
877     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
878 #ifdef H2_ZLIB_DEBUG
879     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
880     s->compressed_len += (stored_len + 4) << 3;
881 #endif
882     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
883 }
884 
885 /* ===========================================================================
886  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
887  */
888 void
889 ZLIB_INTERNAL
890 _tr_flush_bits(deflate_state *s)
891 {
892     bi_flush(s);
893 }
894 
895 /* ===========================================================================
896  * Send one empty static block to give enough lookahead for inflate.
897  * This takes 10 bits, of which 7 may remain in the bit buffer.
898  */
899 void
900 ZLIB_INTERNAL
901 _tr_align(deflate_state *s)
902 {
903     send_bits(s, STATIC_TREES<<1, 3);
904     send_code(s, END_BLOCK, static_ltree);
905 #ifdef H2_ZLIB_DEBUG
906     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
907 #endif
908     bi_flush(s);
909 }
910 
911 /* ===========================================================================
912  * Determine the best encoding for the current block: dynamic trees, static
913  * trees or store, and output the encoded block to the zip file.
914  */
915 void
916 ZLIB_INTERNAL
917 _tr_flush_block(deflate_state *s, charf *buf,
918 			ulg stored_len, int last)
919 {
920     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
921     int max_blindex = 0;  /* index of last bit length code of non zero freq */
922 
923     /* Build the Huffman trees unless a stored block is forced */
924     if (s->level > 0) {
925 
926         /* Check if the file is binary or text */
927         if (s->strm->data_type == Z_UNKNOWN)
928             s->strm->data_type = detect_data_type(s);
929 
930         /* Construct the literal and distance trees */
931         build_tree(s, (tree_desc *)(&(s->l_desc)));
932         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
933                 s->static_len));
934 
935         build_tree(s, (tree_desc *)(&(s->d_desc)));
936         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
937                 s->static_len));
938         /* At this point, opt_len and static_len are the total bit lengths of
939          * the compressed block data, excluding the tree representations.
940          */
941 
942         /* Build the bit length tree for the above two trees, and get the index
943          * in bl_order of the last bit length code to send.
944          */
945         max_blindex = build_bl_tree(s);
946 
947         /* Determine the best encoding. Compute the block lengths in bytes. */
948         opt_lenb = (s->opt_len+3+7)>>3;
949         static_lenb = (s->static_len+3+7)>>3;
950 
951         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
952                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
953                 s->last_lit));
954 
955         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
956 
957     } else {
958         Assert(buf != (char*)0, "lost buf");
959         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
960     }
961 
962 #ifdef FORCE_STORED
963     if (buf != (char*)0) { /* force stored block */
964 #else
965     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
966                        /* 4: two words for the lengths */
967 #endif
968         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
969          * Otherwise we can't have processed more than WSIZE input bytes since
970          * the last block flush, because compression would have been
971          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
972          * transform a block into a stored block.
973          */
974         _tr_stored_block(s, buf, stored_len, last);
975 
976 #ifdef FORCE_STATIC
977     } else if (static_lenb >= 0) { /* force static trees */
978 #else
979     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
980 #endif
981         send_bits(s, (STATIC_TREES<<1)+last, 3);
982         compress_block(s, (const ct_data *)static_ltree,
983                        (const ct_data *)static_dtree);
984 #ifdef H2_ZLIB_DEBUG
985         s->compressed_len += 3 + s->static_len;
986 #endif
987     } else {
988         send_bits(s, (DYN_TREES<<1)+last, 3);
989         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
990                        max_blindex+1);
991         compress_block(s, (const ct_data *)s->dyn_ltree,
992                        (const ct_data *)s->dyn_dtree);
993 #ifdef H2_ZLIB_DEBUG
994         s->compressed_len += 3 + s->opt_len;
995 #endif
996     }
997     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
998     /* The above check is made mod 2^32, for files larger than 512 MB
999      * and uLong implemented on 32 bits.
1000      */
1001     init_block(s);
1002 
1003     if (last) {
1004         bi_windup(s);
1005 #ifdef H2_ZLIB_DEBUG
1006         s->compressed_len += 7;  /* align on byte boundary */
1007 #endif
1008     }
1009     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1010            s->compressed_len-7*last));
1011 }
1012 
1013 /* ===========================================================================
1014  * Save the match info and tally the frequency counts. Return true if
1015  * the current block must be flushed.
1016  */
1017 int
1018 ZLIB_INTERNAL
1019 _tr_tally (deflate_state *s, unsigned dist, unsigned lc)
1020 {
1021     s->d_buf[s->last_lit] = (ush)dist;
1022     s->l_buf[s->last_lit++] = (uch)lc;
1023     if (dist == 0) {
1024         /* lc is the unmatched char */
1025         s->dyn_ltree[lc].Freq++;
1026     } else {
1027         s->matches++;
1028         /* Here, lc is the match length - MIN_MATCH */
1029         dist--;             /* dist = match distance - 1 */
1030         Assert((ush)dist < (ush)MAX_DIST(s) &&
1031                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1032                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1033 
1034         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1035         s->dyn_dtree[d_code(dist)].Freq++;
1036     }
1037 
1038 #ifdef TRUNCATE_BLOCK
1039     /* Try to guess if it is profitable to stop the current block here */
1040     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1041         /* Compute an upper bound for the compressed length */
1042         ulg out_length = (ulg)s->last_lit*8L;
1043         ulg in_length = (ulg)((long)s->strstart - s->block_start);
1044         int dcode;
1045         for (dcode = 0; dcode < D_CODES; dcode++) {
1046             out_length += (ulg)s->dyn_dtree[dcode].Freq *
1047                 (5L+extra_dbits[dcode]);
1048         }
1049         out_length >>= 3;
1050         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1051                s->last_lit, in_length, out_length,
1052                100L - out_length*100L/in_length));
1053         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1054     }
1055 #endif
1056     return (s->last_lit == s->lit_bufsize-1);
1057     /* We avoid equality with lit_bufsize because of wraparound at 64K
1058      * on 16 bit machines and because stored blocks are restricted to
1059      * 64K-1 bytes.
1060      */
1061 }
1062 
1063 /* ===========================================================================
1064  * Send the block data compressed using the given Huffman trees
1065  */
1066 local
1067 void
1068 compress_block(deflate_state *s, const ct_data *ltree, const ct_data *dtree)
1069 {
1070     unsigned dist;      /* distance of matched string */
1071     int lc;             /* match length or unmatched char (if dist == 0) */
1072     unsigned lx = 0;    /* running index in l_buf */
1073     unsigned code;      /* the code to send */
1074     int extra;          /* number of extra bits to send */
1075 
1076     if (s->last_lit != 0) do {
1077         dist = s->d_buf[lx];
1078         lc = s->l_buf[lx++];
1079         if (dist == 0) {
1080             send_code(s, lc, ltree); /* send a literal byte */
1081             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1082         } else {
1083             /* Here, lc is the match length - MIN_MATCH */
1084             code = _length_code[lc];
1085             send_code(s, code+LITERALS+1, ltree); /* send the length code */
1086             extra = extra_lbits[code];
1087             if (extra != 0) {
1088                 lc -= base_length[code];
1089                 send_bits(s, lc, extra);       /* send the extra length bits */
1090             }
1091             dist--; /* dist is now the match distance - 1 */
1092             code = d_code(dist);
1093             Assert (code < D_CODES, "bad d_code");
1094 
1095             send_code(s, code, dtree);       /* send the distance code */
1096             extra = extra_dbits[code];
1097             if (extra != 0) {
1098                 dist -= base_dist[code];
1099                 send_bits(s, dist, extra);   /* send the extra distance bits */
1100             }
1101         } /* literal or match pair ? */
1102 
1103         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1104         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1105                "pendingBuf overflow");
1106 
1107     } while (lx < s->last_lit);
1108 
1109     send_code(s, END_BLOCK, ltree);
1110 }
1111 
1112 /* ===========================================================================
1113  * Check if the data type is TEXT or BINARY, using the following algorithm:
1114  * - TEXT if the two conditions below are satisfied:
1115  *    a) There are no non-portable control characters belonging to the
1116  *       "black list" (0..6, 14..25, 28..31).
1117  *    b) There is at least one printable character belonging to the
1118  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1119  * - BINARY otherwise.
1120  * - The following partially-portable control characters form a
1121  *   "gray list" that is ignored in this detection algorithm:
1122  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1123  * IN assertion: the fields Freq of dyn_ltree are set.
1124  */
1125 local
1126 int
1127 detect_data_type(deflate_state *s)
1128 {
1129     /* black_mask is the bit mask of black-listed bytes
1130      * set bits 0..6, 14..25, and 28..31
1131      * 0xf3ffc07f = binary 11110011111111111100000001111111
1132      */
1133     unsigned long black_mask = 0xf3ffc07fUL;
1134     int n;
1135 
1136     /* Check for non-textual ("black-listed") bytes. */
1137     for (n = 0; n <= 31; n++, black_mask >>= 1)
1138         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1139             return Z_BINARY;
1140 
1141     /* Check for textual ("white-listed") bytes. */
1142     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1143             || s->dyn_ltree[13].Freq != 0)
1144         return Z_TEXT;
1145     for (n = 32; n < LITERALS; n++)
1146         if (s->dyn_ltree[n].Freq != 0)
1147             return Z_TEXT;
1148 
1149     /* There are no "black-listed" or "white-listed" bytes:
1150      * this stream either is empty or has tolerated ("gray-listed") bytes only.
1151      */
1152     return Z_BINARY;
1153 }
1154 
1155 /* ===========================================================================
1156  * Reverse the first len bits of a code, using straightforward code (a faster
1157  * method would use a table)
1158  * IN assertion: 1 <= len <= 15
1159  */
1160 local
1161 unsigned
1162 bi_reverse(unsigned code, int len)
1163 {
1164     register unsigned res = 0;
1165     do {
1166         res |= code & 1;
1167         code >>= 1, res <<= 1;
1168     } while (--len > 0);
1169     return res >> 1;
1170 }
1171 
1172 /* ===========================================================================
1173  * Flush the bit buffer, keeping at most 7 bits in it.
1174  */
1175 local
1176 void
1177 bi_flush(deflate_state *s)
1178 {
1179     if (s->bi_valid == 16) {
1180         put_short(s, s->bi_buf);
1181         s->bi_buf = 0;
1182         s->bi_valid = 0;
1183     } else if (s->bi_valid >= 8) {
1184         put_byte(s, (Byte)s->bi_buf);
1185         s->bi_buf >>= 8;
1186         s->bi_valid -= 8;
1187     }
1188 }
1189 
1190 /* ===========================================================================
1191  * Flush the bit buffer and align the output on a byte boundary
1192  */
1193 local
1194 void
1195 bi_windup(deflate_state *s)
1196 {
1197     if (s->bi_valid > 8) {
1198         put_short(s, s->bi_buf);
1199     } else if (s->bi_valid > 0) {
1200         put_byte(s, (Byte)s->bi_buf);
1201     }
1202     s->bi_buf = 0;
1203     s->bi_valid = 0;
1204 #ifdef H2_ZLIB_DEBUG
1205     s->bits_sent = (s->bits_sent+7) & ~7;
1206 #endif
1207 }
1208 
1209 /* ===========================================================================
1210  * Copy a stored block, storing first the length and its
1211  * one's complement if requested.
1212  */
1213 local
1214 void
1215 copy_block(deflate_state *s, charf *buf, unsigned len, int header)
1216 {
1217     bi_windup(s);        /* align on byte boundary */
1218 
1219     if (header) {
1220         put_short(s, (ush)len);
1221         put_short(s, (ush)~len);
1222 #ifdef H2_ZLIB_DEBUG
1223         s->bits_sent += 2*16;
1224 #endif
1225     }
1226 #ifdef H2_ZLIB_DEBUG
1227     s->bits_sent += (ulg)len<<3;
1228 #endif
1229     while (len--) {
1230         put_byte(s, *buf++);
1231     }
1232 }
1233