xref: /dragonfly/sbin/newfs/mkfs.c (revision 4a65f651)
1 /*
2  * Copyright (c) 1980, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * @(#)mkfs.c	8.11 (Berkeley) 5/3/95
34  * $FreeBSD: src/sbin/newfs/mkfs.c,v 1.29.2.6 2001/09/21 19:15:21 dillon Exp $
35  * $DragonFly: src/sbin/newfs/mkfs.c,v 1.14 2007/05/20 19:29:21 dillon Exp $
36  */
37 
38 #include "defs.h"
39 
40 #ifndef STANDALONE
41 #include <stdlib.h>
42 #else
43 
44 extern int atoi(char *);
45 extern char * getenv(char *);
46 
47 #ifdef FSIRAND
48 extern long random(void);
49 extern void srandomdev(void);
50 #endif
51 
52 #endif /* STANDALONE */
53 
54 /*
55  * make file system for cylinder-group style file systems
56  */
57 
58 /*
59  * We limit the size of the inode map to be no more than a
60  * third of the cylinder group space, since we must leave at
61  * least an equal amount of space for the block map.
62  *
63  * N.B.: MAXIPG must be a multiple of INOPB(fs).
64  */
65 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
66 
67 #define UMASK		0755
68 #define MAXINOPB	(MAXBSIZE / sizeof(struct ufs1_dinode))
69 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
70 
71 /*
72  * variables set up by front end.
73  */
74 extern int	mfs;		/* run as the memory based filesystem */
75 extern char	*mfs_mtpt;	/* mount point for mfs          */
76 extern struct stat mfs_mtstat;	/* stat prior to mount          */
77 extern int	Nflag;		/* run mkfs without writing file system */
78 extern int	Oflag;		/* format as an 4.3BSD file system */
79 extern int	Uflag;		/* enable soft updates for file system */
80 extern int	fssize;		/* file system size */
81 extern int	ntracks;	/* # tracks/cylinder */
82 extern int	nsectors;	/* # sectors/track */
83 extern int	nphyssectors;	/* # sectors/track including spares */
84 extern int	secpercyl;	/* sectors per cylinder */
85 extern int	sectorsize;	/* bytes/sector */
86 extern int	realsectorsize;	/* bytes/sector in hardware*/
87 extern int	rpm;		/* revolutions/minute of drive */
88 extern int	interleave;	/* hardware sector interleave */
89 extern int	trackskew;	/* sector 0 skew, per track */
90 extern int	fsize;		/* fragment size */
91 extern int	bsize;		/* block size */
92 extern int	cpg;		/* cylinders/cylinder group */
93 extern int	cpgflg;		/* cylinders/cylinder group flag was given */
94 extern int	minfree;	/* free space threshold */
95 extern int	opt;		/* optimization preference (space or time) */
96 extern int	density;	/* number of bytes per inode */
97 extern int	maxcontig;	/* max contiguous blocks to allocate */
98 extern int	rotdelay;	/* rotational delay between blocks */
99 extern int	maxbpg;		/* maximum blocks per file in a cyl group */
100 extern int	nrpos;		/* # of distinguished rotational positions */
101 extern int	bbsize;		/* boot block size */
102 extern int	sbsize;		/* superblock size */
103 extern int	avgfilesize;	/* expected average file size */
104 extern int	avgfilesperdir;	/* expected number of files per directory */
105 extern u_long	memleft;	/* virtual memory available */
106 extern caddr_t	membase;	/* start address of memory based filesystem */
107 extern char *	filename;
108 extern struct disktab geom;
109 
110 extern void fatal(const char *fmt, ...);
111 
112 union {
113 	struct fs fs;
114 	char pad[SBSIZE];
115 } fsun;
116 #define	sblock	fsun.fs
117 struct	csum *fscs;
118 
119 union {
120 	struct cg cg;
121 	char pad[MAXBSIZE];
122 } cgun;
123 #define	acg	cgun.cg
124 
125 struct ufs1_dinode zino[MAXBSIZE / sizeof(struct ufs1_dinode)];
126 
127 int	fsi, fso;
128 static fsnode_t copyroot;
129 static fsnode_t copyhlinks;
130 #ifdef FSIRAND
131 int     randinit;
132 #endif
133 daddr_t	alloc(int, int);
134 long	calcipg(long, long, off_t *);
135 static int charsperline(void);
136 void clrblock(struct fs *, unsigned char *, int);
137 void fsinit(time_t);
138 void initcg(int, time_t);
139 int isblock(struct fs *, unsigned char *, int);
140 void iput(struct ufs1_dinode *, ino_t);
141 int makedir(struct direct *, int);
142 void parentready(int);
143 void rdfs(daddr_t, int, char *);
144 void setblock(struct fs *, unsigned char *, int);
145 void started(int);
146 void wtfs(daddr_t, int, char *);
147 void wtfsflush(void);
148 
149 #ifndef STANDALONE
150 void get_memleft(void);
151 void raise_data_limit(void);
152 #else
153 void free(char *);
154 char * calloc(u_long, u_long);
155 caddr_t malloc(u_long);
156 caddr_t realloc(char *, u_long);
157 #endif
158 
159 int mfs_ppid = 0;
160 int parentready_signalled;
161 
162 void
163 mkfs(char *fsys, int fi, int fo, const char *mfscopy)
164 {
165 	long i, mincpc, mincpg, inospercg;
166 	long cylno, rpos, blk, j, emitwarn = 0;
167 	long used, mincpgcnt, bpcg;
168 	off_t usedb;
169 	long mapcramped, inodecramped;
170 	long postblsize, rotblsize, totalsbsize;
171 	int status, fd;
172 	time_t utime;
173 	quad_t sizepb;
174 	int width;
175 	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
176 
177 #ifndef STANDALONE
178 	time(&utime);
179 #endif
180 #ifdef FSIRAND
181 	if (!randinit) {
182 		randinit = 1;
183 		srandomdev();
184 	}
185 #endif
186 	if (mfs) {
187 		int omask;
188 		pid_t child;
189 
190 		mfs_ppid = getpid();
191 		signal(SIGUSR1, parentready);
192 		if ((child = fork()) != 0) {
193 			/*
194 			 * Parent
195 			 */
196 			if (child == -1)
197 				err(10, "mfs");
198 			if (mfscopy)
199 			    copyroot = FSCopy(&copyhlinks, mfscopy);
200 			signal(SIGUSR1, started);
201 			kill(child, SIGUSR1);
202 			while (waitpid(child, &status, 0) != child)
203 				;
204 			exit(WEXITSTATUS(status));
205 			/* NOTREACHED */
206 		}
207 
208 		/*
209 		 * Child
210 		 */
211 		omask = sigblock(sigmask(SIGUSR1));
212 		while (parentready_signalled == 0)
213 			sigpause(omask);
214 		sigsetmask(omask);
215 #ifdef STANDALONE
216 		malloc(0);
217 #else
218 		raise_data_limit();
219 #endif
220 		if (filename != NULL) {
221 			unsigned char buf[BUFSIZ];
222 			unsigned long l, l1;
223 			ssize_t w;
224 
225 			fd = open(filename, O_RDWR|O_TRUNC|O_CREAT, 0644);
226 			if(fd < 0)
227 				err(12, "%s", filename);
228 			l1 = fssize * sectorsize;
229 			if (l1 > BUFSIZ)
230 				l1 = BUFSIZ;
231 			for (l = 0; l < (u_long)fssize * (u_long)sectorsize; l += l1) {
232 				w = write(fd, buf, l1);
233 				if (w < 0 || (u_long)w != l1)
234 					err(12, "%s", filename);
235 			}
236 			membase = mmap(
237 				0,
238 				fssize * sectorsize,
239 				PROT_READ|PROT_WRITE,
240 				MAP_SHARED,
241 				fd,
242 				0);
243 			if(membase == MAP_FAILED)
244 				err(12, "mmap");
245 			close(fd);
246 		} else {
247 #ifndef STANDALONE
248 			get_memleft();
249 #endif
250 			if ((u_long)fssize * (u_long)sectorsize >
251 			    (memleft - 131072))
252 				fssize = (memleft - 131072) / sectorsize;
253 			if ((membase = malloc(fssize * sectorsize)) == NULL)
254 				errx(13, "malloc failed");
255 		}
256 	}
257 	fsi = fi;
258 	fso = fo;
259 	if (Oflag) {
260 		sblock.fs_inodefmt = FS_42INODEFMT;
261 		sblock.fs_maxsymlinklen = 0;
262 	} else {
263 		sblock.fs_inodefmt = FS_44INODEFMT;
264 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
265 	}
266 	if (Uflag)
267 		sblock.fs_flags |= FS_DOSOFTDEP;
268 	/*
269 	 * Validate the given file system size.
270 	 * Verify that its last block can actually be accessed.
271 	 */
272 	if (fssize <= 0)
273 		printf("preposterous size %d\n", fssize), exit(13);
274 	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
275 		 (char *)&sblock);
276 	/*
277 	 * collect and verify the sector and track info
278 	 */
279 	sblock.fs_nsect = nsectors;
280 	sblock.fs_ntrak = ntracks;
281 	if (sblock.fs_ntrak <= 0)
282 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
283 	if (sblock.fs_nsect <= 0)
284 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
285 	/*
286 	 * collect and verify the filesystem density info
287 	 */
288 	sblock.fs_avgfilesize = avgfilesize;
289 	sblock.fs_avgfpdir = avgfilesperdir;
290 	if (sblock.fs_avgfilesize <= 0)
291 		printf("illegal expected average file size %d\n",
292 		    sblock.fs_avgfilesize), exit(14);
293 	if (sblock.fs_avgfpdir <= 0)
294 		printf("illegal expected number of files per directory %d\n",
295 		    sblock.fs_avgfpdir), exit(15);
296 	/*
297 	 * collect and verify the block and fragment sizes
298 	 */
299 	sblock.fs_bsize = bsize;
300 	sblock.fs_fsize = fsize;
301 	if (!POWEROF2(sblock.fs_bsize)) {
302 		printf("block size must be a power of 2, not %d\n",
303 		    sblock.fs_bsize);
304 		exit(16);
305 	}
306 	if (!POWEROF2(sblock.fs_fsize)) {
307 		printf("fragment size must be a power of 2, not %d\n",
308 		    sblock.fs_fsize);
309 		exit(17);
310 	}
311 	if (sblock.fs_fsize < sectorsize) {
312 		printf("fragment size %d is too small, minimum is %d\n",
313 		    sblock.fs_fsize, sectorsize);
314 		exit(18);
315 	}
316 	if (sblock.fs_bsize < MINBSIZE) {
317 		printf("block size %d is too small, minimum is %d\n",
318 		    sblock.fs_bsize, MINBSIZE);
319 		exit(19);
320 	}
321 	if (sblock.fs_bsize < sblock.fs_fsize) {
322 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
323 		    sblock.fs_bsize, sblock.fs_fsize);
324 		exit(20);
325 	}
326 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
327 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
328 	sblock.fs_qbmask = ~sblock.fs_bmask;
329 	sblock.fs_qfmask = ~sblock.fs_fmask;
330 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
331 		sblock.fs_bshift++;
332 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
333 		sblock.fs_fshift++;
334 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
335 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
336 		sblock.fs_fragshift++;
337 	if (sblock.fs_frag > MAXFRAG) {
338 		printf("fragment size %d is too small, minimum with block size %d is %d\n",
339 		    sblock.fs_fsize, sblock.fs_bsize,
340 		    sblock.fs_bsize / MAXFRAG);
341 		exit(21);
342 	}
343 	sblock.fs_nrpos = nrpos;
344 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
345 	sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
346 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
347 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
348 		sblock.fs_fsbtodb++;
349 	sblock.fs_sblkno =
350 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
351 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
352 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
353 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
354 	sblock.fs_cgoffset = roundup(
355 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
356 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
357 		sblock.fs_cgmask <<= 1;
358 	if (!POWEROF2(sblock.fs_ntrak))
359 		sblock.fs_cgmask <<= 1;
360 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
361 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
362 		sizepb *= NINDIR(&sblock);
363 		sblock.fs_maxfilesize += sizepb;
364 	}
365 	/*
366 	 * Validate specified/determined secpercyl
367 	 * and calculate minimum cylinders per group.
368 	 */
369 	sblock.fs_spc = secpercyl;
370 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
371 	     sblock.fs_cpc > 1 && (i & 1) == 0;
372 	     sblock.fs_cpc >>= 1, i >>= 1)
373 		/* void */;
374 	mincpc = sblock.fs_cpc;
375 	bpcg = sblock.fs_spc * sectorsize;
376 	inospercg = roundup(bpcg / sizeof(struct ufs1_dinode), INOPB(&sblock));
377 	if (inospercg > MAXIPG(&sblock))
378 		inospercg = MAXIPG(&sblock);
379 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
380 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
381 	    sblock.fs_spc);
382 	mincpg = roundup(mincpgcnt, mincpc);
383 	/*
384 	 * Ensure that cylinder group with mincpg has enough space
385 	 * for block maps.
386 	 */
387 	sblock.fs_cpg = mincpg;
388 	sblock.fs_ipg = inospercg;
389 	if (maxcontig > 1)
390 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
391 	mapcramped = 0;
392 	while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
393 		mapcramped = 1;
394 		if (sblock.fs_bsize < MAXBSIZE) {
395 			sblock.fs_bsize <<= 1;
396 			if ((i & 1) == 0) {
397 				i >>= 1;
398 			} else {
399 				sblock.fs_cpc <<= 1;
400 				mincpc <<= 1;
401 				mincpg = roundup(mincpgcnt, mincpc);
402 				sblock.fs_cpg = mincpg;
403 			}
404 			sblock.fs_frag <<= 1;
405 			sblock.fs_fragshift += 1;
406 			if (sblock.fs_frag <= MAXFRAG)
407 				continue;
408 		}
409 		if (sblock.fs_fsize == sblock.fs_bsize) {
410 			printf("There is no block size that");
411 			printf(" can support this disk\n");
412 			exit(22);
413 		}
414 		sblock.fs_frag >>= 1;
415 		sblock.fs_fragshift -= 1;
416 		sblock.fs_fsize <<= 1;
417 		sblock.fs_nspf <<= 1;
418 	}
419 	/*
420 	 * Ensure that cylinder group with mincpg has enough space for inodes.
421 	 */
422 	inodecramped = 0;
423 	inospercg = calcipg(mincpg, bpcg, &usedb);
424 	sblock.fs_ipg = inospercg;
425 	while (inospercg > MAXIPG(&sblock)) {
426 		inodecramped = 1;
427 		if (mincpc == 1 || sblock.fs_frag == 1 ||
428 		    sblock.fs_bsize == MINBSIZE)
429 			break;
430 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
431 		       "minimum bytes per inode is",
432 		       (int)((mincpg * (off_t)bpcg - usedb)
433 			     / MAXIPG(&sblock) + 1));
434 		sblock.fs_bsize >>= 1;
435 		sblock.fs_frag >>= 1;
436 		sblock.fs_fragshift -= 1;
437 		mincpc >>= 1;
438 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
439 		if (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
440 			sblock.fs_bsize <<= 1;
441 			break;
442 		}
443 		mincpg = sblock.fs_cpg;
444 		inospercg = calcipg(mincpg, bpcg, &usedb);
445 		sblock.fs_ipg = inospercg;
446 	}
447 	if (inodecramped) {
448 		if (inospercg > MAXIPG(&sblock)) {
449 			printf("Minimum bytes per inode is %d\n",
450 			       (int)((mincpg * (off_t)bpcg - usedb)
451 				     / MAXIPG(&sblock) + 1));
452 		} else if (!mapcramped) {
453 			printf("With %d bytes per inode, ", density);
454 			printf("minimum cylinders per group is %ld\n", mincpg);
455 		}
456 	}
457 	if (mapcramped) {
458 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
459 		printf("minimum cylinders per group is %ld\n", mincpg);
460 	}
461 	if (inodecramped || mapcramped) {
462 		if (sblock.fs_bsize != bsize)
463 			printf("%s to be changed from %d to %d\n",
464 			    "This requires the block size",
465 			    bsize, sblock.fs_bsize);
466 		if (sblock.fs_fsize != fsize)
467 			printf("\t%s to be changed from %d to %d\n",
468 			    "and the fragment size",
469 			    fsize, sblock.fs_fsize);
470 		exit(23);
471 	}
472 	/*
473 	 * Calculate the number of cylinders per group
474 	 */
475 	sblock.fs_cpg = cpg;
476 	if (sblock.fs_cpg % mincpc != 0) {
477 		printf("%s groups must have a multiple of %ld cylinders\n",
478 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
479 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
480 		if (!cpgflg)
481 			cpg = sblock.fs_cpg;
482 	}
483 	/*
484 	 * Must ensure there is enough space for inodes.
485 	 */
486 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
487 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
488 		inodecramped = 1;
489 		sblock.fs_cpg -= mincpc;
490 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
491 	}
492 	/*
493 	 * Must ensure there is enough space to hold block map.
494 	 */
495 	while (CGSIZE(&sblock) > (uint32_t)sblock.fs_bsize) {
496 		mapcramped = 1;
497 		sblock.fs_cpg -= mincpc;
498 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
499 	}
500 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
501 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
502 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
503 		exit(24);
504 	}
505 	if (sblock.fs_cpg < mincpg) {
506 		printf("cylinder groups must have at least %ld cylinders\n",
507 			mincpg);
508 		exit(25);
509 	} else if (sblock.fs_cpg != cpg) {
510 		if (!cpgflg && !mfs)
511 			printf("Warning: ");
512 		else if (!mapcramped && !inodecramped)
513 			exit(26);
514 		if (!mfs) {
515 		    if (mapcramped && inodecramped)
516 			printf("Block size and bytes per inode restrict");
517 		    else if (mapcramped)
518 			printf("Block size restricts");
519 		    else
520 			printf("Bytes per inode restrict");
521 		    printf(" cylinders per group to %d.\n", sblock.fs_cpg);
522 		}
523 		if (cpgflg)
524 			exit(27);
525 	}
526 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
527 	/*
528 	 * Now have size for file system and nsect and ntrak.
529 	 * Determine number of cylinders and blocks in the file system.
530 	 */
531 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
532 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
533 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
534 		sblock.fs_ncyl++;
535 		emitwarn = 1;
536 	}
537 	if (sblock.fs_ncyl < 1) {
538 		printf("file systems must have at least one cylinder\n");
539 		exit(28);
540 	}
541 	/*
542 	 * Determine feasability/values of rotational layout tables.
543 	 *
544 	 * The size of the rotational layout tables is limited by the
545 	 * size of the superblock, SBSIZE. The amount of space available
546 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
547 	 * The size of these tables is inversely proportional to the block
548 	 * size of the file system. The size increases if sectors per track
549 	 * are not powers of two, because more cylinders must be described
550 	 * by the tables before the rotational pattern repeats (fs_cpc).
551 	 */
552 	sblock.fs_interleave = interleave;
553 	sblock.fs_trackskew = trackskew;
554 	sblock.fs_npsect = nphyssectors;
555 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
556 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
557 	if (sblock.fs_sbsize > SBSIZE)
558 		sblock.fs_sbsize = SBSIZE;
559 	if (sblock.fs_ntrak == 1) {
560 		sblock.fs_cpc = 0;
561 		goto next;
562 	}
563 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
564 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
565 	totalsbsize = sizeof(struct fs) + rotblsize;
566 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
567 		/* use old static table space */
568 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
569 		    (char *)(&sblock.fs_firstfield);
570 		sblock.fs_rotbloff = &sblock.fs_space[0] -
571 		    (u_char *)(&sblock.fs_firstfield);
572 	} else {
573 		/* use dynamic table space */
574 		sblock.fs_postbloff = &sblock.fs_space[0] -
575 		    (u_char *)(&sblock.fs_firstfield);
576 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
577 		totalsbsize += postblsize;
578 	}
579 	if (totalsbsize > SBSIZE ||
580 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
581 		printf("%s %s %d %s %d.%s",
582 		    "Warning: insufficient space in super block for\n",
583 		    "rotational layout tables with nsect", sblock.fs_nsect,
584 		    "and ntrak", sblock.fs_ntrak,
585 		    "\nFile system performance may be impaired.\n");
586 		sblock.fs_cpc = 0;
587 		goto next;
588 	}
589 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
590 	if (sblock.fs_sbsize > SBSIZE)
591 		sblock.fs_sbsize = SBSIZE;
592 	/*
593 	 * calculate the available blocks for each rotational position
594 	 */
595 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
596 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
597 			fs_postbl(&sblock, cylno)[rpos] = -1;
598 	for (i = (rotblsize - 1) * sblock.fs_frag;
599 	     i >= 0; i -= sblock.fs_frag) {
600 		cylno = cbtocylno(&sblock, i);
601 		rpos = cbtorpos(&sblock, i);
602 		blk = fragstoblks(&sblock, i);
603 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
604 			fs_rotbl(&sblock)[blk] = 0;
605 		else
606 			fs_rotbl(&sblock)[blk] =
607 			    fs_postbl(&sblock, cylno)[rpos] - blk;
608 		fs_postbl(&sblock, cylno)[rpos] = blk;
609 	}
610 next:
611 	/*
612 	 * Compute/validate number of cylinder groups.
613 	 */
614 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
615 	if (sblock.fs_ncyl % sblock.fs_cpg)
616 		sblock.fs_ncg++;
617 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
618 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
619 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
620 		printf("inode blocks/cyl group (%ld) >= data blocks (%ld)\n",
621 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
622 		    (long)(sblock.fs_fpg / sblock.fs_frag));
623 		printf("number of cylinders per cylinder group (%d) %s.\n",
624 		    sblock.fs_cpg, "must be increased");
625 		exit(29);
626 	}
627 	j = sblock.fs_ncg - 1;
628 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
629 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
630 		if (j == 0) {
631 			printf("Filesystem must have at least %d sectors\n",
632 			    NSPF(&sblock) *
633 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
634 			exit(30);
635 		}
636 		printf(
637 "Warning: inode blocks/cyl group (%ld) >= data blocks (%ld) in last\n",
638 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
639 		    i / sblock.fs_frag);
640 		printf(
641 "    cylinder group. This implies %ld sector(s) cannot be allocated.\n",
642 		    i * NSPF(&sblock));
643 		sblock.fs_ncg--;
644 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
645 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
646 		    NSPF(&sblock);
647 		emitwarn = 0;
648 	}
649 	if (emitwarn && !mfs) {
650 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
651 		    sblock.fs_spc -
652 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
653 		    * sblock.fs_spc));
654 	}
655 	/*
656 	 * fill in remaining fields of the super block
657 	 */
658 	sblock.fs_csaddr = cgdmin(&sblock, 0);
659 	sblock.fs_cssize =
660 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
661 	/*
662 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
663 	 * longer used. However, we still initialise them so that the
664 	 * filesystem remains compatible with old kernels.
665 	 */
666 	i = sblock.fs_bsize / sizeof(struct csum);
667 	sblock.fs_csmask = ~(i - 1);
668 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
669 		sblock.fs_csshift++;
670 	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
671 	if (fscs == NULL)
672 		errx(31, "calloc failed");
673 	sblock.fs_magic = FS_MAGIC;
674 	sblock.fs_rotdelay = rotdelay;
675 	sblock.fs_minfree = minfree;
676 	sblock.fs_maxcontig = maxcontig;
677 	sblock.fs_maxbpg = maxbpg;
678 	sblock.fs_rps = rpm / 60;
679 	sblock.fs_optim = opt;
680 	sblock.fs_cgrotor = 0;
681 	sblock.fs_cstotal.cs_ndir = 0;
682 	sblock.fs_cstotal.cs_nbfree = 0;
683 	sblock.fs_cstotal.cs_nifree = 0;
684 	sblock.fs_cstotal.cs_nffree = 0;
685 	sblock.fs_fmod = 0;
686 	sblock.fs_ronly = 0;
687 	sblock.fs_clean = 1;
688 #ifdef FSIRAND
689 	sblock.fs_id[0] = (long)utime;
690 	sblock.fs_id[1] = random();
691 #endif
692 
693 	/*
694 	 * Dump out summary information about file system.
695 	 */
696 	if (!mfs) {
697 		printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
698 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
699 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
700 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
701 		printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)%s\n",
702 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
703 		    sblock.fs_ncg, sblock.fs_cpg,
704 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
705 		    sblock.fs_ipg,
706 			sblock.fs_flags & FS_DOSOFTDEP ? " SOFTUPDATES" : "");
707 #undef B2MBFACTOR
708 	}
709 	/*
710 	 * Now build the cylinders group blocks and
711 	 * then print out indices of cylinder groups.
712 	 */
713 	if (!mfs)
714 		printf("super-block backups (for fsck -b #) at:\n");
715 	i = 0;
716 	width = charsperline();
717 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
718 		initcg(cylno, utime);
719 		if (mfs)
720 			continue;
721 		j = snprintf(tmpbuf, sizeof(tmpbuf), " %ld%s",
722 		    fsbtodb(&sblock, cgsblock(&sblock, cylno)),
723 		    cylno < (sblock.fs_ncg-1) ? "," : "" );
724 		if (i + j >= width) {
725 			printf("\n");
726 			i = 0;
727 		}
728 		i += j;
729 		printf("%s", tmpbuf);
730 		fflush(stdout);
731 	}
732 	if (!mfs)
733 		printf("\n");
734 	if (Nflag && !mfs)
735 		exit(0);
736 	/*
737 	 * Now construct the initial file system,
738 	 * then write out the super-block.
739 	 */
740 	fsinit(utime);
741 	sblock.fs_time = utime;
742 	wtfs((int)SBOFF / sectorsize, sbsize, (char *)&sblock);
743 	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
744 		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
745 			sblock.fs_cssize - i < sblock.fs_bsize ?
746 			    sblock.fs_cssize - i : sblock.fs_bsize,
747 			((char *)fscs) + i);
748 	/*
749 	 * Write out the duplicate super blocks
750 	 */
751 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
752 		wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
753 		    sbsize, (char *)&sblock);
754 	wtfsflush();
755 
756 	/*
757 	 * NOTE: we no longer update information in the disklabel
758 	 */
759 
760 	/*
761 	 * Notify parent process of success.
762 	 * Dissociate from session and tty.
763 	 *
764 	 * NOTE: We are the child and may receive a SIGINT due
765 	 *	 to losing the tty session? XXX
766 	 */
767 	if (mfs) {
768 		/* YYY */
769 		kill(mfs_ppid, SIGUSR1);
770 		setsid();
771 		close(0);
772 		close(1);
773 		close(2);
774 		chdir("/");
775 		/* returns to mount_mfs (newfs) and issues the mount */
776 	}
777 }
778 
779 /*
780  * Initialize a cylinder group.
781  */
782 void
783 initcg(int cylno, time_t utime)
784 {
785 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
786 	long i;
787 	unsigned long k;
788 	struct csum *cs;
789 #ifdef FSIRAND
790 	uint32_t j;
791 #endif
792 
793 	/*
794 	 * Determine block bounds for cylinder group.
795 	 * Allow space for super block summary information in first
796 	 * cylinder group.
797 	 */
798 	cbase = cgbase(&sblock, cylno);
799 	dmax = cbase + sblock.fs_fpg;
800 	if (dmax > sblock.fs_size)
801 		dmax = sblock.fs_size;
802 	dlower = cgsblock(&sblock, cylno) - cbase;
803 	dupper = cgdmin(&sblock, cylno) - cbase;
804 	if (cylno == 0)
805 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
806 	cs = fscs + cylno;
807 	memset(&acg, 0, sblock.fs_cgsize);
808 	acg.cg_time = utime;
809 	acg.cg_magic = CG_MAGIC;
810 	acg.cg_cgx = cylno;
811 	if (cylno == sblock.fs_ncg - 1)
812 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
813 	else
814 		acg.cg_ncyl = sblock.fs_cpg;
815 	acg.cg_niblk = sblock.fs_ipg;
816 	acg.cg_ndblk = dmax - cbase;
817 	if (sblock.fs_contigsumsize > 0)
818 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
819 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
820 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
821 	acg.cg_iusedoff = acg.cg_boff +
822 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(u_int16_t);
823 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
824 	if (sblock.fs_contigsumsize <= 0) {
825 		acg.cg_nextfreeoff = acg.cg_freeoff +
826 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
827 	} else {
828 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
829 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
830 		    sizeof(u_int32_t);
831 		acg.cg_clustersumoff =
832 		    roundup(acg.cg_clustersumoff, sizeof(u_int32_t));
833 		acg.cg_clusteroff = acg.cg_clustersumoff +
834 		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
835 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
836 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
837 	}
838 	if (acg.cg_nextfreeoff - (long)(&acg.cg_firstfield) > sblock.fs_cgsize) {
839 		printf("Panic: cylinder group too big\n");
840 		exit(37);
841 	}
842 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
843 	if (cylno == 0) {
844 		for (k = 0; k < ROOTINO; k++) {
845 			setbit(cg_inosused(&acg), k);
846 			acg.cg_cs.cs_nifree--;
847 		}
848 	}
849 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) {
850 #ifdef FSIRAND
851 		for (j = 0;
852 		     j < sblock.fs_bsize / sizeof(struct ufs1_dinode);
853 		     j++) {
854 			zino[j].di_gen = random();
855 		}
856 #endif
857 		wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
858 		    sblock.fs_bsize, (char *)zino);
859 	}
860 	if (cylno > 0) {
861 		/*
862 		 * In cylno 0, beginning space is reserved
863 		 * for boot and super blocks.
864 		 */
865 		for (d = 0; d < dlower; d += sblock.fs_frag) {
866 			blkno = d / sblock.fs_frag;
867 			setblock(&sblock, cg_blksfree(&acg), blkno);
868 			if (sblock.fs_contigsumsize > 0)
869 				setbit(cg_clustersfree(&acg), blkno);
870 			acg.cg_cs.cs_nbfree++;
871 			cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
872 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
873 			    [cbtorpos(&sblock, d)]++;
874 		}
875 		sblock.fs_dsize += dlower;
876 	}
877 	sblock.fs_dsize += acg.cg_ndblk - dupper;
878 	if ((i = dupper % sblock.fs_frag)) {
879 		acg.cg_frsum[sblock.fs_frag - i]++;
880 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
881 			setbit(cg_blksfree(&acg), dupper);
882 			acg.cg_cs.cs_nffree++;
883 		}
884 	}
885 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
886 		blkno = d / sblock.fs_frag;
887 		setblock(&sblock, cg_blksfree(&acg), blkno);
888 		if (sblock.fs_contigsumsize > 0)
889 			setbit(cg_clustersfree(&acg), blkno);
890 		acg.cg_cs.cs_nbfree++;
891 		cg_blktot(&acg)[cbtocylno(&sblock, d)]++;
892 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d))
893 		    [cbtorpos(&sblock, d)]++;
894 		d += sblock.fs_frag;
895 	}
896 	if (d < dmax - cbase) {
897 		acg.cg_frsum[dmax - cbase - d]++;
898 		for (; d < dmax - cbase; d++) {
899 			setbit(cg_blksfree(&acg), d);
900 			acg.cg_cs.cs_nffree++;
901 		}
902 	}
903 	if (sblock.fs_contigsumsize > 0) {
904 		int32_t *sump = cg_clustersum(&acg);
905 		u_char *mapp = cg_clustersfree(&acg);
906 		int map = *mapp++;
907 		int bit = 1;
908 		int run = 0;
909 
910 		for (i = 0; i < acg.cg_nclusterblks; i++) {
911 			if ((map & bit) != 0) {
912 				run++;
913 			} else if (run != 0) {
914 				if (run > sblock.fs_contigsumsize)
915 					run = sblock.fs_contigsumsize;
916 				sump[run]++;
917 				run = 0;
918 			}
919 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
920 				bit <<= 1;
921 			} else {
922 				map = *mapp++;
923 				bit = 1;
924 			}
925 		}
926 		if (run != 0) {
927 			if (run > sblock.fs_contigsumsize)
928 				run = sblock.fs_contigsumsize;
929 			sump[run]++;
930 		}
931 	}
932 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
933 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
934 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
935 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
936 	*cs = acg.cg_cs;
937 	wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
938 		sblock.fs_bsize, (char *)&acg);
939 }
940 
941 /*
942  * initialize the file system
943  */
944 struct ufs1_dinode node;
945 
946 #ifdef LOSTDIR
947 #define PREDEFDIR 3
948 #else
949 #define PREDEFDIR 2
950 #endif
951 
952 struct direct root_dir[] = {
953 	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
954 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
955 #ifdef LOSTDIR
956 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 10, "lost+found" },
957 #endif
958 };
959 struct odirect {
960 	u_long	d_ino;
961 	u_short	d_reclen;
962 	u_short	d_namlen;
963 	u_char	d_name[MAXNAMLEN + 1];
964 } oroot_dir[] = {
965 	{ ROOTINO, sizeof(struct direct), 1, "." },
966 	{ ROOTINO, sizeof(struct direct), 2, ".." },
967 #ifdef LOSTDIR
968 	{ LOSTFOUNDINO, sizeof(struct direct), 10, "lost+found" },
969 #endif
970 };
971 #ifdef LOSTDIR
972 struct direct lost_found_dir[] = {
973 	{ LOSTFOUNDINO, sizeof(struct direct), DT_DIR, 1, "." },
974 	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
975 	{ 0, DIRBLKSIZ, 0, 0, 0 },
976 };
977 struct odirect olost_found_dir[] = {
978 	{ LOSTFOUNDINO, sizeof(struct direct), 1, "." },
979 	{ ROOTINO, sizeof(struct direct), 2, ".." },
980 	{ 0, DIRBLKSIZ, 0, 0 },
981 };
982 #endif
983 char buf[MAXBSIZE];
984 
985 void
986 fsinit(time_t utime)
987 {
988 #ifdef LOSTDIR
989 	int i;
990 #endif
991 
992 	/*
993 	 * initialize the node
994 	 */
995 	node.di_atime = utime;
996 	node.di_mtime = utime;
997 	node.di_ctime = utime;
998 #ifdef LOSTDIR
999 	/*
1000 	 * create the lost+found directory
1001 	 */
1002 	if (Oflag) {
1003 		makedir((struct direct *)olost_found_dir, 2);
1004 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
1005 			memmove(&buf[i], &olost_found_dir[2],
1006 			    DIRSIZ(0, &olost_found_dir[2]));
1007 	} else {
1008 		makedir(lost_found_dir, 2);
1009 		for (i = DIRBLKSIZ; i < sblock.fs_bsize; i += DIRBLKSIZ)
1010 			memmove(&buf[i], &lost_found_dir[2],
1011 			    DIRSIZ(0, &lost_found_dir[2]));
1012 	}
1013 	node.di_mode = IFDIR | UMASK;
1014 	node.di_nlink = 2;
1015 	node.di_size = sblock.fs_bsize;
1016 	node.di_db[0] = alloc(node.di_size, node.di_mode);
1017 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1018 	wtfs(fsbtodb(&sblock, node.di_db[0]), node.di_size, buf);
1019 	iput(&node, LOSTFOUNDINO);
1020 #endif
1021 	/*
1022 	 * create the root directory
1023 	 */
1024 	if (mfs)
1025 		node.di_mode = IFDIR | 01777;
1026 	else
1027 		node.di_mode = IFDIR | UMASK;
1028 	node.di_nlink = PREDEFDIR;
1029 	if (Oflag)
1030 		node.di_size = makedir((struct direct *)oroot_dir, PREDEFDIR);
1031 	else
1032 		node.di_size = makedir(root_dir, PREDEFDIR);
1033 	node.di_db[0] = alloc(sblock.fs_fsize, node.di_mode);
1034 	node.di_blocks = btodb(fragroundup(&sblock, node.di_size));
1035 	wtfs(fsbtodb(&sblock, node.di_db[0]), sblock.fs_fsize, buf);
1036 	iput(&node, ROOTINO);
1037 }
1038 
1039 /*
1040  * construct a set of directory entries in "buf".
1041  * return size of directory.
1042  */
1043 int
1044 makedir(struct direct *protodir, int entries)
1045 {
1046 	char *cp;
1047 	int i, spcleft;
1048 
1049 	spcleft = DIRBLKSIZ;
1050 	for (cp = buf, i = 0; i < entries - 1; i++) {
1051 		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
1052 		memmove(cp, &protodir[i], protodir[i].d_reclen);
1053 		cp += protodir[i].d_reclen;
1054 		spcleft -= protodir[i].d_reclen;
1055 	}
1056 	protodir[i].d_reclen = spcleft;
1057 	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
1058 	return (DIRBLKSIZ);
1059 }
1060 
1061 /*
1062  * allocate a block or frag
1063  */
1064 daddr_t
1065 alloc(int size, int mode)
1066 {
1067 	int i, frag;
1068 	daddr_t d, blkno;
1069 
1070 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1071 	    (char *)&acg);
1072 	if (acg.cg_magic != CG_MAGIC) {
1073 		printf("cg 0: bad magic number\n");
1074 		return (0);
1075 	}
1076 	if (acg.cg_cs.cs_nbfree == 0) {
1077 		printf("first cylinder group ran out of space\n");
1078 		return (0);
1079 	}
1080 	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
1081 		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
1082 			goto goth;
1083 	printf("internal error: can't find block in cyl 0\n");
1084 	return (0);
1085 goth:
1086 	blkno = fragstoblks(&sblock, d);
1087 	clrblock(&sblock, cg_blksfree(&acg), blkno);
1088 	if (sblock.fs_contigsumsize > 0)
1089 		clrbit(cg_clustersfree(&acg), blkno);
1090 	acg.cg_cs.cs_nbfree--;
1091 	sblock.fs_cstotal.cs_nbfree--;
1092 	fscs[0].cs_nbfree--;
1093 	if (mode & IFDIR) {
1094 		acg.cg_cs.cs_ndir++;
1095 		sblock.fs_cstotal.cs_ndir++;
1096 		fscs[0].cs_ndir++;
1097 	}
1098 	cg_blktot(&acg)[cbtocylno(&sblock, d)]--;
1099 	cg_blks(&sblock, &acg, cbtocylno(&sblock, d))[cbtorpos(&sblock, d)]--;
1100 	if (size != sblock.fs_bsize) {
1101 		frag = howmany(size, sblock.fs_fsize);
1102 		fscs[0].cs_nffree += sblock.fs_frag - frag;
1103 		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
1104 		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
1105 		acg.cg_frsum[sblock.fs_frag - frag]++;
1106 		for (i = frag; i < sblock.fs_frag; i++)
1107 			setbit(cg_blksfree(&acg), d + i);
1108 	}
1109 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1110 	    (char *)&acg);
1111 	return (d);
1112 }
1113 
1114 /*
1115  * Calculate number of inodes per group.
1116  */
1117 long
1118 calcipg(long cylspg, long bpcg, off_t *usedbp)
1119 {
1120 	int i;
1121 	long ipg, new_ipg, ncg, ncyl;
1122 	off_t usedb;
1123 
1124 	/*
1125 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
1126 	 * Note that fssize is still in sectors, not filesystem blocks.
1127 	 */
1128 	ncyl = howmany(fssize, (u_int)secpercyl);
1129 	ncg = howmany(ncyl, cylspg);
1130 	/*
1131 	 * Iterate a few times to allow for ipg depending on itself.
1132 	 */
1133 	ipg = 0;
1134 	for (i = 0; i < 10; i++) {
1135 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
1136 			* NSPF(&sblock) * (off_t)sectorsize;
1137 		new_ipg = (cylspg * (quad_t)bpcg - usedb) / density * fssize
1138 			  / ncg / secpercyl / cylspg;
1139 		new_ipg = roundup(new_ipg, INOPB(&sblock));
1140 		if (new_ipg == ipg)
1141 			break;
1142 		ipg = new_ipg;
1143 	}
1144 	*usedbp = usedb;
1145 	return (ipg);
1146 }
1147 
1148 /*
1149  * Allocate an inode on the disk
1150  */
1151 void
1152 iput(struct ufs1_dinode *ip, ino_t ino)
1153 {
1154 	struct ufs1_dinode inobuf[MAXINOPB];
1155 	daddr_t d;
1156 	int c;
1157 
1158 #ifdef FSIRAND
1159 	ip->di_gen = random();
1160 #endif
1161 	c = ino_to_cg(&sblock, ino);
1162 	rdfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1163 	    (char *)&acg);
1164 	if (acg.cg_magic != CG_MAGIC) {
1165 		printf("cg 0: bad magic number\n");
1166 		exit(31);
1167 	}
1168 	acg.cg_cs.cs_nifree--;
1169 	setbit(cg_inosused(&acg), ino);
1170 	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1171 	    (char *)&acg);
1172 	sblock.fs_cstotal.cs_nifree--;
1173 	fscs[0].cs_nifree--;
1174 	if (ino >= (uint32_t)sblock.fs_ipg * (uint32_t)sblock.fs_ncg) {
1175 		printf("fsinit: inode value out of range (%ju).\n",
1176 		    (uintmax_t)ino);
1177 		exit(32);
1178 	}
1179 	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1180 	rdfs(d, sblock.fs_bsize, (char *)inobuf);
1181 	inobuf[ino_to_fsbo(&sblock, ino)] = *ip;
1182 	wtfs(d, sblock.fs_bsize, (char *)inobuf);
1183 }
1184 
1185 /*
1186  * Parent notifies child that it can proceed with the newfs and mount
1187  * operation (occurs after parent has copied the underlying filesystem
1188  * if the -C option was specified (for MFS), or immediately after the
1189  * parent forked the child otherwise).
1190  */
1191 void
1192 parentready(__unused int signo)
1193 {
1194   	parentready_signalled = 1;
1195 }
1196 
1197 /*
1198  * Notify parent process that the filesystem has created itself successfully.
1199  *
1200  * We have to wait until the mount has actually completed!
1201  */
1202 void
1203 started(__unused int signo)
1204 {
1205 	int retry = 100;	/* 10 seconds, 100ms */
1206 
1207 	while (mfs_ppid && retry) {
1208 		struct stat st;
1209 
1210 		if (
1211 		    stat(mfs_mtpt, &st) < 0 ||
1212 		    st.st_dev != mfs_mtstat.st_dev
1213 		) {
1214 			break;
1215 		}
1216 		usleep(100*1000);
1217 		--retry;
1218 	}
1219 	if (retry == 0) {
1220 		fatal("mfs mount failed waiting for mount to go active");
1221 	} else if (copyroot) {
1222 		FSPaste(mfs_mtpt, copyroot, copyhlinks);
1223 	}
1224 	exit(0);
1225 }
1226 
1227 #ifdef STANDALONE
1228 /*
1229  * Replace libc function with one suited to our needs.
1230  */
1231 caddr_t
1232 malloc(u_long size)
1233 {
1234 	char *base, *i;
1235 	static u_long pgsz;
1236 	struct rlimit rlp;
1237 
1238 	if (pgsz == 0) {
1239 		base = sbrk(0);
1240 		pgsz = getpagesize() - 1;
1241 		i = (char *)((u_long)(base + pgsz) &~ pgsz);
1242 		base = sbrk(i - base);
1243 		if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1244 			warn("getrlimit");
1245 		rlp.rlim_cur = rlp.rlim_max;
1246 		if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1247 			warn("setrlimit");
1248 		memleft = rlp.rlim_max - (u_long)base;
1249 	}
1250 	size = (size + pgsz) &~ pgsz;
1251 	if (size > memleft)
1252 		size = memleft;
1253 	memleft -= size;
1254 	if (size == 0)
1255 		return (0);
1256 	return ((caddr_t)sbrk(size));
1257 }
1258 
1259 /*
1260  * Replace libc function with one suited to our needs.
1261  */
1262 caddr_t
1263 realloc(char *ptr, u_long size)
1264 {
1265 	void *p;
1266 
1267 	if ((p = malloc(size)) == NULL)
1268 		return (NULL);
1269 	memmove(p, ptr, size);
1270 	free(ptr);
1271 	return (p);
1272 }
1273 
1274 /*
1275  * Replace libc function with one suited to our needs.
1276  */
1277 char *
1278 calloc(u_long size, u_long numelm)
1279 {
1280 	caddr_t base;
1281 
1282 	size *= numelm;
1283 	if ((base = malloc(size)) == NULL)
1284 		return (NULL);
1285 	memset(base, 0, size);
1286 	return (base);
1287 }
1288 
1289 /*
1290  * Replace libc function with one suited to our needs.
1291  */
1292 void
1293 free(char *ptr)
1294 {
1295 
1296 	/* do not worry about it for now */
1297 }
1298 
1299 #else   /* !STANDALONE */
1300 
1301 void
1302 raise_data_limit(void)
1303 {
1304 	struct rlimit rlp;
1305 
1306 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1307 		warn("getrlimit");
1308 	rlp.rlim_cur = rlp.rlim_max;
1309 	if (setrlimit(RLIMIT_DATA, &rlp) < 0)
1310 		warn("setrlimit");
1311 }
1312 
1313 #ifdef __ELF__
1314 extern char *_etext;
1315 #define etext _etext
1316 #else
1317 extern char *etext;
1318 #endif
1319 
1320 void
1321 get_memleft(void)
1322 {
1323 	static u_long pgsz;
1324 	struct rlimit rlp;
1325 	u_long freestart;
1326 	u_long dstart;
1327 	u_long memused;
1328 
1329 	pgsz = getpagesize() - 1;
1330 	dstart = ((u_long)&etext) &~ pgsz;
1331 	freestart = ((u_long)((char *)sbrk(0) + pgsz) &~ pgsz);
1332 	if (getrlimit(RLIMIT_DATA, &rlp) < 0)
1333 		warn("getrlimit");
1334 	memused = freestart - dstart;
1335 	memleft = rlp.rlim_cur - memused;
1336 }
1337 #endif  /* STANDALONE */
1338 
1339 /*
1340  * read a block from the file system
1341  */
1342 void
1343 rdfs(daddr_t bno, int size, char *bf)
1344 {
1345 	int n;
1346 
1347 	wtfsflush();
1348 	if (mfs) {
1349 		memmove(bf, membase + bno * sectorsize, size);
1350 		return;
1351 	}
1352 	if (lseek(fsi, (off_t)bno * sectorsize, 0) < 0) {
1353 		printf("seek error: %ld\n", (long)bno);
1354 		err(33, "rdfs");
1355 	}
1356 	n = read(fsi, bf, size);
1357 	if (n != size) {
1358 		printf("read error: %ld\n", (long)bno);
1359 		err(34, "rdfs");
1360 	}
1361 }
1362 
1363 #define WCSIZE (128 * 1024)
1364 daddr_t wc_sect;		/* units of sectorsize */
1365 int wc_end;			/* bytes */
1366 static char wc[WCSIZE];		/* bytes */
1367 
1368 /*
1369  * Flush dirty write behind buffer.
1370  */
1371 void
1372 wtfsflush(void)
1373 {
1374 	int n;
1375 	if (wc_end) {
1376 		if (lseek(fso, (off_t)wc_sect * sectorsize, SEEK_SET) < 0) {
1377 			printf("seek error: %ld\n", (long)wc_sect);
1378 			err(35, "wtfs - writecombine");
1379 		}
1380 		n = write(fso, wc, wc_end);
1381 		if (n != wc_end) {
1382 			printf("write error: %ld\n", (long)wc_sect);
1383 			err(36, "wtfs - writecombine");
1384 		}
1385 		wc_end = 0;
1386 	}
1387 }
1388 
1389 /*
1390  * write a block to the file system
1391  */
1392 void
1393 wtfs(daddr_t bno, int size, char *bf)
1394 {
1395 	int n;
1396 	int done;
1397 
1398 	if (mfs) {
1399 		memmove(membase + bno * sectorsize, bf, size);
1400 		return;
1401 	}
1402 	if (Nflag)
1403 		return;
1404 	done = 0;
1405 	if (wc_end == 0 && size <= WCSIZE) {
1406 		wc_sect = bno;
1407 		bcopy(bf, wc, size);
1408 		wc_end = size;
1409 		if (wc_end < WCSIZE)
1410 			return;
1411 		done = 1;
1412 	}
1413 	if ((off_t)wc_sect * sectorsize + wc_end == (off_t)bno * sectorsize &&
1414 	    wc_end + size <= WCSIZE) {
1415 		bcopy(bf, wc + wc_end, size);
1416 		wc_end += size;
1417 		if (wc_end < WCSIZE)
1418 			return;
1419 		done = 1;
1420 	}
1421 	wtfsflush();
1422 	if (done)
1423 		return;
1424 	if (lseek(fso, (off_t)bno * sectorsize, SEEK_SET) < 0) {
1425 		printf("seek error: %ld\n", (long)bno);
1426 		err(35, "wtfs");
1427 	}
1428 	n = write(fso, bf, size);
1429 	if (n != size) {
1430 		printf("write error: fso %d blk %ld %d/%d\n",
1431 			fso, (long)bno, n, size);
1432 		err(36, "wtfs");
1433 	}
1434 }
1435 
1436 /*
1437  * check if a block is available
1438  */
1439 int
1440 isblock(struct fs *fs, unsigned char *cp, int h)
1441 {
1442 	unsigned char mask;
1443 
1444 	switch (fs->fs_frag) {
1445 	case 8:
1446 		return (cp[h] == 0xff);
1447 	case 4:
1448 		mask = 0x0f << ((h & 0x1) << 2);
1449 		return ((cp[h >> 1] & mask) == mask);
1450 	case 2:
1451 		mask = 0x03 << ((h & 0x3) << 1);
1452 		return ((cp[h >> 2] & mask) == mask);
1453 	case 1:
1454 		mask = 0x01 << (h & 0x7);
1455 		return ((cp[h >> 3] & mask) == mask);
1456 	default:
1457 #ifdef STANDALONE
1458 		printf("isblock bad fs_frag %d\n", fs->fs_frag);
1459 #else
1460 		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1461 #endif
1462 		return (0);
1463 	}
1464 }
1465 
1466 /*
1467  * take a block out of the map
1468  */
1469 void
1470 clrblock(struct fs *fs, unsigned char *cp, int h)
1471 {
1472 	switch ((fs)->fs_frag) {
1473 	case 8:
1474 		cp[h] = 0;
1475 		return;
1476 	case 4:
1477 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1478 		return;
1479 	case 2:
1480 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1481 		return;
1482 	case 1:
1483 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1484 		return;
1485 	default:
1486 #ifdef STANDALONE
1487 		printf("clrblock bad fs_frag %d\n", fs->fs_frag);
1488 #else
1489 		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1490 #endif
1491 		return;
1492 	}
1493 }
1494 
1495 /*
1496  * put a block into the map
1497  */
1498 void
1499 setblock(struct fs *fs, unsigned char *cp, int h)
1500 {
1501 	switch (fs->fs_frag) {
1502 	case 8:
1503 		cp[h] = 0xff;
1504 		return;
1505 	case 4:
1506 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1507 		return;
1508 	case 2:
1509 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1510 		return;
1511 	case 1:
1512 		cp[h >> 3] |= (0x01 << (h & 0x7));
1513 		return;
1514 	default:
1515 #ifdef STANDALONE
1516 		printf("setblock bad fs_frag %d\n", fs->fs_frag);
1517 #else
1518 		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1519 #endif
1520 		return;
1521 	}
1522 }
1523 
1524 /*
1525  * Determine the number of characters in a
1526  * single line.
1527  */
1528 
1529 static int
1530 charsperline(void)
1531 {
1532 	int columns;
1533 	char *cp;
1534 	struct winsize ws;
1535 
1536 	columns = 0;
1537 	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1538 		columns = ws.ws_col;
1539 	if (columns == 0 && (cp = getenv("COLUMNS")))
1540 		columns = atoi(cp);
1541 	if (columns == 0)
1542 		columns = 80;	/* last resort */
1543 	return columns;
1544 }
1545