xref: /dragonfly/share/man/man9/microseq.9 (revision 9ddb8543)
1.\" Copyright (c) 1998, 1999, Nicolas Souchu
2.\" All rights reserved.
3.\"
4.\" Redistribution and use in source and binary forms, with or without
5.\" modification, are permitted provided that the following conditions
6.\" are met:
7.\" 1. Redistributions of source code must retain the above copyright
8.\"    notice, this list of conditions and the following disclaimer.
9.\" 2. Redistributions in binary form must reproduce the above copyright
10.\"    notice, this list of conditions and the following disclaimer in the
11.\"    documentation and/or other materials provided with the distribution.
12.\"
13.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16.\" ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23.\" SUCH DAMAGE.
24.\"
25.\" $FreeBSD: src/share/man/man9/microseq.9,v 1.9.2.6 2002/12/29 16:35:39 schweikh Exp $
26.\" $DragonFly: src/share/man/man9/microseq.9,v 1.5 2008/11/23 21:55:52 swildner Exp $
27.\"
28.Dd June 6, 1998
29.Dt MICROSEQ 9
30.Os
31.Sh NAME
32.Nm microseq
33.Nd ppbus microsequencer developer's guide
34.Sh SYNOPSIS
35.In sys/types.h
36.In bus/ppbus/ppbconf.h
37.In bus/ppbus/ppb_msq.h
38.Sh DESCRIPTION
39See
40.Xr ppbus 4
41for ppbus description and general info about the microsequencer.
42.Pp
43The purpose of this document is to encourage developers to use the
44microsequencer mechanism in order to have:
45.Bl -enum -offset indent
46.It
47a uniform programming model
48.It
49efficient code
50.El
51.Pp
52Before using microsequences, you are encouraged to look at
53.Xr ppc 4
54microsequencer implementation and an example of how using it in
55.Xr vpo 4 .
56.Sh PPBUS register model
57.Ss Background
58The parallel port model chosen for ppbus is the PC parallel port model.
59Thus, any register described later has the same semantic than its counterpart
60in a PC parallel port.
61For more info about ISA/ECP programming, get the
62Microsoft standard referenced as "Extended Capabilities Port Protocol and
63ISA interface Standard". Registers described later are standard parallel port
64registers.
65.Pp
66Mask macros are defined in the standard ppbus include files for each valid
67bit of parallel port registers.
68.Ss Data register
69In compatible or nibble mode, writing to this register will drive data to the
70parallel port data lines.
71In any other mode, drivers may be tri-stated by
72setting the direction bit (PCD) in the control register.
73Reads to this register
74return the value on the data lines.
75.Ss Device status register
76This read-only register reflects the inputs on the parallel port interface.
77.Pp
78.Bl -column "Bit" "Name" "Description" -compact
79.It Em Bit Ta Em Name Ta Em Description
80.It 7 Ta nBUSY Ta "inverted version of parallel port Busy signal"
81.It 6 Ta nACK Ta "version of parallel port nAck signal"
82.It 5 Ta PERROR Ta "version of parallel port PERROR signal"
83.It 4 Ta SELECT Ta "version of parallel port Select signal"
84.It 3 Ta nFAULT Ta "version of parallel port nFault signal"
85.El
86.Pp
87Others are reserved and return undefined result when read.
88.Ss Device control register
89This register directly controls several output signals as well as enabling
90some functions.
91.Pp
92.Bl -column "Bit" "Name    " "Description" -compact
93.It Em Bit Ta Em Name Ta Em Description
94.It 5 Ta PCD Ta "direction bit in extended modes"
95.It 4 Ta IRQENABLE Ta "1 enables an interrupt on the rising edge of nAck"
96.It 3 Ta SELECTIN Ta "inverted and driven as parallel port nSelectin signal"
97.It 2 Ta nINIT Ta "driven as parallel port nInit signal"
98.It 1 Ta AUTOFEED Ta "inverted and driven as parallel port nAutoFd signal"
99.It 0 Ta STROBE Ta "inverted and driven as parallel port nStrobe signal"
100.El
101.Sh MICROINSTRUCTIONS
102.Ss Description
103.Em Microinstructions
104are either parallel port accesses, program iterations, submicrosequence or
105C calls.
106The parallel port must be considered as the logical model described in
107.Xr ppbus 4 .
108.Pp
109Available microinstructions are:
110.Bd -literal
111#define MS_OP_GET       0	/* get <ptr>, <len>			*/
112#define MS_OP_PUT       1	/* put <ptr>, <len>			*/
113#define MS_OP_RFETCH	2	/* rfetch <reg>, <mask>, <ptr>		*/
114#define MS_OP_RSET	3	/* rset <reg>, <mask>, <mask>		*/
115#define MS_OP_RASSERT	4	/* rassert <reg>, <mask>		*/
116#define MS_OP_DELAY     5	/* delay <val>				*/
117#define MS_OP_SET       6	/* set <val>				*/
118#define MS_OP_DBRA      7	/* dbra <offset>			*/
119#define MS_OP_BRSET     8	/* brset <mask>, <offset>		*/
120#define MS_OP_BRCLEAR   9	/* brclear <mask>, <offset>		*/
121#define MS_OP_RET       10	/* ret <retcode>			*/
122#define MS_OP_C_CALL	11	/* c_call <function>, <parameter>	*/
123#define MS_OP_PTR	12	/* ptr <pointer>			*/
124#define MS_OP_ADELAY	13	/* adelay <val>				*/
125#define MS_OP_BRSTAT	14	/* brstat <mask>, <mask>, <offset>	*/
126#define MS_OP_SUBRET	15	/* subret <code>			*/
127#define MS_OP_CALL	16	/* call <microsequence>			*/
128#define MS_OP_RASSERT_P	17	/* rassert_p <iter>, <reg>		*/
129#define MS_OP_RFETCH_P	18	/* rfetch_p <iter>, <reg>, <mask>	*/
130#define MS_OP_TRIG	19	/* trigger <reg>, <len>, <array>	*/
131.Ed
132.Ss Execution context
133The
134.Em execution context
135of microinstructions is:
136.Bl -bullet -offset indent
137.It
138the
139.Em program counter
140which points to the next microinstruction to execute either in the main
141microsequence or in a subcall
142.It
143the current value of
144.Em ptr
145which points to the next char to send/receive
146.It
147the current value of the internal
148.Em branch register
149.El
150.Pp
151This data is modified by some of the microinstructions, not all.
152.Ss MS_OP_GET and MS_OP_PUT
153are microinstructions used to do either predefined standard IEEE1284-1994
154transfers or programmed non-standard io.
155.Ss MS_OP_RFETCH - Register FETCH
156is used to retrieve the current value of a parallel port register, apply a
157mask and save it in a buffer.
158.Pp
159Parameters:
160.Bl -enum -offset indent
161.It
162register
163.It
164character mask
165.It
166pointer to the buffer
167.El
168.Pp
169Predefined macro: MS_RFETCH(reg,mask,ptr)
170.Ss MS_OP_RSET - Register SET
171is used to assert/clear some bits of a particular parallel port register,
172two masks are applied.
173.Pp
174Parameters:
175.Bl -enum -offset indent
176.It
177register
178.It
179mask of bits to assert
180.It
181mask of bits to clear
182.El
183.Pp
184Predefined macro: MS_RSET(reg,assert,clear)
185.Ss MS_OP_RASSERT - Register ASSERT
186is used to assert all bits of a particular parallel port register.
187.Pp
188Parameters:
189.Bl -enum -offset indent
190.It
191register
192.It
193byte to assert
194.El
195.Pp
196Predefined macro: MS_RASSERT(reg,byte)
197.Ss MS_OP_DELAY - microsecond DELAY
198is used to delay the execution of the microsequence.
199.Pp
200Parameter:
201.Bl -enum -offset indent
202.It
203delay in microseconds
204.El
205.Pp
206Predefined macro: MS_DELAY(delay)
207.Ss MS_OP_SET - SET internal branch register
208is used to set the value of the internal branch register.
209.Pp
210Parameter:
211.Bl -enum -offset indent
212.It
213integer value
214.El
215.Pp
216Predefined macro: MS_SET(accum)
217.Ss MS_OP_DBRA - \&Do BRAnch
218is used to branch if internal branch register decremented by one result value
219is positive.
220.Pp
221Parameter:
222.Bl -enum -offset indent
223.It
224integer offset in the current executed (sub)microsequence.
225Offset is added to
226the index of the next microinstruction to execute.
227.El
228.Pp
229Predefined macro: MS_DBRA(offset)
230.Ss MS_OP_BRSET - BRanch on SET
231is used to branch if some of the status register bits of the parallel port
232are set.
233.Pp
234Parameter:
235.Bl -enum -offset indent
236.It
237bits of the status register
238.It
239integer offset in the current executed (sub)microsequence.
240Offset is added to
241the index of the next microinstruction to execute.
242.El
243.Pp
244Predefined macro: MS_BRSET(mask,offset)
245.Ss MS_OP_BRCLEAR - BRanch on CLEAR
246is used to branch if some of the status register bits of the parallel port
247are cleared.
248.Pp
249Parameter:
250.Bl -enum -offset indent
251.It
252bits of the status register
253.It
254integer offset in the current executed (sub)microsequence.
255Offset is added to
256the index of the next microinstruction to execute.
257.El
258.Pp
259Predefined macro: MS_BRCLEAR(mask,offset)
260.Ss MS_OP_RET - RETurn
261is used to return from a microsequence.
262This instruction is mandatory.
263This
264is the only way for the microsequencer to detect the end of the microsequence.
265The return code is returned in the integer pointed by the (int *) parameter
266of the
267.Fn ppb_MS_microseq
268function.
269.Pp
270Parameter:
271.Bl -enum -offset indent
272.It
273integer return code
274.El
275.Pp
276Predefined macro: MS_RET(code)
277.Ss MS_OP_C_CALL - C function CALL
278is used to call C functions from microsequence execution.
279This may be useful
280when a non-standard i/o is performed to retrieve a data character from the
281parallel port.
282.Pp
283Parameter:
284.Bl -enum -offset indent
285.It
286the C function to call
287.It
288the parameter to pass to the function call
289.El
290.Pp
291The C function shall be declared as a
292.Ft int(*)(void *p, char *ptr) .
293The ptr parameter is the current position in the buffer currently scanned.
294.Pp
295Predefined macro: MS_C_CALL(func,param)
296.Ss MS_OP_PTR - initialize internal PTR
297is used to initialize the internal pointer to the currently scanned buffer.
298This pointer is passed to any C call (see above).
299.Pp
300Parameter:
301.Bl -enum -offset indent
302.It
303pointer to the buffer that shall be accessed by xxx_P() microsequence calls.
304Note that this pointer is automatically incremented during xxx_P() calls
305.El
306.Pp
307Predefined macro: MS_PTR(ptr)
308.Ss MS_OP_ADELAY - do an Asynchronous DELAY
309is used to make a tsleep() during microsequence execution.
310The tsleep is
311executed at PPBPRI level.
312.Pp
313Parameter:
314.Bl -enum -offset indent
315.It
316delay in ms
317.El
318.Pp
319Predefined macro: MS_ADELAY(delay)
320.Ss MS_OP_BRSTAT - BRanch on STATe
321is used to branch on status register state condition.
322.Pp
323Parameter:
324.Bl -enum -offset indent
325.It
326mask of asserted bits.
327Bits that shall be asserted in the status register
328are set in the mask
329.It
330mask of cleared bits.
331Bits that shall be cleared in the status register
332are set in the mask
333.It
334integer offset in the current executed (sub)microsequence.
335Offset is added
336to the index of the next microinstruction to execute.
337.El
338.Pp
339Predefined macro: MS_BRSTAT(asserted_bits,clear_bits,offset)
340.Ss MS_OP_SUBRET - SUBmicrosequence RETurn
341is used to return from the submicrosequence call.
342This action is mandatory
343before a RET call.
344Some microinstructions (PUT, GET) may not be callable
345within a submicrosequence.
346.Pp
347No parameter.
348.Pp
349Predefined macro: MS_SUBRET()
350.Ss MS_OP_CALL - submicrosequence CALL
351is used to call a submicrosequence.
352A submicrosequence is a microsequence with
353a SUBRET call.
354Parameter:
355.Bl -enum -offset indent
356.It
357the submicrosequence to execute
358.El
359.Pp
360Predefined macro: MS_CALL(microseq)
361.Ss MS_OP_RASSERT_P - Register ASSERT from internal PTR
362is used to assert a register with data currently pointed by the internal PTR
363pointer.
364Parameter:
365.Bl -enum -offset indent
366.It
367amount of data to write to the register
368.It
369register
370.El
371.Pp
372Predefined macro: MS_RASSERT_P(iter,reg)
373.Ss MS_OP_RFETCH_P - Register FETCH to internal PTR
374is used to fetch data from a register.
375Data is stored in the buffer currently
376pointed by the internal PTR pointer.
377Parameter:
378.Bl -enum -offset indent
379.It
380amount of data to read from the register
381.It
382register
383.It
384mask applied to fetched data
385.El
386.Pp
387Predefined macro: MS_RFETCH_P(iter,reg,mask)
388.Ss MS_OP_TRIG - TRIG register
389is used to trigger the parallel port.
390This microinstruction is intended to
391provide a very efficient control of the parallel port.
392Triggering a register
393is writing data, wait a while, write data, wait a while...
394This allows to
395write magic sequences to the port.
396Parameter:
397.Bl -enum -offset indent
398.It
399amount of data to read from the register
400.It
401register
402.It
403size of the array
404.It
405array of unsigned chars.
406Each couple of u_chars define the data to write to
407the register and the delay in us to wait.
408The delay is limited to 255 us to
409simplify and reduce the size of the array.
410.El
411.Pp
412Predefined macro: MS_TRIG(reg,len,array)
413.Sh MICROSEQUENCES
414.Ss C structures
415.Bd -literal
416union ppb_insarg {
417     int     i;
418     char    c;
419     void    *p;
420     int     (* f)(void *, char *);
421};
422
423struct ppb_microseq {
424     int                     opcode;         /* microins. opcode */
425     union ppb_insarg        arg[PPB_MS_MAXARGS];    /* arguments */
426};
427.Ed
428.Ss Using microsequences
429To instantiate a microsequence, just declare an array of ppb_microseq
430structures and initialize it as needed.
431You may either use predefined macros
432or code directly your microinstructions according to the ppb_microseq
433definition.
434For example,
435.Bd -literal
436     struct ppb_microseq select_microseq[] = {
437
438	     /* parameter list
439	      */
440	     #define SELECT_TARGET    MS_PARAM(0, 1, MS_TYP_INT)
441	     #define SELECT_INITIATOR MS_PARAM(3, 1, MS_TYP_INT)
442
443	     /* send the select command to the drive */
444	     MS_DASS(MS_UNKNOWN),
445	     MS_CASS(H_nAUTO | H_nSELIN |  H_INIT | H_STROBE),
446	     MS_CASS( H_AUTO | H_nSELIN |  H_INIT | H_STROBE),
447	     MS_DASS(MS_UNKNOWN),
448	     MS_CASS( H_AUTO | H_nSELIN | H_nINIT | H_STROBE),
449
450	     /* now, wait until the drive is ready */
451	     MS_SET(VP0_SELTMO),
452/* loop: */     MS_BRSET(H_ACK, 2 /* ready */),
453	     MS_DBRA(-2 /* loop */),
454/* error: */    MS_RET(1),
455/* ready: */    MS_RET(0)
456     };
457.Ed
458.Pp
459Here, some parameters are undefined and must be filled before executing
460the microsequence.
461In order to initialize each microsequence, one
462should use the
463.Fn ppb_MS_init_msq
464function like this:
465.Bd -literal
466     ppb_MS_init_msq(select_microseq, 2,
467		     SELECT_TARGET, 1 << target,
468		     SELECT_INITIATOR, 1 << initiator);
469.Ed
470.Pp
471and then execute the microsequence.
472.Ss The microsequencer
473The microsequencer is executed either at ppbus or adapter level (see
474.Xr ppbus 4
475for info about ppbus system layers). Most of the microsequencer is executed
476at ppc level to avoid ppbus to adapter function call overhead.
477But some
478actions like deciding whereas the transfer is IEEE1284-1994 compliant are
479executed at ppbus layer.
480.Sh SEE ALSO
481.Xr ppbus 4 ,
482.Xr ppc 4 ,
483.Xr vpo 4
484.Sh HISTORY
485The
486.Nm
487manual page first appeared in
488.Fx 3.0 .
489.Sh AUTHORS
490This
491manual page was written by
492.An Nicolas Souchu .
493.Sh BUGS
494Only one level of submicrosequences is allowed.
495.Pp
496When triggering the port, maximum delay allowed is 255 us.
497