xref: /dragonfly/share/man/man9/microseq.9 (revision 9348a738)
1.\" Copyright (c) 1998, 1999, Nicolas Souchu
2.\" All rights reserved.
3.\"
4.\" Redistribution and use in source and binary forms, with or without
5.\" modification, are permitted provided that the following conditions
6.\" are met:
7.\" 1. Redistributions of source code must retain the above copyright
8.\"    notice, this list of conditions and the following disclaimer.
9.\" 2. Redistributions in binary form must reproduce the above copyright
10.\"    notice, this list of conditions and the following disclaimer in the
11.\"    documentation and/or other materials provided with the distribution.
12.\"
13.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23.\" SUCH DAMAGE.
24.\"
25.\" $FreeBSD: src/share/man/man9/microseq.9,v 1.9.2.6 2002/12/29 16:35:39 schweikh Exp $
26.\" $DragonFly: src/share/man/man9/microseq.9,v 1.5 2008/11/23 21:55:52 swildner Exp $
27.\"
28.Dd June 6, 1998
29.Dt MICROSEQ 9
30.Os
31.Sh NAME
32.Nm microseq
33.Nd ppbus microsequencer developer's guide
34.Sh SYNOPSIS
35.In sys/types.h
36.In sys/bus.h
37.In bus/ppbus/ppbconf.h
38.In bus/ppbus/ppb_msq.h
39.Sh DESCRIPTION
40See
41.Xr ppbus 4
42for ppbus description and general info about the microsequencer.
43.Pp
44The purpose of this document is to encourage developers to use the
45microsequencer mechanism in order to have:
46.Bl -enum -offset indent
47.It
48a uniform programming model
49.It
50efficient code
51.El
52.Pp
53Before using microsequences, you are encouraged to look at
54.Xr ppc 4
55microsequencer implementation and an example of how using it in
56.Xr vpo 4 .
57.Sh PPBUS register model
58.Ss Background
59The parallel port model chosen for ppbus is the PC parallel port model.
60Thus, any register described later has the same semantic than its counterpart
61in a PC parallel port.
62For more info about ISA/ECP programming, get the
63Microsoft standard referenced as "Extended Capabilities Port Protocol and
64ISA interface Standard". Registers described later are standard parallel port
65registers.
66.Pp
67Mask macros are defined in the standard ppbus include files for each valid
68bit of parallel port registers.
69.Ss Data register
70In compatible or nibble mode, writing to this register will drive data to the
71parallel port data lines.
72In any other mode, drivers may be tri-stated by
73setting the direction bit (PCD) in the control register.
74Reads to this register
75return the value on the data lines.
76.Ss Device status register
77This read-only register reflects the inputs on the parallel port interface.
78.Pp
79.Bl -column "Bit" "Name" "Description" -compact
80.It Em Bit Ta Em Name Ta Em Description
81.It 7 Ta nBUSY Ta "inverted version of parallel port Busy signal"
82.It 6 Ta nACK Ta "version of parallel port nAck signal"
83.It 5 Ta PERROR Ta "version of parallel port PERROR signal"
84.It 4 Ta SELECT Ta "version of parallel port Select signal"
85.It 3 Ta nFAULT Ta "version of parallel port nFault signal"
86.El
87.Pp
88Others are reserved and return undefined result when read.
89.Ss Device control register
90This register directly controls several output signals as well as enabling
91some functions.
92.Pp
93.Bl -column "Bit" "Name    " "Description" -compact
94.It Em Bit Ta Em Name Ta Em Description
95.It 5 Ta PCD Ta "direction bit in extended modes"
96.It 4 Ta IRQENABLE Ta "1 enables an interrupt on the rising edge of nAck"
97.It 3 Ta SELECTIN Ta "inverted and driven as parallel port nSelectin signal"
98.It 2 Ta nINIT Ta "driven as parallel port nInit signal"
99.It 1 Ta AUTOFEED Ta "inverted and driven as parallel port nAutoFd signal"
100.It 0 Ta STROBE Ta "inverted and driven as parallel port nStrobe signal"
101.El
102.Sh MICROINSTRUCTIONS
103.Ss Description
104.Em Microinstructions
105are either parallel port accesses, program iterations, submicrosequence or
106C calls.
107The parallel port must be considered as the logical model described in
108.Xr ppbus 4 .
109.Pp
110Available microinstructions are:
111.Bd -literal
112#define MS_OP_GET       0	/* get <ptr>, <len>			*/
113#define MS_OP_PUT       1	/* put <ptr>, <len>			*/
114#define MS_OP_RFETCH	2	/* rfetch <reg>, <mask>, <ptr>		*/
115#define MS_OP_RSET	3	/* rset <reg>, <mask>, <mask>		*/
116#define MS_OP_RASSERT	4	/* rassert <reg>, <mask>		*/
117#define MS_OP_DELAY     5	/* delay <val>				*/
118#define MS_OP_SET       6	/* set <val>				*/
119#define MS_OP_DBRA      7	/* dbra <offset>			*/
120#define MS_OP_BRSET     8	/* brset <mask>, <offset>		*/
121#define MS_OP_BRCLEAR   9	/* brclear <mask>, <offset>		*/
122#define MS_OP_RET       10	/* ret <retcode>			*/
123#define MS_OP_C_CALL	11	/* c_call <function>, <parameter>	*/
124#define MS_OP_PTR	12	/* ptr <pointer>			*/
125#define MS_OP_ADELAY	13	/* adelay <val>				*/
126#define MS_OP_BRSTAT	14	/* brstat <mask>, <mask>, <offset>	*/
127#define MS_OP_SUBRET	15	/* subret <code>			*/
128#define MS_OP_CALL	16	/* call <microsequence>			*/
129#define MS_OP_RASSERT_P	17	/* rassert_p <iter>, <reg>		*/
130#define MS_OP_RFETCH_P	18	/* rfetch_p <iter>, <reg>, <mask>	*/
131#define MS_OP_TRIG	19	/* trigger <reg>, <len>, <array>	*/
132.Ed
133.Ss Execution context
134The
135.Em execution context
136of microinstructions is:
137.Bl -bullet -offset indent
138.It
139the
140.Em program counter
141which points to the next microinstruction to execute either in the main
142microsequence or in a subcall
143.It
144the current value of
145.Em ptr
146which points to the next char to send/receive
147.It
148the current value of the internal
149.Em branch register
150.El
151.Pp
152This data is modified by some of the microinstructions, not all.
153.Ss MS_OP_GET and MS_OP_PUT
154are microinstructions used to do either predefined standard IEEE1284-1994
155transfers or programmed non-standard io.
156.Ss MS_OP_RFETCH - Register FETCH
157is used to retrieve the current value of a parallel port register, apply a
158mask and save it in a buffer.
159.Pp
160Parameters:
161.Bl -enum -offset indent
162.It
163register
164.It
165character mask
166.It
167pointer to the buffer
168.El
169.Pp
170Predefined macro: MS_RFETCH(reg,mask,ptr)
171.Ss MS_OP_RSET - Register SET
172is used to assert/clear some bits of a particular parallel port register,
173two masks are applied.
174.Pp
175Parameters:
176.Bl -enum -offset indent
177.It
178register
179.It
180mask of bits to assert
181.It
182mask of bits to clear
183.El
184.Pp
185Predefined macro: MS_RSET(reg,assert,clear)
186.Ss MS_OP_RASSERT - Register ASSERT
187is used to assert all bits of a particular parallel port register.
188.Pp
189Parameters:
190.Bl -enum -offset indent
191.It
192register
193.It
194byte to assert
195.El
196.Pp
197Predefined macro: MS_RASSERT(reg,byte)
198.Ss MS_OP_DELAY - microsecond DELAY
199is used to delay the execution of the microsequence.
200.Pp
201Parameter:
202.Bl -enum -offset indent
203.It
204delay in microseconds
205.El
206.Pp
207Predefined macro: MS_DELAY(delay)
208.Ss MS_OP_SET - SET internal branch register
209is used to set the value of the internal branch register.
210.Pp
211Parameter:
212.Bl -enum -offset indent
213.It
214integer value
215.El
216.Pp
217Predefined macro: MS_SET(accum)
218.Ss MS_OP_DBRA - \&Do BRAnch
219is used to branch if internal branch register decremented by one result value
220is positive.
221.Pp
222Parameter:
223.Bl -enum -offset indent
224.It
225integer offset in the current executed (sub)microsequence.
226Offset is added to
227the index of the next microinstruction to execute.
228.El
229.Pp
230Predefined macro: MS_DBRA(offset)
231.Ss MS_OP_BRSET - BRanch on SET
232is used to branch if some of the status register bits of the parallel port
233are set.
234.Pp
235Parameter:
236.Bl -enum -offset indent
237.It
238bits of the status register
239.It
240integer offset in the current executed (sub)microsequence.
241Offset is added to
242the index of the next microinstruction to execute.
243.El
244.Pp
245Predefined macro: MS_BRSET(mask,offset)
246.Ss MS_OP_BRCLEAR - BRanch on CLEAR
247is used to branch if some of the status register bits of the parallel port
248are cleared.
249.Pp
250Parameter:
251.Bl -enum -offset indent
252.It
253bits of the status register
254.It
255integer offset in the current executed (sub)microsequence.
256Offset is added to
257the index of the next microinstruction to execute.
258.El
259.Pp
260Predefined macro: MS_BRCLEAR(mask,offset)
261.Ss MS_OP_RET - RETurn
262is used to return from a microsequence.
263This instruction is mandatory.
264This
265is the only way for the microsequencer to detect the end of the microsequence.
266The return code is returned in the integer pointed by the (int *) parameter
267of the
268.Fn ppb_MS_microseq
269function.
270.Pp
271Parameter:
272.Bl -enum -offset indent
273.It
274integer return code
275.El
276.Pp
277Predefined macro: MS_RET(code)
278.Ss MS_OP_C_CALL - C function CALL
279is used to call C functions from microsequence execution.
280This may be useful
281when a non-standard i/o is performed to retrieve a data character from the
282parallel port.
283.Pp
284Parameter:
285.Bl -enum -offset indent
286.It
287the C function to call
288.It
289the parameter to pass to the function call
290.El
291.Pp
292The C function shall be declared as a
293.Ft int(*)(void *p, char *ptr) .
294The ptr parameter is the current position in the buffer currently scanned.
295.Pp
296Predefined macro: MS_C_CALL(func,param)
297.Ss MS_OP_PTR - initialize internal PTR
298is used to initialize the internal pointer to the currently scanned buffer.
299This pointer is passed to any C call (see above).
300.Pp
301Parameter:
302.Bl -enum -offset indent
303.It
304pointer to the buffer that shall be accessed by xxx_P() microsequence calls.
305Note that this pointer is automatically incremented during xxx_P() calls
306.El
307.Pp
308Predefined macro: MS_PTR(ptr)
309.Ss MS_OP_ADELAY - do an Asynchronous DELAY
310is used to make a tsleep() during microsequence execution.
311The tsleep is
312executed at PPBPRI level.
313.Pp
314Parameter:
315.Bl -enum -offset indent
316.It
317delay in ms
318.El
319.Pp
320Predefined macro: MS_ADELAY(delay)
321.Ss MS_OP_BRSTAT - BRanch on STATe
322is used to branch on status register state condition.
323.Pp
324Parameter:
325.Bl -enum -offset indent
326.It
327mask of asserted bits.
328Bits that shall be asserted in the status register
329are set in the mask
330.It
331mask of cleared bits.
332Bits that shall be cleared in the status register
333are set in the mask
334.It
335integer offset in the current executed (sub)microsequence.
336Offset is added
337to the index of the next microinstruction to execute.
338.El
339.Pp
340Predefined macro: MS_BRSTAT(asserted_bits,clear_bits,offset)
341.Ss MS_OP_SUBRET - SUBmicrosequence RETurn
342is used to return from the submicrosequence call.
343This action is mandatory
344before a RET call.
345Some microinstructions (PUT, GET) may not be callable
346within a submicrosequence.
347.Pp
348No parameter.
349.Pp
350Predefined macro: MS_SUBRET()
351.Ss MS_OP_CALL - submicrosequence CALL
352is used to call a submicrosequence.
353A submicrosequence is a microsequence with
354a SUBRET call.
355Parameter:
356.Bl -enum -offset indent
357.It
358the submicrosequence to execute
359.El
360.Pp
361Predefined macro: MS_CALL(microseq)
362.Ss MS_OP_RASSERT_P - Register ASSERT from internal PTR
363is used to assert a register with data currently pointed by the internal PTR
364pointer.
365Parameter:
366.Bl -enum -offset indent
367.It
368amount of data to write to the register
369.It
370register
371.El
372.Pp
373Predefined macro: MS_RASSERT_P(iter,reg)
374.Ss MS_OP_RFETCH_P - Register FETCH to internal PTR
375is used to fetch data from a register.
376Data is stored in the buffer currently
377pointed by the internal PTR pointer.
378Parameter:
379.Bl -enum -offset indent
380.It
381amount of data to read from the register
382.It
383register
384.It
385mask applied to fetched data
386.El
387.Pp
388Predefined macro: MS_RFETCH_P(iter,reg,mask)
389.Ss MS_OP_TRIG - TRIG register
390is used to trigger the parallel port.
391This microinstruction is intended to
392provide a very efficient control of the parallel port.
393Triggering a register
394is writing data, wait a while, write data, wait a while...
395This allows to
396write magic sequences to the port.
397Parameter:
398.Bl -enum -offset indent
399.It
400amount of data to read from the register
401.It
402register
403.It
404size of the array
405.It
406array of unsigned chars.
407Each couple of u_chars define the data to write to
408the register and the delay in us to wait.
409The delay is limited to 255 us to
410simplify and reduce the size of the array.
411.El
412.Pp
413Predefined macro: MS_TRIG(reg,len,array)
414.Sh MICROSEQUENCES
415.Ss C structures
416.Bd -literal
417union ppb_insarg {
418     int     i;
419     char    c;
420     void    *p;
421     int     (* f)(void *, char *);
422};
423
424struct ppb_microseq {
425     int                     opcode;         /* microins. opcode */
426     union ppb_insarg        arg[PPB_MS_MAXARGS];    /* arguments */
427};
428.Ed
429.Ss Using microsequences
430To instantiate a microsequence, just declare an array of ppb_microseq
431structures and initialize it as needed.
432You may either use predefined macros
433or code directly your microinstructions according to the ppb_microseq
434definition.
435For example,
436.Bd -literal
437     struct ppb_microseq select_microseq[] = {
438
439	     /* parameter list
440	      */
441	     #define SELECT_TARGET    MS_PARAM(0, 1, MS_TYP_INT)
442	     #define SELECT_INITIATOR MS_PARAM(3, 1, MS_TYP_INT)
443
444	     /* send the select command to the drive */
445	     MS_DASS(MS_UNKNOWN),
446	     MS_CASS(H_nAUTO | H_nSELIN |  H_INIT | H_STROBE),
447	     MS_CASS( H_AUTO | H_nSELIN |  H_INIT | H_STROBE),
448	     MS_DASS(MS_UNKNOWN),
449	     MS_CASS( H_AUTO | H_nSELIN | H_nINIT | H_STROBE),
450
451	     /* now, wait until the drive is ready */
452	     MS_SET(VP0_SELTMO),
453/* loop: */     MS_BRSET(H_ACK, 2 /* ready */),
454	     MS_DBRA(-2 /* loop */),
455/* error: */    MS_RET(1),
456/* ready: */    MS_RET(0)
457     };
458.Ed
459.Pp
460Here, some parameters are undefined and must be filled before executing
461the microsequence.
462In order to initialize each microsequence, one
463should use the
464.Fn ppb_MS_init_msq
465function like this:
466.Bd -literal
467     ppb_MS_init_msq(select_microseq, 2,
468		     SELECT_TARGET, 1 << target,
469		     SELECT_INITIATOR, 1 << initiator);
470.Ed
471.Pp
472and then execute the microsequence.
473.Ss The microsequencer
474The microsequencer is executed either at ppbus or adapter level (see
475.Xr ppbus 4
476for info about ppbus system layers). Most of the microsequencer is executed
477at ppc level to avoid ppbus to adapter function call overhead.
478But some
479actions like deciding whereas the transfer is IEEE1284-1994 compliant are
480executed at ppbus layer.
481.Sh SEE ALSO
482.Xr ppbus 4 ,
483.Xr ppc 4 ,
484.Xr vpo 4
485.Sh HISTORY
486The
487.Nm
488manual page first appeared in
489.Fx 3.0 .
490.Sh AUTHORS
491This
492manual page was written by
493.An Nicolas Souchu .
494.Sh BUGS
495Only one level of submicrosequences is allowed.
496.Pp
497When triggering the port, maximum delay allowed is 255 us.
498