xref: /dragonfly/sbin/rcorder/hash.c (revision 8accc937)
1 /*
2  * Copyright (c) 1988, 1989, 1990 The Regents of the University of California.
3  * Copyright (c) 1988, 1989 by Adam de Boor
4  * Copyright (c) 1989 by Berkeley Softworks
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Adam de Boor.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $NetBSD: hash.c,v 1.1.1.1 1999/11/19 04:30:56 mrg Exp $
39  */
40 
41 #include <sys/types.h>
42 
43 #include <stdlib.h>
44 #include <string.h>
45 #include <unistd.h>
46 #include <libutil.h>
47 
48 /* hash.c --
49  *
50  * 	This module contains routines to manipulate a hash table.
51  * 	See hash.h for a definition of the structure of the hash
52  * 	table.  Hash tables grow automatically as the amount of
53  * 	information increases.
54  */
55 #include "sprite.h"
56 #ifndef ORDER
57 #include "make.h"
58 #endif /* ORDER */
59 #include "hash.h"
60 
61 /*
62  * Forward references to local procedures that are used before they're
63  * defined:
64  */
65 
66 static void RebuildTable(Hash_Table *);
67 
68 /*
69  * The following defines the ratio of # entries to # buckets
70  * at which we rebuild the table to make it larger.
71  */
72 
73 #define rebuildLimit 8
74 
75 /*
76  *---------------------------------------------------------
77  *
78  * Hash_InitTable --
79  *
80  *	This routine just sets up the hash table.
81  *
82  * Results:
83  *	None.
84  *
85  * Side Effects:
86  *	Memory is allocated for the initial bucket area.
87  *
88  *---------------------------------------------------------
89  */
90 
91 /*
92  * Hash_Table *t;	Structure to use to hold table.
93  * int numBuckets;			How many buckets to create for starters.
94  * 								This number is rounded up to a power of
95  * 								two.   If <= 0, a reasonable default is
96  * 								chosen. The table will grow in size later
97  * 								as needed.
98  */
99 void
100 Hash_InitTable(Hash_Table *t, int numBuckets)
101 {
102 	int i;
103 	struct Hash_Entry **hp;
104 
105 	/*
106 	 * Round up the size to a power of two.
107 	 */
108 	if (numBuckets <= 0)
109 		i = 16;
110 	else {
111 		for (i = 2; i < numBuckets; i <<= 1)
112 			 continue;
113 	}
114 	t->numEntries = 0;
115 	t->size = i;
116 	t->mask = i - 1;
117 	t->bucketPtr = hp = (struct Hash_Entry **)emalloc(sizeof(*hp) * i);
118 	while (--i >= 0)
119 		*hp++ = NULL;
120 }
121 
122 /*
123  *---------------------------------------------------------
124  *
125  * Hash_DeleteTable --
126  *
127  *	This routine removes everything from a hash table
128  *	and frees up the memory space it occupied (except for
129  *	the space in the Hash_Table structure).
130  *
131  * Results:
132  *	None.
133  *
134  * Side Effects:
135  *	Lots of memory is freed up.
136  *
137  *---------------------------------------------------------
138  */
139 
140 void
141 Hash_DeleteTable(Hash_Table *t)
142 {
143 	struct Hash_Entry **hp, *h, *nexth = NULL;
144 	int i;
145 
146 	for (hp = t->bucketPtr, i = t->size; --i >= 0;) {
147 		for (h = *hp++; h != NULL; h = nexth) {
148 			nexth = h->next;
149 			free((char *)h);
150 		}
151 	}
152 	free((char *)t->bucketPtr);
153 
154 	/*
155 	 * Set up the hash table to cause memory faults on any future access
156 	 * attempts until re-initialization.
157 	 */
158 	t->bucketPtr = NULL;
159 }
160 
161 /*
162  *---------------------------------------------------------
163  *
164  * Hash_FindEntry --
165  *
166  * 	Searches a hash table for an entry corresponding to key.
167  *
168  * Results:
169  *	The return value is a pointer to the entry for key,
170  *	if key was present in the table.  If key was not
171  *	present, NULL is returned.
172  *
173  * Side Effects:
174  *	None.
175  *
176  *---------------------------------------------------------
177  */
178 
179 Hash_Entry *
180 Hash_FindEntry(Hash_Table *t, char *key)
181 {
182 	Hash_Entry *e;
183 	unsigned h;
184 	char *p;
185 
186 	for (h = 0, p = key; *p;)
187 		h = (h << 5) - h + *p++;
188 	p = key;
189 	for (e = t->bucketPtr[h & t->mask]; e != NULL; e = e->next)
190 		if (e->namehash == h && strcmp(e->name, p) == 0)
191 			return (e);
192 	return (NULL);
193 }
194 
195 /*
196  *---------------------------------------------------------
197  *
198  * Hash_CreateEntry --
199  *
200  *	Searches a hash table for an entry corresponding to
201  *	key.  If no entry is found, then one is created.
202  *
203  * Results:
204  *	The return value is a pointer to the entry.  If *newPtr
205  *	isn't NULL, then *newPtr is filled in with TRUE if a
206  *	new entry was created, and FALSE if an entry already existed
207  *	with the given key.
208  *
209  * Side Effects:
210  *	Memory may be allocated, and the hash buckets may be modified.
211  *---------------------------------------------------------
212  */
213 
214 Hash_Entry *
215 Hash_CreateEntry(Hash_Table *t, char *key, Boolean *newPtr)
216 {
217 	Hash_Entry *e;
218 	unsigned h;
219 	char *p;
220 	int keylen;
221 	struct Hash_Entry **hp;
222 
223 	/*
224 	 * Hash the key.  As a side effect, save the length (strlen) of the
225 	 * key in case we need to create the entry.
226 	 */
227 	for (h = 0, p = key; *p;)
228 		h = (h << 5) - h + *p++;
229 	keylen = p - key;
230 	p = key;
231 	for (e = t->bucketPtr[h & t->mask]; e != NULL; e = e->next) {
232 		if (e->namehash == h && strcmp(e->name, p) == 0) {
233 			if (newPtr != NULL)
234 				*newPtr = FALSE;
235 			return (e);
236 		}
237 	}
238 
239 	/*
240 	 * The desired entry isn't there.  Before allocating a new entry,
241 	 * expand the table if necessary (and this changes the resulting
242 	 * bucket chain).
243 	 */
244 	if (t->numEntries >= rebuildLimit * t->size)
245 		RebuildTable(t);
246 	e = (Hash_Entry *) emalloc(sizeof(*e) + keylen);
247 	hp = &t->bucketPtr[h & t->mask];
248 	e->next = *hp;
249 	*hp = e;
250 	e->clientData = NULL;
251 	e->namehash = h;
252 	strcpy(e->name, p);
253 	t->numEntries++;
254 
255 	if (newPtr != NULL)
256 		*newPtr = TRUE;
257 	return (e);
258 }
259 
260 /*
261  *---------------------------------------------------------
262  *
263  * Hash_DeleteEntry --
264  *
265  * 	Delete the given hash table entry and free memory associated with
266  *	it.
267  *
268  * Results:
269  *	None.
270  *
271  * Side Effects:
272  *	Hash chain that entry lives in is modified and memory is freed.
273  *
274  *---------------------------------------------------------
275  */
276 
277 void
278 Hash_DeleteEntry(Hash_Table *t, Hash_Entry *e)
279 {
280 	Hash_Entry **hp, *p;
281 
282 	if (e == NULL)
283 		return;
284 	for (hp = &t->bucketPtr[e->namehash & t->mask];
285 	     (p = *hp) != NULL; hp = &p->next) {
286 		if (p == e) {
287 			*hp = p->next;
288 			free((char *)p);
289 			t->numEntries--;
290 			return;
291 		}
292 	}
293 	write(2, "bad call to Hash_DeleteEntry\n", 29);
294 	abort();
295 }
296 
297 /*
298  *---------------------------------------------------------
299  *
300  * Hash_EnumFirst --
301  *	This procedure sets things up for a complete search
302  *	of all entries recorded in the hash table.
303  *
304  * Results:
305  *	The return value is the address of the first entry in
306  *	the hash table, or NULL if the table is empty.
307  *
308  * Side Effects:
309  *	The information in searchPtr is initialized so that successive
310  *	calls to Hash_Next will return successive HashEntry's
311  *	from the table.
312  *
313  *---------------------------------------------------------
314  */
315 
316 Hash_Entry *
317 Hash_EnumFirst(Hash_Table *t, Hash_Search *searchPtr)
318 {
319 	searchPtr->tablePtr = t;
320 	searchPtr->nextIndex = 0;
321 	searchPtr->hashEntryPtr = NULL;
322 	return Hash_EnumNext(searchPtr);
323 }
324 
325 /*
326  *---------------------------------------------------------
327  *
328  * Hash_EnumNext --
329  *    This procedure returns successive entries in the hash table.
330  *
331  * Results:
332  *    The return value is a pointer to the next HashEntry
333  *    in the table, or NULL when the end of the table is
334  *    reached.
335  *
336  * Side Effects:
337  *    The information in searchPtr is modified to advance to the
338  *    next entry.
339  *
340  *---------------------------------------------------------
341  */
342 
343 Hash_Entry *
344 Hash_EnumNext(Hash_Search *searchPtr)
345 {
346 	Hash_Entry *e;
347 	Hash_Table *t = searchPtr->tablePtr;
348 
349 	/*
350 	 * The hashEntryPtr field points to the most recently returned
351 	 * entry, or is nil if we are starting up.  If not nil, we have
352 	 * to start at the next one in the chain.
353 	 */
354 	e = searchPtr->hashEntryPtr;
355 	if (e != NULL)
356 		e = e->next;
357 	/*
358 	 * If the chain ran out, or if we are starting up, we need to
359 	 * find the next nonempty chain.
360 	 */
361 	while (e == NULL) {
362 		if (searchPtr->nextIndex >= t->size)
363 			return (NULL);
364 		e = t->bucketPtr[searchPtr->nextIndex++];
365 	}
366 	searchPtr->hashEntryPtr = e;
367 	return (e);
368 }
369 
370 /*
371  *---------------------------------------------------------
372  *
373  * RebuildTable --
374  *	This local routine makes a new hash table that
375  *	is larger than the old one.
376  *
377  * Results:
378  * 	None.
379  *
380  * Side Effects:
381  *	The entire hash table is moved, so any bucket numbers
382  *	from the old table are invalid.
383  *
384  *---------------------------------------------------------
385  */
386 
387 static void
388 RebuildTable(Hash_Table *t)
389 {
390 	Hash_Entry *e, *next = NULL, **hp, **xp;
391 	int i, mask;
392         Hash_Entry **oldhp;
393 	int oldsize;
394 
395 	oldhp = t->bucketPtr;
396 	oldsize = i = t->size;
397 	i <<= 1;
398 	t->size = i;
399 	t->mask = mask = i - 1;
400 	t->bucketPtr = hp = (struct Hash_Entry **) emalloc(sizeof(*hp) * i);
401 	while (--i >= 0)
402 		*hp++ = NULL;
403 	for (hp = oldhp, i = oldsize; --i >= 0;) {
404 		for (e = *hp++; e != NULL; e = next) {
405 			next = e->next;
406 			xp = &t->bucketPtr[e->namehash & mask];
407 			e->next = *xp;
408 			*xp = e;
409 		}
410 	}
411 	free((char *)oldhp);
412 }
413