xref: /dragonfly/sbin/newfs/mkfs.c (revision 16777b6b)
1 /*
2  * Copyright (c) 1980, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * @(#)mkfs.c	8.11 (Berkeley) 5/3/95
34  * $FreeBSD: src/sbin/newfs/mkfs.c,v 1.29.2.6 2001/09/21 19:15:21 dillon Exp $
35  * $DragonFly: src/sbin/newfs/mkfs.c,v 1.4 2003/09/28 14:39:20 hmp Exp $
36  */
37 
38 #include <err.h>
39 #include <signal.h>
40 #include <string.h>
41 #include <stdio.h>
42 #include <unistd.h>
43 #include <sys/param.h>
44 #include <sys/time.h>
45 #include <sys/types.h>
46 #include <sys/wait.h>
47 #include <sys/resource.h>
48 #include <sys/stat.h>
49 #include <vfs/ufs/dinode.h>
50 #include <vfs/ufs/dir.h>
51 #include <vfs/ufs/fs.h>
52 #include <sys/disklabel.h>
53 #include <sys/file.h>
54 #include <sys/mman.h>
55 #include <sys/ioctl.h>
56 
57 #ifndef STANDALONE
58 #include <stdlib.h>
59 #else
60 extern int atoi __P((char *));
61 extern char * getenv __P((char *));
62 #endif
63 
64 #ifdef FSIRAND
65 extern long random __P((void));
66 extern void srandomdev __P((void));
67 #endif
68 
69 /*
70  * make file system for cylinder-group style file systems
71  */
72 
73 /*
74  * We limit the size of the inode map to be no more than a
75  * third of the cylinder group space, since we must leave at
76  * least an equal amount of space for the block map.
77  *
78  * N.B.: MAXIPG must be a multiple of INOPB(fs).
79  */
80 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
81 
82 #define UMASK		0755
83 #define MAXINOPB	(MAXBSIZE / sizeof(struct dinode))
84 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
85 
86 /*
87  * variables set up by front end.
88  */
89 extern int	mfs;		/* run as the memory based filesystem */
90 extern char	*mfs_mtpt;	/* mount point for mfs          */
91 extern struct stat mfs_mtstat;	/* stat prior to mount          */
92 extern int	Nflag;		/* run mkfs without writing file system */
93 extern int	Oflag;		/* format as an 4.3BSD file system */
94 extern int	Uflag;		/* enable soft updates for file system */
95 extern int	fssize;		/* file system size */
96 extern int	ntracks;	/* # tracks/cylinder */
97 extern int	nsectors;	/* # sectors/track */
98 extern int	nphyssectors;	/* # sectors/track including spares */
99 extern int	secpercyl;	/* sectors per cylinder */
100 extern int	sectorsize;	/* bytes/sector */
101 extern int	realsectorsize;	/* bytes/sector in hardware*/
102 extern int	rpm;		/* revolutions/minute of drive */
103 extern int	interleave;	/* hardware sector interleave */
104 extern int	trackskew;	/* sector 0 skew, per track */
105 extern int	fsize;		/* fragment size */
106 extern int	bsize;		/* block size */
107 extern int	cpg;		/* cylinders/cylinder group */
108 extern int	cpgflg;		/* cylinders/cylinder group flag was given */
109 extern int	minfree;	/* free space threshold */
110 extern int	opt;		/* optimization preference (space or time) */
111 extern int	density;	/* number of bytes per inode */
112 extern int	maxcontig;	/* max contiguous blocks to allocate */
113 extern int	rotdelay;	/* rotational delay between blocks */
114 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
115 extern int	nrpos;		/* # of distinguished rotational positions */
116 extern int	bbsize;		/* boot block size */
117 extern int	sbsize;		/* superblock size */
118 extern int	avgfilesize;	/* expected average file size */
119 extern int	avgfilesperdir;	/* expected number of files per directory */
120 extern u_long	memleft;	/* virtual memory available */
121 extern caddr_t	membase;	/* start address of memory based filesystem */
122 extern char *	filename;
123 
124 union {
125 	struct fs fs;
126 	char pad[SBSIZE];
127 } fsun;
128 #define	sblock	fsun.fs
129 struct	csum *fscs;
130 
131 union {
132 	struct cg cg;
133 	char pad[MAXBSIZE];
134 } cgun;
135 #define	acg	cgun.cg
136 
137 struct dinode zino[MAXBSIZE / sizeof(struct dinode)];
138 
139 int	fsi, fso;
140 #ifdef FSIRAND
141 int     randinit;
142 #endif
143 daddr_t	alloc();
144 long	calcipg();
145 static int charsperline();
146 void clrblock __P((struct fs *, unsigned char *, int));
147 void fsinit __P((time_t));
148 void initcg __P((int, time_t));
149 int isblock __P((struct fs *, unsigned char *, int));
150 void iput __P((struct dinode *, ino_t));
151 int makedir __P((struct direct *, int));
152 void rdfs __P((daddr_t, int, char *));
153 void setblock __P((struct fs *, unsigned char *, int));
154 void wtfs __P((daddr_t, int, char *));
155 void wtfsflush __P((void));
156 
157 #ifndef STANDALONE
158 void get_memleft __P((void));
159 void raise_data_limit __P((void));
160 #else
161 void free __P((char *));
162 char * calloc __P((u_long, u_long));
163 caddr_t malloc __P((u_long));
164 caddr_t realloc __P((char *, u_long));
165 #endif
166 
167 int mfs_ppid = 0;
168 
169 void
170 mkfs(struct partition *pp, char *fsys, int fi, int fo)
171 {
172 	register long i, mincpc, mincpg, inospercg;
173 	long cylno, rpos, blk, j, warn = 0;
174 	long used, mincpgcnt, bpcg;
175 	off_t usedb;
176 	long mapcramped, inodecramped;
177 	long postblsize, rotblsize, totalsbsize;
178 	int status, fd;
179 	time_t utime;
180 	quad_t sizepb;
181 	void started();
182 	int width;
183 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
184 
185 #ifndef STANDALONE
186 	time(&utime);
187 #endif
188 #ifdef FSIRAND
189 	if (!randinit) {
190 		randinit = 1;
191 		srandomdev();
192 	}
193 #endif
194 	if (mfs) {
195 		mfs_ppid = getpid();
196 		(void) signal(SIGUSR1, started);
197 		if ((i = fork())) {
198 			if (i == -1)
199 				err(10, "mfs");
200 			if (waitpid(i, &status, 0) != -1 && WIFEXITED(status))
201 				exit(WEXITSTATUS(status));
202 			exit(11);
203 			/* NOTREACHED */
204 		}
205 #ifdef STANDALONE
206 		(void)malloc(0);
207 #else
208 		raise_data_limit();
209 #endif
210 		if(filename) {
211 			unsigned char buf[BUFSIZ];
212 			unsigned long l,l1;
213 			fd = open(filename,O_RDWR|O_TRUNC|O_CREAT,0644);
214 			if(fd < 0)
215 				err(12, "%s", filename);
216 			for(l=0;l< fssize * sectorsize;l += l1) {
217 				l1 = fssize * sectorsize;
218 				if (BUFSIZ < l1)
219 					l1 = BUFSIZ;
220 				if (l1 != write(fd,buf,l1))
221 					err(12, "%s", filename);
222 			}
223 			membase = mmap(
224 				0,
225 				fssize * sectorsize,
226 				PROT_READ|PROT_WRITE,
227 				MAP_SHARED,
228 				fd,
229 				0);
230 			if(membase == MAP_FAILED)
231 				err(12, "mmap");
232 			close(fd);
233 		} else {
234 #ifndef STANDALONE
235 			get_memleft();
236 #endif
237 			if (fssize * sectorsize > (memleft - 131072))
238 				fssize = (memleft - 131072) / sectorsize;
239 			if ((membase = malloc(fssize * sectorsize)) == NULL)
240 				errx(13, "malloc failed");
241 		}
242 	}
243 	fsi = fi;
244 	fso = fo;
245 	if (Oflag) {
246 		sblock.fs_inodefmt = FS_42INODEFMT;
247 		sblock.fs_maxsymlinklen = 0;
248 	} else {
249 		sblock.fs_inodefmt = FS_44INODEFMT;
250 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
251 	}
252 	if (Uflag)
253 		sblock.fs_flags |= FS_DOSOFTDEP;
254 	/*
255 	 * Validate the given file system size.
256 	 * Verify that its last block can actually be accessed.
257 	 */
258 	if (fssize <= 0)
259 		printf("preposterous size %d\n", fssize), exit(13);
260 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
261 		 (char *)&sblock);
262 	/*
263 	 * collect and verify the sector and track info
264 	 */
265 	sblock.fs_nsect = nsectors;
266 	sblock.fs_ntrak = ntracks;
267 	if (sblock.fs_ntrak <= 0)
268 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
269 	if (sblock.fs_nsect <= 0)
270 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
271 	/*
272 	 * collect and verify the filesystem density info
273 	 */
274 	sblock.fs_avgfilesize = avgfilesize;
275 	sblock.fs_avgfpdir = avgfilesperdir;
276 	if (sblock.fs_avgfilesize <= 0)
277 		printf("illegal expected average file size %d\n",
278 		    sblock.fs_avgfilesize), exit(14);
279 	if (sblock.fs_avgfpdir <= 0)
280 		printf("illegal expected number of files per directory %d\n",
281 		    sblock.fs_avgfpdir), exit(15);
282 	/*
283 	 * collect and verify the block and fragment sizes
284 	 */
285 	sblock.fs_bsize = bsize;
286 	sblock.fs_fsize = fsize;
287 	if (!POWEROF2(sblock.fs_bsize)) {
288 		printf("block size must be a power of 2, not %d\n",
289 		    sblock.fs_bsize);
290 		exit(16);
291 	}
292 	if (!POWEROF2(sblock.fs_fsize)) {
293 		printf("fragment size must be a power of 2, not %d\n",
294 		    sblock.fs_fsize);
295 		exit(17);
296 	}
297 	if (sblock.fs_fsize < sectorsize) {
298 		printf("fragment size %d is too small, minimum is %d\n",
299 		    sblock.fs_fsize, sectorsize);
300 		exit(18);
301 	}
302 	if (sblock.fs_bsize < MINBSIZE) {
303 		printf("block size %d is too small, minimum is %d\n",
304 		    sblock.fs_bsize, MINBSIZE);
305 		exit(19);
306 	}
307 	if (sblock.fs_bsize < sblock.fs_fsize) {
308 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
309 		    sblock.fs_bsize, sblock.fs_fsize);
310 		exit(20);
311 	}
312 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
313 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
314 	sblock.fs_qbmask = ~sblock.fs_bmask;
315 	sblock.fs_qfmask = ~sblock.fs_fmask;
316 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
317 		sblock.fs_bshift++;
318 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
319 		sblock.fs_fshift++;
320 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
321 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
322 		sblock.fs_fragshift++;
323 	if (sblock.fs_frag > MAXFRAG) {
324 		printf("fragment size %d is too small, minimum with block size %d is %d\n",
325 		    sblock.fs_fsize, sblock.fs_bsize,
326 		    sblock.fs_bsize / MAXFRAG);
327 		exit(21);
328 	}
329 	sblock.fs_nrpos = nrpos;
330 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
331 	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct dinode);
332 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
333 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
334 		sblock.fs_fsbtodb++;
335 	sblock.fs_sblkno =
336 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
337 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
338 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
339 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
340 	sblock.fs_cgoffset = roundup(
341 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
342 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
343 		sblock.fs_cgmask <<= 1;
344 	if (!POWEROF2(sblock.fs_ntrak))
345 		sblock.fs_cgmask <<= 1;
346 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
347 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
348 		sizepb *= NINDIR(&sblock);
349 		sblock.fs_maxfilesize += sizepb;
350 	}
351 	/*
352 	 * Validate specified/determined secpercyl
353 	 * and calculate minimum cylinders per group.
354 	 */
355 	sblock.fs_spc = secpercyl;
356 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
357 	     sblock.fs_cpc > 1 && (i & 1) == 0;
358 	     sblock.fs_cpc >>= 1, i >>= 1)
359 		/* void */;
360 	mincpc = sblock.fs_cpc;
361 	bpcg = sblock.fs_spc * sectorsize;
362 	inospercg = roundup(bpcg / sizeof(struct dinode), INOPB(&sblock));
363 	if (inospercg > MAXIPG(&sblock))
364 		inospercg = MAXIPG(&sblock);
365 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
366 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
367 	    sblock.fs_spc);
368 	mincpg = roundup(mincpgcnt, mincpc);
369 	/*
370 	 * Ensure that cylinder group with mincpg has enough space
371 	 * for block maps.
372 	 */
373 	sblock.fs_cpg = mincpg;
374 	sblock.fs_ipg = inospercg;
375 	if (maxcontig > 1)
376 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
377 	mapcramped = 0;
378 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
379 		mapcramped = 1;
380 		if (sblock.fs_bsize < MAXBSIZE) {
381 			sblock.fs_bsize <<= 1;
382 			if ((i & 1) == 0) {
383 				i >>= 1;
384 			} else {
385 				sblock.fs_cpc <<= 1;
386 				mincpc <<= 1;
387 				mincpg = roundup(mincpgcnt, mincpc);
388 				sblock.fs_cpg = mincpg;
389 			}
390 			sblock.fs_frag <<= 1;
391 			sblock.fs_fragshift += 1;
392 			if (sblock.fs_frag <= MAXFRAG)
393 				continue;
394 		}
395 		if (sblock.fs_fsize == sblock.fs_bsize) {
396 			printf("There is no block size that");
397 			printf(" can support this disk\n");
398 			exit(22);
399 		}
400 		sblock.fs_frag >>= 1;
401 		sblock.fs_fragshift -= 1;
402 		sblock.fs_fsize <<= 1;
403 		sblock.fs_nspf <<= 1;
404 	}
405 	/*
406 	 * Ensure that cylinder group with mincpg has enough space for inodes.
407 	 */
408 	inodecramped = 0;
409 	inospercg = calcipg(mincpg, bpcg, &usedb);
410 	sblock.fs_ipg = inospercg;
411 	while (inospercg > MAXIPG(&sblock)) {
412 		inodecramped = 1;
413 		if (mincpc == 1 || sblock.fs_frag == 1 ||
414 		    sblock.fs_bsize == MINBSIZE)
415 			break;
416 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
417 		       "minimum bytes per inode is",
418 		       (int)((mincpg * (off_t)bpcg - usedb)
419 			     / MAXIPG(&sblock) + 1));
420 		sblock.fs_bsize >>= 1;
421 		sblock.fs_frag >>= 1;
422 		sblock.fs_fragshift -= 1;
423 		mincpc >>= 1;
424 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
425 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
426 			sblock.fs_bsize <<= 1;
427 			break;
428 		}
429 		mincpg = sblock.fs_cpg;
430 		inospercg = calcipg(mincpg, bpcg, &usedb);
431 		sblock.fs_ipg = inospercg;
432 	}
433 	if (inodecramped) {
434 		if (inospercg > MAXIPG(&sblock)) {
435 			printf("Minimum bytes per inode is %d\n",
436 			       (int)((mincpg * (off_t)bpcg - usedb)
437 				     / MAXIPG(&sblock) + 1));
438 		} else if (!mapcramped) {
439 			printf("With %d bytes per inode, ", density);
440 			printf("minimum cylinders per group is %ld\n", mincpg);
441 		}
442 	}
443 	if (mapcramped) {
444 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
445 		printf("minimum cylinders per group is %ld\n", mincpg);
446 	}
447 	if (inodecramped || mapcramped) {
448 		if (sblock.fs_bsize != bsize)
449 			printf("%s to be changed from %d to %d\n",
450 			    "This requires the block size",
451 			    bsize, sblock.fs_bsize);
452 		if (sblock.fs_fsize != fsize)
453 			printf("\t%s to be changed from %d to %d\n",
454 			    "and the fragment size",
455 			    fsize, sblock.fs_fsize);
456 		exit(23);
457 	}
458 	/*
459 	 * Calculate the number of cylinders per group
460 	 */
461 	sblock.fs_cpg = cpg;
462 	if (sblock.fs_cpg % mincpc != 0) {
463 		printf("%s groups must have a multiple of %ld cylinders\n",
464 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
465 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
466 		if (!cpgflg)
467 			cpg = sblock.fs_cpg;
468 	}
469 	/*
470 	 * Must ensure there is enough space for inodes.
471 	 */
472 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
473 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
474 		inodecramped = 1;
475 		sblock.fs_cpg -= mincpc;
476 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
477 	}
478 	/*
479 	 * Must ensure there is enough space to hold block map.
480 	 */
481 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
482 		mapcramped = 1;
483 		sblock.fs_cpg -= mincpc;
484 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
485 	}
486 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
487 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
488 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
489 		exit(24);
490 	}
491 	if (sblock.fs_cpg < mincpg) {
492 		printf("cylinder groups must have at least %ld cylinders\n",
493 			mincpg);
494 		exit(25);
495 	} else if (sblock.fs_cpg != cpg) {
496 		if (!cpgflg)
497 			printf("Warning: ");
498 		else if (!mapcramped && !inodecramped)
499 			exit(26);
500 		if (mapcramped && inodecramped)
501 			printf("Block size and bytes per inode restrict");
502 		else if (mapcramped)
503 			printf("Block size restricts");
504 		else
505 			printf("Bytes per inode restrict");
506 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
507 		if (cpgflg)
508 			exit(27);
509 	}
510 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
511 	/*
512 	 * Now have size for file system and nsect and ntrak.
513 	 * Determine number of cylinders and blocks in the file system.
514 	 */
515 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
516 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
517 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
518 		sblock.fs_ncyl++;
519 		warn = 1;
520 	}
521 	if (sblock.fs_ncyl < 1) {
522 		printf("file systems must have at least one cylinder\n");
523 		exit(28);
524 	}
525 	/*
526 	 * Determine feasability/values of rotational layout tables.
527 	 *
528 	 * The size of the rotational layout tables is limited by the
529 	 * size of the superblock, SBSIZE. The amount of space available
530 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
531 	 * The size of these tables is inversely proportional to the block
532 	 * size of the file system. The size increases if sectors per track
533 	 * are not powers of two, because more cylinders must be described
534 	 * by the tables before the rotational pattern repeats (fs_cpc).
535 	 */
536 	sblock.fs_interleave = interleave;
537 	sblock.fs_trackskew = trackskew;
538 	sblock.fs_npsect = nphyssectors;
539 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
540 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
541 	if (sblock.fs_sbsize > SBSIZE)
542 		sblock.fs_sbsize = SBSIZE;
543 	if (sblock.fs_ntrak == 1) {
544 		sblock.fs_cpc = 0;
545 		goto next;
546 	}
547 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
548 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
549 	totalsbsize = sizeof(struct fs) + rotblsize;
550 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
551 		/* use old static table space */
552 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
553 		    (char *)(&sblock.fs_firstfield);
554 		sblock.fs_rotbloff = &sblock.fs_space[0] -
555 		    (u_char *)(&sblock.fs_firstfield);
556 	} else {
557 		/* use dynamic table space */
558 		sblock.fs_postbloff = &sblock.fs_space[0] -
559 		    (u_char *)(&sblock.fs_firstfield);
560 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
561 		totalsbsize += postblsize;
562 	}
563 	if (totalsbsize > SBSIZE ||
564 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
565 		printf("%s %s %d %s %d.%s",
566 		    "Warning: insufficient space in super block for\n",
567 		    "rotational layout tables with nsect", sblock.fs_nsect,
568 		    "and ntrak", sblock.fs_ntrak,
569 		    "\nFile system performance may be impaired.\n");
570 		sblock.fs_cpc = 0;
571 		goto next;
572 	}
573 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
574 	if (sblock.fs_sbsize > SBSIZE)
575 		sblock.fs_sbsize = SBSIZE;
576 	/*
577 	 * calculate the available blocks for each rotational position
578 	 */
579 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
580 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
581 			fs_postbl(&sblock, cylno)[rpos] = -1;
582 	for (i = (rotblsize - 1) * sblock.fs_frag;
583 	     i >= 0; i -= sblock.fs_frag) {
584 		cylno = cbtocylno(&sblock, i);
585 		rpos = cbtorpos(&sblock, i);
586 		blk = fragstoblks(&sblock, i);
587 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
588 			fs_rotbl(&sblock)[blk] = 0;
589 		else
590 			fs_rotbl(&sblock)[blk] =
591 			    fs_postbl(&sblock, cylno)[rpos] - blk;
592 		fs_postbl(&sblock, cylno)[rpos] = blk;
593 	}
594 next:
595 	/*
596 	 * Compute/validate number of cylinder groups.
597 	 */
598 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
599 	if (sblock.fs_ncyl % sblock.fs_cpg)
600 		sblock.fs_ncg++;
601 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
602 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
603 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
604 		printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n",
605 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
606 		    (long)(sblock.fs_fpg / sblock.fs_frag));
607 		printf("number of cylinders per cylinder group (%d) %s.\n",
608 		    sblock.fs_cpg, "must be increased");
609 		exit(29);
610 	}
611 	j = sblock.fs_ncg - 1;
612 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
613 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
614 		if (j == 0) {
615 			printf("Filesystem must have at least %d sectors\n",
616 			    NSPF(&sblock) *
617 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
618 			exit(30);
619 		}
620 		printf(
621 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n",
622 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
623 		    i / sblock.fs_frag);
624 		printf(
625 "    cylinder group. This implies %ld sector(s) cannot be allocated.\n",
626 		    i * NSPF(&sblock));
627 		sblock.fs_ncg--;
628 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
629 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
630 		    NSPF(&sblock);
631 		warn = 0;
632 	}
633 	if (warn && !mfs) {
634 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
635 		    sblock.fs_spc -
636 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
637 		    * sblock.fs_spc));
638 	}
639 	/*
640 	 * fill in remaining fields of the super block
641 	 */
642 	sblock.fs_csaddr = cgdmin(&sblock, 0);
643 	sblock.fs_cssize =
644 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
645 	/*
646 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
647 	 * longer used. However, we still initialise them so that the
648 	 * filesystem remains compatible with old kernels.
649 	 */
650 	i = sblock.fs_bsize / sizeof(struct csum);
651 	sblock.fs_csmask = ~(i - 1);
652 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
653 		sblock.fs_csshift++;
654 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
655 	if (fscs == NULL)
656 		errx(31, "calloc failed");
657 	sblock.fs_magic = FS_MAGIC;
658 	sblock.fs_rotdelay = rotdelay;
659 	sblock.fs_minfree = minfree;
660 	sblock.fs_maxcontig = maxcontig;
661 	sblock.fs_maxbpg = maxbpg;
662 	sblock.fs_rps = rpm / 60;
663 	sblock.fs_optim = opt;
664 	sblock.fs_cgrotor = 0;
665 	sblock.fs_cstotal.cs_ndir = 0;
666 	sblock.fs_cstotal.cs_nbfree = 0;
667 	sblock.fs_cstotal.cs_nifree = 0;
668 	sblock.fs_cstotal.cs_nffree = 0;
669 	sblock.fs_fmod = 0;
670 	sblock.fs_ronly = 0;
671 	sblock.fs_clean = 1;
672 #ifdef FSIRAND
673 	sblock.fs_id[0] = (long)utime;
674 	sblock.fs_id[1] = random();
675 #endif
676 
677 	/*
678 	 * Dump out summary information about file system.
679 	 */
680 	if (!mfs) {
681 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
682 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
683 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
684 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
685 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n",
686 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
687 		    sblock.fs_ncg, sblock.fs_cpg,
688 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
689 		    sblock.fs_ipg,
690 			sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : "");
691 #undef B2MBFACTOR
692 	}
693 	/*
694 	 * Now build the cylinders group blocks and
695 	 * then print out indices of cylinder groups.
696 	 */
697 	if (!mfs)
698 		printf("super-block backups (for fsck -b #) at:\n");
699 	i = 0;
700 	width = charsperline();
701 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
702 		initcg(cylno, utime);
703 		if (mfs)
704 			continue;
705 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s",
706 		    fsbtodb(&sblock, cgsblock(&sblock, cylno)),
707 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
708 		if (i + j >= width) {
709 			printf("\n");
710 			i = 0;
711 		}
712 		i += j;
713 		printf("%s", tmpbuf);
714 		fflush(stdout);
715 	}
716 	if (!mfs)
717 		printf("\n");
718 	if (Nflag && !mfs)
719 		exit(0);
720 	/*
721 	 * Now construct the initial file system,
722 	 * then write out the super-block.
723 	 */
724 	fsinit(utime);
725 	sblock.fs_time = utime;
726 	wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
727 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
728 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
729 			sblock.fs_cssize - i < sblock.fs_bsize ?
730 			    sblock.fs_cssize - i : sblock.fs_bsize,
731 			((char *)fscs) + i);
732 	/*
733 	 * Write out the duplicate super blocks
734 	 */
735 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
736 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
737 		    sbsize, (char *)&sblock);
738 	wtfsflush();
739 	/*
740 	 * Update information about this partion in pack
741 	 * label, to that it may be updated on disk.
742 	 */
743 	pp->p_fstype = FS_BSDFFS;
744 	pp->p_fsize = sblock.fs_fsize;
745 	pp->p_frag = sblock.fs_frag;
746 	pp->p_cpg = sblock.fs_cpg;
747 	/*
748 	 * Notify parent process of success.
749 	 * Dissociate from session and tty.
750 	 */
751 	if (mfs) {
752 		kill(mfs_ppid, SIGUSR1);
753 		(void) setsid();
754 		(void) close(0);
755 		(void) close(1);
756 		(void) close(2);
757 		(void) chdir("/");
758 	}
759 }
760 
761 /*
762  * Initialize a cylinder group.
763  */
764 void
765 initcg(int cylno, time_t utime)
766 {
767 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
768 	long i;
769 	register struct csum *cs;
770 #ifdef FSIRAND
771 	long j;
772 #endif
773 
774 	/*
775 	 * Determine block bounds for cylinder group.
776 	 * Allow space for super block summary information in first
777 	 * cylinder group.
778 	 */
779 	cbase = cgbase(&sblock, cylno);
780 	dmax = cbase + sblock.fs_fpg;
781 	if (dmax > sblock.fs_size)
782 		dmax = sblock.fs_size;
783 	dlower = cgsblock(&sblock, cylno) - cbase;
784 	dupper = cgdmin(&sblock, cylno) - cbase;
785 	if (cylno == 0)
786 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
787 	cs = fscs + cylno;
788 	memset(&acg, 0, sblock.fs_cgsize);
789 	acg.cg_time = utime;
790 	acg.cg_magic = CG_MAGIC;
791 	acg.cg_cgx = cylno;
792 	if (cylno == sblock.fs_ncg - 1)
793 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
794 	else
795 		acg.cg_ncyl = sblock.fs_cpg;
796 	acg.cg_niblk = sblock.fs_ipg;
797 	acg.cg_ndblk = dmax - cbase;
798 	if (sblock.fs_contigsumsize > 0)
799 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
800 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
801 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
802 	acg.cg_iusedoff = acg.cg_boff +
803 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
804 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
805 	if (sblock.fs_contigsumsize <= 0) {
806 		acg.cg_nextfreeoff = acg.cg_freeoff +
807 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
808 	} else {
809 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
810 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
811 		    sizeof(u_int32_t);
812 		acg.cg_clustersumoff =
813 		    roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
814 		acg.cg_clusteroff = acg.cg_clustersumoff +
815 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
816 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
817 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
818 	}
819 	if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
820 		printf("Panic: cylinder group too big\n");
821 		exit(37);
822 	}
823 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
824 	if (cylno == 0)
825 		for (i = 0; i < ROOTINO; i++) {
826 			setbit(cg_inosused(&acg), i);
827 			acg.cg_cs.cs_nifree--;
828 		}
829 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
830 #ifdef FSIRAND
831 		for (j = 0; j < sblock.fs_bsize / sizeof(struct dinode); j++)
832 			zino[j].di_gen = random();
833 #endif
834 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
835 		    sblock.fs_bsize, (char *)zino);
836 	}
837 	if (cylno > 0) {
838 		/*
839 		 * In cylno 0, beginning space is reserved
840 		 * for boot and super blocks.
841 		 */
842 		for (d = 0; d < dlower; d += sblock.fs_frag) {
843 			blkno = d / sblock.fs_frag;
844 			setblock(&sblock, cg_blksfree(&acg), blkno);
845 			if (sblock.fs_contigsumsize > 0)
846 				setbit(cg_clustersfree(&acg), blkno);
847 			acg.cg_cs.cs_nbfree++;
848 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
849 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
850 			    [cbtorpos(&sblock, d)]++;
851 		}
852 		sblock.fs_dsize += dlower;
853 	}
854 	sblock.fs_dsize += acg.cg_ndblk - dupper;
855 	if ((i = dupper % sblock.fs_frag)) {
856 		acg.cg_frsum[sblock.fs_frag - i]++;
857 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
858 			setbit(cg_blksfree(&acg), dupper);
859 			acg.cg_cs.cs_nffree++;
860 		}
861 	}
862 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
863 		blkno = d / sblock.fs_frag;
864 		setblock(&sblock, cg_blksfree(&acg), blkno);
865 		if (sblock.fs_contigsumsize > 0)
866 			setbit(cg_clustersfree(&acg), blkno);
867 		acg.cg_cs.cs_nbfree++;
868 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
869 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
870 		    [cbtorpos(&sblock, d)]++;
871 		d += sblock.fs_frag;
872 	}
873 	if (d < dmax - cbase) {
874 		acg.cg_frsum[dmax - cbase - d]++;
875 		for (; d < dmax - cbase; d++) {
876 			setbit(cg_blksfree(&acg), d);
877 			acg.cg_cs.cs_nffree++;
878 		}
879 	}
880 	if (sblock.fs_contigsumsize > 0) {
881 		int32_t *sump = cg_clustersum(&acg);
882 		u_char *mapp = cg_clustersfree(&acg);
883 		int map = *mapp++;
884 		int bit = 1;
885 		int run = 0;
886 
887 		for (i = 0; i < acg.cg_nclusterblks; i++) {
888 			if ((map & bit) != 0) {
889 				run++;
890 			} else if (run != 0) {
891 				if (run > sblock.fs_contigsumsize)
892 					run = sblock.fs_contigsumsize;
893 				sump[run]++;
894 				run = 0;
895 			}
896 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
897 				bit <<= 1;
898 			} else {
899 				map = *mapp++;
900 				bit = 1;
901 			}
902 		}
903 		if (run != 0) {
904 			if (run > sblock.fs_contigsumsize)
905 				run = sblock.fs_contigsumsize;
906 			sump[run]++;
907 		}
908 	}
909 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
910 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
911 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
912 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
913 	*cs = acg.cg_cs;
914 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
915 		sblock.fs_bsize, (char *)&acg);
916 }
917 
918 /*
919  * initialize the file system
920  */
921 struct dinode node;
922 
923 #ifdef LOSTDIR
924 #define PREDEFDIR 3
925 #else
926 #define PREDEFDIR 2
927 #endif
928 
929 struct direct root_dir[] = {
930 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
931 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
932 #ifdef LOSTDIR
933 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
934 #endif
935 };
936 struct odirect {
937 	u_long	d_ino;
938 	u_short	d_reclen;
939 	u_short	d_namlen;
940 	u_char	d_name[MAXNAMLEN + 1];
941 } oroot_dir[] = {
942 	{ ROOTINO, sizeof(struct direct), 1, "." },
943 	{ ROOTINO, sizeof(struct direct), 2, ".." },
944 #ifdef LOSTDIR
945 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
946 #endif
947 };
948 #ifdef LOSTDIR
949 struct direct lost_found_dir[] = {
950 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
951 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
952 	{ 0, DIRBLKSIZ, 0, 0, 0 },
953 };
954 struct odirect olost_found_dir[] = {
955 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
956 	{ ROOTINO, sizeof(struct direct), 2, ".." },
957 	{ 0, DIRBLKSIZ, 0, 0 },
958 };
959 #endif
960 char buf[MAXBSIZE];
961 
962 void
963 fsinit(time_t utime)
964 {
965 #ifdef LOSTDIR
966 	int i;
967 #endif
968 
969 	/*
970 	 * initialize the node
971 	 */
972 	node.di_atime = utime;
973 	node.di_mtime = utime;
974 	node.di_ctime = utime;
975 #ifdef LOSTDIR
976 	/*
977 	 * create the lost+found directory
978 	 */
979 	if (Oflag) {
980 		(void)makedir((struct direct *)olost_found_dir, 2);
981 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
982 			memmove(&buf[i], &olost_found_dir[2],
983 			    DIRSIZ(0, &olost_found_dir[2]));
984 	} else {
985 		(void)makedir(lost_found_dir, 2);
986 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
987 			memmove(&buf[i], &lost_found_dir[2],
988 			    DIRSIZ(0, &lost_found_dir[2]));
989 	}
990 	node.di_mode = IFDIR | UMASK;
991 	node.di_nlink = 2;
992 	node.di_size = sblock.fs_bsize;
993 	node.di_db[0] = alloc(node.di_size, node.di_mode);
994 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
995 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
996 	iput(&node, LOSTFOUNDINO);
997 #endif
998 	/*
999 	 * create the root directory
1000 	 */
1001 	if (mfs)
1002 		node.di_mode = IFDIR | 01777;
1003 	else
1004 		node.di_mode = IFDIR | UMASK;
1005 	node.di_nlink = PREDEFDIR;
1006 	if (Oflag)
1007 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
1008 	else
1009 		node.di_size = makedir(root_dir, PREDEFDIR);
1010 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
1011 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1012 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
1013 	iput(&node, ROOTINO);
1014 }
1015 
1016 /*
1017  * construct a set of directory entries in "buf".
1018  * return size of directory.
1019  */
1020 int
1021 makedir(register struct direct *protodir, int entries)
1022 {
1023 	char *cp;
1024 	int i, spcleft;
1025 
1026 	spcleft = DIRBLKSIZ;
1027 	for (cp = buf, i = 0; i < entries - 1; i++) {
1028 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
1029 		memmove(cp, &protodir[i], protodir[i].d_reclen);
1030 		cp += protodir[i].d_reclen;
1031 		spcleft -= protodir[i].d_reclen;
1032 	}
1033 	protodir[i].d_reclen = spcleft;
1034 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
1035 	return (DIRBLKSIZ);
1036 }
1037 
1038 /*
1039  * allocate a block or frag
1040  */
1041 daddr_t
1042 alloc(int size, int mode)
1043 {
1044 	int i, frag;
1045 	daddr_t d, blkno;
1046 
1047 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1048 	    (char *)&acg);
1049 	if (acg.cg_magic != CG_MAGIC) {
1050 		printf("cg 0: bad magic number\n");
1051 		return (0);
1052 	}
1053 	if (acg.cg_cs.cs_nbfree == 0) {
1054 		printf("first cylinder group ran out of space\n");
1055 		return (0);
1056 	}
1057 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1058 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1059 			goto goth;
1060 	printf("internal error: can't find block in cyl 0\n");
1061 	return (0);
1062 goth:
1063 	blkno = fragstoblks(&sblock, d);
1064 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1065 	if (sblock.fs_contigsumsize > 0)
1066 		clrbit(cg_clustersfree(&acg), blkno);
1067 	acg.cg_cs.cs_nbfree--;
1068 	sblock.fs_cstotal.cs_nbfree--;
1069 	fscs[0].cs_nbfree--;
1070 	if (mode & IFDIR) {
1071 		acg.cg_cs.cs_ndir++;
1072 		sblock.fs_cstotal.cs_ndir++;
1073 		fscs[0].cs_ndir++;
1074 	}
1075 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1076 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1077 	if (size != sblock.fs_bsize) {
1078 		frag = howmany(size, sblock.fs_fsize);
1079 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1080 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1081 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1082 		acg.cg_frsum[sblock.fs_frag - frag]++;
1083 		for (i = frag; i < sblock.fs_frag; i++)
1084 			setbit(cg_blksfree(&acg), d + i);
1085 	}
1086 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1087 	    (char *)&acg);
1088 	return (d);
1089 }
1090 
1091 /*
1092  * Calculate number of inodes per group.
1093  */
1094 long
1095 calcipg(long cpg, long bpcg, off_t *usedbp)
1096 {
1097 	int i;
1098 	long ipg, new_ipg, ncg, ncyl;
1099 	off_t usedb;
1100 
1101 	/*
1102 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1103 	 * Note that fssize is still in sectors, not filesystem blocks.
1104 	 */
1105 	ncyl = howmany(fssize, (u_int)secpercyl);
1106 	ncg = howmany(ncyl, cpg);
1107 	/*
1108 	 * Iterate a few times to allow for ipg depending on itself.
1109 	 */
1110 	ipg = 0;
1111 	for (i = 0; i < 10; i++) {
1112 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1113 			* NSPF(&sblock) * (off_t)sectorsize;
1114 		new_ipg = (cpg * (quad_t)bpcg - usedb) / density * fssize
1115 			  / ncg / secpercyl / cpg;
1116 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1117 		if (new_ipg == ipg)
1118 			break;
1119 		ipg = new_ipg;
1120 	}
1121 	*usedbp = usedb;
1122 	return (ipg);
1123 }
1124 
1125 /*
1126  * Allocate an inode on the disk
1127  */
1128 void
1129 iput(register struct dinode *ip, register ino_t ino)
1130 {
1131 	struct dinode buf[MAXINOPB];
1132 	daddr_t d;
1133 	int c;
1134 
1135 #ifdef FSIRAND
1136 	ip->di_gen = random();
1137 #endif
1138 	c = ino_to_cg(&sblock, ino);
1139 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1140 	    (char *)&acg);
1141 	if (acg.cg_magic != CG_MAGIC) {
1142 		printf("cg 0: bad magic number\n");
1143 		exit(31);
1144 	}
1145 	acg.cg_cs.cs_nifree--;
1146 	setbit(cg_inosused(&acg), ino);
1147 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1148 	    (char *)&acg);
1149 	sblock.fs_cstotal.cs_nifree--;
1150 	fscs[0].cs_nifree--;
1151 	if (ino >= sblock.fs_ipg * sblock.fs_ncg) {
1152 		printf("fsinit: inode value out of range (%d).\n", ino);
1153 		exit(32);
1154 	}
1155 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1156 	rdfs(d, sblock.fs_bsize, (char *)buf);
1157 	buf[ino_to_fsbo(&sblock, ino)] = *ip;
1158 	wtfs(d, sblock.fs_bsize, (char *)buf);
1159 }
1160 
1161 /*
1162  * Notify parent process that the filesystem has created itself successfully.
1163  *
1164  * We have to wait until the mount has actually completed!
1165  */
1166 void
1167 started(void)
1168 {
1169 	int retry = 100;	/* 10 seconds, 100ms */
1170 
1171 	while (mfs_ppid && retry) {
1172 		struct stat st;
1173 
1174 		if (
1175 		    stat(mfs_mtpt, &st) < 0 ||
1176 		    st.st_dev != mfs_mtstat.st_dev
1177 		) {
1178 			break;
1179 		}
1180 		usleep(100*1000);
1181 		--retry;
1182 	}
1183 	if (retry == 0) {
1184 		fatal("mfs mount failed waiting for mount to go active");
1185 	}
1186 	exit(0);
1187 }
1188 
1189 #ifdef STANDALONE
1190 /*
1191  * Replace libc function with one suited to our needs.
1192  */
1193 caddr_t
1194 malloc(register u_long size)
1195 {
1196 	char *base, *i;
1197 	static u_long pgsz;
1198 	struct rlimit rlp;
1199 
1200 	if (pgsz == 0) {
1201 		base = sbrk(0);
1202 		pgsz = getpagesize() - 1;
1203 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
1204 		base = sbrk(i - base);
1205 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1206 			warn("getrlimit");
1207 		rlp.rlim_cur = rlp.rlim_max;
1208 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1209 			warn("setrlimit");
1210 		memleft = rlp.rlim_max - (u_long)base;
1211 	}
1212 	size = (size + pgsz) &~ pgsz;
1213 	if (size > memleft)
1214 		size = memleft;
1215 	memleft -= size;
1216 	if (size == 0)
1217 		return (0);
1218 	return ((caddr_t)sbrk(size));
1219 }
1220 
1221 /*
1222  * Replace libc function with one suited to our needs.
1223  */
1224 caddr_t
1225 realloc(char *ptr, u_long size)
1226 {
1227 	void *p;
1228 
1229 	if ((p = malloc(size)) == NULL)
1230 		return (NULL);
1231 	memmove(p, ptr, size);
1232 	free(ptr);
1233 	return (p);
1234 }
1235 
1236 /*
1237  * Replace libc function with one suited to our needs.
1238  */
1239 char *
1240 calloc(u_long size, u_long numelm)
1241 {
1242 	caddr_t base;
1243 
1244 	size *= numelm;
1245 	if ((base = malloc(size)) == NULL)
1246 		return (NULL);
1247 	memset(base, 0, size);
1248 	return (base);
1249 }
1250 
1251 /*
1252  * Replace libc function with one suited to our needs.
1253  */
1254 void
1255 free(char *ptr)
1256 {
1257 
1258 	/* do not worry about it for now */
1259 }
1260 
1261 #else   /* !STANDALONE */
1262 
1263 void
1264 raise_data_limit(void)
1265 {
1266 	struct rlimit rlp;
1267 
1268 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1269 		warn("getrlimit");
1270 	rlp.rlim_cur = rlp.rlim_max;
1271 	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1272 		warn("setrlimit");
1273 }
1274 
1275 #ifdef __ELF__
1276 extern char *_etext;
1277 #define etext _etext
1278 #else
1279 extern char *etext;
1280 #endif
1281 
1282 void
1283 get_memleft(void)
1284 {
1285 	static u_long pgsz;
1286 	struct rlimit rlp;
1287 	u_long freestart;
1288 	u_long dstart;
1289 	u_long memused;
1290 
1291 	pgsz = getpagesize() - 1;
1292 	dstart = ((u_long)&etext) &~ pgsz;
1293 	freestart = ((u_long)(sbrk(0) + pgsz) &~ pgsz);
1294 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1295 		warn("getrlimit");
1296 	memused = freestart - dstart;
1297 	memleft = rlp.rlim_cur - memused;
1298 }
1299 #endif  /* STANDALONE */
1300 
1301 /*
1302  * read a block from the file system
1303  */
1304 void
1305 rdfs(daddr_t bno, int size, char *bf)
1306 {
1307 	int n;
1308 
1309 	wtfsflush();
1310 	if (mfs) {
1311 		memmove(bf, membase + bno * sectorsize, size);
1312 		return;
1313 	}
1314 	if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1315 		printf("seek error: %ld\n", (long)bno);
1316 		err(33, "rdfs");
1317 	}
1318 	n = read(fsi, bf, size);
1319 	if (n != size) {
1320 		printf("read error: %ld\n", (long)bno);
1321 		err(34, "rdfs");
1322 	}
1323 }
1324 
1325 #define WCSIZE (128 * 1024)
1326 daddr_t wc_sect;		/* units of sectorsize */
1327 int wc_end;			/* bytes */
1328 static char wc[WCSIZE];		/* bytes */
1329 
1330 /*
1331  * Flush dirty write behind buffer.
1332  */
1333 void
1334 wtfsflush(void)
1335 {
1336 	int n;
1337 	if (wc_end) {
1338 		if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) {
1339 			printf("seek error: %ld\n", (long)wc_sect);
1340 			err(35, "wtfs - writecombine");
1341 		}
1342 		n = write(fso, wc, wc_end);
1343 		if (n != wc_end) {
1344 			printf("write error: %ld\n", (long)wc_sect);
1345 			err(36, "wtfs - writecombine");
1346 		}
1347 		wc_end = 0;
1348 	}
1349 }
1350 
1351 /*
1352  * write a block to the file system
1353  */
1354 void
1355 wtfs(daddr_t bno, int size, char *bf)
1356 {
1357 	int n;
1358 	int done;
1359 
1360 	if (mfs) {
1361 		memmove(membase + bno * sectorsize, bf, size);
1362 		return;
1363 	}
1364 	if (Nflag)
1365 		return;
1366 	done = 0;
1367 	if (wc_end == 0 && size <= WCSIZE) {
1368 		wc_sect = bno;
1369 		bcopy(bf, wc, size);
1370 		wc_end = size;
1371 		if (wc_end < WCSIZE)
1372 			return;
1373 		done = 1;
1374 	}
1375 	if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize &&
1376 	    wc_end + size <= WCSIZE) {
1377 		bcopy(bf, wc + wc_end, size);
1378 		wc_end += size;
1379 		if (wc_end < WCSIZE)
1380 			return;
1381 		done = 1;
1382 	}
1383 	wtfsflush();
1384 	if (done)
1385 		return;
1386 	if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1387 		printf("seek error: %ld\n", (long)bno);
1388 		err(35, "wtfs");
1389 	}
1390 	n = write(fso, bf, size);
1391 	if (n != size) {
1392 		printf("write error: %ld\n", (long)bno);
1393 		err(36, "wtfs");
1394 	}
1395 }
1396 
1397 /*
1398  * check if a block is available
1399  */
1400 int
1401 isblock(struct fs *fs, unsigned char *cp, int h)
1402 {
1403 	unsigned char mask;
1404 
1405 	switch (fs->fs_frag) {
1406 	case 8:
1407 		return (cp[h] == 0xff);
1408 	case 4:
1409 		mask = 0x0f << ((h & 0x1) << 2);
1410 		return ((cp[h >> 1] & mask) == mask);
1411 	case 2:
1412 		mask = 0x03 << ((h & 0x3) << 1);
1413 		return ((cp[h >> 2] & mask) == mask);
1414 	case 1:
1415 		mask = 0x01 << (h & 0x7);
1416 		return ((cp[h >> 3] & mask) == mask);
1417 	default:
1418 #ifdef STANDALONE
1419 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
1420 #else
1421 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1422 #endif
1423 		return (0);
1424 	}
1425 }
1426 
1427 /*
1428  * take a block out of the map
1429  */
1430 void
1431 clrblock(struct fs *fs, unsigned char *cp, int h)
1432 {
1433 	switch ((fs)->fs_frag) {
1434 	case 8:
1435 		cp[h] = 0;
1436 		return;
1437 	case 4:
1438 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1439 		return;
1440 	case 2:
1441 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1442 		return;
1443 	case 1:
1444 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1445 		return;
1446 	default:
1447 #ifdef STANDALONE
1448 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1449 #else
1450 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1451 #endif
1452 		return;
1453 	}
1454 }
1455 
1456 /*
1457  * put a block into the map
1458  */
1459 void
1460 setblock(struct fs *fs, unsigned char *cp, int h)
1461 {
1462 	switch (fs->fs_frag) {
1463 	case 8:
1464 		cp[h] = 0xff;
1465 		return;
1466 	case 4:
1467 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1468 		return;
1469 	case 2:
1470 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1471 		return;
1472 	case 1:
1473 		cp[h >> 3] |= (0x01 << (h & 0x7));
1474 		return;
1475 	default:
1476 #ifdef STANDALONE
1477 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
1478 #else
1479 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1480 #endif
1481 		return;
1482 	}
1483 }
1484 
1485 /*
1486  * Determine the number of characters in a
1487  * single line.
1488  */
1489 
1490 static int
1491 charsperline(void)
1492 {
1493 	int columns;
1494 	char *cp;
1495 	struct winsize ws;
1496 
1497 	columns = 0;
1498 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1499 		columns = ws.ws_col;
1500 	if (columns == 0 && (cp = getenv("COLUMNS")))
1501 		columns = atoi(cp);
1502 	if (columns == 0)
1503 		columns = 80;	/* last resort */
1504 	return columns;
1505 }
1506