xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 1bf4b486)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.26 2005/07/17 03:49:50 dillon Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/bus.h>
44 #include <sys/thread.h>
45 #include <sys/thread2.h>
46 
47 #include <machine/clock.h>
48 #include <machine/ipl.h>
49 
50 #include "cam.h"
51 #include "cam_ccb.h"
52 #include "cam_periph.h"
53 #include "cam_sim.h"
54 #include "cam_xpt.h"
55 #include "cam_xpt_sim.h"
56 #include "cam_xpt_periph.h"
57 #include "cam_debug.h"
58 
59 #include "scsi/scsi_all.h"
60 #include "scsi/scsi_message.h"
61 #include "scsi/scsi_pass.h"
62 #include "opt_cam.h"
63 
64 /* Datastructures internal to the xpt layer */
65 
66 /*
67  * Definition of an async handler callback block.  These are used to add
68  * SIMs and peripherals to the async callback lists.
69  */
70 struct async_node {
71 	SLIST_ENTRY(async_node)	links;
72 	u_int32_t	event_enable;	/* Async Event enables */
73 	void		(*callback)(void *arg, u_int32_t code,
74 				    struct cam_path *path, void *args);
75 	void		*callback_arg;
76 };
77 
78 SLIST_HEAD(async_list, async_node);
79 SLIST_HEAD(periph_list, cam_periph);
80 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
81 
82 /*
83  * This is the maximum number of high powered commands (e.g. start unit)
84  * that can be outstanding at a particular time.
85  */
86 #ifndef CAM_MAX_HIGHPOWER
87 #define CAM_MAX_HIGHPOWER  4
88 #endif
89 
90 /* number of high powered commands that can go through right now */
91 static int num_highpower = CAM_MAX_HIGHPOWER;
92 
93 /*
94  * Structure for queueing a device in a run queue.
95  * There is one run queue for allocating new ccbs,
96  * and another for sending ccbs to the controller.
97  */
98 struct cam_ed_qinfo {
99 	cam_pinfo pinfo;
100 	struct	  cam_ed *device;
101 };
102 
103 /*
104  * The CAM EDT (Existing Device Table) contains the device information for
105  * all devices for all busses in the system.  The table contains a
106  * cam_ed structure for each device on the bus.
107  */
108 struct cam_ed {
109 	TAILQ_ENTRY(cam_ed) links;
110 	struct	cam_ed_qinfo alloc_ccb_entry;
111 	struct	cam_ed_qinfo send_ccb_entry;
112 	struct	cam_et	 *target;
113 	lun_id_t	 lun_id;
114 	struct	camq drvq;		/*
115 					 * Queue of type drivers wanting to do
116 					 * work on this device.
117 					 */
118 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
119 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
120 	struct	periph_list periphs;	/* All attached devices */
121 	u_int	generation;		/* Generation number */
122 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
123 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
124 					/* Storage for the inquiry data */
125 	struct	scsi_inquiry_data inq_data;
126 	u_int8_t	 inq_flags;	/*
127 					 * Current settings for inquiry flags.
128 					 * This allows us to override settings
129 					 * like disconnection and tagged
130 					 * queuing for a device.
131 					 */
132 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
133 	u_int8_t	 serial_num_len;
134 	u_int8_t	 *serial_num;
135 	u_int32_t	 qfrozen_cnt;
136 	u_int32_t	 flags;
137 #define CAM_DEV_UNCONFIGURED	 	0x01
138 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
139 #define CAM_DEV_REL_ON_COMPLETE		0x04
140 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
141 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
142 #define CAM_DEV_TAG_AFTER_COUNT		0x20
143 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
144 	u_int32_t	 tag_delay_count;
145 #define	CAM_TAG_DELAY_COUNT		5
146 	u_int32_t	 refcount;
147 	struct		 callout c_handle;
148 };
149 
150 /*
151  * Each target is represented by an ET (Existing Target).  These
152  * entries are created when a target is successfully probed with an
153  * identify, and removed when a device fails to respond after a number
154  * of retries, or a bus rescan finds the device missing.
155  */
156 struct cam_et {
157 	TAILQ_HEAD(, cam_ed) ed_entries;
158 	TAILQ_ENTRY(cam_et) links;
159 	struct	cam_eb	*bus;
160 	target_id_t	target_id;
161 	u_int32_t	refcount;
162 	u_int		generation;
163 	struct		timeval last_reset;	/* uptime of last reset */
164 };
165 
166 /*
167  * Each bus is represented by an EB (Existing Bus).  These entries
168  * are created by calls to xpt_bus_register and deleted by calls to
169  * xpt_bus_deregister.
170  */
171 struct cam_eb {
172 	TAILQ_HEAD(, cam_et) et_entries;
173 	TAILQ_ENTRY(cam_eb)  links;
174 	path_id_t	     path_id;
175 	struct cam_sim	     *sim;
176 	struct timeval	     last_reset;	/* uptime of last reset */
177 	u_int32_t	     flags;
178 #define	CAM_EB_RUNQ_SCHEDULED	0x01
179 	u_int32_t	     refcount;
180 	u_int		     generation;
181 };
182 
183 struct cam_path {
184 	struct cam_periph *periph;
185 	struct cam_eb	  *bus;
186 	struct cam_et	  *target;
187 	struct cam_ed	  *device;
188 };
189 
190 struct xpt_quirk_entry {
191 	struct scsi_inquiry_pattern inq_pat;
192 	u_int8_t quirks;
193 #define	CAM_QUIRK_NOLUNS	0x01
194 #define	CAM_QUIRK_NOSERIAL	0x02
195 #define	CAM_QUIRK_HILUNS	0x04
196 	u_int mintags;
197 	u_int maxtags;
198 };
199 #define	CAM_SCSI2_MAXLUN	8
200 
201 typedef enum {
202 	XPT_FLAG_OPEN		= 0x01
203 } xpt_flags;
204 
205 struct xpt_softc {
206 	xpt_flags	flags;
207 	u_int32_t	generation;
208 };
209 
210 static const char quantum[] = "QUANTUM";
211 static const char sony[] = "SONY";
212 static const char west_digital[] = "WDIGTL";
213 static const char samsung[] = "SAMSUNG";
214 static const char seagate[] = "SEAGATE";
215 static const char microp[] = "MICROP";
216 
217 static struct xpt_quirk_entry xpt_quirk_table[] =
218 {
219 	{
220 		/* Reports QUEUE FULL for temporary resource shortages */
221 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
222 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
223 	},
224 	{
225 		/* Reports QUEUE FULL for temporary resource shortages */
226 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
227 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
228 	},
229 	{
230 		/* Reports QUEUE FULL for temporary resource shortages */
231 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
232 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
233 	},
234 	{
235 		/* Broken tagged queuing drive */
236 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
237 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
238 	},
239 	{
240 		/* Broken tagged queuing drive */
241 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
242 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
243 	},
244 	{
245 		/* Broken tagged queuing drive */
246 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
247 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
248 	},
249 	{
250 		/*
251 		 * Unfortunately, the Quantum Atlas III has the same
252 		 * problem as the Atlas II drives above.
253 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
254 		 *
255 		 * For future reference, the drive with the problem was:
256 		 * QUANTUM QM39100TD-SW N1B0
257 		 *
258 		 * It's possible that Quantum will fix the problem in later
259 		 * firmware revisions.  If that happens, the quirk entry
260 		 * will need to be made specific to the firmware revisions
261 		 * with the problem.
262 		 *
263 		 */
264 		/* Reports QUEUE FULL for temporary resource shortages */
265 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
266 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
267 	},
268 	{
269 		/*
270 		 * 18 Gig Atlas III, same problem as the 9G version.
271 		 * Reported by: Andre Albsmeier
272 		 *		<andre.albsmeier@mchp.siemens.de>
273 		 *
274 		 * For future reference, the drive with the problem was:
275 		 * QUANTUM QM318000TD-S N491
276 		 */
277 		/* Reports QUEUE FULL for temporary resource shortages */
278 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
279 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
280 	},
281 	{
282 		/*
283 		 * Broken tagged queuing drive
284 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
285 		 *         and: Martin Renters <martin@tdc.on.ca>
286 		 */
287 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
288 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
289 	},
290 		/*
291 		 * The Seagate Medalist Pro drives have very poor write
292 		 * performance with anything more than 2 tags.
293 		 *
294 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
295 		 * Drive:  <SEAGATE ST36530N 1444>
296 		 *
297 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
298 		 * Drive:  <SEAGATE ST34520W 1281>
299 		 *
300 		 * No one has actually reported that the 9G version
301 		 * (ST39140*) of the Medalist Pro has the same problem, but
302 		 * we're assuming that it does because the 4G and 6.5G
303 		 * versions of the drive are broken.
304 		 */
305 	{
306 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
307 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
308 	},
309 	{
310 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
311 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
312 	},
313 	{
314 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
315 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
316 	},
317 	{
318 		/*
319 		 * Slow when tagged queueing is enabled.  Write performance
320 		 * steadily drops off with more and more concurrent
321 		 * transactions.  Best sequential write performance with
322 		 * tagged queueing turned off and write caching turned on.
323 		 *
324 		 * PR:  kern/10398
325 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
326 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
327 		 *
328 		 * The drive with the problem had the "S65A" firmware
329 		 * revision, and has also been reported (by Stephen J.
330 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
331 		 * firmware revision.
332 		 *
333 		 * Although no one has reported problems with the 2 gig
334 		 * version of the DCAS drive, the assumption is that it
335 		 * has the same problems as the 4 gig version.  Therefore
336 		 * this quirk entries disables tagged queueing for all
337 		 * DCAS drives.
338 		 */
339 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
340 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
341 	},
342 	{
343 		/* Broken tagged queuing drive */
344 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
345 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
346 	},
347 	{
348 		/* Broken tagged queuing drive */
349 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
350 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
351 	},
352 	{
353 		/*
354 		 * Broken tagged queuing drive.
355 		 * Submitted by:
356 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
357 		 * in PR kern/9535
358 		 */
359 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
360 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
361 	},
362         {
363 		/*
364 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
365 		 * 8MB/sec.)
366 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
367 		 * Best performance with these drives is achieved with
368 		 * tagged queueing turned off, and write caching turned on.
369 		 */
370 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
371 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
372         },
373         {
374 		/*
375 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
376 		 * 8MB/sec.)
377 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
378 		 * Best performance with these drives is achieved with
379 		 * tagged queueing turned off, and write caching turned on.
380 		 */
381 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
382 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
383         },
384 	{
385 		/*
386 		 * Doesn't handle queue full condition correctly,
387 		 * so we need to limit maxtags to what the device
388 		 * can handle instead of determining this automatically.
389 		 */
390 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
391 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
392 	},
393 	{
394 		/* Really only one LUN */
395 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
396 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
397 	},
398 	{
399 		/* I can't believe we need a quirk for DPT volumes. */
400 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
401 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
402 		/*mintags*/0, /*maxtags*/255
403 	},
404 	{
405 		/*
406 		 * Many Sony CDROM drives don't like multi-LUN probing.
407 		 */
408 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
409 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
410 	},
411 	{
412 		/*
413 		 * This drive doesn't like multiple LUN probing.
414 		 * Submitted by:  Parag Patel <parag@cgt.com>
415 		 */
416 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
417 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
418 	},
419 	{
420 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
421 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
422 	},
423 	{
424 		/*
425 		 * The 8200 doesn't like multi-lun probing, and probably
426 		 * don't like serial number requests either.
427 		 */
428 		{
429 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
430 			"EXB-8200*", "*"
431 		},
432 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
433 	},
434 	{
435 		/*
436 		 * Let's try the same as above, but for a drive that says
437 		 * it's an IPL-6860 but is actually an EXB 8200.
438 		 */
439 		{
440 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
441 			"IPL-6860*", "*"
442 		},
443 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
444 	},
445 	{
446 		/*
447 		 * These Hitachi drives don't like multi-lun probing.
448 		 * The PR submitter has a DK319H, but says that the Linux
449 		 * kernel has a similar work-around for the DK312 and DK314,
450 		 * so all DK31* drives are quirked here.
451 		 * PR:            misc/18793
452 		 * Submitted by:  Paul Haddad <paul@pth.com>
453 		 */
454 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
455 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
456 	},
457 	{
458 		/*
459 		 * This old revision of the TDC3600 is also SCSI-1, and
460 		 * hangs upon serial number probing.
461 		 */
462 		{
463 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
464 			" TDC 3600", "U07:"
465 		},
466 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
467 	},
468 	{
469 		/*
470 		 * Would repond to all LUNs if asked for.
471 		 */
472 		{
473 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
474 			"CP150", "*"
475 		},
476 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
477 	},
478 	{
479 		/*
480 		 * Would repond to all LUNs if asked for.
481 		 */
482 		{
483 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
484 			"96X2*", "*"
485 		},
486 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
487 	},
488 	{
489 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
490 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
491 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
492 	},
493 	{
494 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
495 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
496 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
497 	},
498 	{
499 		/* TeraSolutions special settings for TRC-22 RAID */
500 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
501 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
502 	},
503 	{
504 		/* Veritas Storage Appliance */
505 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
506 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
507 	},
508 	{
509 		/*
510 		 * Would respond to all LUNs.  Device type and removable
511 		 * flag are jumper-selectable.
512 		 */
513 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
514 		  "Tahiti 1", "*"
515 		},
516 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
517 	},
518 	{
519 		/* Default tagged queuing parameters for all devices */
520 		{
521 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
522 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
523 		},
524 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
525 	},
526 };
527 
528 static const int xpt_quirk_table_size =
529 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
530 
531 typedef enum {
532 	DM_RET_COPY		= 0x01,
533 	DM_RET_FLAG_MASK	= 0x0f,
534 	DM_RET_NONE		= 0x00,
535 	DM_RET_STOP		= 0x10,
536 	DM_RET_DESCEND		= 0x20,
537 	DM_RET_ERROR		= 0x30,
538 	DM_RET_ACTION_MASK	= 0xf0
539 } dev_match_ret;
540 
541 typedef enum {
542 	XPT_DEPTH_BUS,
543 	XPT_DEPTH_TARGET,
544 	XPT_DEPTH_DEVICE,
545 	XPT_DEPTH_PERIPH
546 } xpt_traverse_depth;
547 
548 struct xpt_traverse_config {
549 	xpt_traverse_depth	depth;
550 	void			*tr_func;
551 	void			*tr_arg;
552 };
553 
554 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
555 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
556 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
557 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
558 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
559 
560 /* Transport layer configuration information */
561 static struct xpt_softc xsoftc;
562 
563 /* Queues for our software interrupt handler */
564 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
565 static cam_isrq_t cam_bioq;
566 static cam_isrq_t cam_netq;
567 
568 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
569 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
570 static u_int xpt_max_ccbs;	/*
571 				 * Maximum size of ccb pool.  Modified as
572 				 * devices are added/removed or have their
573 				 * opening counts changed.
574 				 */
575 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
576 
577 struct cam_periph *xpt_periph;
578 
579 static periph_init_t xpt_periph_init;
580 
581 static periph_init_t probe_periph_init;
582 
583 static struct periph_driver xpt_driver =
584 {
585 	xpt_periph_init, "xpt",
586 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
587 };
588 
589 static struct periph_driver probe_driver =
590 {
591 	probe_periph_init, "probe",
592 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
593 };
594 
595 DATA_SET(periphdriver_set, xpt_driver);
596 DATA_SET(periphdriver_set, probe_driver);
597 
598 #define XPT_CDEV_MAJOR 104
599 
600 static d_open_t xptopen;
601 static d_close_t xptclose;
602 static d_ioctl_t xptioctl;
603 
604 static struct cdevsw xpt_cdevsw = {
605 	/* name */	"xpt",
606 	/* maj */	XPT_CDEV_MAJOR,
607 	/* flags */	0,
608 	/* port */	NULL,
609 	/* clone */	NULL,
610 
611 	/* open */	xptopen,
612 	/* close */	xptclose,
613 	/* read */	noread,
614 	/* write */	nowrite,
615 	/* ioctl */	xptioctl,
616 	/* poll */	nopoll,
617 	/* mmap */	nommap,
618 	/* strategy */	nostrategy,
619 	/* dump */	nodump,
620 	/* psize */	nopsize
621 };
622 
623 static struct intr_config_hook *xpt_config_hook;
624 
625 /* Registered busses */
626 static TAILQ_HEAD(,cam_eb) xpt_busses;
627 static u_int bus_generation;
628 
629 /* Storage for debugging datastructures */
630 #ifdef	CAMDEBUG
631 struct cam_path *cam_dpath;
632 u_int32_t cam_dflags;
633 u_int32_t cam_debug_delay;
634 #endif
635 
636 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
637 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
638 #endif
639 
640 /*
641  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
642  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
643  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
644  */
645 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
646     || defined(CAM_DEBUG_LUN)
647 #ifdef CAMDEBUG
648 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
649     || !defined(CAM_DEBUG_LUN)
650 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
651         and CAM_DEBUG_LUN"
652 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
653 #else /* !CAMDEBUG */
654 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
655 #endif /* CAMDEBUG */
656 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
657 
658 /* Our boot-time initialization hook */
659 static void	xpt_init(void *);
660 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
661 
662 static cam_status	xpt_compile_path(struct cam_path *new_path,
663 					 struct cam_periph *perph,
664 					 path_id_t path_id,
665 					 target_id_t target_id,
666 					 lun_id_t lun_id);
667 
668 static void		xpt_release_path(struct cam_path *path);
669 
670 static void		xpt_async_bcast(struct async_list *async_head,
671 					u_int32_t async_code,
672 					struct cam_path *path,
673 					void *async_arg);
674 static void		xpt_dev_async(u_int32_t async_code,
675 				      struct cam_eb *bus,
676 				      struct cam_et *target,
677 				      struct cam_ed *device,
678 				      void *async_arg);
679 static path_id_t xptnextfreepathid(void);
680 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
681 static union ccb *xpt_get_ccb(struct cam_ed *device);
682 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
683 				  u_int32_t new_priority);
684 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
685 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
686 static timeout_t xpt_release_devq_timeout;
687 static void	 xpt_release_bus(struct cam_eb *bus);
688 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
689 					 int run_queue);
690 static struct cam_et*
691 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
692 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
693 static struct cam_ed*
694 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
695 				  lun_id_t lun_id);
696 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
697 				    struct cam_ed *device);
698 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
699 static struct cam_eb*
700 		 xpt_find_bus(path_id_t path_id);
701 static struct cam_et*
702 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
703 static struct cam_ed*
704 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
705 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
706 static void	 xpt_scan_lun(struct cam_periph *periph,
707 			      struct cam_path *path, cam_flags flags,
708 			      union ccb *ccb);
709 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
710 static xpt_busfunc_t	xptconfigbuscountfunc;
711 static xpt_busfunc_t	xptconfigfunc;
712 static void	 xpt_config(void *arg);
713 static xpt_devicefunc_t xptpassannouncefunc;
714 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
715 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
716 static void	 xptpoll(struct cam_sim *sim);
717 static inthand2_t swi_camnet;
718 static inthand2_t swi_cambio;
719 static void	 camisr(cam_isrq_t *queue);
720 #if 0
721 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
722 static void	 xptasync(struct cam_periph *periph,
723 			  u_int32_t code, cam_path *path);
724 #endif
725 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
726 				    int num_patterns, struct cam_eb *bus);
727 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
728 				       int num_patterns, struct cam_ed *device);
729 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
730 				       int num_patterns,
731 				       struct cam_periph *periph);
732 static xpt_busfunc_t	xptedtbusfunc;
733 static xpt_targetfunc_t	xptedttargetfunc;
734 static xpt_devicefunc_t	xptedtdevicefunc;
735 static xpt_periphfunc_t	xptedtperiphfunc;
736 static xpt_pdrvfunc_t	xptplistpdrvfunc;
737 static xpt_periphfunc_t	xptplistperiphfunc;
738 static int		xptedtmatch(struct ccb_dev_match *cdm);
739 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
740 static int		xptbustraverse(struct cam_eb *start_bus,
741 				       xpt_busfunc_t *tr_func, void *arg);
742 static int		xpttargettraverse(struct cam_eb *bus,
743 					  struct cam_et *start_target,
744 					  xpt_targetfunc_t *tr_func, void *arg);
745 static int		xptdevicetraverse(struct cam_et *target,
746 					  struct cam_ed *start_device,
747 					  xpt_devicefunc_t *tr_func, void *arg);
748 static int		xptperiphtraverse(struct cam_ed *device,
749 					  struct cam_periph *start_periph,
750 					  xpt_periphfunc_t *tr_func, void *arg);
751 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
752 					xpt_pdrvfunc_t *tr_func, void *arg);
753 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
754 					    struct cam_periph *start_periph,
755 					    xpt_periphfunc_t *tr_func,
756 					    void *arg);
757 static xpt_busfunc_t	xptdefbusfunc;
758 static xpt_targetfunc_t	xptdeftargetfunc;
759 static xpt_devicefunc_t	xptdefdevicefunc;
760 static xpt_periphfunc_t	xptdefperiphfunc;
761 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
762 #ifdef notusedyet
763 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
764 					    void *arg);
765 #endif
766 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
767 					    void *arg);
768 #ifdef notusedyet
769 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
770 					    void *arg);
771 #endif
772 static xpt_devicefunc_t	xptsetasyncfunc;
773 static xpt_busfunc_t	xptsetasyncbusfunc;
774 static cam_status	xptregister(struct cam_periph *periph,
775 				    void *arg);
776 static cam_status	proberegister(struct cam_periph *periph,
777 				      void *arg);
778 static void	 probeschedule(struct cam_periph *probe_periph);
779 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
780 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
781 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
782 static void	 probecleanup(struct cam_periph *periph);
783 static void	 xpt_find_quirk(struct cam_ed *device);
784 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
785 					   struct cam_ed *device,
786 					   int async_update);
787 static void	 xpt_toggle_tags(struct cam_path *path);
788 static void	 xpt_start_tags(struct cam_path *path);
789 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
790 					    struct cam_ed *dev);
791 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
792 					   struct cam_ed *dev);
793 static __inline int periph_is_queued(struct cam_periph *periph);
794 static __inline int device_is_alloc_queued(struct cam_ed *device);
795 static __inline int device_is_send_queued(struct cam_ed *device);
796 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
797 
798 static __inline int
799 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
800 {
801 	int retval;
802 
803 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
804 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
805 			cam_ccbq_resize(&dev->ccbq,
806 					dev->ccbq.dev_openings
807 					+ dev->ccbq.dev_active);
808 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
809 		}
810 		/*
811 		 * The priority of a device waiting for CCB resources
812 		 * is that of the the highest priority peripheral driver
813 		 * enqueued.
814 		 */
815 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
816 					  &dev->alloc_ccb_entry.pinfo,
817 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
818 	} else {
819 		retval = 0;
820 	}
821 
822 	return (retval);
823 }
824 
825 static __inline int
826 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
827 {
828 	int	retval;
829 
830 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
831 		/*
832 		 * The priority of a device waiting for controller
833 		 * resources is that of the the highest priority CCB
834 		 * enqueued.
835 		 */
836 		retval =
837 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
838 				     &dev->send_ccb_entry.pinfo,
839 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
840 	} else {
841 		retval = 0;
842 	}
843 	return (retval);
844 }
845 
846 static __inline int
847 periph_is_queued(struct cam_periph *periph)
848 {
849 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
850 }
851 
852 static __inline int
853 device_is_alloc_queued(struct cam_ed *device)
854 {
855 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
856 }
857 
858 static __inline int
859 device_is_send_queued(struct cam_ed *device)
860 {
861 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
862 }
863 
864 static __inline int
865 dev_allocq_is_runnable(struct cam_devq *devq)
866 {
867 	/*
868 	 * Have work to do.
869 	 * Have space to do more work.
870 	 * Allowed to do work.
871 	 */
872 	return ((devq->alloc_queue.qfrozen_cnt == 0)
873 	     && (devq->alloc_queue.entries > 0)
874 	     && (devq->alloc_openings > 0));
875 }
876 
877 static void
878 xpt_periph_init()
879 {
880 	cdevsw_add(&xpt_cdevsw, 0, 0);
881 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
882 }
883 
884 static void
885 probe_periph_init()
886 {
887 }
888 
889 
890 static void
891 xptdone(struct cam_periph *periph, union ccb *done_ccb)
892 {
893 	/* Caller will release the CCB */
894 	wakeup(&done_ccb->ccb_h.cbfcnp);
895 }
896 
897 static int
898 xptopen(dev_t dev, int flags, int fmt, struct thread *td)
899 {
900 	int unit;
901 
902 	unit = minor(dev) & 0xff;
903 
904 	/*
905 	 * Only allow read-write access.
906 	 */
907 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
908 		return(EPERM);
909 
910 	/*
911 	 * We don't allow nonblocking access.
912 	 */
913 	if ((flags & O_NONBLOCK) != 0) {
914 		printf("xpt%d: can't do nonblocking access\n", unit);
915 		return(ENODEV);
916 	}
917 
918 	/*
919 	 * We only have one transport layer right now.  If someone accesses
920 	 * us via something other than minor number 1, point out their
921 	 * mistake.
922 	 */
923 	if (unit != 0) {
924 		printf("xptopen: got invalid xpt unit %d\n", unit);
925 		return(ENXIO);
926 	}
927 
928 	/* Mark ourselves open */
929 	xsoftc.flags |= XPT_FLAG_OPEN;
930 
931 	return(0);
932 }
933 
934 static int
935 xptclose(dev_t dev, int flag, int fmt, struct thread *td)
936 {
937 	int unit;
938 
939 	unit = minor(dev) & 0xff;
940 
941 	/*
942 	 * We only have one transport layer right now.  If someone accesses
943 	 * us via something other than minor number 1, point out their
944 	 * mistake.
945 	 */
946 	if (unit != 0) {
947 		printf("xptclose: got invalid xpt unit %d\n", unit);
948 		return(ENXIO);
949 	}
950 
951 	/* Mark ourselves closed */
952 	xsoftc.flags &= ~XPT_FLAG_OPEN;
953 
954 	return(0);
955 }
956 
957 static int
958 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
959 {
960 	int unit, error;
961 
962 	error = 0;
963 	unit = minor(dev) & 0xff;
964 
965 	/*
966 	 * We only have one transport layer right now.  If someone accesses
967 	 * us via something other than minor number 1, point out their
968 	 * mistake.
969 	 */
970 	if (unit != 0) {
971 		printf("xptioctl: got invalid xpt unit %d\n", unit);
972 		return(ENXIO);
973 	}
974 
975 	switch(cmd) {
976 	/*
977 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
978 	 * to accept CCB types that don't quite make sense to send through a
979 	 * passthrough driver.
980 	 */
981 	case CAMIOCOMMAND: {
982 		union ccb *ccb;
983 		union ccb *inccb;
984 
985 		inccb = (union ccb *)addr;
986 
987 		switch(inccb->ccb_h.func_code) {
988 		case XPT_SCAN_BUS:
989 		case XPT_RESET_BUS:
990 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
991 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
992 				error = EINVAL;
993 				break;
994 			}
995 			/* FALLTHROUGH */
996 		case XPT_PATH_INQ:
997 		case XPT_ENG_INQ:
998 		case XPT_SCAN_LUN:
999 
1000 			ccb = xpt_alloc_ccb();
1001 
1002 			/*
1003 			 * Create a path using the bus, target, and lun the
1004 			 * user passed in.
1005 			 */
1006 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1007 					    inccb->ccb_h.path_id,
1008 					    inccb->ccb_h.target_id,
1009 					    inccb->ccb_h.target_lun) !=
1010 					    CAM_REQ_CMP){
1011 				error = EINVAL;
1012 				xpt_free_ccb(ccb);
1013 				break;
1014 			}
1015 			/* Ensure all of our fields are correct */
1016 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1017 				      inccb->ccb_h.pinfo.priority);
1018 			xpt_merge_ccb(ccb, inccb);
1019 			ccb->ccb_h.cbfcnp = xptdone;
1020 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1021 			bcopy(ccb, inccb, sizeof(union ccb));
1022 			xpt_free_path(ccb->ccb_h.path);
1023 			xpt_free_ccb(ccb);
1024 			break;
1025 
1026 		case XPT_DEBUG: {
1027 			union ccb ccb;
1028 
1029 			/*
1030 			 * This is an immediate CCB, so it's okay to
1031 			 * allocate it on the stack.
1032 			 */
1033 
1034 			/*
1035 			 * Create a path using the bus, target, and lun the
1036 			 * user passed in.
1037 			 */
1038 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1039 					    inccb->ccb_h.path_id,
1040 					    inccb->ccb_h.target_id,
1041 					    inccb->ccb_h.target_lun) !=
1042 					    CAM_REQ_CMP){
1043 				error = EINVAL;
1044 				break;
1045 			}
1046 			/* Ensure all of our fields are correct */
1047 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1048 				      inccb->ccb_h.pinfo.priority);
1049 			xpt_merge_ccb(&ccb, inccb);
1050 			ccb.ccb_h.cbfcnp = xptdone;
1051 			xpt_action(&ccb);
1052 			bcopy(&ccb, inccb, sizeof(union ccb));
1053 			xpt_free_path(ccb.ccb_h.path);
1054 			break;
1055 
1056 		}
1057 		case XPT_DEV_MATCH: {
1058 			struct cam_periph_map_info mapinfo;
1059 			struct cam_path *old_path;
1060 
1061 			/*
1062 			 * We can't deal with physical addresses for this
1063 			 * type of transaction.
1064 			 */
1065 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1066 				error = EINVAL;
1067 				break;
1068 			}
1069 
1070 			/*
1071 			 * Save this in case the caller had it set to
1072 			 * something in particular.
1073 			 */
1074 			old_path = inccb->ccb_h.path;
1075 
1076 			/*
1077 			 * We really don't need a path for the matching
1078 			 * code.  The path is needed because of the
1079 			 * debugging statements in xpt_action().  They
1080 			 * assume that the CCB has a valid path.
1081 			 */
1082 			inccb->ccb_h.path = xpt_periph->path;
1083 
1084 			bzero(&mapinfo, sizeof(mapinfo));
1085 
1086 			/*
1087 			 * Map the pattern and match buffers into kernel
1088 			 * virtual address space.
1089 			 */
1090 			error = cam_periph_mapmem(inccb, &mapinfo);
1091 
1092 			if (error) {
1093 				inccb->ccb_h.path = old_path;
1094 				break;
1095 			}
1096 
1097 			/*
1098 			 * This is an immediate CCB, we can send it on directly.
1099 			 */
1100 			xpt_action(inccb);
1101 
1102 			/*
1103 			 * Map the buffers back into user space.
1104 			 */
1105 			cam_periph_unmapmem(inccb, &mapinfo);
1106 
1107 			inccb->ccb_h.path = old_path;
1108 
1109 			error = 0;
1110 			break;
1111 		}
1112 		default:
1113 			error = ENOTSUP;
1114 			break;
1115 		}
1116 		break;
1117 	}
1118 	/*
1119 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1120 	 * with the periphal driver name and unit name filled in.  The other
1121 	 * fields don't really matter as input.  The passthrough driver name
1122 	 * ("pass"), and unit number are passed back in the ccb.  The current
1123 	 * device generation number, and the index into the device peripheral
1124 	 * driver list, and the status are also passed back.  Note that
1125 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1126 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1127 	 * (or rather should be) impossible for the device peripheral driver
1128 	 * list to change since we look at the whole thing in one pass, and
1129 	 * we do it within a critical section.
1130 	 *
1131 	 */
1132 	case CAMGETPASSTHRU: {
1133 		union ccb *ccb;
1134 		struct cam_periph *periph;
1135 		struct periph_driver **p_drv;
1136 		char   *name;
1137 		int unit;
1138 		int cur_generation;
1139 		int base_periph_found;
1140 		int splbreaknum;
1141 
1142 		ccb = (union ccb *)addr;
1143 		unit = ccb->cgdl.unit_number;
1144 		name = ccb->cgdl.periph_name;
1145 		/*
1146 		 * Every 100 devices, we want to call splz() to check for
1147 		 * and allow the software interrupt handler a chance to run.
1148 		 *
1149 		 * Most systems won't run into this check, but this should
1150 		 * avoid starvation in the software interrupt handler in
1151 		 * large systems.
1152 		 */
1153 		splbreaknum = 100;
1154 
1155 		ccb = (union ccb *)addr;
1156 
1157 		base_periph_found = 0;
1158 
1159 		/*
1160 		 * Sanity check -- make sure we don't get a null peripheral
1161 		 * driver name.
1162 		 */
1163 		if (*ccb->cgdl.periph_name == '\0') {
1164 			error = EINVAL;
1165 			break;
1166 		}
1167 
1168 		/* Keep the list from changing while we traverse it */
1169 		crit_enter();
1170 ptstartover:
1171 		cur_generation = xsoftc.generation;
1172 
1173 		/* first find our driver in the list of drivers */
1174 		SET_FOREACH(p_drv, periphdriver_set) {
1175 			if (strcmp((*p_drv)->driver_name, name) == 0)
1176 				break;
1177 		}
1178 
1179 		if (*p_drv == NULL) {
1180 			crit_exit();
1181 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1182 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1183 			*ccb->cgdl.periph_name = '\0';
1184 			ccb->cgdl.unit_number = 0;
1185 			error = ENOENT;
1186 			break;
1187 		}
1188 
1189 		/*
1190 		 * Run through every peripheral instance of this driver
1191 		 * and check to see whether it matches the unit passed
1192 		 * in by the user.  If it does, get out of the loops and
1193 		 * find the passthrough driver associated with that
1194 		 * peripheral driver.
1195 		 */
1196 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1197 		     periph = TAILQ_NEXT(periph, unit_links)) {
1198 
1199 			if (periph->unit_number == unit) {
1200 				break;
1201 			} else if (--splbreaknum == 0) {
1202 				splz();
1203 				splbreaknum = 100;
1204 				if (cur_generation != xsoftc.generation)
1205 				       goto ptstartover;
1206 			}
1207 		}
1208 		/*
1209 		 * If we found the peripheral driver that the user passed
1210 		 * in, go through all of the peripheral drivers for that
1211 		 * particular device and look for a passthrough driver.
1212 		 */
1213 		if (periph != NULL) {
1214 			struct cam_ed *device;
1215 			int i;
1216 
1217 			base_periph_found = 1;
1218 			device = periph->path->device;
1219 			for (i = 0, periph = device->periphs.slh_first;
1220 			     periph != NULL;
1221 			     periph = periph->periph_links.sle_next, i++) {
1222 				/*
1223 				 * Check to see whether we have a
1224 				 * passthrough device or not.
1225 				 */
1226 				if (strcmp(periph->periph_name, "pass") == 0) {
1227 					/*
1228 					 * Fill in the getdevlist fields.
1229 					 */
1230 					strcpy(ccb->cgdl.periph_name,
1231 					       periph->periph_name);
1232 					ccb->cgdl.unit_number =
1233 						periph->unit_number;
1234 					if (periph->periph_links.sle_next)
1235 						ccb->cgdl.status =
1236 							CAM_GDEVLIST_MORE_DEVS;
1237 					else
1238 						ccb->cgdl.status =
1239 						       CAM_GDEVLIST_LAST_DEVICE;
1240 					ccb->cgdl.generation =
1241 						device->generation;
1242 					ccb->cgdl.index = i;
1243 					/*
1244 					 * Fill in some CCB header fields
1245 					 * that the user may want.
1246 					 */
1247 					ccb->ccb_h.path_id =
1248 						periph->path->bus->path_id;
1249 					ccb->ccb_h.target_id =
1250 						periph->path->target->target_id;
1251 					ccb->ccb_h.target_lun =
1252 						periph->path->device->lun_id;
1253 					ccb->ccb_h.status = CAM_REQ_CMP;
1254 					break;
1255 				}
1256 			}
1257 		}
1258 
1259 		/*
1260 		 * If the periph is null here, one of two things has
1261 		 * happened.  The first possibility is that we couldn't
1262 		 * find the unit number of the particular peripheral driver
1263 		 * that the user is asking about.  e.g. the user asks for
1264 		 * the passthrough driver for "da11".  We find the list of
1265 		 * "da" peripherals all right, but there is no unit 11.
1266 		 * The other possibility is that we went through the list
1267 		 * of peripheral drivers attached to the device structure,
1268 		 * but didn't find one with the name "pass".  Either way,
1269 		 * we return ENOENT, since we couldn't find something.
1270 		 */
1271 		if (periph == NULL) {
1272 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1273 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1274 			*ccb->cgdl.periph_name = '\0';
1275 			ccb->cgdl.unit_number = 0;
1276 			error = ENOENT;
1277 			/*
1278 			 * It is unfortunate that this is even necessary,
1279 			 * but there are many, many clueless users out there.
1280 			 * If this is true, the user is looking for the
1281 			 * passthrough driver, but doesn't have one in his
1282 			 * kernel.
1283 			 */
1284 			if (base_periph_found == 1) {
1285 				printf("xptioctl: pass driver is not in the "
1286 				       "kernel\n");
1287 				printf("xptioctl: put \"device pass0\" in "
1288 				       "your kernel config file\n");
1289 			}
1290 		}
1291 		crit_exit();
1292 		break;
1293 		}
1294 	default:
1295 		error = ENOTTY;
1296 		break;
1297 	}
1298 
1299 	return(error);
1300 }
1301 
1302 /* Functions accessed by the peripheral drivers */
1303 static void
1304 xpt_init(dummy)
1305 	void *dummy;
1306 {
1307 	struct cam_sim *xpt_sim;
1308 	struct cam_path *path;
1309 	struct cam_devq *devq;
1310 	cam_status status;
1311 
1312 	TAILQ_INIT(&xpt_busses);
1313 	TAILQ_INIT(&cam_bioq);
1314 	TAILQ_INIT(&cam_netq);
1315 	SLIST_INIT(&ccb_freeq);
1316 	STAILQ_INIT(&highpowerq);
1317 
1318 	/*
1319 	 * The xpt layer is, itself, the equivelent of a SIM.
1320 	 * Allow 16 ccbs in the ccb pool for it.  This should
1321 	 * give decent parallelism when we probe busses and
1322 	 * perform other XPT functions.
1323 	 */
1324 	devq = cam_simq_alloc(16);
1325 	xpt_sim = cam_sim_alloc(xptaction,
1326 				xptpoll,
1327 				"xpt",
1328 				/*softc*/NULL,
1329 				/*unit*/0,
1330 				/*max_dev_transactions*/0,
1331 				/*max_tagged_dev_transactions*/0,
1332 				devq);
1333 	cam_simq_release(devq);
1334 	xpt_max_ccbs = 16;
1335 
1336 	xpt_bus_register(xpt_sim, /*bus #*/0);
1337 
1338 	/*
1339 	 * Looking at the XPT from the SIM layer, the XPT is
1340 	 * the equivelent of a peripheral driver.  Allocate
1341 	 * a peripheral driver entry for us.
1342 	 */
1343 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1344 				      CAM_TARGET_WILDCARD,
1345 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1346 		printf("xpt_init: xpt_create_path failed with status %#x,"
1347 		       " failing attach\n", status);
1348 		return;
1349 	}
1350 
1351 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1352 			 path, NULL, 0, NULL);
1353 	xpt_free_path(path);
1354 
1355 	xpt_sim->softc = xpt_periph;
1356 
1357 	/*
1358 	 * Register a callback for when interrupts are enabled.
1359 	 */
1360 	xpt_config_hook = malloc(sizeof(struct intr_config_hook),
1361 				  M_TEMP, M_INTWAIT | M_ZERO);
1362 	xpt_config_hook->ich_func = xpt_config;
1363 	xpt_config_hook->ich_desc = "xpt";
1364 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1365 		free (xpt_config_hook, M_TEMP);
1366 		printf("xpt_init: config_intrhook_establish failed "
1367 		       "- failing attach\n");
1368 	}
1369 
1370 	/* Install our software interrupt handlers */
1371 	register_swi(SWI_CAMNET, swi_camnet, NULL, "swi_camnet");
1372 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio");
1373 }
1374 
1375 static cam_status
1376 xptregister(struct cam_periph *periph, void *arg)
1377 {
1378 	if (periph == NULL) {
1379 		printf("xptregister: periph was NULL!!\n");
1380 		return(CAM_REQ_CMP_ERR);
1381 	}
1382 
1383 	periph->softc = NULL;
1384 
1385 	xpt_periph = periph;
1386 
1387 	return(CAM_REQ_CMP);
1388 }
1389 
1390 int32_t
1391 xpt_add_periph(struct cam_periph *periph)
1392 {
1393 	struct cam_ed *device;
1394 	int32_t	 status;
1395 	struct periph_list *periph_head;
1396 
1397 	device = periph->path->device;
1398 
1399 	periph_head = &device->periphs;
1400 
1401 	status = CAM_REQ_CMP;
1402 
1403 	if (device != NULL) {
1404 		/*
1405 		 * Make room for this peripheral
1406 		 * so it will fit in the queue
1407 		 * when it's scheduled to run
1408 		 */
1409 		crit_enter();
1410 		status = camq_resize(&device->drvq,
1411 				     device->drvq.array_size + 1);
1412 
1413 		device->generation++;
1414 
1415 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1416 		crit_exit();
1417 	}
1418 
1419 	xsoftc.generation++;
1420 
1421 	return (status);
1422 }
1423 
1424 void
1425 xpt_remove_periph(struct cam_periph *periph)
1426 {
1427 	struct cam_ed *device;
1428 
1429 	device = periph->path->device;
1430 
1431 	if (device != NULL) {
1432 		struct periph_list *periph_head;
1433 
1434 		periph_head = &device->periphs;
1435 
1436 		/* Release the slot for this peripheral */
1437 		crit_enter();
1438 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1439 
1440 		device->generation++;
1441 
1442 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1443 		crit_exit();
1444 	}
1445 
1446 	xsoftc.generation++;
1447 
1448 }
1449 
1450 void
1451 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1452 {
1453 	u_int mb;
1454 	struct cam_path *path;
1455 	struct ccb_trans_settings cts;
1456 
1457 	path = periph->path;
1458 	/*
1459 	 * To ensure that this is printed in one piece,
1460 	 * mask out CAM interrupts.
1461 	 */
1462 	crit_enter();
1463 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1464 	       periph->periph_name, periph->unit_number,
1465 	       path->bus->sim->sim_name,
1466 	       path->bus->sim->unit_number,
1467 	       path->bus->sim->bus_id,
1468 	       path->target->target_id,
1469 	       path->device->lun_id);
1470 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1471 	scsi_print_inquiry(&path->device->inq_data);
1472 	if ((bootverbose)
1473 	 && (path->device->serial_num_len > 0)) {
1474 		/* Don't wrap the screen  - print only the first 60 chars */
1475 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1476 		       periph->unit_number, path->device->serial_num);
1477 	}
1478 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1479 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1480 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1481 	xpt_action((union ccb*)&cts);
1482 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1483 		u_int speed;
1484 		u_int freq;
1485 
1486 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1487 		  && cts.sync_offset != 0) {
1488 			freq = scsi_calc_syncsrate(cts.sync_period);
1489 			speed = freq;
1490 		} else {
1491 			struct ccb_pathinq cpi;
1492 
1493 			/* Ask the SIM for its base transfer speed */
1494 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1495 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1496 			xpt_action((union ccb *)&cpi);
1497 
1498 			speed = cpi.base_transfer_speed;
1499 			freq = 0;
1500 		}
1501 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1502 			speed *= (0x01 << cts.bus_width);
1503 		mb = speed / 1000;
1504 		if (mb > 0)
1505 			printf("%s%d: %d.%03dMB/s transfers",
1506 			       periph->periph_name, periph->unit_number,
1507 			       mb, speed % 1000);
1508 		else
1509 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1510 			       periph->unit_number, speed);
1511 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1512 		 && cts.sync_offset != 0) {
1513 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1514 			       freq % 1000, cts.sync_offset);
1515 		}
1516 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1517 		 && cts.bus_width > 0) {
1518 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1519 			 && cts.sync_offset != 0) {
1520 				printf(", ");
1521 			} else {
1522 				printf(" (");
1523 			}
1524 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1525 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1526 			&& cts.sync_offset != 0) {
1527 			printf(")");
1528 		}
1529 
1530 		if (path->device->inq_flags & SID_CmdQue
1531 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1532 			printf(", Tagged Queueing Enabled");
1533 		}
1534 
1535 		printf("\n");
1536 	} else if (path->device->inq_flags & SID_CmdQue
1537    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1538 		printf("%s%d: Tagged Queueing Enabled\n",
1539 		       periph->periph_name, periph->unit_number);
1540 	}
1541 
1542 	/*
1543 	 * We only want to print the caller's announce string if they've
1544 	 * passed one in..
1545 	 */
1546 	if (announce_string != NULL)
1547 		printf("%s%d: %s\n", periph->periph_name,
1548 		       periph->unit_number, announce_string);
1549 	crit_exit();
1550 }
1551 
1552 
1553 static dev_match_ret
1554 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1555 	    struct cam_eb *bus)
1556 {
1557 	dev_match_ret retval;
1558 	int i;
1559 
1560 	retval = DM_RET_NONE;
1561 
1562 	/*
1563 	 * If we aren't given something to match against, that's an error.
1564 	 */
1565 	if (bus == NULL)
1566 		return(DM_RET_ERROR);
1567 
1568 	/*
1569 	 * If there are no match entries, then this bus matches no
1570 	 * matter what.
1571 	 */
1572 	if ((patterns == NULL) || (num_patterns == 0))
1573 		return(DM_RET_DESCEND | DM_RET_COPY);
1574 
1575 	for (i = 0; i < num_patterns; i++) {
1576 		struct bus_match_pattern *cur_pattern;
1577 
1578 		/*
1579 		 * If the pattern in question isn't for a bus node, we
1580 		 * aren't interested.  However, we do indicate to the
1581 		 * calling routine that we should continue descending the
1582 		 * tree, since the user wants to match against lower-level
1583 		 * EDT elements.
1584 		 */
1585 		if (patterns[i].type != DEV_MATCH_BUS) {
1586 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1587 				retval |= DM_RET_DESCEND;
1588 			continue;
1589 		}
1590 
1591 		cur_pattern = &patterns[i].pattern.bus_pattern;
1592 
1593 		/*
1594 		 * If they want to match any bus node, we give them any
1595 		 * device node.
1596 		 */
1597 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1598 			/* set the copy flag */
1599 			retval |= DM_RET_COPY;
1600 
1601 			/*
1602 			 * If we've already decided on an action, go ahead
1603 			 * and return.
1604 			 */
1605 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1606 				return(retval);
1607 		}
1608 
1609 		/*
1610 		 * Not sure why someone would do this...
1611 		 */
1612 		if (cur_pattern->flags == BUS_MATCH_NONE)
1613 			continue;
1614 
1615 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1616 		 && (cur_pattern->path_id != bus->path_id))
1617 			continue;
1618 
1619 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1620 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1621 			continue;
1622 
1623 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1624 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1625 			continue;
1626 
1627 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1628 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1629 			     DEV_IDLEN) != 0))
1630 			continue;
1631 
1632 		/*
1633 		 * If we get to this point, the user definitely wants
1634 		 * information on this bus.  So tell the caller to copy the
1635 		 * data out.
1636 		 */
1637 		retval |= DM_RET_COPY;
1638 
1639 		/*
1640 		 * If the return action has been set to descend, then we
1641 		 * know that we've already seen a non-bus matching
1642 		 * expression, therefore we need to further descend the tree.
1643 		 * This won't change by continuing around the loop, so we
1644 		 * go ahead and return.  If we haven't seen a non-bus
1645 		 * matching expression, we keep going around the loop until
1646 		 * we exhaust the matching expressions.  We'll set the stop
1647 		 * flag once we fall out of the loop.
1648 		 */
1649 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1650 			return(retval);
1651 	}
1652 
1653 	/*
1654 	 * If the return action hasn't been set to descend yet, that means
1655 	 * we haven't seen anything other than bus matching patterns.  So
1656 	 * tell the caller to stop descending the tree -- the user doesn't
1657 	 * want to match against lower level tree elements.
1658 	 */
1659 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1660 		retval |= DM_RET_STOP;
1661 
1662 	return(retval);
1663 }
1664 
1665 static dev_match_ret
1666 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1667 	       struct cam_ed *device)
1668 {
1669 	dev_match_ret retval;
1670 	int i;
1671 
1672 	retval = DM_RET_NONE;
1673 
1674 	/*
1675 	 * If we aren't given something to match against, that's an error.
1676 	 */
1677 	if (device == NULL)
1678 		return(DM_RET_ERROR);
1679 
1680 	/*
1681 	 * If there are no match entries, then this device matches no
1682 	 * matter what.
1683 	 */
1684 	if ((patterns == NULL) || (patterns == 0))
1685 		return(DM_RET_DESCEND | DM_RET_COPY);
1686 
1687 	for (i = 0; i < num_patterns; i++) {
1688 		struct device_match_pattern *cur_pattern;
1689 
1690 		/*
1691 		 * If the pattern in question isn't for a device node, we
1692 		 * aren't interested.
1693 		 */
1694 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1695 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1696 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1697 				retval |= DM_RET_DESCEND;
1698 			continue;
1699 		}
1700 
1701 		cur_pattern = &patterns[i].pattern.device_pattern;
1702 
1703 		/*
1704 		 * If they want to match any device node, we give them any
1705 		 * device node.
1706 		 */
1707 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1708 			/* set the copy flag */
1709 			retval |= DM_RET_COPY;
1710 
1711 
1712 			/*
1713 			 * If we've already decided on an action, go ahead
1714 			 * and return.
1715 			 */
1716 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1717 				return(retval);
1718 		}
1719 
1720 		/*
1721 		 * Not sure why someone would do this...
1722 		 */
1723 		if (cur_pattern->flags == DEV_MATCH_NONE)
1724 			continue;
1725 
1726 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1727 		 && (cur_pattern->path_id != device->target->bus->path_id))
1728 			continue;
1729 
1730 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1731 		 && (cur_pattern->target_id != device->target->target_id))
1732 			continue;
1733 
1734 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1735 		 && (cur_pattern->target_lun != device->lun_id))
1736 			continue;
1737 
1738 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1739 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1740 				    (caddr_t)&cur_pattern->inq_pat,
1741 				    1, sizeof(cur_pattern->inq_pat),
1742 				    scsi_static_inquiry_match) == NULL))
1743 			continue;
1744 
1745 		/*
1746 		 * If we get to this point, the user definitely wants
1747 		 * information on this device.  So tell the caller to copy
1748 		 * the data out.
1749 		 */
1750 		retval |= DM_RET_COPY;
1751 
1752 		/*
1753 		 * If the return action has been set to descend, then we
1754 		 * know that we've already seen a peripheral matching
1755 		 * expression, therefore we need to further descend the tree.
1756 		 * This won't change by continuing around the loop, so we
1757 		 * go ahead and return.  If we haven't seen a peripheral
1758 		 * matching expression, we keep going around the loop until
1759 		 * we exhaust the matching expressions.  We'll set the stop
1760 		 * flag once we fall out of the loop.
1761 		 */
1762 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1763 			return(retval);
1764 	}
1765 
1766 	/*
1767 	 * If the return action hasn't been set to descend yet, that means
1768 	 * we haven't seen any peripheral matching patterns.  So tell the
1769 	 * caller to stop descending the tree -- the user doesn't want to
1770 	 * match against lower level tree elements.
1771 	 */
1772 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1773 		retval |= DM_RET_STOP;
1774 
1775 	return(retval);
1776 }
1777 
1778 /*
1779  * Match a single peripheral against any number of match patterns.
1780  */
1781 static dev_match_ret
1782 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1783 	       struct cam_periph *periph)
1784 {
1785 	dev_match_ret retval;
1786 	int i;
1787 
1788 	/*
1789 	 * If we aren't given something to match against, that's an error.
1790 	 */
1791 	if (periph == NULL)
1792 		return(DM_RET_ERROR);
1793 
1794 	/*
1795 	 * If there are no match entries, then this peripheral matches no
1796 	 * matter what.
1797 	 */
1798 	if ((patterns == NULL) || (num_patterns == 0))
1799 		return(DM_RET_STOP | DM_RET_COPY);
1800 
1801 	/*
1802 	 * There aren't any nodes below a peripheral node, so there's no
1803 	 * reason to descend the tree any further.
1804 	 */
1805 	retval = DM_RET_STOP;
1806 
1807 	for (i = 0; i < num_patterns; i++) {
1808 		struct periph_match_pattern *cur_pattern;
1809 
1810 		/*
1811 		 * If the pattern in question isn't for a peripheral, we
1812 		 * aren't interested.
1813 		 */
1814 		if (patterns[i].type != DEV_MATCH_PERIPH)
1815 			continue;
1816 
1817 		cur_pattern = &patterns[i].pattern.periph_pattern;
1818 
1819 		/*
1820 		 * If they want to match on anything, then we will do so.
1821 		 */
1822 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1823 			/* set the copy flag */
1824 			retval |= DM_RET_COPY;
1825 
1826 			/*
1827 			 * We've already set the return action to stop,
1828 			 * since there are no nodes below peripherals in
1829 			 * the tree.
1830 			 */
1831 			return(retval);
1832 		}
1833 
1834 		/*
1835 		 * Not sure why someone would do this...
1836 		 */
1837 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1838 			continue;
1839 
1840 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1841 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1842 			continue;
1843 
1844 		/*
1845 		 * For the target and lun id's, we have to make sure the
1846 		 * target and lun pointers aren't NULL.  The xpt peripheral
1847 		 * has a wildcard target and device.
1848 		 */
1849 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1850 		 && ((periph->path->target == NULL)
1851 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1852 			continue;
1853 
1854 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1855 		 && ((periph->path->device == NULL)
1856 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1857 			continue;
1858 
1859 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1860 		 && (cur_pattern->unit_number != periph->unit_number))
1861 			continue;
1862 
1863 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1864 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1865 			     DEV_IDLEN) != 0))
1866 			continue;
1867 
1868 		/*
1869 		 * If we get to this point, the user definitely wants
1870 		 * information on this peripheral.  So tell the caller to
1871 		 * copy the data out.
1872 		 */
1873 		retval |= DM_RET_COPY;
1874 
1875 		/*
1876 		 * The return action has already been set to stop, since
1877 		 * peripherals don't have any nodes below them in the EDT.
1878 		 */
1879 		return(retval);
1880 	}
1881 
1882 	/*
1883 	 * If we get to this point, the peripheral that was passed in
1884 	 * doesn't match any of the patterns.
1885 	 */
1886 	return(retval);
1887 }
1888 
1889 static int
1890 xptedtbusfunc(struct cam_eb *bus, void *arg)
1891 {
1892 	struct ccb_dev_match *cdm;
1893 	dev_match_ret retval;
1894 
1895 	cdm = (struct ccb_dev_match *)arg;
1896 
1897 	/*
1898 	 * If our position is for something deeper in the tree, that means
1899 	 * that we've already seen this node.  So, we keep going down.
1900 	 */
1901 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1902 	 && (cdm->pos.cookie.bus == bus)
1903 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1904 	 && (cdm->pos.cookie.target != NULL))
1905 		retval = DM_RET_DESCEND;
1906 	else
1907 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1908 
1909 	/*
1910 	 * If we got an error, bail out of the search.
1911 	 */
1912 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1913 		cdm->status = CAM_DEV_MATCH_ERROR;
1914 		return(0);
1915 	}
1916 
1917 	/*
1918 	 * If the copy flag is set, copy this bus out.
1919 	 */
1920 	if (retval & DM_RET_COPY) {
1921 		int spaceleft, j;
1922 
1923 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1924 			sizeof(struct dev_match_result));
1925 
1926 		/*
1927 		 * If we don't have enough space to put in another
1928 		 * match result, save our position and tell the
1929 		 * user there are more devices to check.
1930 		 */
1931 		if (spaceleft < sizeof(struct dev_match_result)) {
1932 			bzero(&cdm->pos, sizeof(cdm->pos));
1933 			cdm->pos.position_type =
1934 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1935 
1936 			cdm->pos.cookie.bus = bus;
1937 			cdm->pos.generations[CAM_BUS_GENERATION]=
1938 				bus_generation;
1939 			cdm->status = CAM_DEV_MATCH_MORE;
1940 			return(0);
1941 		}
1942 		j = cdm->num_matches;
1943 		cdm->num_matches++;
1944 		cdm->matches[j].type = DEV_MATCH_BUS;
1945 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1946 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1947 		cdm->matches[j].result.bus_result.unit_number =
1948 			bus->sim->unit_number;
1949 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1950 			bus->sim->sim_name, DEV_IDLEN);
1951 	}
1952 
1953 	/*
1954 	 * If the user is only interested in busses, there's no
1955 	 * reason to descend to the next level in the tree.
1956 	 */
1957 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1958 		return(1);
1959 
1960 	/*
1961 	 * If there is a target generation recorded, check it to
1962 	 * make sure the target list hasn't changed.
1963 	 */
1964 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1965 	 && (bus == cdm->pos.cookie.bus)
1966 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1967 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1968 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1969 	     bus->generation)) {
1970 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1971 		return(0);
1972 	}
1973 
1974 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1975 	 && (cdm->pos.cookie.bus == bus)
1976 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1977 	 && (cdm->pos.cookie.target != NULL))
1978 		return(xpttargettraverse(bus,
1979 					(struct cam_et *)cdm->pos.cookie.target,
1980 					 xptedttargetfunc, arg));
1981 	else
1982 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1983 }
1984 
1985 static int
1986 xptedttargetfunc(struct cam_et *target, void *arg)
1987 {
1988 	struct ccb_dev_match *cdm;
1989 
1990 	cdm = (struct ccb_dev_match *)arg;
1991 
1992 	/*
1993 	 * If there is a device list generation recorded, check it to
1994 	 * make sure the device list hasn't changed.
1995 	 */
1996 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1997 	 && (cdm->pos.cookie.bus == target->bus)
1998 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1999 	 && (cdm->pos.cookie.target == target)
2000 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2001 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2002 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2003 	     target->generation)) {
2004 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2005 		return(0);
2006 	}
2007 
2008 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2009 	 && (cdm->pos.cookie.bus == target->bus)
2010 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2011 	 && (cdm->pos.cookie.target == target)
2012 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2013 	 && (cdm->pos.cookie.device != NULL))
2014 		return(xptdevicetraverse(target,
2015 					(struct cam_ed *)cdm->pos.cookie.device,
2016 					 xptedtdevicefunc, arg));
2017 	else
2018 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2019 }
2020 
2021 static int
2022 xptedtdevicefunc(struct cam_ed *device, void *arg)
2023 {
2024 
2025 	struct ccb_dev_match *cdm;
2026 	dev_match_ret retval;
2027 
2028 	cdm = (struct ccb_dev_match *)arg;
2029 
2030 	/*
2031 	 * If our position is for something deeper in the tree, that means
2032 	 * that we've already seen this node.  So, we keep going down.
2033 	 */
2034 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2035 	 && (cdm->pos.cookie.device == device)
2036 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2037 	 && (cdm->pos.cookie.periph != NULL))
2038 		retval = DM_RET_DESCEND;
2039 	else
2040 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2041 					device);
2042 
2043 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2044 		cdm->status = CAM_DEV_MATCH_ERROR;
2045 		return(0);
2046 	}
2047 
2048 	/*
2049 	 * If the copy flag is set, copy this device out.
2050 	 */
2051 	if (retval & DM_RET_COPY) {
2052 		int spaceleft, j;
2053 
2054 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2055 			sizeof(struct dev_match_result));
2056 
2057 		/*
2058 		 * If we don't have enough space to put in another
2059 		 * match result, save our position and tell the
2060 		 * user there are more devices to check.
2061 		 */
2062 		if (spaceleft < sizeof(struct dev_match_result)) {
2063 			bzero(&cdm->pos, sizeof(cdm->pos));
2064 			cdm->pos.position_type =
2065 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2066 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2067 
2068 			cdm->pos.cookie.bus = device->target->bus;
2069 			cdm->pos.generations[CAM_BUS_GENERATION]=
2070 				bus_generation;
2071 			cdm->pos.cookie.target = device->target;
2072 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2073 				device->target->bus->generation;
2074 			cdm->pos.cookie.device = device;
2075 			cdm->pos.generations[CAM_DEV_GENERATION] =
2076 				device->target->generation;
2077 			cdm->status = CAM_DEV_MATCH_MORE;
2078 			return(0);
2079 		}
2080 		j = cdm->num_matches;
2081 		cdm->num_matches++;
2082 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2083 		cdm->matches[j].result.device_result.path_id =
2084 			device->target->bus->path_id;
2085 		cdm->matches[j].result.device_result.target_id =
2086 			device->target->target_id;
2087 		cdm->matches[j].result.device_result.target_lun =
2088 			device->lun_id;
2089 		bcopy(&device->inq_data,
2090 		      &cdm->matches[j].result.device_result.inq_data,
2091 		      sizeof(struct scsi_inquiry_data));
2092 
2093 		/* Let the user know whether this device is unconfigured */
2094 		if (device->flags & CAM_DEV_UNCONFIGURED)
2095 			cdm->matches[j].result.device_result.flags =
2096 				DEV_RESULT_UNCONFIGURED;
2097 		else
2098 			cdm->matches[j].result.device_result.flags =
2099 				DEV_RESULT_NOFLAG;
2100 	}
2101 
2102 	/*
2103 	 * If the user isn't interested in peripherals, don't descend
2104 	 * the tree any further.
2105 	 */
2106 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2107 		return(1);
2108 
2109 	/*
2110 	 * If there is a peripheral list generation recorded, make sure
2111 	 * it hasn't changed.
2112 	 */
2113 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2114 	 && (device->target->bus == cdm->pos.cookie.bus)
2115 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2116 	 && (device->target == cdm->pos.cookie.target)
2117 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2118 	 && (device == cdm->pos.cookie.device)
2119 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2120 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2121 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2122 	     device->generation)){
2123 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2124 		return(0);
2125 	}
2126 
2127 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2128 	 && (cdm->pos.cookie.bus == device->target->bus)
2129 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2130 	 && (cdm->pos.cookie.target == device->target)
2131 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2132 	 && (cdm->pos.cookie.device == device)
2133 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2134 	 && (cdm->pos.cookie.periph != NULL))
2135 		return(xptperiphtraverse(device,
2136 				(struct cam_periph *)cdm->pos.cookie.periph,
2137 				xptedtperiphfunc, arg));
2138 	else
2139 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2140 }
2141 
2142 static int
2143 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2144 {
2145 	struct ccb_dev_match *cdm;
2146 	dev_match_ret retval;
2147 
2148 	cdm = (struct ccb_dev_match *)arg;
2149 
2150 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2151 
2152 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2153 		cdm->status = CAM_DEV_MATCH_ERROR;
2154 		return(0);
2155 	}
2156 
2157 	/*
2158 	 * If the copy flag is set, copy this peripheral out.
2159 	 */
2160 	if (retval & DM_RET_COPY) {
2161 		int spaceleft, j;
2162 
2163 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2164 			sizeof(struct dev_match_result));
2165 
2166 		/*
2167 		 * If we don't have enough space to put in another
2168 		 * match result, save our position and tell the
2169 		 * user there are more devices to check.
2170 		 */
2171 		if (spaceleft < sizeof(struct dev_match_result)) {
2172 			bzero(&cdm->pos, sizeof(cdm->pos));
2173 			cdm->pos.position_type =
2174 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2175 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2176 				CAM_DEV_POS_PERIPH;
2177 
2178 			cdm->pos.cookie.bus = periph->path->bus;
2179 			cdm->pos.generations[CAM_BUS_GENERATION]=
2180 				bus_generation;
2181 			cdm->pos.cookie.target = periph->path->target;
2182 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2183 				periph->path->bus->generation;
2184 			cdm->pos.cookie.device = periph->path->device;
2185 			cdm->pos.generations[CAM_DEV_GENERATION] =
2186 				periph->path->target->generation;
2187 			cdm->pos.cookie.periph = periph;
2188 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2189 				periph->path->device->generation;
2190 			cdm->status = CAM_DEV_MATCH_MORE;
2191 			return(0);
2192 		}
2193 
2194 		j = cdm->num_matches;
2195 		cdm->num_matches++;
2196 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2197 		cdm->matches[j].result.periph_result.path_id =
2198 			periph->path->bus->path_id;
2199 		cdm->matches[j].result.periph_result.target_id =
2200 			periph->path->target->target_id;
2201 		cdm->matches[j].result.periph_result.target_lun =
2202 			periph->path->device->lun_id;
2203 		cdm->matches[j].result.periph_result.unit_number =
2204 			periph->unit_number;
2205 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2206 			periph->periph_name, DEV_IDLEN);
2207 	}
2208 
2209 	return(1);
2210 }
2211 
2212 static int
2213 xptedtmatch(struct ccb_dev_match *cdm)
2214 {
2215 	int ret;
2216 
2217 	cdm->num_matches = 0;
2218 
2219 	/*
2220 	 * Check the bus list generation.  If it has changed, the user
2221 	 * needs to reset everything and start over.
2222 	 */
2223 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2224 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2225 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2226 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2227 		return(0);
2228 	}
2229 
2230 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2231 	 && (cdm->pos.cookie.bus != NULL))
2232 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2233 				     xptedtbusfunc, cdm);
2234 	else
2235 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2236 
2237 	/*
2238 	 * If we get back 0, that means that we had to stop before fully
2239 	 * traversing the EDT.  It also means that one of the subroutines
2240 	 * has set the status field to the proper value.  If we get back 1,
2241 	 * we've fully traversed the EDT and copied out any matching entries.
2242 	 */
2243 	if (ret == 1)
2244 		cdm->status = CAM_DEV_MATCH_LAST;
2245 
2246 	return(ret);
2247 }
2248 
2249 static int
2250 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2251 {
2252 	struct ccb_dev_match *cdm;
2253 
2254 	cdm = (struct ccb_dev_match *)arg;
2255 
2256 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2257 	 && (cdm->pos.cookie.pdrv == pdrv)
2258 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2259 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2260 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2261 	     (*pdrv)->generation)) {
2262 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2263 		return(0);
2264 	}
2265 
2266 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2267 	 && (cdm->pos.cookie.pdrv == pdrv)
2268 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2269 	 && (cdm->pos.cookie.periph != NULL))
2270 		return(xptpdperiphtraverse(pdrv,
2271 				(struct cam_periph *)cdm->pos.cookie.periph,
2272 				xptplistperiphfunc, arg));
2273 	else
2274 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2275 }
2276 
2277 static int
2278 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2279 {
2280 	struct ccb_dev_match *cdm;
2281 	dev_match_ret retval;
2282 
2283 	cdm = (struct ccb_dev_match *)arg;
2284 
2285 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2286 
2287 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2288 		cdm->status = CAM_DEV_MATCH_ERROR;
2289 		return(0);
2290 	}
2291 
2292 	/*
2293 	 * If the copy flag is set, copy this peripheral out.
2294 	 */
2295 	if (retval & DM_RET_COPY) {
2296 		int spaceleft, j;
2297 
2298 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2299 			sizeof(struct dev_match_result));
2300 
2301 		/*
2302 		 * If we don't have enough space to put in another
2303 		 * match result, save our position and tell the
2304 		 * user there are more devices to check.
2305 		 */
2306 		if (spaceleft < sizeof(struct dev_match_result)) {
2307 			struct periph_driver **pdrv;
2308 
2309 			pdrv = NULL;
2310 			bzero(&cdm->pos, sizeof(cdm->pos));
2311 			cdm->pos.position_type =
2312 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2313 				CAM_DEV_POS_PERIPH;
2314 
2315 			/*
2316 			 * This may look a bit non-sensical, but it is
2317 			 * actually quite logical.  There are very few
2318 			 * peripheral drivers, and bloating every peripheral
2319 			 * structure with a pointer back to its parent
2320 			 * peripheral driver linker set entry would cost
2321 			 * more in the long run than doing this quick lookup.
2322 			 */
2323 			SET_FOREACH(pdrv, periphdriver_set) {
2324 				if (strcmp((*pdrv)->driver_name,
2325 				    periph->periph_name) == 0)
2326 					break;
2327 			}
2328 
2329 			if (*pdrv == NULL) {
2330 				cdm->status = CAM_DEV_MATCH_ERROR;
2331 				return(0);
2332 			}
2333 
2334 			cdm->pos.cookie.pdrv = pdrv;
2335 			/*
2336 			 * The periph generation slot does double duty, as
2337 			 * does the periph pointer slot.  They are used for
2338 			 * both edt and pdrv lookups and positioning.
2339 			 */
2340 			cdm->pos.cookie.periph = periph;
2341 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2342 				(*pdrv)->generation;
2343 			cdm->status = CAM_DEV_MATCH_MORE;
2344 			return(0);
2345 		}
2346 
2347 		j = cdm->num_matches;
2348 		cdm->num_matches++;
2349 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2350 		cdm->matches[j].result.periph_result.path_id =
2351 			periph->path->bus->path_id;
2352 
2353 		/*
2354 		 * The transport layer peripheral doesn't have a target or
2355 		 * lun.
2356 		 */
2357 		if (periph->path->target)
2358 			cdm->matches[j].result.periph_result.target_id =
2359 				periph->path->target->target_id;
2360 		else
2361 			cdm->matches[j].result.periph_result.target_id = -1;
2362 
2363 		if (periph->path->device)
2364 			cdm->matches[j].result.periph_result.target_lun =
2365 				periph->path->device->lun_id;
2366 		else
2367 			cdm->matches[j].result.periph_result.target_lun = -1;
2368 
2369 		cdm->matches[j].result.periph_result.unit_number =
2370 			periph->unit_number;
2371 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2372 			periph->periph_name, DEV_IDLEN);
2373 	}
2374 
2375 	return(1);
2376 }
2377 
2378 static int
2379 xptperiphlistmatch(struct ccb_dev_match *cdm)
2380 {
2381 	int ret;
2382 
2383 	cdm->num_matches = 0;
2384 
2385 	/*
2386 	 * At this point in the edt traversal function, we check the bus
2387 	 * list generation to make sure that no busses have been added or
2388 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2389 	 * For the peripheral driver list traversal function, however, we
2390 	 * don't have to worry about new peripheral driver types coming or
2391 	 * going; they're in a linker set, and therefore can't change
2392 	 * without a recompile.
2393 	 */
2394 
2395 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2396 	 && (cdm->pos.cookie.pdrv != NULL))
2397 		ret = xptpdrvtraverse(
2398 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2399 				xptplistpdrvfunc, cdm);
2400 	else
2401 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2402 
2403 	/*
2404 	 * If we get back 0, that means that we had to stop before fully
2405 	 * traversing the peripheral driver tree.  It also means that one of
2406 	 * the subroutines has set the status field to the proper value.  If
2407 	 * we get back 1, we've fully traversed the EDT and copied out any
2408 	 * matching entries.
2409 	 */
2410 	if (ret == 1)
2411 		cdm->status = CAM_DEV_MATCH_LAST;
2412 
2413 	return(ret);
2414 }
2415 
2416 static int
2417 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2418 {
2419 	struct cam_eb *bus, *next_bus;
2420 	int retval;
2421 
2422 	retval = 1;
2423 
2424 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2425 	     bus != NULL;
2426 	     bus = next_bus) {
2427 		next_bus = TAILQ_NEXT(bus, links);
2428 
2429 		retval = tr_func(bus, arg);
2430 		if (retval == 0)
2431 			return(retval);
2432 	}
2433 
2434 	return(retval);
2435 }
2436 
2437 static int
2438 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2439 		  xpt_targetfunc_t *tr_func, void *arg)
2440 {
2441 	struct cam_et *target, *next_target;
2442 	int retval;
2443 
2444 	retval = 1;
2445 	for (target = (start_target ? start_target :
2446 		       TAILQ_FIRST(&bus->et_entries));
2447 	     target != NULL; target = next_target) {
2448 
2449 		next_target = TAILQ_NEXT(target, links);
2450 
2451 		retval = tr_func(target, arg);
2452 
2453 		if (retval == 0)
2454 			return(retval);
2455 	}
2456 
2457 	return(retval);
2458 }
2459 
2460 static int
2461 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2462 		  xpt_devicefunc_t *tr_func, void *arg)
2463 {
2464 	struct cam_ed *device, *next_device;
2465 	int retval;
2466 
2467 	retval = 1;
2468 	for (device = (start_device ? start_device :
2469 		       TAILQ_FIRST(&target->ed_entries));
2470 	     device != NULL;
2471 	     device = next_device) {
2472 
2473 		next_device = TAILQ_NEXT(device, links);
2474 
2475 		retval = tr_func(device, arg);
2476 
2477 		if (retval == 0)
2478 			return(retval);
2479 	}
2480 
2481 	return(retval);
2482 }
2483 
2484 static int
2485 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2486 		  xpt_periphfunc_t *tr_func, void *arg)
2487 {
2488 	struct cam_periph *periph, *next_periph;
2489 	int retval;
2490 
2491 	retval = 1;
2492 
2493 	for (periph = (start_periph ? start_periph :
2494 		       SLIST_FIRST(&device->periphs));
2495 	     periph != NULL;
2496 	     periph = next_periph) {
2497 
2498 		next_periph = SLIST_NEXT(periph, periph_links);
2499 
2500 		retval = tr_func(periph, arg);
2501 		if (retval == 0)
2502 			return(retval);
2503 	}
2504 
2505 	return(retval);
2506 }
2507 
2508 static int
2509 xptpdrvtraverse(struct periph_driver **start_pdrv,
2510 		xpt_pdrvfunc_t *tr_func, void *arg)
2511 {
2512 	struct periph_driver **pdrv;
2513 	int retval;
2514 
2515 	retval = 1;
2516 
2517 	/*
2518 	 * We don't traverse the peripheral driver list like we do the
2519 	 * other lists, because it is a linker set, and therefore cannot be
2520 	 * changed during runtime.  If the peripheral driver list is ever
2521 	 * re-done to be something other than a linker set (i.e. it can
2522 	 * change while the system is running), the list traversal should
2523 	 * be modified to work like the other traversal functions.
2524 	 */
2525 	SET_FOREACH(pdrv, periphdriver_set) {
2526 		if (start_pdrv == NULL || start_pdrv == pdrv) {
2527 			retval = tr_func(pdrv, arg);
2528 			if (retval == 0)
2529 				return(retval);
2530 			start_pdrv = NULL; /* traverse remainder */
2531 		}
2532 	}
2533 	return(retval);
2534 }
2535 
2536 static int
2537 xptpdperiphtraverse(struct periph_driver **pdrv,
2538 		    struct cam_periph *start_periph,
2539 		    xpt_periphfunc_t *tr_func, void *arg)
2540 {
2541 	struct cam_periph *periph, *next_periph;
2542 	int retval;
2543 
2544 	retval = 1;
2545 
2546 	for (periph = (start_periph ? start_periph :
2547 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2548 	     periph = next_periph) {
2549 
2550 		next_periph = TAILQ_NEXT(periph, unit_links);
2551 
2552 		retval = tr_func(periph, arg);
2553 		if (retval == 0)
2554 			return(retval);
2555 	}
2556 	return(retval);
2557 }
2558 
2559 static int
2560 xptdefbusfunc(struct cam_eb *bus, void *arg)
2561 {
2562 	struct xpt_traverse_config *tr_config;
2563 
2564 	tr_config = (struct xpt_traverse_config *)arg;
2565 
2566 	if (tr_config->depth == XPT_DEPTH_BUS) {
2567 		xpt_busfunc_t *tr_func;
2568 
2569 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2570 
2571 		return(tr_func(bus, tr_config->tr_arg));
2572 	} else
2573 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2574 }
2575 
2576 static int
2577 xptdeftargetfunc(struct cam_et *target, void *arg)
2578 {
2579 	struct xpt_traverse_config *tr_config;
2580 
2581 	tr_config = (struct xpt_traverse_config *)arg;
2582 
2583 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2584 		xpt_targetfunc_t *tr_func;
2585 
2586 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2587 
2588 		return(tr_func(target, tr_config->tr_arg));
2589 	} else
2590 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2591 }
2592 
2593 static int
2594 xptdefdevicefunc(struct cam_ed *device, void *arg)
2595 {
2596 	struct xpt_traverse_config *tr_config;
2597 
2598 	tr_config = (struct xpt_traverse_config *)arg;
2599 
2600 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2601 		xpt_devicefunc_t *tr_func;
2602 
2603 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2604 
2605 		return(tr_func(device, tr_config->tr_arg));
2606 	} else
2607 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2608 }
2609 
2610 static int
2611 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2612 {
2613 	struct xpt_traverse_config *tr_config;
2614 	xpt_periphfunc_t *tr_func;
2615 
2616 	tr_config = (struct xpt_traverse_config *)arg;
2617 
2618 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2619 
2620 	/*
2621 	 * Unlike the other default functions, we don't check for depth
2622 	 * here.  The peripheral driver level is the last level in the EDT,
2623 	 * so if we're here, we should execute the function in question.
2624 	 */
2625 	return(tr_func(periph, tr_config->tr_arg));
2626 }
2627 
2628 /*
2629  * Execute the given function for every bus in the EDT.
2630  */
2631 static int
2632 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2633 {
2634 	struct xpt_traverse_config tr_config;
2635 
2636 	tr_config.depth = XPT_DEPTH_BUS;
2637 	tr_config.tr_func = tr_func;
2638 	tr_config.tr_arg = arg;
2639 
2640 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2641 }
2642 
2643 #ifdef notusedyet
2644 /*
2645  * Execute the given function for every target in the EDT.
2646  */
2647 static int
2648 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2649 {
2650 	struct xpt_traverse_config tr_config;
2651 
2652 	tr_config.depth = XPT_DEPTH_TARGET;
2653 	tr_config.tr_func = tr_func;
2654 	tr_config.tr_arg = arg;
2655 
2656 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2657 }
2658 #endif /* notusedyet */
2659 
2660 /*
2661  * Execute the given function for every device in the EDT.
2662  */
2663 static int
2664 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2665 {
2666 	struct xpt_traverse_config tr_config;
2667 
2668 	tr_config.depth = XPT_DEPTH_DEVICE;
2669 	tr_config.tr_func = tr_func;
2670 	tr_config.tr_arg = arg;
2671 
2672 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2673 }
2674 
2675 #ifdef notusedyet
2676 /*
2677  * Execute the given function for every peripheral in the EDT.
2678  */
2679 static int
2680 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2681 {
2682 	struct xpt_traverse_config tr_config;
2683 
2684 	tr_config.depth = XPT_DEPTH_PERIPH;
2685 	tr_config.tr_func = tr_func;
2686 	tr_config.tr_arg = arg;
2687 
2688 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2689 }
2690 #endif /* notusedyet */
2691 
2692 static int
2693 xptsetasyncfunc(struct cam_ed *device, void *arg)
2694 {
2695 	struct cam_path path;
2696 	struct ccb_getdev cgd;
2697 	struct async_node *cur_entry;
2698 
2699 	cur_entry = (struct async_node *)arg;
2700 
2701 	/*
2702 	 * Don't report unconfigured devices (Wildcard devs,
2703 	 * devices only for target mode, device instances
2704 	 * that have been invalidated but are waiting for
2705 	 * their last reference count to be released).
2706 	 */
2707 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2708 		return (1);
2709 
2710 	xpt_compile_path(&path,
2711 			 NULL,
2712 			 device->target->bus->path_id,
2713 			 device->target->target_id,
2714 			 device->lun_id);
2715 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2716 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2717 	xpt_action((union ccb *)&cgd);
2718 	cur_entry->callback(cur_entry->callback_arg,
2719 			    AC_FOUND_DEVICE,
2720 			    &path, &cgd);
2721 	xpt_release_path(&path);
2722 
2723 	return(1);
2724 }
2725 
2726 static int
2727 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2728 {
2729 	struct cam_path path;
2730 	struct ccb_pathinq cpi;
2731 	struct async_node *cur_entry;
2732 
2733 	cur_entry = (struct async_node *)arg;
2734 
2735 	xpt_compile_path(&path, /*periph*/NULL,
2736 			 bus->sim->path_id,
2737 			 CAM_TARGET_WILDCARD,
2738 			 CAM_LUN_WILDCARD);
2739 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2740 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2741 	xpt_action((union ccb *)&cpi);
2742 	cur_entry->callback(cur_entry->callback_arg,
2743 			    AC_PATH_REGISTERED,
2744 			    &path, &cpi);
2745 	xpt_release_path(&path);
2746 
2747 	return(1);
2748 }
2749 
2750 void
2751 xpt_action(union ccb *start_ccb)
2752 {
2753 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2754 
2755 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2756 
2757 	crit_enter();
2758 
2759 	switch (start_ccb->ccb_h.func_code) {
2760 	case XPT_SCSI_IO:
2761 	{
2762 #ifdef CAMDEBUG
2763 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2764 		struct cam_path *path;
2765 
2766 		path = start_ccb->ccb_h.path;
2767 #endif
2768 
2769 		/*
2770 		 * For the sake of compatibility with SCSI-1
2771 		 * devices that may not understand the identify
2772 		 * message, we include lun information in the
2773 		 * second byte of all commands.  SCSI-1 specifies
2774 		 * that luns are a 3 bit value and reserves only 3
2775 		 * bits for lun information in the CDB.  Later
2776 		 * revisions of the SCSI spec allow for more than 8
2777 		 * luns, but have deprecated lun information in the
2778 		 * CDB.  So, if the lun won't fit, we must omit.
2779 		 *
2780 		 * Also be aware that during initial probing for devices,
2781 		 * the inquiry information is unknown but initialized to 0.
2782 		 * This means that this code will be exercised while probing
2783 		 * devices with an ANSI revision greater than 2.
2784 		 */
2785 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2786 		 && start_ccb->ccb_h.target_lun < 8
2787 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2788 
2789 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2790 			    start_ccb->ccb_h.target_lun << 5;
2791 		}
2792 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2793 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2794 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2795 			  	       &path->device->inq_data),
2796 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2797 					  cdb_str, sizeof(cdb_str))));
2798 		/* FALLTHROUGH */
2799 	}
2800 	case XPT_TARGET_IO:
2801 	case XPT_CONT_TARGET_IO:
2802 		start_ccb->csio.sense_resid = 0;
2803 		start_ccb->csio.resid = 0;
2804 		/* FALLTHROUGH */
2805 	case XPT_RESET_DEV:
2806 	case XPT_ENG_EXEC:
2807 	{
2808 		struct cam_path *path;
2809 		int runq;
2810 
2811 		path = start_ccb->ccb_h.path;
2812 
2813 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2814 		if (path->device->qfrozen_cnt == 0)
2815 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2816 		else
2817 			runq = 0;
2818 		if (runq != 0)
2819 			xpt_run_dev_sendq(path->bus);
2820 		break;
2821 	}
2822 	case XPT_SET_TRAN_SETTINGS:
2823 	{
2824 		xpt_set_transfer_settings(&start_ccb->cts,
2825 					  start_ccb->ccb_h.path->device,
2826 					  /*async_update*/FALSE);
2827 		break;
2828 	}
2829 	case XPT_CALC_GEOMETRY:
2830 	{
2831 		struct cam_sim *sim;
2832 
2833 		/* Filter out garbage */
2834 		if (start_ccb->ccg.block_size == 0
2835 		 || start_ccb->ccg.volume_size == 0) {
2836 			start_ccb->ccg.cylinders = 0;
2837 			start_ccb->ccg.heads = 0;
2838 			start_ccb->ccg.secs_per_track = 0;
2839 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2840 			break;
2841 		}
2842 		sim = start_ccb->ccb_h.path->bus->sim;
2843 		(*(sim->sim_action))(sim, start_ccb);
2844 		break;
2845 	}
2846 	case XPT_ABORT:
2847 	{
2848 		union ccb* abort_ccb;
2849 
2850 		abort_ccb = start_ccb->cab.abort_ccb;
2851 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2852 
2853 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2854 				struct cam_ccbq *ccbq;
2855 
2856 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2857 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2858 				abort_ccb->ccb_h.status =
2859 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2860 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2861 				xpt_done(abort_ccb);
2862 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2863 				break;
2864 			}
2865 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2866 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2867 				/*
2868 				 * We've caught this ccb en route to
2869 				 * the SIM.  Flag it for abort and the
2870 				 * SIM will do so just before starting
2871 				 * real work on the CCB.
2872 				 */
2873 				abort_ccb->ccb_h.status =
2874 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2875 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2876 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2877 				break;
2878 			}
2879 		}
2880 		if (XPT_FC_IS_QUEUED(abort_ccb)
2881 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2882 			/*
2883 			 * It's already completed but waiting
2884 			 * for our SWI to get to it.
2885 			 */
2886 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2887 			break;
2888 		}
2889 		/*
2890 		 * If we weren't able to take care of the abort request
2891 		 * in the XPT, pass the request down to the SIM for processing.
2892 		 */
2893 		/* FALLTHROUGH */
2894 	}
2895 	case XPT_ACCEPT_TARGET_IO:
2896 	case XPT_EN_LUN:
2897 	case XPT_IMMED_NOTIFY:
2898 	case XPT_NOTIFY_ACK:
2899 	case XPT_GET_TRAN_SETTINGS:
2900 	case XPT_RESET_BUS:
2901 	{
2902 		struct cam_sim *sim;
2903 
2904 		sim = start_ccb->ccb_h.path->bus->sim;
2905 		(*(sim->sim_action))(sim, start_ccb);
2906 		break;
2907 	}
2908 	case XPT_PATH_INQ:
2909 	{
2910 		struct cam_sim *sim;
2911 
2912 		sim = start_ccb->ccb_h.path->bus->sim;
2913 		(*(sim->sim_action))(sim, start_ccb);
2914 		break;
2915 	}
2916 	case XPT_PATH_STATS:
2917 		start_ccb->cpis.last_reset =
2918 			start_ccb->ccb_h.path->bus->last_reset;
2919 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2920 		break;
2921 	case XPT_GDEV_TYPE:
2922 	{
2923 		struct cam_ed *dev;
2924 
2925 		dev = start_ccb->ccb_h.path->device;
2926 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2927 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2928 		} else {
2929 			struct ccb_getdev *cgd;
2930 			struct cam_eb *bus;
2931 			struct cam_et *tar;
2932 
2933 			cgd = &start_ccb->cgd;
2934 			bus = cgd->ccb_h.path->bus;
2935 			tar = cgd->ccb_h.path->target;
2936 			cgd->inq_data = dev->inq_data;
2937 			cgd->ccb_h.status = CAM_REQ_CMP;
2938 			cgd->serial_num_len = dev->serial_num_len;
2939 			if ((dev->serial_num_len > 0)
2940 			 && (dev->serial_num != NULL))
2941 				bcopy(dev->serial_num, cgd->serial_num,
2942 				      dev->serial_num_len);
2943 		}
2944 		break;
2945 	}
2946 	case XPT_GDEV_STATS:
2947 	{
2948 		struct cam_ed *dev;
2949 
2950 		dev = start_ccb->ccb_h.path->device;
2951 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2952 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2953 		} else {
2954 			struct ccb_getdevstats *cgds;
2955 			struct cam_eb *bus;
2956 			struct cam_et *tar;
2957 
2958 			cgds = &start_ccb->cgds;
2959 			bus = cgds->ccb_h.path->bus;
2960 			tar = cgds->ccb_h.path->target;
2961 			cgds->dev_openings = dev->ccbq.dev_openings;
2962 			cgds->dev_active = dev->ccbq.dev_active;
2963 			cgds->devq_openings = dev->ccbq.devq_openings;
2964 			cgds->devq_queued = dev->ccbq.queue.entries;
2965 			cgds->held = dev->ccbq.held;
2966 			cgds->last_reset = tar->last_reset;
2967 			cgds->maxtags = dev->quirk->maxtags;
2968 			cgds->mintags = dev->quirk->mintags;
2969 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2970 				cgds->last_reset = bus->last_reset;
2971 			cgds->ccb_h.status = CAM_REQ_CMP;
2972 		}
2973 		break;
2974 	}
2975 	case XPT_GDEVLIST:
2976 	{
2977 		struct cam_periph	*nperiph;
2978 		struct periph_list	*periph_head;
2979 		struct ccb_getdevlist	*cgdl;
2980 		int			i;
2981 		struct cam_ed		*device;
2982 		int			found;
2983 
2984 
2985 		found = 0;
2986 
2987 		/*
2988 		 * Don't want anyone mucking with our data.
2989 		 */
2990 		device = start_ccb->ccb_h.path->device;
2991 		periph_head = &device->periphs;
2992 		cgdl = &start_ccb->cgdl;
2993 
2994 		/*
2995 		 * Check and see if the list has changed since the user
2996 		 * last requested a list member.  If so, tell them that the
2997 		 * list has changed, and therefore they need to start over
2998 		 * from the beginning.
2999 		 */
3000 		if ((cgdl->index != 0) &&
3001 		    (cgdl->generation != device->generation)) {
3002 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3003 			break;
3004 		}
3005 
3006 		/*
3007 		 * Traverse the list of peripherals and attempt to find
3008 		 * the requested peripheral.
3009 		 */
3010 		for (nperiph = periph_head->slh_first, i = 0;
3011 		     (nperiph != NULL) && (i <= cgdl->index);
3012 		     nperiph = nperiph->periph_links.sle_next, i++) {
3013 			if (i == cgdl->index) {
3014 				strncpy(cgdl->periph_name,
3015 					nperiph->periph_name,
3016 					DEV_IDLEN);
3017 				cgdl->unit_number = nperiph->unit_number;
3018 				found = 1;
3019 			}
3020 		}
3021 		if (found == 0) {
3022 			cgdl->status = CAM_GDEVLIST_ERROR;
3023 			break;
3024 		}
3025 
3026 		if (nperiph == NULL)
3027 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3028 		else
3029 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3030 
3031 		cgdl->index++;
3032 		cgdl->generation = device->generation;
3033 
3034 		cgdl->ccb_h.status = CAM_REQ_CMP;
3035 		break;
3036 	}
3037 	case XPT_DEV_MATCH:
3038 	{
3039 		dev_pos_type position_type;
3040 		struct ccb_dev_match *cdm;
3041 		int ret;
3042 
3043 		cdm = &start_ccb->cdm;
3044 
3045 		/*
3046 		 * Prevent EDT changes while we traverse it.
3047 		 */
3048 		/*
3049 		 * There are two ways of getting at information in the EDT.
3050 		 * The first way is via the primary EDT tree.  It starts
3051 		 * with a list of busses, then a list of targets on a bus,
3052 		 * then devices/luns on a target, and then peripherals on a
3053 		 * device/lun.  The "other" way is by the peripheral driver
3054 		 * lists.  The peripheral driver lists are organized by
3055 		 * peripheral driver.  (obviously)  So it makes sense to
3056 		 * use the peripheral driver list if the user is looking
3057 		 * for something like "da1", or all "da" devices.  If the
3058 		 * user is looking for something on a particular bus/target
3059 		 * or lun, it's generally better to go through the EDT tree.
3060 		 */
3061 
3062 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3063 			position_type = cdm->pos.position_type;
3064 		else {
3065 			int i;
3066 
3067 			position_type = CAM_DEV_POS_NONE;
3068 
3069 			for (i = 0; i < cdm->num_patterns; i++) {
3070 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3071 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3072 					position_type = CAM_DEV_POS_EDT;
3073 					break;
3074 				}
3075 			}
3076 
3077 			if (cdm->num_patterns == 0)
3078 				position_type = CAM_DEV_POS_EDT;
3079 			else if (position_type == CAM_DEV_POS_NONE)
3080 				position_type = CAM_DEV_POS_PDRV;
3081 		}
3082 
3083 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3084 		case CAM_DEV_POS_EDT:
3085 			ret = xptedtmatch(cdm);
3086 			break;
3087 		case CAM_DEV_POS_PDRV:
3088 			ret = xptperiphlistmatch(cdm);
3089 			break;
3090 		default:
3091 			cdm->status = CAM_DEV_MATCH_ERROR;
3092 			break;
3093 		}
3094 
3095 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3096 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3097 		else
3098 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3099 
3100 		break;
3101 	}
3102 	case XPT_SASYNC_CB:
3103 	{
3104 		struct ccb_setasync *csa;
3105 		struct async_node *cur_entry;
3106 		struct async_list *async_head;
3107 		u_int32_t added;
3108 
3109 		csa = &start_ccb->csa;
3110 		added = csa->event_enable;
3111 		async_head = &csa->ccb_h.path->device->asyncs;
3112 
3113 		/*
3114 		 * If there is already an entry for us, simply
3115 		 * update it.
3116 		 */
3117 		cur_entry = SLIST_FIRST(async_head);
3118 		while (cur_entry != NULL) {
3119 			if ((cur_entry->callback_arg == csa->callback_arg)
3120 			 && (cur_entry->callback == csa->callback))
3121 				break;
3122 			cur_entry = SLIST_NEXT(cur_entry, links);
3123 		}
3124 
3125 		if (cur_entry != NULL) {
3126 		 	/*
3127 			 * If the request has no flags set,
3128 			 * remove the entry.
3129 			 */
3130 			added &= ~cur_entry->event_enable;
3131 			if (csa->event_enable == 0) {
3132 				SLIST_REMOVE(async_head, cur_entry,
3133 					     async_node, links);
3134 				csa->ccb_h.path->device->refcount--;
3135 				free(cur_entry, M_DEVBUF);
3136 			} else {
3137 				cur_entry->event_enable = csa->event_enable;
3138 			}
3139 		} else {
3140 			cur_entry = malloc(sizeof(*cur_entry),
3141 					    M_DEVBUF, M_INTWAIT);
3142 			cur_entry->event_enable = csa->event_enable;
3143 			cur_entry->callback_arg = csa->callback_arg;
3144 			cur_entry->callback = csa->callback;
3145 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3146 			csa->ccb_h.path->device->refcount++;
3147 		}
3148 
3149 		if ((added & AC_FOUND_DEVICE) != 0) {
3150 			/*
3151 			 * Get this peripheral up to date with all
3152 			 * the currently existing devices.
3153 			 */
3154 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3155 		}
3156 		if ((added & AC_PATH_REGISTERED) != 0) {
3157 			/*
3158 			 * Get this peripheral up to date with all
3159 			 * the currently existing busses.
3160 			 */
3161 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3162 		}
3163 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3164 		break;
3165 	}
3166 	case XPT_REL_SIMQ:
3167 	{
3168 		struct ccb_relsim *crs;
3169 		struct cam_ed *dev;
3170 
3171 		crs = &start_ccb->crs;
3172 		dev = crs->ccb_h.path->device;
3173 		if (dev == NULL) {
3174 
3175 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3176 			break;
3177 		}
3178 
3179 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3180 
3181  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3182 
3183 				/* Don't ever go below one opening */
3184 				if (crs->openings > 0) {
3185 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3186 							    crs->openings);
3187 
3188 					if (bootverbose) {
3189 						xpt_print_path(crs->ccb_h.path);
3190 						printf("tagged openings "
3191 						       "now %d\n",
3192 						       crs->openings);
3193 					}
3194 				}
3195 			}
3196 		}
3197 
3198 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3199 
3200 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3201 
3202 				/*
3203 				 * Just extend the old timeout and decrement
3204 				 * the freeze count so that a single timeout
3205 				 * is sufficient for releasing the queue.
3206 				 */
3207 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3208 				callout_stop(&dev->c_handle);
3209 			} else {
3210 
3211 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3212 			}
3213 
3214 			callout_reset(&dev->c_handle,
3215 				      (crs->release_timeout * hz) / 1000,
3216 				      xpt_release_devq_timeout, dev);
3217 
3218 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3219 
3220 		}
3221 
3222 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3223 
3224 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3225 				/*
3226 				 * Decrement the freeze count so that a single
3227 				 * completion is still sufficient to unfreeze
3228 				 * the queue.
3229 				 */
3230 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3231 			} else {
3232 
3233 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3234 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3235 			}
3236 		}
3237 
3238 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3239 
3240 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3241 			 || (dev->ccbq.dev_active == 0)) {
3242 
3243 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3244 			} else {
3245 
3246 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3247 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3248 			}
3249 		}
3250 
3251 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3252 
3253 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3254 					 /*run_queue*/TRUE);
3255 		}
3256 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3257 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3258 		break;
3259 	}
3260 	case XPT_SCAN_BUS:
3261 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3262 		break;
3263 	case XPT_SCAN_LUN:
3264 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3265 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3266 			     start_ccb);
3267 		break;
3268 	case XPT_DEBUG: {
3269 #ifdef CAMDEBUG
3270 #ifdef CAM_DEBUG_DELAY
3271 		cam_debug_delay = CAM_DEBUG_DELAY;
3272 #endif
3273 		cam_dflags = start_ccb->cdbg.flags;
3274 		if (cam_dpath != NULL) {
3275 			xpt_free_path(cam_dpath);
3276 			cam_dpath = NULL;
3277 		}
3278 
3279 		if (cam_dflags != CAM_DEBUG_NONE) {
3280 			if (xpt_create_path(&cam_dpath, xpt_periph,
3281 					    start_ccb->ccb_h.path_id,
3282 					    start_ccb->ccb_h.target_id,
3283 					    start_ccb->ccb_h.target_lun) !=
3284 					    CAM_REQ_CMP) {
3285 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3286 				cam_dflags = CAM_DEBUG_NONE;
3287 			} else {
3288 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3289 				xpt_print_path(cam_dpath);
3290 				printf("debugging flags now %x\n", cam_dflags);
3291 			}
3292 		} else {
3293 			cam_dpath = NULL;
3294 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3295 		}
3296 #else /* !CAMDEBUG */
3297 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3298 #endif /* CAMDEBUG */
3299 		break;
3300 	}
3301 	case XPT_NOOP:
3302 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3303 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3304 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3305 		break;
3306 	default:
3307 	case XPT_SDEV_TYPE:
3308 	case XPT_TERM_IO:
3309 	case XPT_ENG_INQ:
3310 		/* XXX Implement */
3311 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3312 		break;
3313 	}
3314 	crit_exit();
3315 }
3316 
3317 void
3318 xpt_polled_action(union ccb *start_ccb)
3319 {
3320 	u_int32_t timeout;
3321 	struct	  cam_sim *sim;
3322 	struct	  cam_devq *devq;
3323 	struct	  cam_ed *dev;
3324 
3325 	timeout = start_ccb->ccb_h.timeout;
3326 	sim = start_ccb->ccb_h.path->bus->sim;
3327 	devq = sim->devq;
3328 	dev = start_ccb->ccb_h.path->device;
3329 
3330 	crit_enter();
3331 
3332 	/*
3333 	 * Steal an opening so that no other queued requests
3334 	 * can get it before us while we simulate interrupts.
3335 	 */
3336 	dev->ccbq.devq_openings--;
3337 	dev->ccbq.dev_openings--;
3338 
3339 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3340 	   && (--timeout > 0)) {
3341 		DELAY(1000);
3342 		(*(sim->sim_poll))(sim);
3343 		swi_camnet(NULL);
3344 		swi_cambio(NULL);
3345 	}
3346 
3347 	dev->ccbq.devq_openings++;
3348 	dev->ccbq.dev_openings++;
3349 
3350 	if (timeout != 0) {
3351 		xpt_action(start_ccb);
3352 		while(--timeout > 0) {
3353 			(*(sim->sim_poll))(sim);
3354 			swi_camnet(NULL);
3355 			swi_cambio(NULL);
3356 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3357 			    != CAM_REQ_INPROG)
3358 				break;
3359 			DELAY(1000);
3360 		}
3361 		if (timeout == 0) {
3362 			/*
3363 			 * XXX Is it worth adding a sim_timeout entry
3364 			 * point so we can attempt recovery?  If
3365 			 * this is only used for dumps, I don't think
3366 			 * it is.
3367 			 */
3368 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3369 		}
3370 	} else {
3371 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3372 	}
3373 	crit_exit();
3374 }
3375 
3376 /*
3377  * Schedule a peripheral driver to receive a ccb when it's
3378  * target device has space for more transactions.
3379  */
3380 void
3381 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3382 {
3383 	struct cam_ed *device;
3384 	int runq;
3385 
3386 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3387 	device = perph->path->device;
3388 	crit_enter();
3389 	if (periph_is_queued(perph)) {
3390 		/* Simply reorder based on new priority */
3391 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3392 			  ("   change priority to %d\n", new_priority));
3393 		if (new_priority < perph->pinfo.priority) {
3394 			camq_change_priority(&device->drvq,
3395 					     perph->pinfo.index,
3396 					     new_priority);
3397 		}
3398 		runq = 0;
3399 	} else {
3400 		/* New entry on the queue */
3401 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3402 			  ("   added periph to queue\n"));
3403 		perph->pinfo.priority = new_priority;
3404 		perph->pinfo.generation = ++device->drvq.generation;
3405 		camq_insert(&device->drvq, &perph->pinfo);
3406 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3407 	}
3408 	crit_exit();
3409 	if (runq != 0) {
3410 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3411 			  ("   calling xpt_run_devq\n"));
3412 		xpt_run_dev_allocq(perph->path->bus);
3413 	}
3414 }
3415 
3416 
3417 /*
3418  * Schedule a device to run on a given queue.
3419  * If the device was inserted as a new entry on the queue,
3420  * return 1 meaning the device queue should be run. If we
3421  * were already queued, implying someone else has already
3422  * started the queue, return 0 so the caller doesn't attempt
3423  * to run the queue.  Must be run in a critical section.
3424  */
3425 static int
3426 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3427 		 u_int32_t new_priority)
3428 {
3429 	int retval;
3430 	u_int32_t old_priority;
3431 
3432 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3433 
3434 	old_priority = pinfo->priority;
3435 
3436 	/*
3437 	 * Are we already queued?
3438 	 */
3439 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3440 		/* Simply reorder based on new priority */
3441 		if (new_priority < old_priority) {
3442 			camq_change_priority(queue, pinfo->index,
3443 					     new_priority);
3444 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3445 					("changed priority to %d\n",
3446 					 new_priority));
3447 		}
3448 		retval = 0;
3449 	} else {
3450 		/* New entry on the queue */
3451 		if (new_priority < old_priority)
3452 			pinfo->priority = new_priority;
3453 
3454 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3455 				("Inserting onto queue\n"));
3456 		pinfo->generation = ++queue->generation;
3457 		camq_insert(queue, pinfo);
3458 		retval = 1;
3459 	}
3460 	return (retval);
3461 }
3462 
3463 static void
3464 xpt_run_dev_allocq(struct cam_eb *bus)
3465 {
3466 	struct	cam_devq *devq;
3467 
3468 	if ((devq = bus->sim->devq) == NULL) {
3469 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3470 		return;
3471 	}
3472 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3473 
3474 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3475 			("   qfrozen_cnt == 0x%x, entries == %d, "
3476 			 "openings == %d, active == %d\n",
3477 			 devq->alloc_queue.qfrozen_cnt,
3478 			 devq->alloc_queue.entries,
3479 			 devq->alloc_openings,
3480 			 devq->alloc_active));
3481 
3482 	crit_enter();
3483 	devq->alloc_queue.qfrozen_cnt++;
3484 	while ((devq->alloc_queue.entries > 0)
3485 	    && (devq->alloc_openings > 0)
3486 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3487 		struct	cam_ed_qinfo *qinfo;
3488 		struct	cam_ed *device;
3489 		union	ccb *work_ccb;
3490 		struct	cam_periph *drv;
3491 		struct	camq *drvq;
3492 
3493 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3494 							   CAMQ_HEAD);
3495 		device = qinfo->device;
3496 
3497 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3498 				("running device %p\n", device));
3499 
3500 		drvq = &device->drvq;
3501 
3502 #ifdef CAMDEBUG
3503 		if (drvq->entries <= 0) {
3504 			panic("xpt_run_dev_allocq: "
3505 			      "Device on queue without any work to do");
3506 		}
3507 #endif
3508 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3509 			devq->alloc_openings--;
3510 			devq->alloc_active++;
3511 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3512 			crit_exit();
3513 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3514 				      drv->pinfo.priority);
3515 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3516 					("calling periph start\n"));
3517 			drv->periph_start(drv, work_ccb);
3518 		} else {
3519 			/*
3520 			 * Malloc failure in alloc_ccb
3521 			 */
3522 			/*
3523 			 * XXX add us to a list to be run from free_ccb
3524 			 * if we don't have any ccbs active on this
3525 			 * device queue otherwise we may never get run
3526 			 * again.
3527 			 */
3528 			break;
3529 		}
3530 
3531 		/* Raise IPL for possible insertion and test at top of loop */
3532 		crit_enter();
3533 
3534 		if (drvq->entries > 0) {
3535 			/* We have more work.  Attempt to reschedule */
3536 			xpt_schedule_dev_allocq(bus, device);
3537 		}
3538 	}
3539 	devq->alloc_queue.qfrozen_cnt--;
3540 	crit_exit();
3541 }
3542 
3543 static void
3544 xpt_run_dev_sendq(struct cam_eb *bus)
3545 {
3546 	struct	cam_devq *devq;
3547 
3548 	if ((devq = bus->sim->devq) == NULL) {
3549 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3550 		return;
3551 	}
3552 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3553 
3554 	crit_enter();
3555 	devq->send_queue.qfrozen_cnt++;
3556 	while ((devq->send_queue.entries > 0)
3557 	    && (devq->send_openings > 0)) {
3558 		struct	cam_ed_qinfo *qinfo;
3559 		struct	cam_ed *device;
3560 		union ccb *work_ccb;
3561 		struct	cam_sim *sim;
3562 
3563 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3564 			break;
3565 		}
3566 
3567 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3568 							   CAMQ_HEAD);
3569 		device = qinfo->device;
3570 
3571 		/*
3572 		 * If the device has been "frozen", don't attempt
3573 		 * to run it.
3574 		 */
3575 		if (device->qfrozen_cnt > 0) {
3576 			continue;
3577 		}
3578 
3579 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3580 				("running device %p\n", device));
3581 
3582 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3583 		if (work_ccb == NULL) {
3584 			printf("device on run queue with no ccbs???\n");
3585 			continue;
3586 		}
3587 
3588 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3589 
3590 		 	if (num_highpower <= 0) {
3591 				/*
3592 				 * We got a high power command, but we
3593 				 * don't have any available slots.  Freeze
3594 				 * the device queue until we have a slot
3595 				 * available.
3596 				 */
3597 				device->qfrozen_cnt++;
3598 				STAILQ_INSERT_TAIL(&highpowerq,
3599 						   &work_ccb->ccb_h,
3600 						   xpt_links.stqe);
3601 
3602 				continue;
3603 			} else {
3604 				/*
3605 				 * Consume a high power slot while
3606 				 * this ccb runs.
3607 				 */
3608 				num_highpower--;
3609 			}
3610 		}
3611 		devq->active_dev = device;
3612 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3613 
3614 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3615 
3616 		devq->send_openings--;
3617 		devq->send_active++;
3618 
3619 		if (device->ccbq.queue.entries > 0)
3620 			xpt_schedule_dev_sendq(bus, device);
3621 
3622 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3623 			/*
3624 			 * The client wants to freeze the queue
3625 			 * after this CCB is sent.
3626 			 */
3627 			device->qfrozen_cnt++;
3628 		}
3629 
3630 		/* In Target mode, the peripheral driver knows best... */
3631 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3632 			if ((device->inq_flags & SID_CmdQue) != 0
3633 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3634 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3635 			else
3636 				/*
3637 				 * Clear this in case of a retried CCB that
3638 				 * failed due to a rejected tag.
3639 				 */
3640 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3641 		}
3642 
3643 		/*
3644 		 * Device queues can be shared among multiple sim instances
3645 		 * that reside on different busses.  Use the SIM in the queue
3646 		 * CCB's path, rather than the one in the bus that was passed
3647 		 * into this function.
3648 		 */
3649 		sim = work_ccb->ccb_h.path->bus->sim;
3650 		(*(sim->sim_action))(sim, work_ccb);
3651 
3652 		devq->active_dev = NULL;
3653 		/* Raise IPL for possible insertion and test at top of loop */
3654 	}
3655 	devq->send_queue.qfrozen_cnt--;
3656 	crit_exit();
3657 }
3658 
3659 /*
3660  * This function merges stuff from the slave ccb into the master ccb, while
3661  * keeping important fields in the master ccb constant.
3662  */
3663 void
3664 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3665 {
3666 	/*
3667 	 * Pull fields that are valid for peripheral drivers to set
3668 	 * into the master CCB along with the CCB "payload".
3669 	 */
3670 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3671 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3672 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3673 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3674 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3675 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3676 }
3677 
3678 void
3679 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3680 {
3681 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3682 	callout_init(&ccb_h->timeout_ch);
3683 	ccb_h->pinfo.priority = priority;
3684 	ccb_h->path = path;
3685 	ccb_h->path_id = path->bus->path_id;
3686 	if (path->target)
3687 		ccb_h->target_id = path->target->target_id;
3688 	else
3689 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3690 	if (path->device) {
3691 		ccb_h->target_lun = path->device->lun_id;
3692 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3693 	} else {
3694 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3695 	}
3696 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3697 	ccb_h->flags = 0;
3698 }
3699 
3700 /* Path manipulation functions */
3701 cam_status
3702 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3703 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3704 {
3705 	struct	   cam_path *path;
3706 	cam_status status;
3707 
3708 	path = malloc(sizeof(*path), M_DEVBUF, M_INTWAIT);
3709 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3710 	if (status != CAM_REQ_CMP) {
3711 		free(path, M_DEVBUF);
3712 		path = NULL;
3713 	}
3714 	*new_path_ptr = path;
3715 	return (status);
3716 }
3717 
3718 static cam_status
3719 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3720 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3721 {
3722 	struct	     cam_eb *bus;
3723 	struct	     cam_et *target;
3724 	struct	     cam_ed *device;
3725 	cam_status   status;
3726 
3727 	status = CAM_REQ_CMP;	/* Completed without error */
3728 	target = NULL;		/* Wildcarded */
3729 	device = NULL;		/* Wildcarded */
3730 
3731 	/*
3732 	 * We will potentially modify the EDT, so block interrupts
3733 	 * that may attempt to create cam paths.
3734 	 */
3735 	crit_enter();
3736 	bus = xpt_find_bus(path_id);
3737 	if (bus == NULL) {
3738 		status = CAM_PATH_INVALID;
3739 	} else {
3740 		target = xpt_find_target(bus, target_id);
3741 		if (target == NULL) {
3742 			/* Create one */
3743 			struct cam_et *new_target;
3744 
3745 			new_target = xpt_alloc_target(bus, target_id);
3746 			if (new_target == NULL) {
3747 				status = CAM_RESRC_UNAVAIL;
3748 			} else {
3749 				target = new_target;
3750 			}
3751 		}
3752 		if (target != NULL) {
3753 			device = xpt_find_device(target, lun_id);
3754 			if (device == NULL) {
3755 				/* Create one */
3756 				struct cam_ed *new_device;
3757 
3758 				new_device = xpt_alloc_device(bus,
3759 							      target,
3760 							      lun_id);
3761 				if (new_device == NULL) {
3762 					status = CAM_RESRC_UNAVAIL;
3763 				} else {
3764 					device = new_device;
3765 				}
3766 			}
3767 		}
3768 	}
3769 	crit_exit();
3770 
3771 	/*
3772 	 * Only touch the user's data if we are successful.
3773 	 */
3774 	if (status == CAM_REQ_CMP) {
3775 		new_path->periph = perph;
3776 		new_path->bus = bus;
3777 		new_path->target = target;
3778 		new_path->device = device;
3779 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3780 	} else {
3781 		if (device != NULL)
3782 			xpt_release_device(bus, target, device);
3783 		if (target != NULL)
3784 			xpt_release_target(bus, target);
3785 		if (bus != NULL)
3786 			xpt_release_bus(bus);
3787 	}
3788 	return (status);
3789 }
3790 
3791 static void
3792 xpt_release_path(struct cam_path *path)
3793 {
3794 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3795 	if (path->device != NULL) {
3796 		xpt_release_device(path->bus, path->target, path->device);
3797 		path->device = NULL;
3798 	}
3799 	if (path->target != NULL) {
3800 		xpt_release_target(path->bus, path->target);
3801 		path->target = NULL;
3802 	}
3803 	if (path->bus != NULL) {
3804 		xpt_release_bus(path->bus);
3805 		path->bus = NULL;
3806 	}
3807 }
3808 
3809 void
3810 xpt_free_path(struct cam_path *path)
3811 {
3812 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3813 	xpt_release_path(path);
3814 	free(path, M_DEVBUF);
3815 }
3816 
3817 
3818 /*
3819  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3820  * in path1, 2 for match with wildcards in path2.
3821  */
3822 int
3823 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3824 {
3825 	int retval = 0;
3826 
3827 	if (path1->bus != path2->bus) {
3828 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3829 			retval = 1;
3830 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3831 			retval = 2;
3832 		else
3833 			return (-1);
3834 	}
3835 	if (path1->target != path2->target) {
3836 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3837 			if (retval == 0)
3838 				retval = 1;
3839 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3840 			retval = 2;
3841 		else
3842 			return (-1);
3843 	}
3844 	if (path1->device != path2->device) {
3845 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3846 			if (retval == 0)
3847 				retval = 1;
3848 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3849 			retval = 2;
3850 		else
3851 			return (-1);
3852 	}
3853 	return (retval);
3854 }
3855 
3856 void
3857 xpt_print_path(struct cam_path *path)
3858 {
3859 	if (path == NULL)
3860 		printf("(nopath): ");
3861 	else {
3862 		if (path->periph != NULL)
3863 			printf("(%s%d:", path->periph->periph_name,
3864 			       path->periph->unit_number);
3865 		else
3866 			printf("(noperiph:");
3867 
3868 		if (path->bus != NULL)
3869 			printf("%s%d:%d:", path->bus->sim->sim_name,
3870 			       path->bus->sim->unit_number,
3871 			       path->bus->sim->bus_id);
3872 		else
3873 			printf("nobus:");
3874 
3875 		if (path->target != NULL)
3876 			printf("%d:", path->target->target_id);
3877 		else
3878 			printf("X:");
3879 
3880 		if (path->device != NULL)
3881 			printf("%d): ", path->device->lun_id);
3882 		else
3883 			printf("X): ");
3884 	}
3885 }
3886 
3887 path_id_t
3888 xpt_path_path_id(struct cam_path *path)
3889 {
3890 	return(path->bus->path_id);
3891 }
3892 
3893 target_id_t
3894 xpt_path_target_id(struct cam_path *path)
3895 {
3896 	if (path->target != NULL)
3897 		return (path->target->target_id);
3898 	else
3899 		return (CAM_TARGET_WILDCARD);
3900 }
3901 
3902 lun_id_t
3903 xpt_path_lun_id(struct cam_path *path)
3904 {
3905 	if (path->device != NULL)
3906 		return (path->device->lun_id);
3907 	else
3908 		return (CAM_LUN_WILDCARD);
3909 }
3910 
3911 struct cam_sim *
3912 xpt_path_sim(struct cam_path *path)
3913 {
3914 	return (path->bus->sim);
3915 }
3916 
3917 struct cam_periph*
3918 xpt_path_periph(struct cam_path *path)
3919 {
3920 	return (path->periph);
3921 }
3922 
3923 /*
3924  * Release a CAM control block for the caller.  Remit the cost of the structure
3925  * to the device referenced by the path.  If the this device had no 'credits'
3926  * and peripheral drivers have registered async callbacks for this notification
3927  * call them now.
3928  */
3929 void
3930 xpt_release_ccb(union ccb *free_ccb)
3931 {
3932 	struct	 cam_path *path;
3933 	struct	 cam_ed *device;
3934 	struct	 cam_eb *bus;
3935 
3936 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3937 	path = free_ccb->ccb_h.path;
3938 	device = path->device;
3939 	bus = path->bus;
3940 	crit_enter();
3941 	cam_ccbq_release_opening(&device->ccbq);
3942 	if (xpt_ccb_count > xpt_max_ccbs) {
3943 		xpt_free_ccb(free_ccb);
3944 		xpt_ccb_count--;
3945 	} else {
3946 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
3947 	}
3948 	if (bus->sim->devq) {
3949 		bus->sim->devq->alloc_openings++;
3950 		bus->sim->devq->alloc_active--;
3951 	}
3952 	/* XXX Turn this into an inline function - xpt_run_device?? */
3953 	if ((device_is_alloc_queued(device) == 0)
3954 	 && (device->drvq.entries > 0)) {
3955 		xpt_schedule_dev_allocq(bus, device);
3956 	}
3957 	crit_exit();
3958 	if (bus->sim->devq && dev_allocq_is_runnable(bus->sim->devq))
3959 		xpt_run_dev_allocq(bus);
3960 }
3961 
3962 /* Functions accessed by SIM drivers */
3963 
3964 /*
3965  * A sim structure, listing the SIM entry points and instance
3966  * identification info is passed to xpt_bus_register to hook the SIM
3967  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3968  * for this new bus and places it in the array of busses and assigns
3969  * it a path_id.  The path_id may be influenced by "hard wiring"
3970  * information specified by the user.  Once interrupt services are
3971  * availible, the bus will be probed.
3972  */
3973 int32_t
3974 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
3975 {
3976 	struct cam_eb *new_bus;
3977 	struct cam_eb *old_bus;
3978 	struct ccb_pathinq cpi;
3979 
3980 	sim->bus_id = bus;
3981 	new_bus = malloc(sizeof(*new_bus), M_DEVBUF, M_INTWAIT);
3982 
3983 	if (strcmp(sim->sim_name, "xpt") != 0) {
3984 		sim->path_id =
3985 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3986 	}
3987 
3988 	TAILQ_INIT(&new_bus->et_entries);
3989 	new_bus->path_id = sim->path_id;
3990 	new_bus->sim = sim;
3991 	++sim->refcount;
3992 	timevalclear(&new_bus->last_reset);
3993 	new_bus->flags = 0;
3994 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3995 	new_bus->generation = 0;
3996 	crit_enter();
3997 	old_bus = TAILQ_FIRST(&xpt_busses);
3998 	while (old_bus != NULL
3999 	    && old_bus->path_id < new_bus->path_id)
4000 		old_bus = TAILQ_NEXT(old_bus, links);
4001 	if (old_bus != NULL)
4002 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4003 	else
4004 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4005 	bus_generation++;
4006 	crit_exit();
4007 
4008 	/* Notify interested parties */
4009 	if (sim->path_id != CAM_XPT_PATH_ID) {
4010 		struct cam_path path;
4011 
4012 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4013 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4014 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4015 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4016 		xpt_action((union ccb *)&cpi);
4017 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4018 		xpt_release_path(&path);
4019 	}
4020 	return (CAM_SUCCESS);
4021 }
4022 
4023 /*
4024  * Deregister a bus.  We must clean out all transactions pending on the bus.
4025  * This routine is typically called prior to cam_sim_free() (e.g. see
4026  * dev/usbmisc/umass/umass.c)
4027  */
4028 int32_t
4029 xpt_bus_deregister(path_id_t pathid)
4030 {
4031 	struct cam_path bus_path;
4032 	cam_status status;
4033 
4034 	status = xpt_compile_path(&bus_path, NULL, pathid,
4035 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4036 	if (status != CAM_REQ_CMP)
4037 		return (status);
4038 
4039 	/*
4040 	 * This should clear out all pending requests and timeouts, but
4041 	 * the ccb's may be queued to a software interrupt.
4042 	 *
4043 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4044 	 * and it really ought to.
4045 	 */
4046 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4047 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4048 
4049 	/* make sure all responses have been processed */
4050 	camisr(&cam_netq);
4051 	camisr(&cam_bioq);
4052 
4053 	/* Release the reference count held while registered. */
4054 	xpt_release_bus(bus_path.bus);
4055 	xpt_release_path(&bus_path);
4056 
4057 	return (CAM_REQ_CMP);
4058 }
4059 
4060 static path_id_t
4061 xptnextfreepathid(void)
4062 {
4063 	struct cam_eb *bus;
4064 	path_id_t pathid;
4065 	char *strval;
4066 
4067 	pathid = 0;
4068 	bus = TAILQ_FIRST(&xpt_busses);
4069 retry:
4070 	/* Find an unoccupied pathid */
4071 	while (bus != NULL
4072 	    && bus->path_id <= pathid) {
4073 		if (bus->path_id == pathid)
4074 			pathid++;
4075 		bus = TAILQ_NEXT(bus, links);
4076 	}
4077 
4078 	/*
4079 	 * Ensure that this pathid is not reserved for
4080 	 * a bus that may be registered in the future.
4081 	 */
4082 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4083 		++pathid;
4084 		/* Start the search over */
4085 		goto retry;
4086 	}
4087 	return (pathid);
4088 }
4089 
4090 static path_id_t
4091 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4092 {
4093 	path_id_t pathid;
4094 	int i, dunit, val;
4095 	char buf[32], *strval;
4096 
4097 	pathid = CAM_XPT_PATH_ID;
4098 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4099 	i = -1;
4100 	while ((i = resource_locate(i, "scbus")) != -1) {
4101 		dunit = resource_query_unit(i);
4102 		if (dunit < 0)		/* unwired?! */
4103 			continue;
4104 		if (resource_string_value("scbus", dunit, "at", &strval) != 0)
4105 			continue;
4106 		if (strcmp(buf, strval) != 0)
4107 			continue;
4108 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4109 			if (sim_bus == val) {
4110 				pathid = dunit;
4111 				break;
4112 			}
4113 		} else if (sim_bus == 0) {
4114 			/* Unspecified matches bus 0 */
4115 			pathid = dunit;
4116 			break;
4117 		} else {
4118 			printf("Ambiguous scbus configuration for %s%d "
4119 			       "bus %d, cannot wire down.  The kernel "
4120 			       "config entry for scbus%d should "
4121 			       "specify a controller bus.\n"
4122 			       "Scbus will be assigned dynamically.\n",
4123 			       sim_name, sim_unit, sim_bus, dunit);
4124 			break;
4125 		}
4126 	}
4127 
4128 	if (pathid == CAM_XPT_PATH_ID)
4129 		pathid = xptnextfreepathid();
4130 	return (pathid);
4131 }
4132 
4133 void
4134 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4135 {
4136 	struct cam_eb *bus;
4137 	struct cam_et *target, *next_target;
4138 	struct cam_ed *device, *next_device;
4139 
4140 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4141 
4142 	/*
4143 	 * Most async events come from a CAM interrupt context.  In
4144 	 * a few cases, the error recovery code at the peripheral layer,
4145 	 * which may run from our SWI or a process context, may signal
4146 	 * deferred events with a call to xpt_async. Ensure async
4147 	 * notifications are serialized by blocking cam interrupts.
4148 	 */
4149 	crit_enter();
4150 
4151 	bus = path->bus;
4152 
4153 	if (async_code == AC_BUS_RESET) {
4154 		/* Update our notion of when the last reset occurred */
4155 		microuptime(&bus->last_reset);
4156 	}
4157 
4158 	for (target = TAILQ_FIRST(&bus->et_entries);
4159 	     target != NULL;
4160 	     target = next_target) {
4161 
4162 		next_target = TAILQ_NEXT(target, links);
4163 
4164 		if (path->target != target
4165 		 && path->target->target_id != CAM_TARGET_WILDCARD
4166 		 && target->target_id != CAM_TARGET_WILDCARD)
4167 			continue;
4168 
4169 		if (async_code == AC_SENT_BDR) {
4170 			/* Update our notion of when the last reset occurred */
4171 			microuptime(&path->target->last_reset);
4172 		}
4173 
4174 		for (device = TAILQ_FIRST(&target->ed_entries);
4175 		     device != NULL;
4176 		     device = next_device) {
4177 
4178 			next_device = TAILQ_NEXT(device, links);
4179 
4180 			if (path->device != device
4181 			 && path->device->lun_id != CAM_LUN_WILDCARD
4182 			 && device->lun_id != CAM_LUN_WILDCARD)
4183 				continue;
4184 
4185 			xpt_dev_async(async_code, bus, target,
4186 				      device, async_arg);
4187 
4188 			xpt_async_bcast(&device->asyncs, async_code,
4189 					path, async_arg);
4190 		}
4191 	}
4192 
4193 	/*
4194 	 * If this wasn't a fully wildcarded async, tell all
4195 	 * clients that want all async events.
4196 	 */
4197 	if (bus != xpt_periph->path->bus)
4198 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4199 				path, async_arg);
4200 	crit_exit();
4201 }
4202 
4203 static void
4204 xpt_async_bcast(struct async_list *async_head,
4205 		u_int32_t async_code,
4206 		struct cam_path *path, void *async_arg)
4207 {
4208 	struct async_node *cur_entry;
4209 
4210 	cur_entry = SLIST_FIRST(async_head);
4211 	while (cur_entry != NULL) {
4212 		struct async_node *next_entry;
4213 		/*
4214 		 * Grab the next list entry before we call the current
4215 		 * entry's callback.  This is because the callback function
4216 		 * can delete its async callback entry.
4217 		 */
4218 		next_entry = SLIST_NEXT(cur_entry, links);
4219 		if ((cur_entry->event_enable & async_code) != 0)
4220 			cur_entry->callback(cur_entry->callback_arg,
4221 					    async_code, path,
4222 					    async_arg);
4223 		cur_entry = next_entry;
4224 	}
4225 }
4226 
4227 /*
4228  * Handle any per-device event notifications that require action by the XPT.
4229  */
4230 static void
4231 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4232 	      struct cam_ed *device, void *async_arg)
4233 {
4234 	cam_status status;
4235 	struct cam_path newpath;
4236 
4237 	/*
4238 	 * We only need to handle events for real devices.
4239 	 */
4240 	if (target->target_id == CAM_TARGET_WILDCARD
4241 	 || device->lun_id == CAM_LUN_WILDCARD)
4242 		return;
4243 
4244 	/*
4245 	 * We need our own path with wildcards expanded to
4246 	 * handle certain types of events.
4247 	 */
4248 	if ((async_code == AC_SENT_BDR)
4249 	 || (async_code == AC_BUS_RESET)
4250 	 || (async_code == AC_INQ_CHANGED))
4251 		status = xpt_compile_path(&newpath, NULL,
4252 					  bus->path_id,
4253 					  target->target_id,
4254 					  device->lun_id);
4255 	else
4256 		status = CAM_REQ_CMP_ERR;
4257 
4258 	if (status == CAM_REQ_CMP) {
4259 
4260 		/*
4261 		 * Allow transfer negotiation to occur in a
4262 		 * tag free environment.
4263 		 */
4264 		if (async_code == AC_SENT_BDR
4265 		 || async_code == AC_BUS_RESET)
4266 			xpt_toggle_tags(&newpath);
4267 
4268 		if (async_code == AC_INQ_CHANGED) {
4269 			/*
4270 			 * We've sent a start unit command, or
4271 			 * something similar to a device that
4272 			 * may have caused its inquiry data to
4273 			 * change. So we re-scan the device to
4274 			 * refresh the inquiry data for it.
4275 			 */
4276 			xpt_scan_lun(newpath.periph, &newpath,
4277 				     CAM_EXPECT_INQ_CHANGE, NULL);
4278 		}
4279 		xpt_release_path(&newpath);
4280 	} else if (async_code == AC_LOST_DEVICE) {
4281 		/*
4282 		 * When we lose a device the device may be about to detach
4283 		 * the sim, we have to clear out all pending timeouts and
4284 		 * requests before that happens.  XXX it would be nice if
4285 		 * we could abort the requests pertaining to the device.
4286 		 */
4287 		xpt_release_devq_timeout(device);
4288 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4289 			device->flags |= CAM_DEV_UNCONFIGURED;
4290 			xpt_release_device(bus, target, device);
4291 		}
4292 	} else if (async_code == AC_TRANSFER_NEG) {
4293 		struct ccb_trans_settings *settings;
4294 
4295 		settings = (struct ccb_trans_settings *)async_arg;
4296 		xpt_set_transfer_settings(settings, device,
4297 					  /*async_update*/TRUE);
4298 	}
4299 }
4300 
4301 u_int32_t
4302 xpt_freeze_devq(struct cam_path *path, u_int count)
4303 {
4304 	struct ccb_hdr *ccbh;
4305 
4306 	crit_enter();
4307 	path->device->qfrozen_cnt += count;
4308 
4309 	/*
4310 	 * Mark the last CCB in the queue as needing
4311 	 * to be requeued if the driver hasn't
4312 	 * changed it's state yet.  This fixes a race
4313 	 * where a ccb is just about to be queued to
4314 	 * a controller driver when it's interrupt routine
4315 	 * freezes the queue.  To completly close the
4316 	 * hole, controller drives must check to see
4317 	 * if a ccb's status is still CAM_REQ_INPROG
4318 	 * under critical section protection just before they queue
4319 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4320 	 * an example.
4321 	 */
4322 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4323 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4324 		ccbh->status = CAM_REQUEUE_REQ;
4325 	crit_exit();
4326 	return (path->device->qfrozen_cnt);
4327 }
4328 
4329 u_int32_t
4330 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4331 {
4332 	if (sim->devq == NULL)
4333 		return(count);
4334 	sim->devq->send_queue.qfrozen_cnt += count;
4335 	if (sim->devq->active_dev != NULL) {
4336 		struct ccb_hdr *ccbh;
4337 
4338 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4339 				  ccb_hdr_tailq);
4340 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4341 			ccbh->status = CAM_REQUEUE_REQ;
4342 	}
4343 	return (sim->devq->send_queue.qfrozen_cnt);
4344 }
4345 
4346 /*
4347  * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4348  * We ref-count the sim (and the bus only NULLs it out when the bus has been
4349  * freed, which is not the case here), but the device queue is also freed XXX
4350  * and we have to check that here.
4351  *
4352  * XXX fixme: could we simply not null-out the device queue via
4353  * cam_sim_free()?
4354  */
4355 static void
4356 xpt_release_devq_timeout(void *arg)
4357 {
4358 	struct cam_ed *device;
4359 
4360 	device = (struct cam_ed *)arg;
4361 
4362 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4363 }
4364 
4365 void
4366 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4367 {
4368 	xpt_release_devq_device(path->device, count, run_queue);
4369 }
4370 
4371 static void
4372 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4373 {
4374 	int	rundevq;
4375 
4376 	rundevq = 0;
4377 	crit_enter();
4378 
4379 	if (dev->qfrozen_cnt > 0) {
4380 
4381 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4382 		dev->qfrozen_cnt -= count;
4383 		if (dev->qfrozen_cnt == 0) {
4384 
4385 			/*
4386 			 * No longer need to wait for a successful
4387 			 * command completion.
4388 			 */
4389 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4390 
4391 			/*
4392 			 * Remove any timeouts that might be scheduled
4393 			 * to release this queue.
4394 			 */
4395 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4396 				callout_stop(&dev->c_handle);
4397 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4398 			}
4399 
4400 			/*
4401 			 * Now that we are unfrozen schedule the
4402 			 * device so any pending transactions are
4403 			 * run.
4404 			 */
4405 			if ((dev->ccbq.queue.entries > 0)
4406 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4407 			 && (run_queue != 0)) {
4408 				rundevq = 1;
4409 			}
4410 		}
4411 	}
4412 	if (rundevq != 0)
4413 		xpt_run_dev_sendq(dev->target->bus);
4414 	crit_exit();
4415 }
4416 
4417 void
4418 xpt_release_simq(struct cam_sim *sim, int run_queue)
4419 {
4420 	struct	camq *sendq;
4421 
4422 	if (sim->devq == NULL)
4423 		return;
4424 
4425 	sendq = &(sim->devq->send_queue);
4426 	crit_enter();
4427 
4428 	if (sendq->qfrozen_cnt > 0) {
4429 		sendq->qfrozen_cnt--;
4430 		if (sendq->qfrozen_cnt == 0) {
4431 			struct cam_eb *bus;
4432 
4433 			/*
4434 			 * If there is a timeout scheduled to release this
4435 			 * sim queue, remove it.  The queue frozen count is
4436 			 * already at 0.
4437 			 */
4438 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4439 				callout_stop(&sim->c_handle);
4440 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4441 			}
4442 			bus = xpt_find_bus(sim->path_id);
4443 			crit_exit();
4444 
4445 			if (run_queue) {
4446 				/*
4447 				 * Now that we are unfrozen run the send queue.
4448 				 */
4449 				xpt_run_dev_sendq(bus);
4450 			}
4451 			xpt_release_bus(bus);
4452 		} else {
4453 			crit_exit();
4454 		}
4455 	} else {
4456 		crit_exit();
4457 	}
4458 }
4459 
4460 void
4461 xpt_done(union ccb *done_ccb)
4462 {
4463 	crit_enter();
4464 
4465 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4466 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4467 		/*
4468 		 * Queue up the request for handling by our SWI handler
4469 		 * any of the "non-immediate" type of ccbs.
4470 		 */
4471 		switch (done_ccb->ccb_h.path->periph->type) {
4472 		case CAM_PERIPH_BIO:
4473 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4474 					  sim_links.tqe);
4475 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4476 			setsoftcambio();
4477 			break;
4478 		case CAM_PERIPH_NET:
4479 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4480 					  sim_links.tqe);
4481 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4482 			setsoftcamnet();
4483 			break;
4484 		}
4485 	}
4486 	crit_exit();
4487 }
4488 
4489 union ccb *
4490 xpt_alloc_ccb()
4491 {
4492 	union ccb *new_ccb;
4493 
4494 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_INTWAIT);
4495 	return (new_ccb);
4496 }
4497 
4498 void
4499 xpt_free_ccb(union ccb *free_ccb)
4500 {
4501 	free(free_ccb, M_DEVBUF);
4502 }
4503 
4504 
4505 
4506 /* Private XPT functions */
4507 
4508 /*
4509  * Get a CAM control block for the caller. Charge the structure to the device
4510  * referenced by the path.  If the this device has no 'credits' then the
4511  * device already has the maximum number of outstanding operations under way
4512  * and we return NULL. If we don't have sufficient resources to allocate more
4513  * ccbs, we also return NULL.
4514  */
4515 static union ccb *
4516 xpt_get_ccb(struct cam_ed *device)
4517 {
4518 	union ccb *new_ccb;
4519 
4520 	crit_enter();
4521 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4522 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_INTWAIT);
4523 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4524 				  xpt_links.sle);
4525 		xpt_ccb_count++;
4526 	}
4527 	cam_ccbq_take_opening(&device->ccbq);
4528 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4529 	crit_exit();
4530 	return (new_ccb);
4531 }
4532 
4533 static void
4534 xpt_release_bus(struct cam_eb *bus)
4535 {
4536 
4537 	crit_enter();
4538 	if (bus->refcount == 1) {
4539 		KKASSERT(TAILQ_FIRST(&bus->et_entries) == NULL);
4540 		TAILQ_REMOVE(&xpt_busses, bus, links);
4541 		if (bus->sim) {
4542 			cam_sim_release(bus->sim, 0);
4543 			bus->sim = NULL;
4544 		}
4545 		bus_generation++;
4546 		KKASSERT(bus->refcount == 1);
4547 		free(bus, M_DEVBUF);
4548 	} else {
4549 		--bus->refcount;
4550 	}
4551 	crit_exit();
4552 }
4553 
4554 static struct cam_et *
4555 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4556 {
4557 	struct cam_et *target;
4558 	struct cam_et *cur_target;
4559 
4560 	target = malloc(sizeof(*target), M_DEVBUF, M_INTWAIT);
4561 
4562 	TAILQ_INIT(&target->ed_entries);
4563 	target->bus = bus;
4564 	target->target_id = target_id;
4565 	target->refcount = 1;
4566 	target->generation = 0;
4567 	timevalclear(&target->last_reset);
4568 	/*
4569 	 * Hold a reference to our parent bus so it
4570 	 * will not go away before we do.
4571 	 */
4572 	bus->refcount++;
4573 
4574 	/* Insertion sort into our bus's target list */
4575 	cur_target = TAILQ_FIRST(&bus->et_entries);
4576 	while (cur_target != NULL && cur_target->target_id < target_id)
4577 		cur_target = TAILQ_NEXT(cur_target, links);
4578 
4579 	if (cur_target != NULL) {
4580 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4581 	} else {
4582 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4583 	}
4584 	bus->generation++;
4585 	return (target);
4586 }
4587 
4588 static void
4589 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4590 {
4591 	crit_enter();
4592 	if (target->refcount == 1) {
4593 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
4594 		TAILQ_REMOVE(&bus->et_entries, target, links);
4595 		bus->generation++;
4596 		xpt_release_bus(bus);
4597 		KKASSERT(target->refcount == 1);
4598 		free(target, M_DEVBUF);
4599 	} else {
4600 		--target->refcount;
4601 	}
4602 	crit_exit();
4603 }
4604 
4605 static struct cam_ed *
4606 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4607 {
4608 	struct	   cam_ed *device;
4609 	struct	   cam_devq *devq;
4610 	cam_status status;
4611 
4612 	/* Make space for us in the device queue on our bus */
4613 	if (bus->sim->devq == NULL)
4614 		return(NULL);
4615 	devq = bus->sim->devq;
4616 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4617 
4618 	if (status != CAM_REQ_CMP) {
4619 		device = NULL;
4620 	} else {
4621 		device = malloc(sizeof(*device), M_DEVBUF, M_INTWAIT);
4622 	}
4623 
4624 	if (device != NULL) {
4625 		struct cam_ed *cur_device;
4626 
4627 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4628 		device->alloc_ccb_entry.device = device;
4629 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4630 		device->send_ccb_entry.device = device;
4631 		device->target = target;
4632 		device->lun_id = lun_id;
4633 		/* Initialize our queues */
4634 		if (camq_init(&device->drvq, 0) != 0) {
4635 			free(device, M_DEVBUF);
4636 			return (NULL);
4637 		}
4638 		if (cam_ccbq_init(&device->ccbq,
4639 				  bus->sim->max_dev_openings) != 0) {
4640 			camq_fini(&device->drvq);
4641 			free(device, M_DEVBUF);
4642 			return (NULL);
4643 		}
4644 		SLIST_INIT(&device->asyncs);
4645 		SLIST_INIT(&device->periphs);
4646 		device->generation = 0;
4647 		device->owner = NULL;
4648 		/*
4649 		 * Take the default quirk entry until we have inquiry
4650 		 * data and can determine a better quirk to use.
4651 		 */
4652 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4653 		bzero(&device->inq_data, sizeof(device->inq_data));
4654 		device->inq_flags = 0;
4655 		device->queue_flags = 0;
4656 		device->serial_num = NULL;
4657 		device->serial_num_len = 0;
4658 		device->qfrozen_cnt = 0;
4659 		device->flags = CAM_DEV_UNCONFIGURED;
4660 		device->tag_delay_count = 0;
4661 		device->refcount = 1;
4662 		callout_init(&device->c_handle);
4663 
4664 		/*
4665 		 * Hold a reference to our parent target so it
4666 		 * will not go away before we do.
4667 		 */
4668 		target->refcount++;
4669 
4670 		/*
4671 		 * XXX should be limited by number of CCBs this bus can
4672 		 * do.
4673 		 */
4674 		xpt_max_ccbs += device->ccbq.devq_openings;
4675 		/* Insertion sort into our target's device list */
4676 		cur_device = TAILQ_FIRST(&target->ed_entries);
4677 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4678 			cur_device = TAILQ_NEXT(cur_device, links);
4679 		if (cur_device != NULL) {
4680 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4681 		} else {
4682 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4683 		}
4684 		target->generation++;
4685 	}
4686 	return (device);
4687 }
4688 
4689 static void
4690 xpt_reference_device(struct cam_ed *device)
4691 {
4692 	++device->refcount;
4693 }
4694 
4695 static void
4696 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4697 		   struct cam_ed *device)
4698 {
4699 	struct cam_devq *devq;
4700 
4701 	crit_enter();
4702 	if (device->refcount == 1) {
4703 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
4704 
4705 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4706 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4707 			panic("Removing device while still queued for ccbs");
4708 
4709 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4710 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4711 			callout_stop(&device->c_handle);
4712 		}
4713 
4714 		TAILQ_REMOVE(&target->ed_entries, device,links);
4715 		target->generation++;
4716 		xpt_max_ccbs -= device->ccbq.devq_openings;
4717 		/* Release our slot in the devq */
4718 		devq = bus->sim->devq;
4719 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4720 		xpt_release_target(bus, target);
4721 		KKASSERT(device->refcount == 1);
4722 		free(device, M_DEVBUF);
4723 	} else {
4724 		--device->refcount;
4725 	}
4726 	crit_exit();
4727 }
4728 
4729 static u_int32_t
4730 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4731 {
4732 	int	diff;
4733 	int	result;
4734 	struct	cam_ed *dev;
4735 
4736 	dev = path->device;
4737 
4738 	crit_enter();
4739 
4740 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4741 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4742 	if (result == CAM_REQ_CMP && (diff < 0)) {
4743 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4744 	}
4745 	/* Adjust the global limit */
4746 	xpt_max_ccbs += diff;
4747 	crit_exit();
4748 	return (result);
4749 }
4750 
4751 static struct cam_eb *
4752 xpt_find_bus(path_id_t path_id)
4753 {
4754 	struct cam_eb *bus;
4755 
4756 	for (bus = TAILQ_FIRST(&xpt_busses);
4757 	     bus != NULL;
4758 	     bus = TAILQ_NEXT(bus, links)) {
4759 		if (bus->path_id == path_id) {
4760 			bus->refcount++;
4761 			break;
4762 		}
4763 	}
4764 	return (bus);
4765 }
4766 
4767 static struct cam_et *
4768 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4769 {
4770 	struct cam_et *target;
4771 
4772 	for (target = TAILQ_FIRST(&bus->et_entries);
4773 	     target != NULL;
4774 	     target = TAILQ_NEXT(target, links)) {
4775 		if (target->target_id == target_id) {
4776 			target->refcount++;
4777 			break;
4778 		}
4779 	}
4780 	return (target);
4781 }
4782 
4783 static struct cam_ed *
4784 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4785 {
4786 	struct cam_ed *device;
4787 
4788 	for (device = TAILQ_FIRST(&target->ed_entries);
4789 	     device != NULL;
4790 	     device = TAILQ_NEXT(device, links)) {
4791 		if (device->lun_id == lun_id) {
4792 			device->refcount++;
4793 			break;
4794 		}
4795 	}
4796 	return (device);
4797 }
4798 
4799 typedef struct {
4800 	union	ccb *request_ccb;
4801 	struct 	ccb_pathinq *cpi;
4802 	int	pending_count;
4803 } xpt_scan_bus_info;
4804 
4805 /*
4806  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4807  * As the scan progresses, xpt_scan_bus is used as the
4808  * callback on completion function.
4809  */
4810 static void
4811 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4812 {
4813 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4814 		  ("xpt_scan_bus\n"));
4815 	switch (request_ccb->ccb_h.func_code) {
4816 	case XPT_SCAN_BUS:
4817 	{
4818 		xpt_scan_bus_info *scan_info;
4819 		union	ccb *work_ccb;
4820 		struct	cam_path *path;
4821 		u_int	i;
4822 		u_int	max_target;
4823 		u_int	initiator_id;
4824 
4825 		/* Find out the characteristics of the bus */
4826 		work_ccb = xpt_alloc_ccb();
4827 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4828 			      request_ccb->ccb_h.pinfo.priority);
4829 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4830 		xpt_action(work_ccb);
4831 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4832 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4833 			xpt_free_ccb(work_ccb);
4834 			xpt_done(request_ccb);
4835 			return;
4836 		}
4837 
4838 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4839 			/*
4840 			 * Can't scan the bus on an adapter that
4841 			 * cannot perform the initiator role.
4842 			 */
4843 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4844 			xpt_free_ccb(work_ccb);
4845 			xpt_done(request_ccb);
4846 			return;
4847 		}
4848 
4849 		/* Save some state for use while we probe for devices */
4850 		scan_info = (xpt_scan_bus_info *)
4851 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_INTWAIT);
4852 		scan_info->request_ccb = request_ccb;
4853 		scan_info->cpi = &work_ccb->cpi;
4854 
4855 		/* Cache on our stack so we can work asynchronously */
4856 		max_target = scan_info->cpi->max_target;
4857 		initiator_id = scan_info->cpi->initiator_id;
4858 
4859 		/*
4860 		 * Don't count the initiator if the
4861 		 * initiator is addressable.
4862 		 */
4863 		scan_info->pending_count = max_target + 1;
4864 		if (initiator_id <= max_target)
4865 			scan_info->pending_count--;
4866 
4867 		for (i = 0; i <= max_target; i++) {
4868 			cam_status status;
4869 		 	if (i == initiator_id)
4870 				continue;
4871 
4872 			status = xpt_create_path(&path, xpt_periph,
4873 						 request_ccb->ccb_h.path_id,
4874 						 i, 0);
4875 			if (status != CAM_REQ_CMP) {
4876 				printf("xpt_scan_bus: xpt_create_path failed"
4877 				       " with status %#x, bus scan halted\n",
4878 				       status);
4879 				break;
4880 			}
4881 			work_ccb = xpt_alloc_ccb();
4882 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4883 				      request_ccb->ccb_h.pinfo.priority);
4884 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4885 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4886 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4887 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4888 #if 0
4889 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4890 				request_ccb->ccb_h.path_id, i, 0);
4891 #endif
4892 			xpt_action(work_ccb);
4893 		}
4894 		break;
4895 	}
4896 	case XPT_SCAN_LUN:
4897 	{
4898 		xpt_scan_bus_info *scan_info;
4899 		path_id_t path_id;
4900 		target_id_t target_id;
4901 		lun_id_t lun_id;
4902 
4903 		/* Reuse the same CCB to query if a device was really found */
4904 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4905 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4906 			      request_ccb->ccb_h.pinfo.priority);
4907 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4908 
4909 		path_id = request_ccb->ccb_h.path_id;
4910 		target_id = request_ccb->ccb_h.target_id;
4911 		lun_id = request_ccb->ccb_h.target_lun;
4912 		xpt_action(request_ccb);
4913 
4914 #if 0
4915 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
4916 			path_id, target_id, lun_id);
4917 #endif
4918 
4919 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
4920 			struct cam_ed *device;
4921 			struct cam_et *target;
4922 			int phl;
4923 
4924 			/*
4925 			 * If we already probed lun 0 successfully, or
4926 			 * we have additional configured luns on this
4927 			 * target that might have "gone away", go onto
4928 			 * the next lun.
4929 			 */
4930 			target = request_ccb->ccb_h.path->target;
4931 			/*
4932 			 * We may touch devices that we don't
4933 			 * hold references too, so ensure they
4934 			 * don't disappear out from under us.
4935 			 * The target above is referenced by the
4936 			 * path in the request ccb.
4937 			 */
4938 			phl = 0;
4939 			crit_enter();
4940 			device = TAILQ_FIRST(&target->ed_entries);
4941 			if (device != NULL) {
4942 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
4943 				if (device->lun_id == 0)
4944 					device = TAILQ_NEXT(device, links);
4945 			}
4946 			crit_exit();
4947 			if ((lun_id != 0) || (device != NULL)) {
4948 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
4949 					lun_id++;
4950 			}
4951 		} else {
4952 			struct cam_ed *device;
4953 
4954 			device = request_ccb->ccb_h.path->device;
4955 
4956 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
4957 				/* Try the next lun */
4958 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
4959 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
4960 					lun_id++;
4961 			}
4962 		}
4963 
4964 		xpt_free_path(request_ccb->ccb_h.path);
4965 
4966 		/* Check Bounds */
4967 		if ((lun_id == request_ccb->ccb_h.target_lun)
4968 		 || lun_id > scan_info->cpi->max_lun) {
4969 			/* We're done */
4970 
4971 			xpt_free_ccb(request_ccb);
4972 			scan_info->pending_count--;
4973 			if (scan_info->pending_count == 0) {
4974 				xpt_free_ccb((union ccb *)scan_info->cpi);
4975 				request_ccb = scan_info->request_ccb;
4976 				free(scan_info, M_TEMP);
4977 				request_ccb->ccb_h.status = CAM_REQ_CMP;
4978 				xpt_done(request_ccb);
4979 			}
4980 		} else {
4981 			/* Try the next device */
4982 			struct cam_path *path;
4983 			cam_status status;
4984 
4985 			path = request_ccb->ccb_h.path;
4986 			status = xpt_create_path(&path, xpt_periph,
4987 						 path_id, target_id, lun_id);
4988 			if (status != CAM_REQ_CMP) {
4989 				printf("xpt_scan_bus: xpt_create_path failed "
4990 				       "with status %#x, halting LUN scan\n",
4991 			 	       status);
4992 				xpt_free_ccb(request_ccb);
4993 				scan_info->pending_count--;
4994 				if (scan_info->pending_count == 0) {
4995 					xpt_free_ccb(
4996 						(union ccb *)scan_info->cpi);
4997 					request_ccb = scan_info->request_ccb;
4998 					free(scan_info, M_TEMP);
4999 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5000 					xpt_done(request_ccb);
5001 					break;
5002 				}
5003 			}
5004 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5005 				      request_ccb->ccb_h.pinfo.priority);
5006 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5007 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5008 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5009 			request_ccb->crcn.flags =
5010 				scan_info->request_ccb->crcn.flags;
5011 #if 0
5012 			xpt_print_path(path);
5013 			printf("xpt_scan bus probing\n");
5014 #endif
5015 			xpt_action(request_ccb);
5016 		}
5017 		break;
5018 	}
5019 	default:
5020 		break;
5021 	}
5022 }
5023 
5024 typedef enum {
5025 	PROBE_TUR,
5026 	PROBE_INQUIRY,
5027 	PROBE_FULL_INQUIRY,
5028 	PROBE_MODE_SENSE,
5029 	PROBE_SERIAL_NUM,
5030 	PROBE_TUR_FOR_NEGOTIATION
5031 } probe_action;
5032 
5033 typedef enum {
5034 	PROBE_INQUIRY_CKSUM	= 0x01,
5035 	PROBE_SERIAL_CKSUM	= 0x02,
5036 	PROBE_NO_ANNOUNCE	= 0x04
5037 } probe_flags;
5038 
5039 typedef struct {
5040 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5041 	probe_action	action;
5042 	union ccb	saved_ccb;
5043 	probe_flags	flags;
5044 	MD5_CTX		context;
5045 	u_int8_t	digest[16];
5046 } probe_softc;
5047 
5048 static void
5049 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5050 	     cam_flags flags, union ccb *request_ccb)
5051 {
5052 	struct ccb_pathinq cpi;
5053 	cam_status status;
5054 	struct cam_path *new_path;
5055 	struct cam_periph *old_periph;
5056 
5057 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5058 		  ("xpt_scan_lun\n"));
5059 
5060 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5061 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5062 	xpt_action((union ccb *)&cpi);
5063 
5064 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5065 		if (request_ccb != NULL) {
5066 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5067 			xpt_done(request_ccb);
5068 		}
5069 		return;
5070 	}
5071 
5072 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5073 		/*
5074 		 * Can't scan the bus on an adapter that
5075 		 * cannot perform the initiator role.
5076 		 */
5077 		if (request_ccb != NULL) {
5078 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5079 			xpt_done(request_ccb);
5080 		}
5081 		return;
5082 	}
5083 
5084 	if (request_ccb == NULL) {
5085 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_INTWAIT);
5086 		new_path = malloc(sizeof(*new_path), M_TEMP, M_INTWAIT);
5087 		status = xpt_compile_path(new_path, xpt_periph,
5088 					  path->bus->path_id,
5089 					  path->target->target_id,
5090 					  path->device->lun_id);
5091 
5092 		if (status != CAM_REQ_CMP) {
5093 			xpt_print_path(path);
5094 			printf("xpt_scan_lun: can't compile path, can't "
5095 			       "continue\n");
5096 			free(request_ccb, M_TEMP);
5097 			free(new_path, M_TEMP);
5098 			return;
5099 		}
5100 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5101 		request_ccb->ccb_h.cbfcnp = xptscandone;
5102 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5103 		request_ccb->crcn.flags = flags;
5104 	}
5105 
5106 	crit_enter();
5107 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5108 		probe_softc *softc;
5109 
5110 		softc = (probe_softc *)old_periph->softc;
5111 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5112 				  periph_links.tqe);
5113 	} else {
5114 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5115 					  probestart, "probe",
5116 					  CAM_PERIPH_BIO,
5117 					  request_ccb->ccb_h.path, NULL, 0,
5118 					  request_ccb);
5119 
5120 		if (status != CAM_REQ_CMP) {
5121 			xpt_print_path(path);
5122 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5123 			       "error, can't continue probe\n");
5124 			request_ccb->ccb_h.status = status;
5125 			xpt_done(request_ccb);
5126 		}
5127 	}
5128 	crit_exit();
5129 }
5130 
5131 static void
5132 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5133 {
5134 	xpt_release_path(done_ccb->ccb_h.path);
5135 	free(done_ccb->ccb_h.path, M_TEMP);
5136 	free(done_ccb, M_TEMP);
5137 }
5138 
5139 static cam_status
5140 proberegister(struct cam_periph *periph, void *arg)
5141 {
5142 	union ccb *request_ccb;	/* CCB representing the probe request */
5143 	probe_softc *softc;
5144 
5145 	request_ccb = (union ccb *)arg;
5146 	if (periph == NULL) {
5147 		printf("proberegister: periph was NULL!!\n");
5148 		return(CAM_REQ_CMP_ERR);
5149 	}
5150 
5151 	if (request_ccb == NULL) {
5152 		printf("proberegister: no probe CCB, "
5153 		       "can't register device\n");
5154 		return(CAM_REQ_CMP_ERR);
5155 	}
5156 
5157 	softc = malloc(sizeof(*softc), M_TEMP, M_INTWAIT | M_ZERO);
5158 	TAILQ_INIT(&softc->request_ccbs);
5159 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5160 			  periph_links.tqe);
5161 	softc->flags = 0;
5162 	periph->softc = softc;
5163 	cam_periph_acquire(periph);
5164 	/*
5165 	 * Ensure we've waited at least a bus settle
5166 	 * delay before attempting to probe the device.
5167 	 * For HBAs that don't do bus resets, this won't make a difference.
5168 	 */
5169 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5170 				      SCSI_DELAY);
5171 	probeschedule(periph);
5172 	return(CAM_REQ_CMP);
5173 }
5174 
5175 static void
5176 probeschedule(struct cam_periph *periph)
5177 {
5178 	struct ccb_pathinq cpi;
5179 	union ccb *ccb;
5180 	probe_softc *softc;
5181 
5182 	softc = (probe_softc *)periph->softc;
5183 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5184 
5185 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5186 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5187 	xpt_action((union ccb *)&cpi);
5188 
5189 	/*
5190 	 * If a device has gone away and another device, or the same one,
5191 	 * is back in the same place, it should have a unit attention
5192 	 * condition pending.  It will not report the unit attention in
5193 	 * response to an inquiry, which may leave invalid transfer
5194 	 * negotiations in effect.  The TUR will reveal the unit attention
5195 	 * condition.  Only send the TUR for lun 0, since some devices
5196 	 * will get confused by commands other than inquiry to non-existent
5197 	 * luns.  If you think a device has gone away start your scan from
5198 	 * lun 0.  This will insure that any bogus transfer settings are
5199 	 * invalidated.
5200 	 *
5201 	 * If we haven't seen the device before and the controller supports
5202 	 * some kind of transfer negotiation, negotiate with the first
5203 	 * sent command if no bus reset was performed at startup.  This
5204 	 * ensures that the device is not confused by transfer negotiation
5205 	 * settings left over by loader or BIOS action.
5206 	 */
5207 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5208 	 && (ccb->ccb_h.target_lun == 0)) {
5209 		softc->action = PROBE_TUR;
5210 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5211 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5212 		proberequestdefaultnegotiation(periph);
5213 		softc->action = PROBE_INQUIRY;
5214 	} else {
5215 		softc->action = PROBE_INQUIRY;
5216 	}
5217 
5218 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5219 		softc->flags |= PROBE_NO_ANNOUNCE;
5220 	else
5221 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5222 
5223 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5224 }
5225 
5226 static void
5227 probestart(struct cam_periph *periph, union ccb *start_ccb)
5228 {
5229 	/* Probe the device that our peripheral driver points to */
5230 	struct ccb_scsiio *csio;
5231 	probe_softc *softc;
5232 
5233 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5234 
5235 	softc = (probe_softc *)periph->softc;
5236 	csio = &start_ccb->csio;
5237 
5238 	switch (softc->action) {
5239 	case PROBE_TUR:
5240 	case PROBE_TUR_FOR_NEGOTIATION:
5241 	{
5242 		scsi_test_unit_ready(csio,
5243 				     /*retries*/4,
5244 				     probedone,
5245 				     MSG_SIMPLE_Q_TAG,
5246 				     SSD_FULL_SIZE,
5247 				     /*timeout*/60000);
5248 		break;
5249 	}
5250 	case PROBE_INQUIRY:
5251 	case PROBE_FULL_INQUIRY:
5252 	{
5253 		u_int inquiry_len;
5254 		struct scsi_inquiry_data *inq_buf;
5255 
5256 		inq_buf = &periph->path->device->inq_data;
5257 		/*
5258 		 * If the device is currently configured, we calculate an
5259 		 * MD5 checksum of the inquiry data, and if the serial number
5260 		 * length is greater than 0, add the serial number data
5261 		 * into the checksum as well.  Once the inquiry and the
5262 		 * serial number check finish, we attempt to figure out
5263 		 * whether we still have the same device.
5264 		 */
5265 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5266 
5267 			MD5Init(&softc->context);
5268 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5269 				  sizeof(struct scsi_inquiry_data));
5270 			softc->flags |= PROBE_INQUIRY_CKSUM;
5271 			if (periph->path->device->serial_num_len > 0) {
5272 				MD5Update(&softc->context,
5273 					  periph->path->device->serial_num,
5274 					  periph->path->device->serial_num_len);
5275 				softc->flags |= PROBE_SERIAL_CKSUM;
5276 			}
5277 			MD5Final(softc->digest, &softc->context);
5278 		}
5279 
5280 		if (softc->action == PROBE_INQUIRY)
5281 			inquiry_len = SHORT_INQUIRY_LENGTH;
5282 		else
5283 			inquiry_len = inq_buf->additional_length + 5;
5284 
5285 		scsi_inquiry(csio,
5286 			     /*retries*/4,
5287 			     probedone,
5288 			     MSG_SIMPLE_Q_TAG,
5289 			     (u_int8_t *)inq_buf,
5290 			     inquiry_len,
5291 			     /*evpd*/FALSE,
5292 			     /*page_code*/0,
5293 			     SSD_MIN_SIZE,
5294 			     /*timeout*/60 * 1000);
5295 		break;
5296 	}
5297 	case PROBE_MODE_SENSE:
5298 	{
5299 		void  *mode_buf;
5300 		int    mode_buf_len;
5301 
5302 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5303 			     + sizeof(struct scsi_mode_blk_desc)
5304 			     + sizeof(struct scsi_control_page);
5305 		mode_buf = malloc(mode_buf_len, M_TEMP, M_INTWAIT);
5306 		scsi_mode_sense(csio,
5307 				/*retries*/4,
5308 				probedone,
5309 				MSG_SIMPLE_Q_TAG,
5310 				/*dbd*/FALSE,
5311 				SMS_PAGE_CTRL_CURRENT,
5312 				SMS_CONTROL_MODE_PAGE,
5313 				mode_buf,
5314 				mode_buf_len,
5315 				SSD_FULL_SIZE,
5316 				/*timeout*/60000);
5317 		break;
5318 	}
5319 	case PROBE_SERIAL_NUM:
5320 	{
5321 		struct scsi_vpd_unit_serial_number *serial_buf;
5322 		struct cam_ed* device;
5323 
5324 		serial_buf = NULL;
5325 		device = periph->path->device;
5326 		device->serial_num = NULL;
5327 		device->serial_num_len = 0;
5328 
5329 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5330 			serial_buf = malloc(sizeof(*serial_buf), M_TEMP,
5331 					    M_INTWAIT | M_ZERO);
5332 			scsi_inquiry(csio,
5333 				     /*retries*/4,
5334 				     probedone,
5335 				     MSG_SIMPLE_Q_TAG,
5336 				     (u_int8_t *)serial_buf,
5337 				     sizeof(*serial_buf),
5338 				     /*evpd*/TRUE,
5339 				     SVPD_UNIT_SERIAL_NUMBER,
5340 				     SSD_MIN_SIZE,
5341 				     /*timeout*/60 * 1000);
5342 			break;
5343 		}
5344 		/*
5345 		 * We'll have to do without, let our probedone
5346 		 * routine finish up for us.
5347 		 */
5348 		start_ccb->csio.data_ptr = NULL;
5349 		probedone(periph, start_ccb);
5350 		return;
5351 	}
5352 	}
5353 	xpt_action(start_ccb);
5354 }
5355 
5356 static void
5357 proberequestdefaultnegotiation(struct cam_periph *periph)
5358 {
5359 	struct ccb_trans_settings cts;
5360 
5361 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5362 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5363 	cts.flags = CCB_TRANS_USER_SETTINGS;
5364 	xpt_action((union ccb *)&cts);
5365 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5366 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5367 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5368 	xpt_action((union ccb *)&cts);
5369 }
5370 
5371 static void
5372 probedone(struct cam_periph *periph, union ccb *done_ccb)
5373 {
5374 	probe_softc *softc;
5375 	struct cam_path *path;
5376 	u_int32_t  priority;
5377 
5378 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5379 
5380 	softc = (probe_softc *)periph->softc;
5381 	path = done_ccb->ccb_h.path;
5382 	priority = done_ccb->ccb_h.pinfo.priority;
5383 
5384 	switch (softc->action) {
5385 	case PROBE_TUR:
5386 	{
5387 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5388 
5389 			if (cam_periph_error(done_ccb, 0,
5390 					     SF_NO_PRINT, NULL) == ERESTART)
5391 				return;
5392 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5393 				/* Don't wedge the queue */
5394 				xpt_release_devq(done_ccb->ccb_h.path,
5395 						 /*count*/1,
5396 						 /*run_queue*/TRUE);
5397 		}
5398 		softc->action = PROBE_INQUIRY;
5399 		xpt_release_ccb(done_ccb);
5400 		xpt_schedule(periph, priority);
5401 		return;
5402 	}
5403 	case PROBE_INQUIRY:
5404 	case PROBE_FULL_INQUIRY:
5405 	{
5406 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5407 			struct scsi_inquiry_data *inq_buf;
5408 			u_int8_t periph_qual;
5409 
5410 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5411 			inq_buf = &path->device->inq_data;
5412 
5413 			periph_qual = SID_QUAL(inq_buf);
5414 
5415 			switch(periph_qual) {
5416 			case SID_QUAL_LU_CONNECTED:
5417 			{
5418 				u_int8_t alen;
5419 
5420 				/*
5421 				 * We conservatively request only
5422 				 * SHORT_INQUIRY_LEN bytes of inquiry
5423 				 * information during our first try
5424 				 * at sending an INQUIRY. If the device
5425 				 * has more information to give,
5426 				 * perform a second request specifying
5427 				 * the amount of information the device
5428 				 * is willing to give.
5429 				 */
5430 				alen = inq_buf->additional_length;
5431 				if (softc->action == PROBE_INQUIRY
5432 				 && alen > (SHORT_INQUIRY_LENGTH - 5)) {
5433 					softc->action = PROBE_FULL_INQUIRY;
5434 					xpt_release_ccb(done_ccb);
5435 					xpt_schedule(periph, priority);
5436 					return;
5437 				}
5438 
5439 				xpt_find_quirk(path->device);
5440 
5441 				if ((inq_buf->flags & SID_CmdQue) != 0)
5442 					softc->action = PROBE_MODE_SENSE;
5443 				else
5444 					softc->action = PROBE_SERIAL_NUM;
5445 
5446 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5447 				xpt_reference_device(path->device);
5448 
5449 				xpt_release_ccb(done_ccb);
5450 				xpt_schedule(periph, priority);
5451 				return;
5452 			}
5453 			default:
5454 				break;
5455 			}
5456 		} else if (cam_periph_error(done_ccb, 0,
5457 					    done_ccb->ccb_h.target_lun > 0
5458 					    ? SF_RETRY_UA|SF_QUIET_IR
5459 					    : SF_RETRY_UA,
5460 					    &softc->saved_ccb) == ERESTART) {
5461 			return;
5462 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5463 			/* Don't wedge the queue */
5464 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5465 					 /*run_queue*/TRUE);
5466 		}
5467 		/*
5468 		 * If we get to this point, we got an error status back
5469 		 * from the inquiry and the error status doesn't require
5470 		 * automatically retrying the command.  Therefore, the
5471 		 * inquiry failed.  If we had inquiry information before
5472 		 * for this device, but this latest inquiry command failed,
5473 		 * the device has probably gone away.  If this device isn't
5474 		 * already marked unconfigured, notify the peripheral
5475 		 * drivers that this device is no more.
5476 		 */
5477 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5478 			/* Send the async notification. */
5479 			xpt_async(AC_LOST_DEVICE, path, NULL);
5480 		}
5481 
5482 		xpt_release_ccb(done_ccb);
5483 		break;
5484 	}
5485 	case PROBE_MODE_SENSE:
5486 	{
5487 		struct ccb_scsiio *csio;
5488 		struct scsi_mode_header_6 *mode_hdr;
5489 
5490 		csio = &done_ccb->csio;
5491 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5492 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5493 			struct scsi_control_page *page;
5494 			u_int8_t *offset;
5495 
5496 			offset = ((u_int8_t *)&mode_hdr[1])
5497 			    + mode_hdr->blk_desc_len;
5498 			page = (struct scsi_control_page *)offset;
5499 			path->device->queue_flags = page->queue_flags;
5500 		} else if (cam_periph_error(done_ccb, 0,
5501 					    SF_RETRY_UA|SF_NO_PRINT,
5502 					    &softc->saved_ccb) == ERESTART) {
5503 			return;
5504 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5505 			/* Don't wedge the queue */
5506 			xpt_release_devq(done_ccb->ccb_h.path,
5507 					 /*count*/1, /*run_queue*/TRUE);
5508 		}
5509 		xpt_release_ccb(done_ccb);
5510 		free(mode_hdr, M_TEMP);
5511 		softc->action = PROBE_SERIAL_NUM;
5512 		xpt_schedule(periph, priority);
5513 		return;
5514 	}
5515 	case PROBE_SERIAL_NUM:
5516 	{
5517 		struct ccb_scsiio *csio;
5518 		struct scsi_vpd_unit_serial_number *serial_buf;
5519 		u_int32_t  priority;
5520 		int changed;
5521 		int have_serialnum;
5522 
5523 		changed = 1;
5524 		have_serialnum = 0;
5525 		csio = &done_ccb->csio;
5526 		priority = done_ccb->ccb_h.pinfo.priority;
5527 		serial_buf =
5528 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5529 
5530 		/* Clean up from previous instance of this device */
5531 		if (path->device->serial_num != NULL) {
5532 			free(path->device->serial_num, M_DEVBUF);
5533 			path->device->serial_num = NULL;
5534 			path->device->serial_num_len = 0;
5535 		}
5536 
5537 		if (serial_buf == NULL) {
5538 			/*
5539 			 * Don't process the command as it was never sent
5540 			 */
5541 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5542 			&& (serial_buf->length > 0)) {
5543 
5544 			have_serialnum = 1;
5545 			path->device->serial_num =
5546 				malloc((serial_buf->length + 1),
5547 				       M_DEVBUF, M_INTWAIT);
5548 			bcopy(serial_buf->serial_num,
5549 			      path->device->serial_num,
5550 			      serial_buf->length);
5551 			path->device->serial_num_len = serial_buf->length;
5552 			path->device->serial_num[serial_buf->length] = '\0';
5553 		} else if (cam_periph_error(done_ccb, 0,
5554 					    SF_RETRY_UA|SF_NO_PRINT,
5555 					    &softc->saved_ccb) == ERESTART) {
5556 			return;
5557 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5558 			/* Don't wedge the queue */
5559 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5560 					 /*run_queue*/TRUE);
5561 		}
5562 
5563 		/*
5564 		 * Let's see if we have seen this device before.
5565 		 */
5566 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5567 			MD5_CTX context;
5568 			u_int8_t digest[16];
5569 
5570 			MD5Init(&context);
5571 
5572 			MD5Update(&context,
5573 				  (unsigned char *)&path->device->inq_data,
5574 				  sizeof(struct scsi_inquiry_data));
5575 
5576 			if (have_serialnum)
5577 				MD5Update(&context, serial_buf->serial_num,
5578 					  serial_buf->length);
5579 
5580 			MD5Final(digest, &context);
5581 			if (bcmp(softc->digest, digest, 16) == 0)
5582 				changed = 0;
5583 
5584 			/*
5585 			 * XXX Do we need to do a TUR in order to ensure
5586 			 *     that the device really hasn't changed???
5587 			 */
5588 			if ((changed != 0)
5589 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5590 				xpt_async(AC_LOST_DEVICE, path, NULL);
5591 		}
5592 		if (serial_buf != NULL)
5593 			free(serial_buf, M_TEMP);
5594 
5595 		if (changed != 0) {
5596 			/*
5597 			 * Now that we have all the necessary
5598 			 * information to safely perform transfer
5599 			 * negotiations... Controllers don't perform
5600 			 * any negotiation or tagged queuing until
5601 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5602 			 * received.  So, on a new device, just retreive
5603 			 * the user settings, and set them as the current
5604 			 * settings to set the device up.
5605 			 */
5606 			proberequestdefaultnegotiation(periph);
5607 			xpt_release_ccb(done_ccb);
5608 
5609 			/*
5610 			 * Perform a TUR to allow the controller to
5611 			 * perform any necessary transfer negotiation.
5612 			 */
5613 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5614 			xpt_schedule(periph, priority);
5615 			return;
5616 		}
5617 		xpt_release_ccb(done_ccb);
5618 		break;
5619 	}
5620 	case PROBE_TUR_FOR_NEGOTIATION:
5621 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5622 			/* Don't wedge the queue */
5623 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5624 					 /*run_queue*/TRUE);
5625 		}
5626 
5627 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5628 		xpt_reference_device(path->device);
5629 
5630 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5631 			/* Inform the XPT that a new device has been found */
5632 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5633 			xpt_action(done_ccb);
5634 
5635 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5636 		}
5637 		xpt_release_ccb(done_ccb);
5638 		break;
5639 	}
5640 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5641 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5642 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5643 	xpt_done(done_ccb);
5644 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5645 		cam_periph_invalidate(periph);
5646 		cam_periph_release(periph);
5647 	} else {
5648 		probeschedule(periph);
5649 	}
5650 }
5651 
5652 static void
5653 probecleanup(struct cam_periph *periph)
5654 {
5655 	free(periph->softc, M_TEMP);
5656 }
5657 
5658 static void
5659 xpt_find_quirk(struct cam_ed *device)
5660 {
5661 	caddr_t	match;
5662 
5663 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5664 			       (caddr_t)xpt_quirk_table,
5665 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5666 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5667 
5668 	if (match == NULL)
5669 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5670 
5671 	device->quirk = (struct xpt_quirk_entry *)match;
5672 }
5673 
5674 static void
5675 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5676 			  int async_update)
5677 {
5678 	struct	cam_sim *sim;
5679 	int	qfrozen;
5680 
5681 	sim = cts->ccb_h.path->bus->sim;
5682 	if (async_update == FALSE) {
5683 		struct	scsi_inquiry_data *inq_data;
5684 		struct	ccb_pathinq cpi;
5685 		struct	ccb_trans_settings cur_cts;
5686 
5687 		if (device == NULL) {
5688 			cts->ccb_h.status = CAM_PATH_INVALID;
5689 			xpt_done((union ccb *)cts);
5690 			return;
5691 		}
5692 
5693 		/*
5694 		 * Perform sanity checking against what the
5695 		 * controller and device can do.
5696 		 */
5697 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5698 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5699 		xpt_action((union ccb *)&cpi);
5700 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5701 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5702 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5703 		xpt_action((union ccb *)&cur_cts);
5704 		inq_data = &device->inq_data;
5705 
5706 		/* Fill in any gaps in what the user gave us */
5707 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5708 			cts->sync_period = cur_cts.sync_period;
5709 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5710 			cts->sync_offset = cur_cts.sync_offset;
5711 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5712 			cts->bus_width = cur_cts.bus_width;
5713 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5714 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5715 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5716 		}
5717 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5718 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5719 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5720 		}
5721 
5722 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5723 		  && (inq_data->flags & SID_Sync) == 0)
5724 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
5725 		 || (cts->sync_offset == 0)
5726 		 || (cts->sync_period == 0)) {
5727 			/* Force async */
5728 			cts->sync_period = 0;
5729 			cts->sync_offset = 0;
5730 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) {
5731 
5732 			if ((inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
5733 			 && cts->sync_period <= 0x9) {
5734 				/*
5735 				 * Don't allow DT transmission rates if the
5736 				 * device does not support it.
5737 				 */
5738 				cts->sync_period = 0xa;
5739 			}
5740 			if ((inq_data->spi3data & SID_SPI_IUS) == 0
5741 			 && cts->sync_period <= 0x8) {
5742 				/*
5743 				 * Don't allow PACE transmission rates
5744 				 * if the device does support packetized
5745 				 * transfers.
5746 				 */
5747 				cts->sync_period = 0x9;
5748 			}
5749 		}
5750 
5751 		switch (cts->bus_width) {
5752 		case MSG_EXT_WDTR_BUS_32_BIT:
5753 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5754 			  || (inq_data->flags & SID_WBus32) != 0)
5755 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5756 				break;
5757 			/* Fall Through to 16-bit */
5758 		case MSG_EXT_WDTR_BUS_16_BIT:
5759 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5760 			  || (inq_data->flags & SID_WBus16) != 0)
5761 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5762 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5763 				break;
5764 			}
5765 			/* Fall Through to 8-bit */
5766 		default: /* New bus width?? */
5767 		case MSG_EXT_WDTR_BUS_8_BIT:
5768 			/* All targets can do this */
5769 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5770 			break;
5771 		}
5772 
5773 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5774 			/*
5775 			 * Can't tag queue without disconnection.
5776 			 */
5777 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5778 			cts->valid |= CCB_TRANS_TQ_VALID;
5779 		}
5780 
5781 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5782 		 || (inq_data->flags & SID_CmdQue) == 0
5783 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5784 		 || (device->quirk->mintags == 0)) {
5785 			/*
5786 			 * Can't tag on hardware that doesn't support,
5787 			 * doesn't have it enabled, or has broken tag support.
5788 			 */
5789 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5790 		}
5791 	}
5792 
5793 	qfrozen = FALSE;
5794 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
5795 		int device_tagenb;
5796 
5797 		/*
5798 		 * If we are transitioning from tags to no-tags or
5799 		 * vice-versa, we need to carefully freeze and restart
5800 		 * the queue so that we don't overlap tagged and non-tagged
5801 		 * commands.  We also temporarily stop tags if there is
5802 		 * a change in transfer negotiation settings to allow
5803 		 * "tag-less" negotiation.
5804 		 */
5805 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5806 		 || (device->inq_flags & SID_CmdQue) != 0)
5807 			device_tagenb = TRUE;
5808 		else
5809 			device_tagenb = FALSE;
5810 
5811 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5812 		  && device_tagenb == FALSE)
5813 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5814 		  && device_tagenb == TRUE)) {
5815 
5816 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5817 				/*
5818 				 * Delay change to use tags until after a
5819 				 * few commands have gone to this device so
5820 				 * the controller has time to perform transfer
5821 				 * negotiations without tagged messages getting
5822 				 * in the way.
5823 				 */
5824 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5825 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5826 			} else {
5827 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5828 				qfrozen = TRUE;
5829 		  		device->inq_flags &= ~SID_CmdQue;
5830 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5831 						    sim->max_dev_openings);
5832 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5833 				device->tag_delay_count = 0;
5834 			}
5835 		}
5836 	}
5837 
5838 	if (async_update == FALSE) {
5839 		/*
5840 		 * If we are currently performing tagged transactions to
5841 		 * this device and want to change its negotiation parameters,
5842 		 * go non-tagged for a bit to give the controller a chance to
5843 		 * negotiate unhampered by tag messages.
5844 		 */
5845 		if ((device->inq_flags & SID_CmdQue) != 0
5846 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5847 				   CCB_TRANS_SYNC_OFFSET_VALID|
5848 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5849 			xpt_toggle_tags(cts->ccb_h.path);
5850 
5851 		(*(sim->sim_action))(sim, (union ccb *)cts);
5852 	}
5853 
5854 	if (qfrozen) {
5855 		struct ccb_relsim crs;
5856 
5857 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5858 			      /*priority*/1);
5859 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5860 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5861 		crs.openings
5862 		    = crs.release_timeout
5863 		    = crs.qfrozen_cnt
5864 		    = 0;
5865 		xpt_action((union ccb *)&crs);
5866 	}
5867 }
5868 
5869 static void
5870 xpt_toggle_tags(struct cam_path *path)
5871 {
5872 	struct cam_ed *dev;
5873 
5874 	/*
5875 	 * Give controllers a chance to renegotiate
5876 	 * before starting tag operations.  We
5877 	 * "toggle" tagged queuing off then on
5878 	 * which causes the tag enable command delay
5879 	 * counter to come into effect.
5880 	 */
5881 	dev = path->device;
5882 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5883 	 || ((dev->inq_flags & SID_CmdQue) != 0
5884  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5885 		struct ccb_trans_settings cts;
5886 
5887 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5888 		cts.flags = 0;
5889 		cts.valid = CCB_TRANS_TQ_VALID;
5890 		xpt_set_transfer_settings(&cts, path->device,
5891 					  /*async_update*/TRUE);
5892 		cts.flags = CCB_TRANS_TAG_ENB;
5893 		xpt_set_transfer_settings(&cts, path->device,
5894 					  /*async_update*/TRUE);
5895 	}
5896 }
5897 
5898 static void
5899 xpt_start_tags(struct cam_path *path)
5900 {
5901 	struct ccb_relsim crs;
5902 	struct cam_ed *device;
5903 	struct cam_sim *sim;
5904 	int    newopenings;
5905 
5906 	device = path->device;
5907 	sim = path->bus->sim;
5908 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5909 	xpt_freeze_devq(path, /*count*/1);
5910 	device->inq_flags |= SID_CmdQue;
5911 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
5912 	xpt_dev_ccbq_resize(path, newopenings);
5913 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
5914 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5915 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5916 	crs.openings
5917 	    = crs.release_timeout
5918 	    = crs.qfrozen_cnt
5919 	    = 0;
5920 	xpt_action((union ccb *)&crs);
5921 }
5922 
5923 static int busses_to_config;
5924 static int busses_to_reset;
5925 
5926 static int
5927 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
5928 {
5929 	if (bus->path_id != CAM_XPT_PATH_ID) {
5930 		struct cam_path path;
5931 		struct ccb_pathinq cpi;
5932 		int can_negotiate;
5933 
5934 		busses_to_config++;
5935 		xpt_compile_path(&path, NULL, bus->path_id,
5936 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5937 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
5938 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5939 		xpt_action((union ccb *)&cpi);
5940 		can_negotiate = cpi.hba_inquiry;
5941 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
5942 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
5943 		 && can_negotiate)
5944 			busses_to_reset++;
5945 		xpt_release_path(&path);
5946 	}
5947 
5948 	return(1);
5949 }
5950 
5951 static int
5952 xptconfigfunc(struct cam_eb *bus, void *arg)
5953 {
5954 	struct	cam_path *path;
5955 	union	ccb *work_ccb;
5956 
5957 	if (bus->path_id != CAM_XPT_PATH_ID) {
5958 		cam_status status;
5959 		int can_negotiate;
5960 
5961 		work_ccb = xpt_alloc_ccb();
5962 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
5963 					      CAM_TARGET_WILDCARD,
5964 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
5965 			printf("xptconfigfunc: xpt_create_path failed with "
5966 			       "status %#x for bus %d\n", status, bus->path_id);
5967 			printf("xptconfigfunc: halting bus configuration\n");
5968 			xpt_free_ccb(work_ccb);
5969 			busses_to_config--;
5970 			xpt_finishconfig(xpt_periph, NULL);
5971 			return(0);
5972 		}
5973 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
5974 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5975 		xpt_action(work_ccb);
5976 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5977 			printf("xptconfigfunc: CPI failed on bus %d "
5978 			       "with status %d\n", bus->path_id,
5979 			       work_ccb->ccb_h.status);
5980 			xpt_finishconfig(xpt_periph, work_ccb);
5981 			return(1);
5982 		}
5983 
5984 		can_negotiate = work_ccb->cpi.hba_inquiry;
5985 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
5986 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
5987 		 && (can_negotiate != 0)) {
5988 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
5989 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
5990 			work_ccb->ccb_h.cbfcnp = NULL;
5991 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
5992 				  ("Resetting Bus\n"));
5993 			xpt_action(work_ccb);
5994 			xpt_finishconfig(xpt_periph, work_ccb);
5995 		} else {
5996 			/* Act as though we performed a successful BUS RESET */
5997 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
5998 			xpt_finishconfig(xpt_periph, work_ccb);
5999 		}
6000 	}
6001 
6002 	return(1);
6003 }
6004 
6005 static void
6006 xpt_config(void *arg)
6007 {
6008 	/* Now that interrupts are enabled, go find our devices */
6009 
6010 #ifdef CAMDEBUG
6011 	/* Setup debugging flags and path */
6012 #ifdef CAM_DEBUG_FLAGS
6013 	cam_dflags = CAM_DEBUG_FLAGS;
6014 #else /* !CAM_DEBUG_FLAGS */
6015 	cam_dflags = CAM_DEBUG_NONE;
6016 #endif /* CAM_DEBUG_FLAGS */
6017 #ifdef CAM_DEBUG_BUS
6018 	if (cam_dflags != CAM_DEBUG_NONE) {
6019 		if (xpt_create_path(&cam_dpath, xpt_periph,
6020 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6021 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6022 			printf("xpt_config: xpt_create_path() failed for debug"
6023 			       " target %d:%d:%d, debugging disabled\n",
6024 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6025 			cam_dflags = CAM_DEBUG_NONE;
6026 		}
6027 	} else
6028 		cam_dpath = NULL;
6029 #else /* !CAM_DEBUG_BUS */
6030 	cam_dpath = NULL;
6031 #endif /* CAM_DEBUG_BUS */
6032 #endif /* CAMDEBUG */
6033 
6034 	/*
6035 	 * Scan all installed busses.
6036 	 */
6037 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6038 
6039 	if (busses_to_config == 0) {
6040 		/* Call manually because we don't have any busses */
6041 		xpt_finishconfig(xpt_periph, NULL);
6042 	} else  {
6043 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6044 			printf("Waiting %d seconds for SCSI "
6045 			       "devices to settle\n", SCSI_DELAY/1000);
6046 		}
6047 		xpt_for_all_busses(xptconfigfunc, NULL);
6048 	}
6049 }
6050 
6051 /*
6052  * If the given device only has one peripheral attached to it, and if that
6053  * peripheral is the passthrough driver, announce it.  This insures that the
6054  * user sees some sort of announcement for every peripheral in their system.
6055  */
6056 static int
6057 xptpassannouncefunc(struct cam_ed *device, void *arg)
6058 {
6059 	struct cam_periph *periph;
6060 	int i;
6061 
6062 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6063 	     periph = SLIST_NEXT(periph, periph_links), i++);
6064 
6065 	periph = SLIST_FIRST(&device->periphs);
6066 	if ((i == 1)
6067 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6068 		xpt_announce_periph(periph, NULL);
6069 
6070 	return(1);
6071 }
6072 
6073 static void
6074 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6075 {
6076 	struct	periph_driver **p_drv;
6077 
6078 	if (done_ccb != NULL) {
6079 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6080 			  ("xpt_finishconfig\n"));
6081 		switch(done_ccb->ccb_h.func_code) {
6082 		case XPT_RESET_BUS:
6083 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6084 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6085 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6086 				xpt_action(done_ccb);
6087 				return;
6088 			}
6089 			/* FALLTHROUGH */
6090 		case XPT_SCAN_BUS:
6091 		default:
6092 			xpt_free_path(done_ccb->ccb_h.path);
6093 			busses_to_config--;
6094 			break;
6095 		}
6096 	}
6097 
6098 	if (busses_to_config == 0) {
6099 		/* Register all the peripheral drivers */
6100 		/* XXX This will have to change when we have loadable modules */
6101 		SET_FOREACH(p_drv, periphdriver_set) {
6102 			(*p_drv)->init();
6103 		}
6104 
6105 		/*
6106 		 * Check for devices with no "standard" peripheral driver
6107 		 * attached.  For any devices like that, announce the
6108 		 * passthrough driver so the user will see something.
6109 		 */
6110 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6111 
6112 		/* Release our hook so that the boot can continue. */
6113 		config_intrhook_disestablish(xpt_config_hook);
6114 		free(xpt_config_hook, M_TEMP);
6115 		xpt_config_hook = NULL;
6116 	}
6117 	if (done_ccb != NULL)
6118 		xpt_free_ccb(done_ccb);
6119 }
6120 
6121 static void
6122 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6123 {
6124 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6125 
6126 	switch (work_ccb->ccb_h.func_code) {
6127 	/* Common cases first */
6128 	case XPT_PATH_INQ:		/* Path routing inquiry */
6129 	{
6130 		struct ccb_pathinq *cpi;
6131 
6132 		cpi = &work_ccb->cpi;
6133 		cpi->version_num = 1; /* XXX??? */
6134 		cpi->hba_inquiry = 0;
6135 		cpi->target_sprt = 0;
6136 		cpi->hba_misc = 0;
6137 		cpi->hba_eng_cnt = 0;
6138 		cpi->max_target = 0;
6139 		cpi->max_lun = 0;
6140 		cpi->initiator_id = 0;
6141 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6142 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6143 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6144 		cpi->unit_number = sim->unit_number;
6145 		cpi->bus_id = sim->bus_id;
6146 		cpi->base_transfer_speed = 0;
6147 		cpi->ccb_h.status = CAM_REQ_CMP;
6148 		xpt_done(work_ccb);
6149 		break;
6150 	}
6151 	default:
6152 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6153 		xpt_done(work_ccb);
6154 		break;
6155 	}
6156 }
6157 
6158 /*
6159  * The xpt as a "controller" has no interrupt sources, so polling
6160  * is a no-op.
6161  */
6162 static void
6163 xptpoll(struct cam_sim *sim)
6164 {
6165 }
6166 
6167 /*
6168  * Should only be called by the machine interrupt dispatch routines,
6169  * so put these prototypes here instead of in the header.
6170  */
6171 
6172 static void
6173 swi_camnet(void *arg)
6174 {
6175 	camisr(&cam_netq);
6176 }
6177 
6178 static void
6179 swi_cambio(void *arg)
6180 {
6181 	camisr(&cam_bioq);
6182 }
6183 
6184 static void
6185 camisr(cam_isrq_t *queue)
6186 {
6187 	struct	ccb_hdr *ccb_h;
6188 
6189 	crit_enter();
6190 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6191 		int	runq;
6192 
6193 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6194 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6195 		splz();
6196 
6197 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6198 			  ("camisr\n"));
6199 
6200 		runq = FALSE;
6201 
6202 		if (ccb_h->flags & CAM_HIGH_POWER) {
6203 			struct highpowerlist	*hphead;
6204 			struct cam_ed		*device;
6205 			union ccb		*send_ccb;
6206 
6207 			hphead = &highpowerq;
6208 
6209 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6210 
6211 			/*
6212 			 * Increment the count since this command is done.
6213 			 */
6214 			num_highpower++;
6215 
6216 			/*
6217 			 * Any high powered commands queued up?
6218 			 */
6219 			if (send_ccb != NULL) {
6220 				device = send_ccb->ccb_h.path->device;
6221 
6222 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6223 
6224 				xpt_release_devq(send_ccb->ccb_h.path,
6225 						 /*count*/1, /*runqueue*/TRUE);
6226 			}
6227 		}
6228 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6229 			struct cam_ed *dev;
6230 
6231 			dev = ccb_h->path->device;
6232 
6233 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6234 
6235 			if (ccb_h->path->bus->sim->devq) {
6236 				ccb_h->path->bus->sim->devq->send_active--;
6237 				ccb_h->path->bus->sim->devq->send_openings++;
6238 			}
6239 
6240 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6241 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6242 			  && (dev->ccbq.dev_active == 0))) {
6243 
6244 				xpt_release_devq(ccb_h->path, /*count*/1,
6245 						 /*run_queue*/TRUE);
6246 			}
6247 
6248 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6249 			 && (--dev->tag_delay_count == 0))
6250 				xpt_start_tags(ccb_h->path);
6251 
6252 			if ((dev->ccbq.queue.entries > 0)
6253 			 && (dev->qfrozen_cnt == 0)
6254 			 && (device_is_send_queued(dev) == 0)) {
6255 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6256 							      dev);
6257 			}
6258 		}
6259 
6260 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6261 			xpt_release_simq(ccb_h->path->bus->sim,
6262 					 /*run_queue*/TRUE);
6263 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6264 			runq = FALSE;
6265 		}
6266 
6267 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6268 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6269 			xpt_release_devq(ccb_h->path, /*count*/1,
6270 					 /*run_queue*/TRUE);
6271 			ccb_h->status &= ~CAM_DEV_QFRZN;
6272 		} else if (runq) {
6273 			xpt_run_dev_sendq(ccb_h->path->bus);
6274 		}
6275 
6276 		/* Call the peripheral driver's callback */
6277 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6278 	}
6279 	crit_exit();
6280 }
6281