xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 2cd2d2b5)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  * $DragonFly: src/sys/bus/cam/cam_xpt.c,v 1.18 2004/09/17 09:09:21 dillon Exp $
31  */
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/bus.h>
44 #include <sys/thread.h>
45 #include <sys/thread2.h>
46 
47 #ifdef PC98
48 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
49 #endif
50 
51 #include <machine/clock.h>
52 #include <machine/ipl.h>
53 
54 #include "cam.h"
55 #include "cam_ccb.h"
56 #include "cam_periph.h"
57 #include "cam_sim.h"
58 #include "cam_xpt.h"
59 #include "cam_xpt_sim.h"
60 #include "cam_xpt_periph.h"
61 #include "cam_debug.h"
62 
63 #include "scsi/scsi_all.h"
64 #include "scsi/scsi_message.h"
65 #include "scsi/scsi_pass.h"
66 #include "opt_cam.h"
67 
68 /* Datastructures internal to the xpt layer */
69 
70 /*
71  * Definition of an async handler callback block.  These are used to add
72  * SIMs and peripherals to the async callback lists.
73  */
74 struct async_node {
75 	SLIST_ENTRY(async_node)	links;
76 	u_int32_t	event_enable;	/* Async Event enables */
77 	void		(*callback)(void *arg, u_int32_t code,
78 				    struct cam_path *path, void *args);
79 	void		*callback_arg;
80 };
81 
82 SLIST_HEAD(async_list, async_node);
83 SLIST_HEAD(periph_list, cam_periph);
84 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
85 
86 /*
87  * This is the maximum number of high powered commands (e.g. start unit)
88  * that can be outstanding at a particular time.
89  */
90 #ifndef CAM_MAX_HIGHPOWER
91 #define CAM_MAX_HIGHPOWER  4
92 #endif
93 
94 /* number of high powered commands that can go through right now */
95 static int num_highpower = CAM_MAX_HIGHPOWER;
96 
97 /*
98  * Structure for queueing a device in a run queue.
99  * There is one run queue for allocating new ccbs,
100  * and another for sending ccbs to the controller.
101  */
102 struct cam_ed_qinfo {
103 	cam_pinfo pinfo;
104 	struct	  cam_ed *device;
105 };
106 
107 /*
108  * The CAM EDT (Existing Device Table) contains the device information for
109  * all devices for all busses in the system.  The table contains a
110  * cam_ed structure for each device on the bus.
111  */
112 struct cam_ed {
113 	TAILQ_ENTRY(cam_ed) links;
114 	struct	cam_ed_qinfo alloc_ccb_entry;
115 	struct	cam_ed_qinfo send_ccb_entry;
116 	struct	cam_et	 *target;
117 	lun_id_t	 lun_id;
118 	struct	camq drvq;		/*
119 					 * Queue of type drivers wanting to do
120 					 * work on this device.
121 					 */
122 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
123 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
124 	struct	periph_list periphs;	/* All attached devices */
125 	u_int	generation;		/* Generation number */
126 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
127 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
128 					/* Storage for the inquiry data */
129 	struct	scsi_inquiry_data inq_data;
130 	u_int8_t	 inq_flags;	/*
131 					 * Current settings for inquiry flags.
132 					 * This allows us to override settings
133 					 * like disconnection and tagged
134 					 * queuing for a device.
135 					 */
136 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
137 	u_int8_t	 serial_num_len;
138 	u_int8_t	 *serial_num;
139 	u_int32_t	 qfrozen_cnt;
140 	u_int32_t	 flags;
141 #define CAM_DEV_UNCONFIGURED	 	0x01
142 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
143 #define CAM_DEV_REL_ON_COMPLETE		0x04
144 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
145 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
146 #define CAM_DEV_TAG_AFTER_COUNT		0x20
147 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
148 	u_int32_t	 tag_delay_count;
149 #define	CAM_TAG_DELAY_COUNT		5
150 	u_int32_t	 refcount;
151 	struct		 callout c_handle;
152 };
153 
154 /*
155  * Each target is represented by an ET (Existing Target).  These
156  * entries are created when a target is successfully probed with an
157  * identify, and removed when a device fails to respond after a number
158  * of retries, or a bus rescan finds the device missing.
159  */
160 struct cam_et {
161 	TAILQ_HEAD(, cam_ed) ed_entries;
162 	TAILQ_ENTRY(cam_et) links;
163 	struct	cam_eb	*bus;
164 	target_id_t	target_id;
165 	u_int32_t	refcount;
166 	u_int		generation;
167 	struct		timeval last_reset;	/* uptime of last reset */
168 };
169 
170 /*
171  * Each bus is represented by an EB (Existing Bus).  These entries
172  * are created by calls to xpt_bus_register and deleted by calls to
173  * xpt_bus_deregister.
174  */
175 struct cam_eb {
176 	TAILQ_HEAD(, cam_et) et_entries;
177 	TAILQ_ENTRY(cam_eb)  links;
178 	path_id_t	     path_id;
179 	struct cam_sim	     *sim;
180 	struct timeval	     last_reset;	/* uptime of last reset */
181 	u_int32_t	     flags;
182 #define	CAM_EB_RUNQ_SCHEDULED	0x01
183 	u_int32_t	     refcount;
184 	u_int		     generation;
185 };
186 
187 struct cam_path {
188 	struct cam_periph *periph;
189 	struct cam_eb	  *bus;
190 	struct cam_et	  *target;
191 	struct cam_ed	  *device;
192 };
193 
194 struct xpt_quirk_entry {
195 	struct scsi_inquiry_pattern inq_pat;
196 	u_int8_t quirks;
197 #define	CAM_QUIRK_NOLUNS	0x01
198 #define	CAM_QUIRK_NOSERIAL	0x02
199 #define	CAM_QUIRK_HILUNS	0x04
200 	u_int mintags;
201 	u_int maxtags;
202 };
203 #define	CAM_SCSI2_MAXLUN	8
204 
205 typedef enum {
206 	XPT_FLAG_OPEN		= 0x01
207 } xpt_flags;
208 
209 struct xpt_softc {
210 	xpt_flags	flags;
211 	u_int32_t	generation;
212 };
213 
214 static const char quantum[] = "QUANTUM";
215 static const char sony[] = "SONY";
216 static const char west_digital[] = "WDIGTL";
217 static const char samsung[] = "SAMSUNG";
218 static const char seagate[] = "SEAGATE";
219 static const char microp[] = "MICROP";
220 
221 static struct xpt_quirk_entry xpt_quirk_table[] =
222 {
223 	{
224 		/* Reports QUEUE FULL for temporary resource shortages */
225 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
226 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
227 	},
228 	{
229 		/* Reports QUEUE FULL for temporary resource shortages */
230 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
231 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
232 	},
233 	{
234 		/* Reports QUEUE FULL for temporary resource shortages */
235 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
236 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
237 	},
238 	{
239 		/* Broken tagged queuing drive */
240 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
241 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
242 	},
243 	{
244 		/* Broken tagged queuing drive */
245 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
246 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
247 	},
248 	{
249 		/* Broken tagged queuing drive */
250 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
251 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
252 	},
253 	{
254 		/*
255 		 * Unfortunately, the Quantum Atlas III has the same
256 		 * problem as the Atlas II drives above.
257 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
258 		 *
259 		 * For future reference, the drive with the problem was:
260 		 * QUANTUM QM39100TD-SW N1B0
261 		 *
262 		 * It's possible that Quantum will fix the problem in later
263 		 * firmware revisions.  If that happens, the quirk entry
264 		 * will need to be made specific to the firmware revisions
265 		 * with the problem.
266 		 *
267 		 */
268 		/* Reports QUEUE FULL for temporary resource shortages */
269 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
270 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
271 	},
272 	{
273 		/*
274 		 * 18 Gig Atlas III, same problem as the 9G version.
275 		 * Reported by: Andre Albsmeier
276 		 *		<andre.albsmeier@mchp.siemens.de>
277 		 *
278 		 * For future reference, the drive with the problem was:
279 		 * QUANTUM QM318000TD-S N491
280 		 */
281 		/* Reports QUEUE FULL for temporary resource shortages */
282 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
283 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
284 	},
285 	{
286 		/*
287 		 * Broken tagged queuing drive
288 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
289 		 *         and: Martin Renters <martin@tdc.on.ca>
290 		 */
291 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
292 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
293 	},
294 		/*
295 		 * The Seagate Medalist Pro drives have very poor write
296 		 * performance with anything more than 2 tags.
297 		 *
298 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
299 		 * Drive:  <SEAGATE ST36530N 1444>
300 		 *
301 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
302 		 * Drive:  <SEAGATE ST34520W 1281>
303 		 *
304 		 * No one has actually reported that the 9G version
305 		 * (ST39140*) of the Medalist Pro has the same problem, but
306 		 * we're assuming that it does because the 4G and 6.5G
307 		 * versions of the drive are broken.
308 		 */
309 	{
310 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
311 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
312 	},
313 	{
314 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
315 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
316 	},
317 	{
318 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
319 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
320 	},
321 	{
322 		/*
323 		 * Slow when tagged queueing is enabled.  Write performance
324 		 * steadily drops off with more and more concurrent
325 		 * transactions.  Best sequential write performance with
326 		 * tagged queueing turned off and write caching turned on.
327 		 *
328 		 * PR:  kern/10398
329 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
330 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
331 		 *
332 		 * The drive with the problem had the "S65A" firmware
333 		 * revision, and has also been reported (by Stephen J.
334 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
335 		 * firmware revision.
336 		 *
337 		 * Although no one has reported problems with the 2 gig
338 		 * version of the DCAS drive, the assumption is that it
339 		 * has the same problems as the 4 gig version.  Therefore
340 		 * this quirk entries disables tagged queueing for all
341 		 * DCAS drives.
342 		 */
343 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
344 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
345 	},
346 	{
347 		/* Broken tagged queuing drive */
348 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
349 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
350 	},
351 	{
352 		/* Broken tagged queuing drive */
353 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
354 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
355 	},
356 	{
357 		/*
358 		 * Broken tagged queuing drive.
359 		 * Submitted by:
360 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
361 		 * in PR kern/9535
362 		 */
363 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
364 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
365 	},
366         {
367 		/*
368 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
369 		 * 8MB/sec.)
370 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
371 		 * Best performance with these drives is achieved with
372 		 * tagged queueing turned off, and write caching turned on.
373 		 */
374 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
375 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
376         },
377         {
378 		/*
379 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
380 		 * 8MB/sec.)
381 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
382 		 * Best performance with these drives is achieved with
383 		 * tagged queueing turned off, and write caching turned on.
384 		 */
385 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
386 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
387         },
388 	{
389 		/*
390 		 * Doesn't handle queue full condition correctly,
391 		 * so we need to limit maxtags to what the device
392 		 * can handle instead of determining this automatically.
393 		 */
394 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
395 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
396 	},
397 	{
398 		/* Really only one LUN */
399 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
400 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
401 	},
402 	{
403 		/* I can't believe we need a quirk for DPT volumes. */
404 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
405 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
406 		/*mintags*/0, /*maxtags*/255
407 	},
408 	{
409 		/*
410 		 * Many Sony CDROM drives don't like multi-LUN probing.
411 		 */
412 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
413 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
414 	},
415 	{
416 		/*
417 		 * This drive doesn't like multiple LUN probing.
418 		 * Submitted by:  Parag Patel <parag@cgt.com>
419 		 */
420 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
421 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
422 	},
423 	{
424 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
425 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
426 	},
427 	{
428 		/*
429 		 * The 8200 doesn't like multi-lun probing, and probably
430 		 * don't like serial number requests either.
431 		 */
432 		{
433 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
434 			"EXB-8200*", "*"
435 		},
436 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
437 	},
438 	{
439 		/*
440 		 * Let's try the same as above, but for a drive that says
441 		 * it's an IPL-6860 but is actually an EXB 8200.
442 		 */
443 		{
444 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
445 			"IPL-6860*", "*"
446 		},
447 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
448 	},
449 	{
450 		/*
451 		 * These Hitachi drives don't like multi-lun probing.
452 		 * The PR submitter has a DK319H, but says that the Linux
453 		 * kernel has a similar work-around for the DK312 and DK314,
454 		 * so all DK31* drives are quirked here.
455 		 * PR:            misc/18793
456 		 * Submitted by:  Paul Haddad <paul@pth.com>
457 		 */
458 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
459 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
460 	},
461 	{
462 		/*
463 		 * This old revision of the TDC3600 is also SCSI-1, and
464 		 * hangs upon serial number probing.
465 		 */
466 		{
467 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
468 			" TDC 3600", "U07:"
469 		},
470 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
471 	},
472 	{
473 		/*
474 		 * Would repond to all LUNs if asked for.
475 		 */
476 		{
477 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
478 			"CP150", "*"
479 		},
480 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
481 	},
482 	{
483 		/*
484 		 * Would repond to all LUNs if asked for.
485 		 */
486 		{
487 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
488 			"96X2*", "*"
489 		},
490 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
491 	},
492 	{
493 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
494 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
495 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
496 	},
497 	{
498 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
499 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
500 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
501 	},
502 	{
503 		/* TeraSolutions special settings for TRC-22 RAID */
504 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
505 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
506 	},
507 	{
508 		/* Veritas Storage Appliance */
509 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
510 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
511 	},
512 	{
513 		/*
514 		 * Would respond to all LUNs.  Device type and removable
515 		 * flag are jumper-selectable.
516 		 */
517 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
518 		  "Tahiti 1", "*"
519 		},
520 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
521 	},
522 	{
523 		/* Default tagged queuing parameters for all devices */
524 		{
525 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
526 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
527 		},
528 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
529 	},
530 };
531 
532 static const int xpt_quirk_table_size =
533 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
534 
535 typedef enum {
536 	DM_RET_COPY		= 0x01,
537 	DM_RET_FLAG_MASK	= 0x0f,
538 	DM_RET_NONE		= 0x00,
539 	DM_RET_STOP		= 0x10,
540 	DM_RET_DESCEND		= 0x20,
541 	DM_RET_ERROR		= 0x30,
542 	DM_RET_ACTION_MASK	= 0xf0
543 } dev_match_ret;
544 
545 typedef enum {
546 	XPT_DEPTH_BUS,
547 	XPT_DEPTH_TARGET,
548 	XPT_DEPTH_DEVICE,
549 	XPT_DEPTH_PERIPH
550 } xpt_traverse_depth;
551 
552 struct xpt_traverse_config {
553 	xpt_traverse_depth	depth;
554 	void			*tr_func;
555 	void			*tr_arg;
556 };
557 
558 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
559 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
560 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
561 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
562 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
563 
564 /* Transport layer configuration information */
565 static struct xpt_softc xsoftc;
566 
567 /* Queues for our software interrupt handler */
568 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
569 static cam_isrq_t cam_bioq;
570 static cam_isrq_t cam_netq;
571 
572 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
573 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
574 static u_int xpt_max_ccbs;	/*
575 				 * Maximum size of ccb pool.  Modified as
576 				 * devices are added/removed or have their
577 				 * opening counts changed.
578 				 */
579 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
580 
581 struct cam_periph *xpt_periph;
582 
583 static periph_init_t xpt_periph_init;
584 
585 static periph_init_t probe_periph_init;
586 
587 static struct periph_driver xpt_driver =
588 {
589 	xpt_periph_init, "xpt",
590 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
591 };
592 
593 static struct periph_driver probe_driver =
594 {
595 	probe_periph_init, "probe",
596 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
597 };
598 
599 DATA_SET(periphdriver_set, xpt_driver);
600 DATA_SET(periphdriver_set, probe_driver);
601 
602 #define XPT_CDEV_MAJOR 104
603 
604 static d_open_t xptopen;
605 static d_close_t xptclose;
606 static d_ioctl_t xptioctl;
607 
608 static struct cdevsw xpt_cdevsw = {
609 	/* name */	"xpt",
610 	/* maj */	XPT_CDEV_MAJOR,
611 	/* flags */	0,
612 	/* port */	NULL,
613 	/* clone */	NULL,
614 
615 	/* open */	xptopen,
616 	/* close */	xptclose,
617 	/* read */	noread,
618 	/* write */	nowrite,
619 	/* ioctl */	xptioctl,
620 	/* poll */	nopoll,
621 	/* mmap */	nommap,
622 	/* strategy */	nostrategy,
623 	/* dump */	nodump,
624 	/* psize */	nopsize
625 };
626 
627 static struct intr_config_hook *xpt_config_hook;
628 
629 /* Registered busses */
630 static TAILQ_HEAD(,cam_eb) xpt_busses;
631 static u_int bus_generation;
632 
633 /* Storage for debugging datastructures */
634 #ifdef	CAMDEBUG
635 struct cam_path *cam_dpath;
636 u_int32_t cam_dflags;
637 u_int32_t cam_debug_delay;
638 #endif
639 
640 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
641 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
642 #endif
643 
644 /*
645  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
646  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
647  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
648  */
649 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
650     || defined(CAM_DEBUG_LUN)
651 #ifdef CAMDEBUG
652 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
653     || !defined(CAM_DEBUG_LUN)
654 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
655         and CAM_DEBUG_LUN"
656 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
657 #else /* !CAMDEBUG */
658 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
659 #endif /* CAMDEBUG */
660 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
661 
662 /* Our boot-time initialization hook */
663 static void	xpt_init(void *);
664 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
665 
666 static cam_status	xpt_compile_path(struct cam_path *new_path,
667 					 struct cam_periph *perph,
668 					 path_id_t path_id,
669 					 target_id_t target_id,
670 					 lun_id_t lun_id);
671 
672 static void		xpt_release_path(struct cam_path *path);
673 
674 static void		xpt_async_bcast(struct async_list *async_head,
675 					u_int32_t async_code,
676 					struct cam_path *path,
677 					void *async_arg);
678 static void		xpt_dev_async(u_int32_t async_code,
679 				      struct cam_eb *bus,
680 				      struct cam_et *target,
681 				      struct cam_ed *device,
682 				      void *async_arg);
683 static path_id_t xptnextfreepathid(void);
684 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
685 static union ccb *xpt_get_ccb(struct cam_ed *device);
686 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
687 				  u_int32_t new_priority);
688 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
689 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
690 static timeout_t xpt_release_devq_timeout;
691 static timeout_t xpt_release_simq_timeout;
692 static void	 xpt_release_bus(struct cam_eb *bus);
693 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
694 					 int run_queue);
695 static struct cam_et*
696 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
697 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
698 static struct cam_ed*
699 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
700 				  lun_id_t lun_id);
701 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
702 				    struct cam_ed *device);
703 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
704 static struct cam_eb*
705 		 xpt_find_bus(path_id_t path_id);
706 static struct cam_et*
707 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
708 static struct cam_ed*
709 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
710 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
711 static void	 xpt_scan_lun(struct cam_periph *periph,
712 			      struct cam_path *path, cam_flags flags,
713 			      union ccb *ccb);
714 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
715 static xpt_busfunc_t	xptconfigbuscountfunc;
716 static xpt_busfunc_t	xptconfigfunc;
717 static void	 xpt_config(void *arg);
718 static xpt_devicefunc_t xptpassannouncefunc;
719 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
720 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
721 static void	 xptpoll(struct cam_sim *sim);
722 static inthand2_t swi_camnet;
723 static inthand2_t swi_cambio;
724 static void	 camisr(cam_isrq_t *queue);
725 #if 0
726 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
727 static void	 xptasync(struct cam_periph *periph,
728 			  u_int32_t code, cam_path *path);
729 #endif
730 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
731 				    int num_patterns, struct cam_eb *bus);
732 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
733 				       int num_patterns, struct cam_ed *device);
734 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
735 				       int num_patterns,
736 				       struct cam_periph *periph);
737 static xpt_busfunc_t	xptedtbusfunc;
738 static xpt_targetfunc_t	xptedttargetfunc;
739 static xpt_devicefunc_t	xptedtdevicefunc;
740 static xpt_periphfunc_t	xptedtperiphfunc;
741 static xpt_pdrvfunc_t	xptplistpdrvfunc;
742 static xpt_periphfunc_t	xptplistperiphfunc;
743 static int		xptedtmatch(struct ccb_dev_match *cdm);
744 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
745 static int		xptbustraverse(struct cam_eb *start_bus,
746 				       xpt_busfunc_t *tr_func, void *arg);
747 static int		xpttargettraverse(struct cam_eb *bus,
748 					  struct cam_et *start_target,
749 					  xpt_targetfunc_t *tr_func, void *arg);
750 static int		xptdevicetraverse(struct cam_et *target,
751 					  struct cam_ed *start_device,
752 					  xpt_devicefunc_t *tr_func, void *arg);
753 static int		xptperiphtraverse(struct cam_ed *device,
754 					  struct cam_periph *start_periph,
755 					  xpt_periphfunc_t *tr_func, void *arg);
756 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
757 					xpt_pdrvfunc_t *tr_func, void *arg);
758 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
759 					    struct cam_periph *start_periph,
760 					    xpt_periphfunc_t *tr_func,
761 					    void *arg);
762 static xpt_busfunc_t	xptdefbusfunc;
763 static xpt_targetfunc_t	xptdeftargetfunc;
764 static xpt_devicefunc_t	xptdefdevicefunc;
765 static xpt_periphfunc_t	xptdefperiphfunc;
766 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
767 #ifdef notusedyet
768 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
769 					    void *arg);
770 #endif
771 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
772 					    void *arg);
773 #ifdef notusedyet
774 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
775 					    void *arg);
776 #endif
777 static xpt_devicefunc_t	xptsetasyncfunc;
778 static xpt_busfunc_t	xptsetasyncbusfunc;
779 static cam_status	xptregister(struct cam_periph *periph,
780 				    void *arg);
781 static cam_status	proberegister(struct cam_periph *periph,
782 				      void *arg);
783 static void	 probeschedule(struct cam_periph *probe_periph);
784 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
785 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
786 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
787 static void	 probecleanup(struct cam_periph *periph);
788 static void	 xpt_find_quirk(struct cam_ed *device);
789 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
790 					   struct cam_ed *device,
791 					   int async_update);
792 static void	 xpt_toggle_tags(struct cam_path *path);
793 static void	 xpt_start_tags(struct cam_path *path);
794 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
795 					    struct cam_ed *dev);
796 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
797 					   struct cam_ed *dev);
798 static __inline int periph_is_queued(struct cam_periph *periph);
799 static __inline int device_is_alloc_queued(struct cam_ed *device);
800 static __inline int device_is_send_queued(struct cam_ed *device);
801 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
802 
803 static __inline int
804 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
805 {
806 	int retval;
807 
808 	if (dev->ccbq.devq_openings > 0) {
809 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
810 			cam_ccbq_resize(&dev->ccbq,
811 					dev->ccbq.dev_openings
812 					+ dev->ccbq.dev_active);
813 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
814 		}
815 		/*
816 		 * The priority of a device waiting for CCB resources
817 		 * is that of the the highest priority peripheral driver
818 		 * enqueued.
819 		 */
820 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
821 					  &dev->alloc_ccb_entry.pinfo,
822 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
823 	} else {
824 		retval = 0;
825 	}
826 
827 	return (retval);
828 }
829 
830 static __inline int
831 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
832 {
833 	int	retval;
834 
835 	if (dev->ccbq.dev_openings > 0) {
836 		/*
837 		 * The priority of a device waiting for controller
838 		 * resources is that of the the highest priority CCB
839 		 * enqueued.
840 		 */
841 		retval =
842 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
843 				     &dev->send_ccb_entry.pinfo,
844 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
845 	} else {
846 		retval = 0;
847 	}
848 	return (retval);
849 }
850 
851 static __inline int
852 periph_is_queued(struct cam_periph *periph)
853 {
854 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
855 }
856 
857 static __inline int
858 device_is_alloc_queued(struct cam_ed *device)
859 {
860 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
861 }
862 
863 static __inline int
864 device_is_send_queued(struct cam_ed *device)
865 {
866 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
867 }
868 
869 static __inline int
870 dev_allocq_is_runnable(struct cam_devq *devq)
871 {
872 	/*
873 	 * Have work to do.
874 	 * Have space to do more work.
875 	 * Allowed to do work.
876 	 */
877 	return ((devq->alloc_queue.qfrozen_cnt == 0)
878 	     && (devq->alloc_queue.entries > 0)
879 	     && (devq->alloc_openings > 0));
880 }
881 
882 static void
883 xpt_periph_init()
884 {
885 	cdevsw_add(&xpt_cdevsw, 0, 0);
886 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
887 }
888 
889 static void
890 probe_periph_init()
891 {
892 }
893 
894 
895 static void
896 xptdone(struct cam_periph *periph, union ccb *done_ccb)
897 {
898 	/* Caller will release the CCB */
899 	wakeup(&done_ccb->ccb_h.cbfcnp);
900 }
901 
902 static int
903 xptopen(dev_t dev, int flags, int fmt, struct thread *td)
904 {
905 	int unit;
906 
907 	unit = minor(dev) & 0xff;
908 
909 	/*
910 	 * Only allow read-write access.
911 	 */
912 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
913 		return(EPERM);
914 
915 	/*
916 	 * We don't allow nonblocking access.
917 	 */
918 	if ((flags & O_NONBLOCK) != 0) {
919 		printf("xpt%d: can't do nonblocking access\n", unit);
920 		return(ENODEV);
921 	}
922 
923 	/*
924 	 * We only have one transport layer right now.  If someone accesses
925 	 * us via something other than minor number 1, point out their
926 	 * mistake.
927 	 */
928 	if (unit != 0) {
929 		printf("xptopen: got invalid xpt unit %d\n", unit);
930 		return(ENXIO);
931 	}
932 
933 	/* Mark ourselves open */
934 	xsoftc.flags |= XPT_FLAG_OPEN;
935 
936 	return(0);
937 }
938 
939 static int
940 xptclose(dev_t dev, int flag, int fmt, struct thread *td)
941 {
942 	int unit;
943 
944 	unit = minor(dev) & 0xff;
945 
946 	/*
947 	 * We only have one transport layer right now.  If someone accesses
948 	 * us via something other than minor number 1, point out their
949 	 * mistake.
950 	 */
951 	if (unit != 0) {
952 		printf("xptclose: got invalid xpt unit %d\n", unit);
953 		return(ENXIO);
954 	}
955 
956 	/* Mark ourselves closed */
957 	xsoftc.flags &= ~XPT_FLAG_OPEN;
958 
959 	return(0);
960 }
961 
962 static int
963 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
964 {
965 	int unit, error;
966 
967 	error = 0;
968 	unit = minor(dev) & 0xff;
969 
970 	/*
971 	 * We only have one transport layer right now.  If someone accesses
972 	 * us via something other than minor number 1, point out their
973 	 * mistake.
974 	 */
975 	if (unit != 0) {
976 		printf("xptioctl: got invalid xpt unit %d\n", unit);
977 		return(ENXIO);
978 	}
979 
980 	switch(cmd) {
981 	/*
982 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
983 	 * to accept CCB types that don't quite make sense to send through a
984 	 * passthrough driver.
985 	 */
986 	case CAMIOCOMMAND: {
987 		union ccb *ccb;
988 		union ccb *inccb;
989 
990 		inccb = (union ccb *)addr;
991 
992 		switch(inccb->ccb_h.func_code) {
993 		case XPT_SCAN_BUS:
994 		case XPT_RESET_BUS:
995 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
996 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
997 				error = EINVAL;
998 				break;
999 			}
1000 			/* FALLTHROUGH */
1001 		case XPT_PATH_INQ:
1002 		case XPT_ENG_INQ:
1003 		case XPT_SCAN_LUN:
1004 
1005 			ccb = xpt_alloc_ccb();
1006 
1007 			/*
1008 			 * Create a path using the bus, target, and lun the
1009 			 * user passed in.
1010 			 */
1011 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1012 					    inccb->ccb_h.path_id,
1013 					    inccb->ccb_h.target_id,
1014 					    inccb->ccb_h.target_lun) !=
1015 					    CAM_REQ_CMP){
1016 				error = EINVAL;
1017 				xpt_free_ccb(ccb);
1018 				break;
1019 			}
1020 			/* Ensure all of our fields are correct */
1021 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1022 				      inccb->ccb_h.pinfo.priority);
1023 			xpt_merge_ccb(ccb, inccb);
1024 			ccb->ccb_h.cbfcnp = xptdone;
1025 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1026 			bcopy(ccb, inccb, sizeof(union ccb));
1027 			xpt_free_path(ccb->ccb_h.path);
1028 			xpt_free_ccb(ccb);
1029 			break;
1030 
1031 		case XPT_DEBUG: {
1032 			union ccb ccb;
1033 
1034 			/*
1035 			 * This is an immediate CCB, so it's okay to
1036 			 * allocate it on the stack.
1037 			 */
1038 
1039 			/*
1040 			 * Create a path using the bus, target, and lun the
1041 			 * user passed in.
1042 			 */
1043 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1044 					    inccb->ccb_h.path_id,
1045 					    inccb->ccb_h.target_id,
1046 					    inccb->ccb_h.target_lun) !=
1047 					    CAM_REQ_CMP){
1048 				error = EINVAL;
1049 				break;
1050 			}
1051 			/* Ensure all of our fields are correct */
1052 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1053 				      inccb->ccb_h.pinfo.priority);
1054 			xpt_merge_ccb(&ccb, inccb);
1055 			ccb.ccb_h.cbfcnp = xptdone;
1056 			xpt_action(&ccb);
1057 			bcopy(&ccb, inccb, sizeof(union ccb));
1058 			xpt_free_path(ccb.ccb_h.path);
1059 			break;
1060 
1061 		}
1062 		case XPT_DEV_MATCH: {
1063 			struct cam_periph_map_info mapinfo;
1064 			struct cam_path *old_path;
1065 
1066 			/*
1067 			 * We can't deal with physical addresses for this
1068 			 * type of transaction.
1069 			 */
1070 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1071 				error = EINVAL;
1072 				break;
1073 			}
1074 
1075 			/*
1076 			 * Save this in case the caller had it set to
1077 			 * something in particular.
1078 			 */
1079 			old_path = inccb->ccb_h.path;
1080 
1081 			/*
1082 			 * We really don't need a path for the matching
1083 			 * code.  The path is needed because of the
1084 			 * debugging statements in xpt_action().  They
1085 			 * assume that the CCB has a valid path.
1086 			 */
1087 			inccb->ccb_h.path = xpt_periph->path;
1088 
1089 			bzero(&mapinfo, sizeof(mapinfo));
1090 
1091 			/*
1092 			 * Map the pattern and match buffers into kernel
1093 			 * virtual address space.
1094 			 */
1095 			error = cam_periph_mapmem(inccb, &mapinfo);
1096 
1097 			if (error) {
1098 				inccb->ccb_h.path = old_path;
1099 				break;
1100 			}
1101 
1102 			/*
1103 			 * This is an immediate CCB, we can send it on directly.
1104 			 */
1105 			xpt_action(inccb);
1106 
1107 			/*
1108 			 * Map the buffers back into user space.
1109 			 */
1110 			cam_periph_unmapmem(inccb, &mapinfo);
1111 
1112 			inccb->ccb_h.path = old_path;
1113 
1114 			error = 0;
1115 			break;
1116 		}
1117 		default:
1118 			error = ENOTSUP;
1119 			break;
1120 		}
1121 		break;
1122 	}
1123 	/*
1124 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1125 	 * with the periphal driver name and unit name filled in.  The other
1126 	 * fields don't really matter as input.  The passthrough driver name
1127 	 * ("pass"), and unit number are passed back in the ccb.  The current
1128 	 * device generation number, and the index into the device peripheral
1129 	 * driver list, and the status are also passed back.  Note that
1130 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1131 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1132 	 * (or rather should be) impossible for the device peripheral driver
1133 	 * list to change since we look at the whole thing in one pass, and
1134 	 * we do it with splcam protection.
1135 	 *
1136 	 */
1137 	case CAMGETPASSTHRU: {
1138 		union ccb *ccb;
1139 		struct cam_periph *periph;
1140 		struct periph_driver **p_drv;
1141 		char   *name;
1142 		int unit;
1143 		int cur_generation;
1144 		int base_periph_found;
1145 		int splbreaknum;
1146 		int s;
1147 
1148 		ccb = (union ccb *)addr;
1149 		unit = ccb->cgdl.unit_number;
1150 		name = ccb->cgdl.periph_name;
1151 		/*
1152 		 * Every 100 devices, we want to drop our spl protection to
1153 		 * give the software interrupt handler a chance to run.
1154 		 * Most systems won't run into this check, but this should
1155 		 * avoid starvation in the software interrupt handler in
1156 		 * large systems.
1157 		 */
1158 		splbreaknum = 100;
1159 
1160 		ccb = (union ccb *)addr;
1161 
1162 		base_periph_found = 0;
1163 
1164 		/*
1165 		 * Sanity check -- make sure we don't get a null peripheral
1166 		 * driver name.
1167 		 */
1168 		if (*ccb->cgdl.periph_name == '\0') {
1169 			error = EINVAL;
1170 			break;
1171 		}
1172 
1173 		/* Keep the list from changing while we traverse it */
1174 		s = splcam();
1175 ptstartover:
1176 		cur_generation = xsoftc.generation;
1177 
1178 		/* first find our driver in the list of drivers */
1179 		SET_FOREACH(p_drv, periphdriver_set) {
1180 			if (strcmp((*p_drv)->driver_name, name) == 0)
1181 				break;
1182 		}
1183 
1184 		if (*p_drv == NULL) {
1185 			splx(s);
1186 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1187 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1188 			*ccb->cgdl.periph_name = '\0';
1189 			ccb->cgdl.unit_number = 0;
1190 			error = ENOENT;
1191 			break;
1192 		}
1193 
1194 		/*
1195 		 * Run through every peripheral instance of this driver
1196 		 * and check to see whether it matches the unit passed
1197 		 * in by the user.  If it does, get out of the loops and
1198 		 * find the passthrough driver associated with that
1199 		 * peripheral driver.
1200 		 */
1201 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1202 		     periph = TAILQ_NEXT(periph, unit_links)) {
1203 
1204 			if (periph->unit_number == unit) {
1205 				break;
1206 			} else if (--splbreaknum == 0) {
1207 				splx(s);
1208 				s = splcam();
1209 				splbreaknum = 100;
1210 				if (cur_generation != xsoftc.generation)
1211 				       goto ptstartover;
1212 			}
1213 		}
1214 		/*
1215 		 * If we found the peripheral driver that the user passed
1216 		 * in, go through all of the peripheral drivers for that
1217 		 * particular device and look for a passthrough driver.
1218 		 */
1219 		if (periph != NULL) {
1220 			struct cam_ed *device;
1221 			int i;
1222 
1223 			base_periph_found = 1;
1224 			device = periph->path->device;
1225 			for (i = 0, periph = device->periphs.slh_first;
1226 			     periph != NULL;
1227 			     periph = periph->periph_links.sle_next, i++) {
1228 				/*
1229 				 * Check to see whether we have a
1230 				 * passthrough device or not.
1231 				 */
1232 				if (strcmp(periph->periph_name, "pass") == 0) {
1233 					/*
1234 					 * Fill in the getdevlist fields.
1235 					 */
1236 					strcpy(ccb->cgdl.periph_name,
1237 					       periph->periph_name);
1238 					ccb->cgdl.unit_number =
1239 						periph->unit_number;
1240 					if (periph->periph_links.sle_next)
1241 						ccb->cgdl.status =
1242 							CAM_GDEVLIST_MORE_DEVS;
1243 					else
1244 						ccb->cgdl.status =
1245 						       CAM_GDEVLIST_LAST_DEVICE;
1246 					ccb->cgdl.generation =
1247 						device->generation;
1248 					ccb->cgdl.index = i;
1249 					/*
1250 					 * Fill in some CCB header fields
1251 					 * that the user may want.
1252 					 */
1253 					ccb->ccb_h.path_id =
1254 						periph->path->bus->path_id;
1255 					ccb->ccb_h.target_id =
1256 						periph->path->target->target_id;
1257 					ccb->ccb_h.target_lun =
1258 						periph->path->device->lun_id;
1259 					ccb->ccb_h.status = CAM_REQ_CMP;
1260 					break;
1261 				}
1262 			}
1263 		}
1264 
1265 		/*
1266 		 * If the periph is null here, one of two things has
1267 		 * happened.  The first possibility is that we couldn't
1268 		 * find the unit number of the particular peripheral driver
1269 		 * that the user is asking about.  e.g. the user asks for
1270 		 * the passthrough driver for "da11".  We find the list of
1271 		 * "da" peripherals all right, but there is no unit 11.
1272 		 * The other possibility is that we went through the list
1273 		 * of peripheral drivers attached to the device structure,
1274 		 * but didn't find one with the name "pass".  Either way,
1275 		 * we return ENOENT, since we couldn't find something.
1276 		 */
1277 		if (periph == NULL) {
1278 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1279 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1280 			*ccb->cgdl.periph_name = '\0';
1281 			ccb->cgdl.unit_number = 0;
1282 			error = ENOENT;
1283 			/*
1284 			 * It is unfortunate that this is even necessary,
1285 			 * but there are many, many clueless users out there.
1286 			 * If this is true, the user is looking for the
1287 			 * passthrough driver, but doesn't have one in his
1288 			 * kernel.
1289 			 */
1290 			if (base_periph_found == 1) {
1291 				printf("xptioctl: pass driver is not in the "
1292 				       "kernel\n");
1293 				printf("xptioctl: put \"device pass0\" in "
1294 				       "your kernel config file\n");
1295 			}
1296 		}
1297 		splx(s);
1298 		break;
1299 		}
1300 	default:
1301 		error = ENOTTY;
1302 		break;
1303 	}
1304 
1305 	return(error);
1306 }
1307 
1308 /* Functions accessed by the peripheral drivers */
1309 static void
1310 xpt_init(dummy)
1311 	void *dummy;
1312 {
1313 	struct cam_sim *xpt_sim;
1314 	struct cam_path *path;
1315 	struct cam_devq *devq;
1316 	cam_status status;
1317 
1318 	TAILQ_INIT(&xpt_busses);
1319 	TAILQ_INIT(&cam_bioq);
1320 	TAILQ_INIT(&cam_netq);
1321 	SLIST_INIT(&ccb_freeq);
1322 	STAILQ_INIT(&highpowerq);
1323 
1324 	/*
1325 	 * The xpt layer is, itself, the equivelent of a SIM.
1326 	 * Allow 16 ccbs in the ccb pool for it.  This should
1327 	 * give decent parallelism when we probe busses and
1328 	 * perform other XPT functions.
1329 	 */
1330 	devq = cam_simq_alloc(16);
1331 	xpt_sim = cam_sim_alloc(xptaction,
1332 				xptpoll,
1333 				"xpt",
1334 				/*softc*/NULL,
1335 				/*unit*/0,
1336 				/*max_dev_transactions*/0,
1337 				/*max_tagged_dev_transactions*/0,
1338 				devq);
1339 	cam_simq_release(devq);
1340 	xpt_max_ccbs = 16;
1341 
1342 	xpt_bus_register(xpt_sim, /*bus #*/0);
1343 
1344 	/*
1345 	 * Looking at the XPT from the SIM layer, the XPT is
1346 	 * the equivelent of a peripheral driver.  Allocate
1347 	 * a peripheral driver entry for us.
1348 	 */
1349 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1350 				      CAM_TARGET_WILDCARD,
1351 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1352 		printf("xpt_init: xpt_create_path failed with status %#x,"
1353 		       " failing attach\n", status);
1354 		return;
1355 	}
1356 
1357 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1358 			 path, NULL, 0, NULL);
1359 	xpt_free_path(path);
1360 
1361 	xpt_sim->softc = xpt_periph;
1362 
1363 	/*
1364 	 * Register a callback for when interrupts are enabled.
1365 	 */
1366 	xpt_config_hook = malloc(sizeof(struct intr_config_hook),
1367 				  M_TEMP, M_INTWAIT | M_ZERO);
1368 	xpt_config_hook->ich_func = xpt_config;
1369 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1370 		free (xpt_config_hook, M_TEMP);
1371 		printf("xpt_init: config_intrhook_establish failed "
1372 		       "- failing attach\n");
1373 	}
1374 
1375 	/* Install our software interrupt handlers */
1376 	register_swi(SWI_CAMNET, swi_camnet, NULL, "swi_camnet");
1377 	register_swi(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio");
1378 }
1379 
1380 static cam_status
1381 xptregister(struct cam_periph *periph, void *arg)
1382 {
1383 	if (periph == NULL) {
1384 		printf("xptregister: periph was NULL!!\n");
1385 		return(CAM_REQ_CMP_ERR);
1386 	}
1387 
1388 	periph->softc = NULL;
1389 
1390 	xpt_periph = periph;
1391 
1392 	return(CAM_REQ_CMP);
1393 }
1394 
1395 int32_t
1396 xpt_add_periph(struct cam_periph *periph)
1397 {
1398 	struct cam_ed *device;
1399 	int32_t	 status;
1400 	struct periph_list *periph_head;
1401 
1402 	device = periph->path->device;
1403 
1404 	periph_head = &device->periphs;
1405 
1406 	status = CAM_REQ_CMP;
1407 
1408 	if (device != NULL) {
1409 		int s;
1410 
1411 		/*
1412 		 * Make room for this peripheral
1413 		 * so it will fit in the queue
1414 		 * when it's scheduled to run
1415 		 */
1416 		s = splsoftcam();
1417 		status = camq_resize(&device->drvq,
1418 				     device->drvq.array_size + 1);
1419 
1420 		device->generation++;
1421 
1422 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1423 
1424 		splx(s);
1425 	}
1426 
1427 	xsoftc.generation++;
1428 
1429 	return (status);
1430 }
1431 
1432 void
1433 xpt_remove_periph(struct cam_periph *periph)
1434 {
1435 	struct cam_ed *device;
1436 
1437 	device = periph->path->device;
1438 
1439 	if (device != NULL) {
1440 		int s;
1441 		struct periph_list *periph_head;
1442 
1443 		periph_head = &device->periphs;
1444 
1445 		/* Release the slot for this peripheral */
1446 		s = splsoftcam();
1447 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1448 
1449 		device->generation++;
1450 
1451 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1452 
1453 		splx(s);
1454 	}
1455 
1456 	xsoftc.generation++;
1457 
1458 }
1459 
1460 void
1461 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1462 {
1463 	int s;
1464 	u_int mb;
1465 	struct cam_path *path;
1466 	struct ccb_trans_settings cts;
1467 
1468 	path = periph->path;
1469 	/*
1470 	 * To ensure that this is printed in one piece,
1471 	 * mask out CAM interrupts.
1472 	 */
1473 	s = splsoftcam();
1474 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1475 	       periph->periph_name, periph->unit_number,
1476 	       path->bus->sim->sim_name,
1477 	       path->bus->sim->unit_number,
1478 	       path->bus->sim->bus_id,
1479 	       path->target->target_id,
1480 	       path->device->lun_id);
1481 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1482 	scsi_print_inquiry(&path->device->inq_data);
1483 	if ((bootverbose)
1484 	 && (path->device->serial_num_len > 0)) {
1485 		/* Don't wrap the screen  - print only the first 60 chars */
1486 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1487 		       periph->unit_number, path->device->serial_num);
1488 	}
1489 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1490 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1491 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1492 	xpt_action((union ccb*)&cts);
1493 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1494 		u_int speed;
1495 		u_int freq;
1496 
1497 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1498 		  && cts.sync_offset != 0) {
1499 			freq = scsi_calc_syncsrate(cts.sync_period);
1500 			speed = freq;
1501 		} else {
1502 			struct ccb_pathinq cpi;
1503 
1504 			/* Ask the SIM for its base transfer speed */
1505 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1506 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1507 			xpt_action((union ccb *)&cpi);
1508 
1509 			speed = cpi.base_transfer_speed;
1510 			freq = 0;
1511 		}
1512 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1513 			speed *= (0x01 << cts.bus_width);
1514 		mb = speed / 1000;
1515 		if (mb > 0)
1516 			printf("%s%d: %d.%03dMB/s transfers",
1517 			       periph->periph_name, periph->unit_number,
1518 			       mb, speed % 1000);
1519 		else
1520 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1521 			       periph->unit_number, speed);
1522 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1523 		 && cts.sync_offset != 0) {
1524 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1525 			       freq % 1000, cts.sync_offset);
1526 		}
1527 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1528 		 && cts.bus_width > 0) {
1529 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1530 			 && cts.sync_offset != 0) {
1531 				printf(", ");
1532 			} else {
1533 				printf(" (");
1534 			}
1535 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1536 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1537 			&& cts.sync_offset != 0) {
1538 			printf(")");
1539 		}
1540 
1541 		if (path->device->inq_flags & SID_CmdQue
1542 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1543 			printf(", Tagged Queueing Enabled");
1544 		}
1545 
1546 		printf("\n");
1547 	} else if (path->device->inq_flags & SID_CmdQue
1548    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1549 		printf("%s%d: Tagged Queueing Enabled\n",
1550 		       periph->periph_name, periph->unit_number);
1551 	}
1552 
1553 	/*
1554 	 * We only want to print the caller's announce string if they've
1555 	 * passed one in..
1556 	 */
1557 	if (announce_string != NULL)
1558 		printf("%s%d: %s\n", periph->periph_name,
1559 		       periph->unit_number, announce_string);
1560 	splx(s);
1561 }
1562 
1563 
1564 static dev_match_ret
1565 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1566 	    struct cam_eb *bus)
1567 {
1568 	dev_match_ret retval;
1569 	int i;
1570 
1571 	retval = DM_RET_NONE;
1572 
1573 	/*
1574 	 * If we aren't given something to match against, that's an error.
1575 	 */
1576 	if (bus == NULL)
1577 		return(DM_RET_ERROR);
1578 
1579 	/*
1580 	 * If there are no match entries, then this bus matches no
1581 	 * matter what.
1582 	 */
1583 	if ((patterns == NULL) || (num_patterns == 0))
1584 		return(DM_RET_DESCEND | DM_RET_COPY);
1585 
1586 	for (i = 0; i < num_patterns; i++) {
1587 		struct bus_match_pattern *cur_pattern;
1588 
1589 		/*
1590 		 * If the pattern in question isn't for a bus node, we
1591 		 * aren't interested.  However, we do indicate to the
1592 		 * calling routine that we should continue descending the
1593 		 * tree, since the user wants to match against lower-level
1594 		 * EDT elements.
1595 		 */
1596 		if (patterns[i].type != DEV_MATCH_BUS) {
1597 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1598 				retval |= DM_RET_DESCEND;
1599 			continue;
1600 		}
1601 
1602 		cur_pattern = &patterns[i].pattern.bus_pattern;
1603 
1604 		/*
1605 		 * If they want to match any bus node, we give them any
1606 		 * device node.
1607 		 */
1608 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1609 			/* set the copy flag */
1610 			retval |= DM_RET_COPY;
1611 
1612 			/*
1613 			 * If we've already decided on an action, go ahead
1614 			 * and return.
1615 			 */
1616 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1617 				return(retval);
1618 		}
1619 
1620 		/*
1621 		 * Not sure why someone would do this...
1622 		 */
1623 		if (cur_pattern->flags == BUS_MATCH_NONE)
1624 			continue;
1625 
1626 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1627 		 && (cur_pattern->path_id != bus->path_id))
1628 			continue;
1629 
1630 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1631 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1632 			continue;
1633 
1634 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1635 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1636 			continue;
1637 
1638 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1639 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1640 			     DEV_IDLEN) != 0))
1641 			continue;
1642 
1643 		/*
1644 		 * If we get to this point, the user definitely wants
1645 		 * information on this bus.  So tell the caller to copy the
1646 		 * data out.
1647 		 */
1648 		retval |= DM_RET_COPY;
1649 
1650 		/*
1651 		 * If the return action has been set to descend, then we
1652 		 * know that we've already seen a non-bus matching
1653 		 * expression, therefore we need to further descend the tree.
1654 		 * This won't change by continuing around the loop, so we
1655 		 * go ahead and return.  If we haven't seen a non-bus
1656 		 * matching expression, we keep going around the loop until
1657 		 * we exhaust the matching expressions.  We'll set the stop
1658 		 * flag once we fall out of the loop.
1659 		 */
1660 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1661 			return(retval);
1662 	}
1663 
1664 	/*
1665 	 * If the return action hasn't been set to descend yet, that means
1666 	 * we haven't seen anything other than bus matching patterns.  So
1667 	 * tell the caller to stop descending the tree -- the user doesn't
1668 	 * want to match against lower level tree elements.
1669 	 */
1670 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1671 		retval |= DM_RET_STOP;
1672 
1673 	return(retval);
1674 }
1675 
1676 static dev_match_ret
1677 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1678 	       struct cam_ed *device)
1679 {
1680 	dev_match_ret retval;
1681 	int i;
1682 
1683 	retval = DM_RET_NONE;
1684 
1685 	/*
1686 	 * If we aren't given something to match against, that's an error.
1687 	 */
1688 	if (device == NULL)
1689 		return(DM_RET_ERROR);
1690 
1691 	/*
1692 	 * If there are no match entries, then this device matches no
1693 	 * matter what.
1694 	 */
1695 	if ((patterns == NULL) || (patterns == 0))
1696 		return(DM_RET_DESCEND | DM_RET_COPY);
1697 
1698 	for (i = 0; i < num_patterns; i++) {
1699 		struct device_match_pattern *cur_pattern;
1700 
1701 		/*
1702 		 * If the pattern in question isn't for a device node, we
1703 		 * aren't interested.
1704 		 */
1705 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1706 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1707 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1708 				retval |= DM_RET_DESCEND;
1709 			continue;
1710 		}
1711 
1712 		cur_pattern = &patterns[i].pattern.device_pattern;
1713 
1714 		/*
1715 		 * If they want to match any device node, we give them any
1716 		 * device node.
1717 		 */
1718 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1719 			/* set the copy flag */
1720 			retval |= DM_RET_COPY;
1721 
1722 
1723 			/*
1724 			 * If we've already decided on an action, go ahead
1725 			 * and return.
1726 			 */
1727 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1728 				return(retval);
1729 		}
1730 
1731 		/*
1732 		 * Not sure why someone would do this...
1733 		 */
1734 		if (cur_pattern->flags == DEV_MATCH_NONE)
1735 			continue;
1736 
1737 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1738 		 && (cur_pattern->path_id != device->target->bus->path_id))
1739 			continue;
1740 
1741 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1742 		 && (cur_pattern->target_id != device->target->target_id))
1743 			continue;
1744 
1745 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1746 		 && (cur_pattern->target_lun != device->lun_id))
1747 			continue;
1748 
1749 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1750 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1751 				    (caddr_t)&cur_pattern->inq_pat,
1752 				    1, sizeof(cur_pattern->inq_pat),
1753 				    scsi_static_inquiry_match) == NULL))
1754 			continue;
1755 
1756 		/*
1757 		 * If we get to this point, the user definitely wants
1758 		 * information on this device.  So tell the caller to copy
1759 		 * the data out.
1760 		 */
1761 		retval |= DM_RET_COPY;
1762 
1763 		/*
1764 		 * If the return action has been set to descend, then we
1765 		 * know that we've already seen a peripheral matching
1766 		 * expression, therefore we need to further descend the tree.
1767 		 * This won't change by continuing around the loop, so we
1768 		 * go ahead and return.  If we haven't seen a peripheral
1769 		 * matching expression, we keep going around the loop until
1770 		 * we exhaust the matching expressions.  We'll set the stop
1771 		 * flag once we fall out of the loop.
1772 		 */
1773 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1774 			return(retval);
1775 	}
1776 
1777 	/*
1778 	 * If the return action hasn't been set to descend yet, that means
1779 	 * we haven't seen any peripheral matching patterns.  So tell the
1780 	 * caller to stop descending the tree -- the user doesn't want to
1781 	 * match against lower level tree elements.
1782 	 */
1783 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1784 		retval |= DM_RET_STOP;
1785 
1786 	return(retval);
1787 }
1788 
1789 /*
1790  * Match a single peripheral against any number of match patterns.
1791  */
1792 static dev_match_ret
1793 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1794 	       struct cam_periph *periph)
1795 {
1796 	dev_match_ret retval;
1797 	int i;
1798 
1799 	/*
1800 	 * If we aren't given something to match against, that's an error.
1801 	 */
1802 	if (periph == NULL)
1803 		return(DM_RET_ERROR);
1804 
1805 	/*
1806 	 * If there are no match entries, then this peripheral matches no
1807 	 * matter what.
1808 	 */
1809 	if ((patterns == NULL) || (num_patterns == 0))
1810 		return(DM_RET_STOP | DM_RET_COPY);
1811 
1812 	/*
1813 	 * There aren't any nodes below a peripheral node, so there's no
1814 	 * reason to descend the tree any further.
1815 	 */
1816 	retval = DM_RET_STOP;
1817 
1818 	for (i = 0; i < num_patterns; i++) {
1819 		struct periph_match_pattern *cur_pattern;
1820 
1821 		/*
1822 		 * If the pattern in question isn't for a peripheral, we
1823 		 * aren't interested.
1824 		 */
1825 		if (patterns[i].type != DEV_MATCH_PERIPH)
1826 			continue;
1827 
1828 		cur_pattern = &patterns[i].pattern.periph_pattern;
1829 
1830 		/*
1831 		 * If they want to match on anything, then we will do so.
1832 		 */
1833 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1834 			/* set the copy flag */
1835 			retval |= DM_RET_COPY;
1836 
1837 			/*
1838 			 * We've already set the return action to stop,
1839 			 * since there are no nodes below peripherals in
1840 			 * the tree.
1841 			 */
1842 			return(retval);
1843 		}
1844 
1845 		/*
1846 		 * Not sure why someone would do this...
1847 		 */
1848 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1849 			continue;
1850 
1851 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1852 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1853 			continue;
1854 
1855 		/*
1856 		 * For the target and lun id's, we have to make sure the
1857 		 * target and lun pointers aren't NULL.  The xpt peripheral
1858 		 * has a wildcard target and device.
1859 		 */
1860 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1861 		 && ((periph->path->target == NULL)
1862 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1863 			continue;
1864 
1865 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1866 		 && ((periph->path->device == NULL)
1867 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1868 			continue;
1869 
1870 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1871 		 && (cur_pattern->unit_number != periph->unit_number))
1872 			continue;
1873 
1874 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1875 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1876 			     DEV_IDLEN) != 0))
1877 			continue;
1878 
1879 		/*
1880 		 * If we get to this point, the user definitely wants
1881 		 * information on this peripheral.  So tell the caller to
1882 		 * copy the data out.
1883 		 */
1884 		retval |= DM_RET_COPY;
1885 
1886 		/*
1887 		 * The return action has already been set to stop, since
1888 		 * peripherals don't have any nodes below them in the EDT.
1889 		 */
1890 		return(retval);
1891 	}
1892 
1893 	/*
1894 	 * If we get to this point, the peripheral that was passed in
1895 	 * doesn't match any of the patterns.
1896 	 */
1897 	return(retval);
1898 }
1899 
1900 static int
1901 xptedtbusfunc(struct cam_eb *bus, void *arg)
1902 {
1903 	struct ccb_dev_match *cdm;
1904 	dev_match_ret retval;
1905 
1906 	cdm = (struct ccb_dev_match *)arg;
1907 
1908 	/*
1909 	 * If our position is for something deeper in the tree, that means
1910 	 * that we've already seen this node.  So, we keep going down.
1911 	 */
1912 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1913 	 && (cdm->pos.cookie.bus == bus)
1914 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1915 	 && (cdm->pos.cookie.target != NULL))
1916 		retval = DM_RET_DESCEND;
1917 	else
1918 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1919 
1920 	/*
1921 	 * If we got an error, bail out of the search.
1922 	 */
1923 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1924 		cdm->status = CAM_DEV_MATCH_ERROR;
1925 		return(0);
1926 	}
1927 
1928 	/*
1929 	 * If the copy flag is set, copy this bus out.
1930 	 */
1931 	if (retval & DM_RET_COPY) {
1932 		int spaceleft, j;
1933 
1934 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1935 			sizeof(struct dev_match_result));
1936 
1937 		/*
1938 		 * If we don't have enough space to put in another
1939 		 * match result, save our position and tell the
1940 		 * user there are more devices to check.
1941 		 */
1942 		if (spaceleft < sizeof(struct dev_match_result)) {
1943 			bzero(&cdm->pos, sizeof(cdm->pos));
1944 			cdm->pos.position_type =
1945 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1946 
1947 			cdm->pos.cookie.bus = bus;
1948 			cdm->pos.generations[CAM_BUS_GENERATION]=
1949 				bus_generation;
1950 			cdm->status = CAM_DEV_MATCH_MORE;
1951 			return(0);
1952 		}
1953 		j = cdm->num_matches;
1954 		cdm->num_matches++;
1955 		cdm->matches[j].type = DEV_MATCH_BUS;
1956 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1957 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1958 		cdm->matches[j].result.bus_result.unit_number =
1959 			bus->sim->unit_number;
1960 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1961 			bus->sim->sim_name, DEV_IDLEN);
1962 	}
1963 
1964 	/*
1965 	 * If the user is only interested in busses, there's no
1966 	 * reason to descend to the next level in the tree.
1967 	 */
1968 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1969 		return(1);
1970 
1971 	/*
1972 	 * If there is a target generation recorded, check it to
1973 	 * make sure the target list hasn't changed.
1974 	 */
1975 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1976 	 && (bus == cdm->pos.cookie.bus)
1977 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1978 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1979 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1980 	     bus->generation)) {
1981 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1982 		return(0);
1983 	}
1984 
1985 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1986 	 && (cdm->pos.cookie.bus == bus)
1987 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1988 	 && (cdm->pos.cookie.target != NULL))
1989 		return(xpttargettraverse(bus,
1990 					(struct cam_et *)cdm->pos.cookie.target,
1991 					 xptedttargetfunc, arg));
1992 	else
1993 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1994 }
1995 
1996 static int
1997 xptedttargetfunc(struct cam_et *target, void *arg)
1998 {
1999 	struct ccb_dev_match *cdm;
2000 
2001 	cdm = (struct ccb_dev_match *)arg;
2002 
2003 	/*
2004 	 * If there is a device list generation recorded, check it to
2005 	 * make sure the device list hasn't changed.
2006 	 */
2007 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2008 	 && (cdm->pos.cookie.bus == target->bus)
2009 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2010 	 && (cdm->pos.cookie.target == target)
2011 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2012 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2013 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2014 	     target->generation)) {
2015 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2016 		return(0);
2017 	}
2018 
2019 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2020 	 && (cdm->pos.cookie.bus == target->bus)
2021 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2022 	 && (cdm->pos.cookie.target == target)
2023 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2024 	 && (cdm->pos.cookie.device != NULL))
2025 		return(xptdevicetraverse(target,
2026 					(struct cam_ed *)cdm->pos.cookie.device,
2027 					 xptedtdevicefunc, arg));
2028 	else
2029 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2030 }
2031 
2032 static int
2033 xptedtdevicefunc(struct cam_ed *device, void *arg)
2034 {
2035 
2036 	struct ccb_dev_match *cdm;
2037 	dev_match_ret retval;
2038 
2039 	cdm = (struct ccb_dev_match *)arg;
2040 
2041 	/*
2042 	 * If our position is for something deeper in the tree, that means
2043 	 * that we've already seen this node.  So, we keep going down.
2044 	 */
2045 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2046 	 && (cdm->pos.cookie.device == device)
2047 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2048 	 && (cdm->pos.cookie.periph != NULL))
2049 		retval = DM_RET_DESCEND;
2050 	else
2051 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2052 					device);
2053 
2054 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2055 		cdm->status = CAM_DEV_MATCH_ERROR;
2056 		return(0);
2057 	}
2058 
2059 	/*
2060 	 * If the copy flag is set, copy this device out.
2061 	 */
2062 	if (retval & DM_RET_COPY) {
2063 		int spaceleft, j;
2064 
2065 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2066 			sizeof(struct dev_match_result));
2067 
2068 		/*
2069 		 * If we don't have enough space to put in another
2070 		 * match result, save our position and tell the
2071 		 * user there are more devices to check.
2072 		 */
2073 		if (spaceleft < sizeof(struct dev_match_result)) {
2074 			bzero(&cdm->pos, sizeof(cdm->pos));
2075 			cdm->pos.position_type =
2076 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2077 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2078 
2079 			cdm->pos.cookie.bus = device->target->bus;
2080 			cdm->pos.generations[CAM_BUS_GENERATION]=
2081 				bus_generation;
2082 			cdm->pos.cookie.target = device->target;
2083 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2084 				device->target->bus->generation;
2085 			cdm->pos.cookie.device = device;
2086 			cdm->pos.generations[CAM_DEV_GENERATION] =
2087 				device->target->generation;
2088 			cdm->status = CAM_DEV_MATCH_MORE;
2089 			return(0);
2090 		}
2091 		j = cdm->num_matches;
2092 		cdm->num_matches++;
2093 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2094 		cdm->matches[j].result.device_result.path_id =
2095 			device->target->bus->path_id;
2096 		cdm->matches[j].result.device_result.target_id =
2097 			device->target->target_id;
2098 		cdm->matches[j].result.device_result.target_lun =
2099 			device->lun_id;
2100 		bcopy(&device->inq_data,
2101 		      &cdm->matches[j].result.device_result.inq_data,
2102 		      sizeof(struct scsi_inquiry_data));
2103 
2104 		/* Let the user know whether this device is unconfigured */
2105 		if (device->flags & CAM_DEV_UNCONFIGURED)
2106 			cdm->matches[j].result.device_result.flags =
2107 				DEV_RESULT_UNCONFIGURED;
2108 		else
2109 			cdm->matches[j].result.device_result.flags =
2110 				DEV_RESULT_NOFLAG;
2111 	}
2112 
2113 	/*
2114 	 * If the user isn't interested in peripherals, don't descend
2115 	 * the tree any further.
2116 	 */
2117 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2118 		return(1);
2119 
2120 	/*
2121 	 * If there is a peripheral list generation recorded, make sure
2122 	 * it hasn't changed.
2123 	 */
2124 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2125 	 && (device->target->bus == cdm->pos.cookie.bus)
2126 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2127 	 && (device->target == cdm->pos.cookie.target)
2128 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2129 	 && (device == cdm->pos.cookie.device)
2130 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2131 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2132 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2133 	     device->generation)){
2134 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2135 		return(0);
2136 	}
2137 
2138 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2139 	 && (cdm->pos.cookie.bus == device->target->bus)
2140 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2141 	 && (cdm->pos.cookie.target == device->target)
2142 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2143 	 && (cdm->pos.cookie.device == device)
2144 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2145 	 && (cdm->pos.cookie.periph != NULL))
2146 		return(xptperiphtraverse(device,
2147 				(struct cam_periph *)cdm->pos.cookie.periph,
2148 				xptedtperiphfunc, arg));
2149 	else
2150 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2151 }
2152 
2153 static int
2154 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2155 {
2156 	struct ccb_dev_match *cdm;
2157 	dev_match_ret retval;
2158 
2159 	cdm = (struct ccb_dev_match *)arg;
2160 
2161 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2162 
2163 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2164 		cdm->status = CAM_DEV_MATCH_ERROR;
2165 		return(0);
2166 	}
2167 
2168 	/*
2169 	 * If the copy flag is set, copy this peripheral out.
2170 	 */
2171 	if (retval & DM_RET_COPY) {
2172 		int spaceleft, j;
2173 
2174 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2175 			sizeof(struct dev_match_result));
2176 
2177 		/*
2178 		 * If we don't have enough space to put in another
2179 		 * match result, save our position and tell the
2180 		 * user there are more devices to check.
2181 		 */
2182 		if (spaceleft < sizeof(struct dev_match_result)) {
2183 			bzero(&cdm->pos, sizeof(cdm->pos));
2184 			cdm->pos.position_type =
2185 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2186 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2187 				CAM_DEV_POS_PERIPH;
2188 
2189 			cdm->pos.cookie.bus = periph->path->bus;
2190 			cdm->pos.generations[CAM_BUS_GENERATION]=
2191 				bus_generation;
2192 			cdm->pos.cookie.target = periph->path->target;
2193 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2194 				periph->path->bus->generation;
2195 			cdm->pos.cookie.device = periph->path->device;
2196 			cdm->pos.generations[CAM_DEV_GENERATION] =
2197 				periph->path->target->generation;
2198 			cdm->pos.cookie.periph = periph;
2199 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2200 				periph->path->device->generation;
2201 			cdm->status = CAM_DEV_MATCH_MORE;
2202 			return(0);
2203 		}
2204 
2205 		j = cdm->num_matches;
2206 		cdm->num_matches++;
2207 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2208 		cdm->matches[j].result.periph_result.path_id =
2209 			periph->path->bus->path_id;
2210 		cdm->matches[j].result.periph_result.target_id =
2211 			periph->path->target->target_id;
2212 		cdm->matches[j].result.periph_result.target_lun =
2213 			periph->path->device->lun_id;
2214 		cdm->matches[j].result.periph_result.unit_number =
2215 			periph->unit_number;
2216 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2217 			periph->periph_name, DEV_IDLEN);
2218 	}
2219 
2220 	return(1);
2221 }
2222 
2223 static int
2224 xptedtmatch(struct ccb_dev_match *cdm)
2225 {
2226 	int ret;
2227 
2228 	cdm->num_matches = 0;
2229 
2230 	/*
2231 	 * Check the bus list generation.  If it has changed, the user
2232 	 * needs to reset everything and start over.
2233 	 */
2234 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2235 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2236 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2237 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2238 		return(0);
2239 	}
2240 
2241 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2242 	 && (cdm->pos.cookie.bus != NULL))
2243 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2244 				     xptedtbusfunc, cdm);
2245 	else
2246 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2247 
2248 	/*
2249 	 * If we get back 0, that means that we had to stop before fully
2250 	 * traversing the EDT.  It also means that one of the subroutines
2251 	 * has set the status field to the proper value.  If we get back 1,
2252 	 * we've fully traversed the EDT and copied out any matching entries.
2253 	 */
2254 	if (ret == 1)
2255 		cdm->status = CAM_DEV_MATCH_LAST;
2256 
2257 	return(ret);
2258 }
2259 
2260 static int
2261 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2262 {
2263 	struct ccb_dev_match *cdm;
2264 
2265 	cdm = (struct ccb_dev_match *)arg;
2266 
2267 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2268 	 && (cdm->pos.cookie.pdrv == pdrv)
2269 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2270 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2271 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2272 	     (*pdrv)->generation)) {
2273 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2274 		return(0);
2275 	}
2276 
2277 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2278 	 && (cdm->pos.cookie.pdrv == pdrv)
2279 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2280 	 && (cdm->pos.cookie.periph != NULL))
2281 		return(xptpdperiphtraverse(pdrv,
2282 				(struct cam_periph *)cdm->pos.cookie.periph,
2283 				xptplistperiphfunc, arg));
2284 	else
2285 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2286 }
2287 
2288 static int
2289 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2290 {
2291 	struct ccb_dev_match *cdm;
2292 	dev_match_ret retval;
2293 
2294 	cdm = (struct ccb_dev_match *)arg;
2295 
2296 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2297 
2298 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2299 		cdm->status = CAM_DEV_MATCH_ERROR;
2300 		return(0);
2301 	}
2302 
2303 	/*
2304 	 * If the copy flag is set, copy this peripheral out.
2305 	 */
2306 	if (retval & DM_RET_COPY) {
2307 		int spaceleft, j;
2308 
2309 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2310 			sizeof(struct dev_match_result));
2311 
2312 		/*
2313 		 * If we don't have enough space to put in another
2314 		 * match result, save our position and tell the
2315 		 * user there are more devices to check.
2316 		 */
2317 		if (spaceleft < sizeof(struct dev_match_result)) {
2318 			struct periph_driver **pdrv;
2319 
2320 			pdrv = NULL;
2321 			bzero(&cdm->pos, sizeof(cdm->pos));
2322 			cdm->pos.position_type =
2323 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2324 				CAM_DEV_POS_PERIPH;
2325 
2326 			/*
2327 			 * This may look a bit non-sensical, but it is
2328 			 * actually quite logical.  There are very few
2329 			 * peripheral drivers, and bloating every peripheral
2330 			 * structure with a pointer back to its parent
2331 			 * peripheral driver linker set entry would cost
2332 			 * more in the long run than doing this quick lookup.
2333 			 */
2334 			SET_FOREACH(pdrv, periphdriver_set) {
2335 				if (strcmp((*pdrv)->driver_name,
2336 				    periph->periph_name) == 0)
2337 					break;
2338 			}
2339 
2340 			if (pdrv == NULL) {
2341 				cdm->status = CAM_DEV_MATCH_ERROR;
2342 				return(0);
2343 			}
2344 
2345 			cdm->pos.cookie.pdrv = pdrv;
2346 			/*
2347 			 * The periph generation slot does double duty, as
2348 			 * does the periph pointer slot.  They are used for
2349 			 * both edt and pdrv lookups and positioning.
2350 			 */
2351 			cdm->pos.cookie.periph = periph;
2352 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2353 				(*pdrv)->generation;
2354 			cdm->status = CAM_DEV_MATCH_MORE;
2355 			return(0);
2356 		}
2357 
2358 		j = cdm->num_matches;
2359 		cdm->num_matches++;
2360 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2361 		cdm->matches[j].result.periph_result.path_id =
2362 			periph->path->bus->path_id;
2363 
2364 		/*
2365 		 * The transport layer peripheral doesn't have a target or
2366 		 * lun.
2367 		 */
2368 		if (periph->path->target)
2369 			cdm->matches[j].result.periph_result.target_id =
2370 				periph->path->target->target_id;
2371 		else
2372 			cdm->matches[j].result.periph_result.target_id = -1;
2373 
2374 		if (periph->path->device)
2375 			cdm->matches[j].result.periph_result.target_lun =
2376 				periph->path->device->lun_id;
2377 		else
2378 			cdm->matches[j].result.periph_result.target_lun = -1;
2379 
2380 		cdm->matches[j].result.periph_result.unit_number =
2381 			periph->unit_number;
2382 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2383 			periph->periph_name, DEV_IDLEN);
2384 	}
2385 
2386 	return(1);
2387 }
2388 
2389 static int
2390 xptperiphlistmatch(struct ccb_dev_match *cdm)
2391 {
2392 	int ret;
2393 
2394 	cdm->num_matches = 0;
2395 
2396 	/*
2397 	 * At this point in the edt traversal function, we check the bus
2398 	 * list generation to make sure that no busses have been added or
2399 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2400 	 * For the peripheral driver list traversal function, however, we
2401 	 * don't have to worry about new peripheral driver types coming or
2402 	 * going; they're in a linker set, and therefore can't change
2403 	 * without a recompile.
2404 	 */
2405 
2406 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2407 	 && (cdm->pos.cookie.pdrv != NULL))
2408 		ret = xptpdrvtraverse(
2409 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2410 				xptplistpdrvfunc, cdm);
2411 	else
2412 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2413 
2414 	/*
2415 	 * If we get back 0, that means that we had to stop before fully
2416 	 * traversing the peripheral driver tree.  It also means that one of
2417 	 * the subroutines has set the status field to the proper value.  If
2418 	 * we get back 1, we've fully traversed the EDT and copied out any
2419 	 * matching entries.
2420 	 */
2421 	if (ret == 1)
2422 		cdm->status = CAM_DEV_MATCH_LAST;
2423 
2424 	return(ret);
2425 }
2426 
2427 static int
2428 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2429 {
2430 	struct cam_eb *bus, *next_bus;
2431 	int retval;
2432 
2433 	retval = 1;
2434 
2435 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2436 	     bus != NULL;
2437 	     bus = next_bus) {
2438 		next_bus = TAILQ_NEXT(bus, links);
2439 
2440 		retval = tr_func(bus, arg);
2441 		if (retval == 0)
2442 			return(retval);
2443 	}
2444 
2445 	return(retval);
2446 }
2447 
2448 static int
2449 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2450 		  xpt_targetfunc_t *tr_func, void *arg)
2451 {
2452 	struct cam_et *target, *next_target;
2453 	int retval;
2454 
2455 	retval = 1;
2456 	for (target = (start_target ? start_target :
2457 		       TAILQ_FIRST(&bus->et_entries));
2458 	     target != NULL; target = next_target) {
2459 
2460 		next_target = TAILQ_NEXT(target, links);
2461 
2462 		retval = tr_func(target, arg);
2463 
2464 		if (retval == 0)
2465 			return(retval);
2466 	}
2467 
2468 	return(retval);
2469 }
2470 
2471 static int
2472 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2473 		  xpt_devicefunc_t *tr_func, void *arg)
2474 {
2475 	struct cam_ed *device, *next_device;
2476 	int retval;
2477 
2478 	retval = 1;
2479 	for (device = (start_device ? start_device :
2480 		       TAILQ_FIRST(&target->ed_entries));
2481 	     device != NULL;
2482 	     device = next_device) {
2483 
2484 		next_device = TAILQ_NEXT(device, links);
2485 
2486 		retval = tr_func(device, arg);
2487 
2488 		if (retval == 0)
2489 			return(retval);
2490 	}
2491 
2492 	return(retval);
2493 }
2494 
2495 static int
2496 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2497 		  xpt_periphfunc_t *tr_func, void *arg)
2498 {
2499 	struct cam_periph *periph, *next_periph;
2500 	int retval;
2501 
2502 	retval = 1;
2503 
2504 	for (periph = (start_periph ? start_periph :
2505 		       SLIST_FIRST(&device->periphs));
2506 	     periph != NULL;
2507 	     periph = next_periph) {
2508 
2509 		next_periph = SLIST_NEXT(periph, periph_links);
2510 
2511 		retval = tr_func(periph, arg);
2512 		if (retval == 0)
2513 			return(retval);
2514 	}
2515 
2516 	return(retval);
2517 }
2518 
2519 static int
2520 xptpdrvtraverse(struct periph_driver **start_pdrv,
2521 		xpt_pdrvfunc_t *tr_func, void *arg)
2522 {
2523 	struct periph_driver **pdrv;
2524 	int retval;
2525 
2526 	retval = 1;
2527 
2528 	/*
2529 	 * We don't traverse the peripheral driver list like we do the
2530 	 * other lists, because it is a linker set, and therefore cannot be
2531 	 * changed during runtime.  If the peripheral driver list is ever
2532 	 * re-done to be something other than a linker set (i.e. it can
2533 	 * change while the system is running), the list traversal should
2534 	 * be modified to work like the other traversal functions.
2535 	 */
2536 	SET_FOREACH(pdrv, periphdriver_set) {
2537 		if (start_pdrv == NULL || start_pdrv == pdrv) {
2538 			retval = tr_func(pdrv, arg);
2539 			if (retval == 0)
2540 				return(retval);
2541 			start_pdrv = NULL; /* traverse remainder */
2542 		}
2543 	}
2544 	return(retval);
2545 }
2546 
2547 static int
2548 xptpdperiphtraverse(struct periph_driver **pdrv,
2549 		    struct cam_periph *start_periph,
2550 		    xpt_periphfunc_t *tr_func, void *arg)
2551 {
2552 	struct cam_periph *periph, *next_periph;
2553 	int retval;
2554 
2555 	retval = 1;
2556 
2557 	for (periph = (start_periph ? start_periph :
2558 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2559 	     periph = next_periph) {
2560 
2561 		next_periph = TAILQ_NEXT(periph, unit_links);
2562 
2563 		retval = tr_func(periph, arg);
2564 		if (retval == 0)
2565 			return(retval);
2566 	}
2567 	return(retval);
2568 }
2569 
2570 static int
2571 xptdefbusfunc(struct cam_eb *bus, void *arg)
2572 {
2573 	struct xpt_traverse_config *tr_config;
2574 
2575 	tr_config = (struct xpt_traverse_config *)arg;
2576 
2577 	if (tr_config->depth == XPT_DEPTH_BUS) {
2578 		xpt_busfunc_t *tr_func;
2579 
2580 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2581 
2582 		return(tr_func(bus, tr_config->tr_arg));
2583 	} else
2584 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2585 }
2586 
2587 static int
2588 xptdeftargetfunc(struct cam_et *target, void *arg)
2589 {
2590 	struct xpt_traverse_config *tr_config;
2591 
2592 	tr_config = (struct xpt_traverse_config *)arg;
2593 
2594 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2595 		xpt_targetfunc_t *tr_func;
2596 
2597 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2598 
2599 		return(tr_func(target, tr_config->tr_arg));
2600 	} else
2601 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2602 }
2603 
2604 static int
2605 xptdefdevicefunc(struct cam_ed *device, void *arg)
2606 {
2607 	struct xpt_traverse_config *tr_config;
2608 
2609 	tr_config = (struct xpt_traverse_config *)arg;
2610 
2611 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2612 		xpt_devicefunc_t *tr_func;
2613 
2614 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2615 
2616 		return(tr_func(device, tr_config->tr_arg));
2617 	} else
2618 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2619 }
2620 
2621 static int
2622 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2623 {
2624 	struct xpt_traverse_config *tr_config;
2625 	xpt_periphfunc_t *tr_func;
2626 
2627 	tr_config = (struct xpt_traverse_config *)arg;
2628 
2629 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2630 
2631 	/*
2632 	 * Unlike the other default functions, we don't check for depth
2633 	 * here.  The peripheral driver level is the last level in the EDT,
2634 	 * so if we're here, we should execute the function in question.
2635 	 */
2636 	return(tr_func(periph, tr_config->tr_arg));
2637 }
2638 
2639 /*
2640  * Execute the given function for every bus in the EDT.
2641  */
2642 static int
2643 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2644 {
2645 	struct xpt_traverse_config tr_config;
2646 
2647 	tr_config.depth = XPT_DEPTH_BUS;
2648 	tr_config.tr_func = tr_func;
2649 	tr_config.tr_arg = arg;
2650 
2651 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2652 }
2653 
2654 #ifdef notusedyet
2655 /*
2656  * Execute the given function for every target in the EDT.
2657  */
2658 static int
2659 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2660 {
2661 	struct xpt_traverse_config tr_config;
2662 
2663 	tr_config.depth = XPT_DEPTH_TARGET;
2664 	tr_config.tr_func = tr_func;
2665 	tr_config.tr_arg = arg;
2666 
2667 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2668 }
2669 #endif /* notusedyet */
2670 
2671 /*
2672  * Execute the given function for every device in the EDT.
2673  */
2674 static int
2675 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2676 {
2677 	struct xpt_traverse_config tr_config;
2678 
2679 	tr_config.depth = XPT_DEPTH_DEVICE;
2680 	tr_config.tr_func = tr_func;
2681 	tr_config.tr_arg = arg;
2682 
2683 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2684 }
2685 
2686 #ifdef notusedyet
2687 /*
2688  * Execute the given function for every peripheral in the EDT.
2689  */
2690 static int
2691 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2692 {
2693 	struct xpt_traverse_config tr_config;
2694 
2695 	tr_config.depth = XPT_DEPTH_PERIPH;
2696 	tr_config.tr_func = tr_func;
2697 	tr_config.tr_arg = arg;
2698 
2699 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2700 }
2701 #endif /* notusedyet */
2702 
2703 static int
2704 xptsetasyncfunc(struct cam_ed *device, void *arg)
2705 {
2706 	struct cam_path path;
2707 	struct ccb_getdev cgd;
2708 	struct async_node *cur_entry;
2709 
2710 	cur_entry = (struct async_node *)arg;
2711 
2712 	/*
2713 	 * Don't report unconfigured devices (Wildcard devs,
2714 	 * devices only for target mode, device instances
2715 	 * that have been invalidated but are waiting for
2716 	 * their last reference count to be released).
2717 	 */
2718 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2719 		return (1);
2720 
2721 	xpt_compile_path(&path,
2722 			 NULL,
2723 			 device->target->bus->path_id,
2724 			 device->target->target_id,
2725 			 device->lun_id);
2726 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2727 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2728 	xpt_action((union ccb *)&cgd);
2729 	cur_entry->callback(cur_entry->callback_arg,
2730 			    AC_FOUND_DEVICE,
2731 			    &path, &cgd);
2732 	xpt_release_path(&path);
2733 
2734 	return(1);
2735 }
2736 
2737 static int
2738 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2739 {
2740 	struct cam_path path;
2741 	struct ccb_pathinq cpi;
2742 	struct async_node *cur_entry;
2743 
2744 	cur_entry = (struct async_node *)arg;
2745 
2746 	xpt_compile_path(&path, /*periph*/NULL,
2747 			 bus->sim->path_id,
2748 			 CAM_TARGET_WILDCARD,
2749 			 CAM_LUN_WILDCARD);
2750 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2751 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2752 	xpt_action((union ccb *)&cpi);
2753 	cur_entry->callback(cur_entry->callback_arg,
2754 			    AC_PATH_REGISTERED,
2755 			    &path, &cpi);
2756 	xpt_release_path(&path);
2757 
2758 	return(1);
2759 }
2760 
2761 void
2762 xpt_action(union ccb *start_ccb)
2763 {
2764 	int iopl;
2765 
2766 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2767 
2768 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2769 
2770 	iopl = splsoftcam();
2771 	switch (start_ccb->ccb_h.func_code) {
2772 	case XPT_SCSI_IO:
2773 	{
2774 #ifdef CAMDEBUG
2775 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2776 		struct cam_path *path;
2777 
2778 		path = start_ccb->ccb_h.path;
2779 #endif
2780 
2781 		/*
2782 		 * For the sake of compatibility with SCSI-1
2783 		 * devices that may not understand the identify
2784 		 * message, we include lun information in the
2785 		 * second byte of all commands.  SCSI-1 specifies
2786 		 * that luns are a 3 bit value and reserves only 3
2787 		 * bits for lun information in the CDB.  Later
2788 		 * revisions of the SCSI spec allow for more than 8
2789 		 * luns, but have deprecated lun information in the
2790 		 * CDB.  So, if the lun won't fit, we must omit.
2791 		 *
2792 		 * Also be aware that during initial probing for devices,
2793 		 * the inquiry information is unknown but initialized to 0.
2794 		 * This means that this code will be exercised while probing
2795 		 * devices with an ANSI revision greater than 2.
2796 		 */
2797 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2798 		 && start_ccb->ccb_h.target_lun < 8
2799 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2800 
2801 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2802 			    start_ccb->ccb_h.target_lun << 5;
2803 		}
2804 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2805 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2806 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2807 			  	       &path->device->inq_data),
2808 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2809 					  cdb_str, sizeof(cdb_str))));
2810 		/* FALLTHROUGH */
2811 	}
2812 	case XPT_TARGET_IO:
2813 	case XPT_CONT_TARGET_IO:
2814 		start_ccb->csio.sense_resid = 0;
2815 		start_ccb->csio.resid = 0;
2816 		/* FALLTHROUGH */
2817 	case XPT_RESET_DEV:
2818 	case XPT_ENG_EXEC:
2819 	{
2820 		struct cam_path *path;
2821 		int s;
2822 		int runq;
2823 
2824 		path = start_ccb->ccb_h.path;
2825 		s = splsoftcam();
2826 
2827 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2828 		if (path->device->qfrozen_cnt == 0)
2829 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2830 		else
2831 			runq = 0;
2832 		splx(s);
2833 		if (runq != 0)
2834 			xpt_run_dev_sendq(path->bus);
2835 		break;
2836 	}
2837 	case XPT_SET_TRAN_SETTINGS:
2838 	{
2839 		xpt_set_transfer_settings(&start_ccb->cts,
2840 					  start_ccb->ccb_h.path->device,
2841 					  /*async_update*/FALSE);
2842 		break;
2843 	}
2844 	case XPT_CALC_GEOMETRY:
2845 	{
2846 		struct cam_sim *sim;
2847 
2848 		/* Filter out garbage */
2849 		if (start_ccb->ccg.block_size == 0
2850 		 || start_ccb->ccg.volume_size == 0) {
2851 			start_ccb->ccg.cylinders = 0;
2852 			start_ccb->ccg.heads = 0;
2853 			start_ccb->ccg.secs_per_track = 0;
2854 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2855 			break;
2856 		}
2857 #ifdef PC98
2858 		/*
2859 		 * In a PC-98 system, geometry translation depens on
2860 		 * the "real" device geometry obtained from mode page 4.
2861 		 * SCSI geometry translation is performed in the
2862 		 * initialization routine of the SCSI BIOS and the result
2863 		 * stored in host memory.  If the translation is available
2864 		 * in host memory, use it.  If not, rely on the default
2865 		 * translation the device driver performs.
2866 		 */
2867 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2868 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2869 			break;
2870 		}
2871 #endif
2872 		sim = start_ccb->ccb_h.path->bus->sim;
2873 		(*(sim->sim_action))(sim, start_ccb);
2874 		break;
2875 	}
2876 	case XPT_ABORT:
2877 	{
2878 		union ccb* abort_ccb;
2879 		int s;
2880 
2881 		abort_ccb = start_ccb->cab.abort_ccb;
2882 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2883 
2884 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2885 				struct cam_ccbq *ccbq;
2886 
2887 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2888 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2889 				abort_ccb->ccb_h.status =
2890 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2891 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2892 				s = splcam();
2893 				xpt_done(abort_ccb);
2894 				splx(s);
2895 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2896 				break;
2897 			}
2898 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2899 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2900 				/*
2901 				 * We've caught this ccb en route to
2902 				 * the SIM.  Flag it for abort and the
2903 				 * SIM will do so just before starting
2904 				 * real work on the CCB.
2905 				 */
2906 				abort_ccb->ccb_h.status =
2907 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2908 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2909 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2910 				break;
2911 			}
2912 		}
2913 		if (XPT_FC_IS_QUEUED(abort_ccb)
2914 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2915 			/*
2916 			 * It's already completed but waiting
2917 			 * for our SWI to get to it.
2918 			 */
2919 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2920 			break;
2921 		}
2922 		/*
2923 		 * If we weren't able to take care of the abort request
2924 		 * in the XPT, pass the request down to the SIM for processing.
2925 		 */
2926 		/* FALLTHROUGH */
2927 	}
2928 	case XPT_ACCEPT_TARGET_IO:
2929 	case XPT_EN_LUN:
2930 	case XPT_IMMED_NOTIFY:
2931 	case XPT_NOTIFY_ACK:
2932 	case XPT_GET_TRAN_SETTINGS:
2933 	case XPT_RESET_BUS:
2934 	{
2935 		struct cam_sim *sim;
2936 
2937 		sim = start_ccb->ccb_h.path->bus->sim;
2938 		(*(sim->sim_action))(sim, start_ccb);
2939 		break;
2940 	}
2941 	case XPT_PATH_INQ:
2942 	{
2943 		struct cam_sim *sim;
2944 
2945 		sim = start_ccb->ccb_h.path->bus->sim;
2946 		(*(sim->sim_action))(sim, start_ccb);
2947 		break;
2948 	}
2949 	case XPT_PATH_STATS:
2950 		start_ccb->cpis.last_reset =
2951 			start_ccb->ccb_h.path->bus->last_reset;
2952 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2953 		break;
2954 	case XPT_GDEV_TYPE:
2955 	{
2956 		struct cam_ed *dev;
2957 		int s;
2958 
2959 		dev = start_ccb->ccb_h.path->device;
2960 		s = splcam();
2961 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2962 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2963 		} else {
2964 			struct ccb_getdev *cgd;
2965 			struct cam_eb *bus;
2966 			struct cam_et *tar;
2967 
2968 			cgd = &start_ccb->cgd;
2969 			bus = cgd->ccb_h.path->bus;
2970 			tar = cgd->ccb_h.path->target;
2971 			cgd->inq_data = dev->inq_data;
2972 			cgd->ccb_h.status = CAM_REQ_CMP;
2973 			cgd->serial_num_len = dev->serial_num_len;
2974 			if ((dev->serial_num_len > 0)
2975 			 && (dev->serial_num != NULL))
2976 				bcopy(dev->serial_num, cgd->serial_num,
2977 				      dev->serial_num_len);
2978 		}
2979 		splx(s);
2980 		break;
2981 	}
2982 	case XPT_GDEV_STATS:
2983 	{
2984 		struct cam_ed *dev;
2985 		int s;
2986 
2987 		dev = start_ccb->ccb_h.path->device;
2988 		s = splcam();
2989 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2990 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2991 		} else {
2992 			struct ccb_getdevstats *cgds;
2993 			struct cam_eb *bus;
2994 			struct cam_et *tar;
2995 
2996 			cgds = &start_ccb->cgds;
2997 			bus = cgds->ccb_h.path->bus;
2998 			tar = cgds->ccb_h.path->target;
2999 			cgds->dev_openings = dev->ccbq.dev_openings;
3000 			cgds->dev_active = dev->ccbq.dev_active;
3001 			cgds->devq_openings = dev->ccbq.devq_openings;
3002 			cgds->devq_queued = dev->ccbq.queue.entries;
3003 			cgds->held = dev->ccbq.held;
3004 			cgds->last_reset = tar->last_reset;
3005 			cgds->maxtags = dev->quirk->maxtags;
3006 			cgds->mintags = dev->quirk->mintags;
3007 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3008 				cgds->last_reset = bus->last_reset;
3009 			cgds->ccb_h.status = CAM_REQ_CMP;
3010 		}
3011 		splx(s);
3012 		break;
3013 	}
3014 	case XPT_GDEVLIST:
3015 	{
3016 		struct cam_periph	*nperiph;
3017 		struct periph_list	*periph_head;
3018 		struct ccb_getdevlist	*cgdl;
3019 		int			i;
3020 		int			s;
3021 		struct cam_ed		*device;
3022 		int			found;
3023 
3024 
3025 		found = 0;
3026 
3027 		/*
3028 		 * Don't want anyone mucking with our data.
3029 		 */
3030 		s = splcam();
3031 		device = start_ccb->ccb_h.path->device;
3032 		periph_head = &device->periphs;
3033 		cgdl = &start_ccb->cgdl;
3034 
3035 		/*
3036 		 * Check and see if the list has changed since the user
3037 		 * last requested a list member.  If so, tell them that the
3038 		 * list has changed, and therefore they need to start over
3039 		 * from the beginning.
3040 		 */
3041 		if ((cgdl->index != 0) &&
3042 		    (cgdl->generation != device->generation)) {
3043 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3044 			splx(s);
3045 			break;
3046 		}
3047 
3048 		/*
3049 		 * Traverse the list of peripherals and attempt to find
3050 		 * the requested peripheral.
3051 		 */
3052 		for (nperiph = periph_head->slh_first, i = 0;
3053 		     (nperiph != NULL) && (i <= cgdl->index);
3054 		     nperiph = nperiph->periph_links.sle_next, i++) {
3055 			if (i == cgdl->index) {
3056 				strncpy(cgdl->periph_name,
3057 					nperiph->periph_name,
3058 					DEV_IDLEN);
3059 				cgdl->unit_number = nperiph->unit_number;
3060 				found = 1;
3061 			}
3062 		}
3063 		if (found == 0) {
3064 			cgdl->status = CAM_GDEVLIST_ERROR;
3065 			splx(s);
3066 			break;
3067 		}
3068 
3069 		if (nperiph == NULL)
3070 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3071 		else
3072 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3073 
3074 		cgdl->index++;
3075 		cgdl->generation = device->generation;
3076 
3077 		splx(s);
3078 		cgdl->ccb_h.status = CAM_REQ_CMP;
3079 		break;
3080 	}
3081 	case XPT_DEV_MATCH:
3082 	{
3083 		int s;
3084 		dev_pos_type position_type;
3085 		struct ccb_dev_match *cdm;
3086 		int ret;
3087 
3088 		cdm = &start_ccb->cdm;
3089 
3090 		/*
3091 		 * Prevent EDT changes while we traverse it.
3092 		 */
3093 		s = splcam();
3094 		/*
3095 		 * There are two ways of getting at information in the EDT.
3096 		 * The first way is via the primary EDT tree.  It starts
3097 		 * with a list of busses, then a list of targets on a bus,
3098 		 * then devices/luns on a target, and then peripherals on a
3099 		 * device/lun.  The "other" way is by the peripheral driver
3100 		 * lists.  The peripheral driver lists are organized by
3101 		 * peripheral driver.  (obviously)  So it makes sense to
3102 		 * use the peripheral driver list if the user is looking
3103 		 * for something like "da1", or all "da" devices.  If the
3104 		 * user is looking for something on a particular bus/target
3105 		 * or lun, it's generally better to go through the EDT tree.
3106 		 */
3107 
3108 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3109 			position_type = cdm->pos.position_type;
3110 		else {
3111 			int i;
3112 
3113 			position_type = CAM_DEV_POS_NONE;
3114 
3115 			for (i = 0; i < cdm->num_patterns; i++) {
3116 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3117 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3118 					position_type = CAM_DEV_POS_EDT;
3119 					break;
3120 				}
3121 			}
3122 
3123 			if (cdm->num_patterns == 0)
3124 				position_type = CAM_DEV_POS_EDT;
3125 			else if (position_type == CAM_DEV_POS_NONE)
3126 				position_type = CAM_DEV_POS_PDRV;
3127 		}
3128 
3129 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3130 		case CAM_DEV_POS_EDT:
3131 			ret = xptedtmatch(cdm);
3132 			break;
3133 		case CAM_DEV_POS_PDRV:
3134 			ret = xptperiphlistmatch(cdm);
3135 			break;
3136 		default:
3137 			cdm->status = CAM_DEV_MATCH_ERROR;
3138 			break;
3139 		}
3140 
3141 		splx(s);
3142 
3143 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3144 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3145 		else
3146 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3147 
3148 		break;
3149 	}
3150 	case XPT_SASYNC_CB:
3151 	{
3152 		struct ccb_setasync *csa;
3153 		struct async_node *cur_entry;
3154 		struct async_list *async_head;
3155 		u_int32_t added;
3156 		int s;
3157 
3158 		csa = &start_ccb->csa;
3159 		added = csa->event_enable;
3160 		async_head = &csa->ccb_h.path->device->asyncs;
3161 
3162 		/*
3163 		 * If there is already an entry for us, simply
3164 		 * update it.
3165 		 */
3166 		s = splcam();
3167 		cur_entry = SLIST_FIRST(async_head);
3168 		while (cur_entry != NULL) {
3169 			if ((cur_entry->callback_arg == csa->callback_arg)
3170 			 && (cur_entry->callback == csa->callback))
3171 				break;
3172 			cur_entry = SLIST_NEXT(cur_entry, links);
3173 		}
3174 
3175 		if (cur_entry != NULL) {
3176 		 	/*
3177 			 * If the request has no flags set,
3178 			 * remove the entry.
3179 			 */
3180 			added &= ~cur_entry->event_enable;
3181 			if (csa->event_enable == 0) {
3182 				SLIST_REMOVE(async_head, cur_entry,
3183 					     async_node, links);
3184 				csa->ccb_h.path->device->refcount--;
3185 				free(cur_entry, M_DEVBUF);
3186 			} else {
3187 				cur_entry->event_enable = csa->event_enable;
3188 			}
3189 		} else {
3190 			cur_entry = malloc(sizeof(*cur_entry),
3191 					    M_DEVBUF, M_INTWAIT);
3192 			cur_entry->event_enable = csa->event_enable;
3193 			cur_entry->callback_arg = csa->callback_arg;
3194 			cur_entry->callback = csa->callback;
3195 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3196 			csa->ccb_h.path->device->refcount++;
3197 		}
3198 
3199 		if ((added & AC_FOUND_DEVICE) != 0) {
3200 			/*
3201 			 * Get this peripheral up to date with all
3202 			 * the currently existing devices.
3203 			 */
3204 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3205 		}
3206 		if ((added & AC_PATH_REGISTERED) != 0) {
3207 			/*
3208 			 * Get this peripheral up to date with all
3209 			 * the currently existing busses.
3210 			 */
3211 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3212 		}
3213 		splx(s);
3214 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3215 		break;
3216 	}
3217 	case XPT_REL_SIMQ:
3218 	{
3219 		struct ccb_relsim *crs;
3220 		struct cam_ed *dev;
3221 		int s;
3222 
3223 		crs = &start_ccb->crs;
3224 		dev = crs->ccb_h.path->device;
3225 		if (dev == NULL) {
3226 
3227 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3228 			break;
3229 		}
3230 
3231 		s = splcam();
3232 
3233 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3234 
3235  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3236 
3237 				/* Don't ever go below one opening */
3238 				if (crs->openings > 0) {
3239 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3240 							    crs->openings);
3241 
3242 					if (bootverbose) {
3243 						xpt_print_path(crs->ccb_h.path);
3244 						printf("tagged openings "
3245 						       "now %d\n",
3246 						       crs->openings);
3247 					}
3248 				}
3249 			}
3250 		}
3251 
3252 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3253 
3254 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3255 
3256 				/*
3257 				 * Just extend the old timeout and decrement
3258 				 * the freeze count so that a single timeout
3259 				 * is sufficient for releasing the queue.
3260 				 */
3261 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3262 				callout_stop(&dev->c_handle);
3263 			} else {
3264 
3265 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3266 			}
3267 
3268 			callout_reset(&dev->c_handle,
3269 				      (crs->release_timeout * hz) / 1000,
3270 				      xpt_release_devq_timeout, dev);
3271 
3272 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3273 
3274 		}
3275 
3276 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3277 
3278 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3279 				/*
3280 				 * Decrement the freeze count so that a single
3281 				 * completion is still sufficient to unfreeze
3282 				 * the queue.
3283 				 */
3284 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3285 			} else {
3286 
3287 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3288 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3289 			}
3290 		}
3291 
3292 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3293 
3294 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3295 			 || (dev->ccbq.dev_active == 0)) {
3296 
3297 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3298 			} else {
3299 
3300 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3301 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3302 			}
3303 		}
3304 		splx(s);
3305 
3306 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3307 
3308 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3309 					 /*run_queue*/TRUE);
3310 		}
3311 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3312 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3313 		break;
3314 	}
3315 	case XPT_SCAN_BUS:
3316 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3317 		break;
3318 	case XPT_SCAN_LUN:
3319 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3320 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3321 			     start_ccb);
3322 		break;
3323 	case XPT_DEBUG: {
3324 #ifdef CAMDEBUG
3325 		int s;
3326 
3327 		s = splcam();
3328 #ifdef CAM_DEBUG_DELAY
3329 		cam_debug_delay = CAM_DEBUG_DELAY;
3330 #endif
3331 		cam_dflags = start_ccb->cdbg.flags;
3332 		if (cam_dpath != NULL) {
3333 			xpt_free_path(cam_dpath);
3334 			cam_dpath = NULL;
3335 		}
3336 
3337 		if (cam_dflags != CAM_DEBUG_NONE) {
3338 			if (xpt_create_path(&cam_dpath, xpt_periph,
3339 					    start_ccb->ccb_h.path_id,
3340 					    start_ccb->ccb_h.target_id,
3341 					    start_ccb->ccb_h.target_lun) !=
3342 					    CAM_REQ_CMP) {
3343 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3344 				cam_dflags = CAM_DEBUG_NONE;
3345 			} else {
3346 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3347 				xpt_print_path(cam_dpath);
3348 				printf("debugging flags now %x\n", cam_dflags);
3349 			}
3350 		} else {
3351 			cam_dpath = NULL;
3352 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3353 		}
3354 		splx(s);
3355 #else /* !CAMDEBUG */
3356 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3357 #endif /* CAMDEBUG */
3358 		break;
3359 	}
3360 	case XPT_NOOP:
3361 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3362 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3363 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3364 		break;
3365 	default:
3366 	case XPT_SDEV_TYPE:
3367 	case XPT_TERM_IO:
3368 	case XPT_ENG_INQ:
3369 		/* XXX Implement */
3370 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3371 		break;
3372 	}
3373 	splx(iopl);
3374 }
3375 
3376 void
3377 xpt_polled_action(union ccb *start_ccb)
3378 {
3379 	int	  s;
3380 	u_int32_t timeout;
3381 	struct	  cam_sim *sim;
3382 	struct	  cam_devq *devq;
3383 	struct	  cam_ed *dev;
3384 
3385 	timeout = start_ccb->ccb_h.timeout;
3386 	sim = start_ccb->ccb_h.path->bus->sim;
3387 	devq = sim->devq;
3388 	dev = start_ccb->ccb_h.path->device;
3389 
3390 	s = splcam();
3391 
3392 	/*
3393 	 * Steal an opening so that no other queued requests
3394 	 * can get it before us while we simulate interrupts.
3395 	 */
3396 	dev->ccbq.devq_openings--;
3397 	dev->ccbq.dev_openings--;
3398 
3399 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3400 	   && (--timeout > 0)) {
3401 		DELAY(1000);
3402 		(*(sim->sim_poll))(sim);
3403 		swi_camnet(NULL);
3404 		swi_cambio(NULL);
3405 	}
3406 
3407 	dev->ccbq.devq_openings++;
3408 	dev->ccbq.dev_openings++;
3409 
3410 	if (timeout != 0) {
3411 		xpt_action(start_ccb);
3412 		while(--timeout > 0) {
3413 			(*(sim->sim_poll))(sim);
3414 			swi_camnet(NULL);
3415 			swi_cambio(NULL);
3416 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3417 			    != CAM_REQ_INPROG)
3418 				break;
3419 			DELAY(1000);
3420 		}
3421 		if (timeout == 0) {
3422 			/*
3423 			 * XXX Is it worth adding a sim_timeout entry
3424 			 * point so we can attempt recovery?  If
3425 			 * this is only used for dumps, I don't think
3426 			 * it is.
3427 			 */
3428 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3429 		}
3430 	} else {
3431 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3432 	}
3433 	splx(s);
3434 }
3435 
3436 /*
3437  * Schedule a peripheral driver to receive a ccb when it's
3438  * target device has space for more transactions.
3439  */
3440 void
3441 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3442 {
3443 	struct cam_ed *device;
3444 	int s;
3445 	int runq;
3446 
3447 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3448 	device = perph->path->device;
3449 	s = splsoftcam();
3450 	if (periph_is_queued(perph)) {
3451 		/* Simply reorder based on new priority */
3452 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3453 			  ("   change priority to %d\n", new_priority));
3454 		if (new_priority < perph->pinfo.priority) {
3455 			camq_change_priority(&device->drvq,
3456 					     perph->pinfo.index,
3457 					     new_priority);
3458 		}
3459 		runq = 0;
3460 	} else {
3461 		/* New entry on the queue */
3462 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3463 			  ("   added periph to queue\n"));
3464 		perph->pinfo.priority = new_priority;
3465 		perph->pinfo.generation = ++device->drvq.generation;
3466 		camq_insert(&device->drvq, &perph->pinfo);
3467 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3468 	}
3469 	splx(s);
3470 	if (runq != 0) {
3471 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3472 			  ("   calling xpt_run_devq\n"));
3473 		xpt_run_dev_allocq(perph->path->bus);
3474 	}
3475 }
3476 
3477 
3478 /*
3479  * Schedule a device to run on a given queue.
3480  * If the device was inserted as a new entry on the queue,
3481  * return 1 meaning the device queue should be run. If we
3482  * were already queued, implying someone else has already
3483  * started the queue, return 0 so the caller doesn't attempt
3484  * to run the queue.  Must be run at either splsoftcam
3485  * (or splcam since that encompases splsoftcam).
3486  */
3487 static int
3488 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3489 		 u_int32_t new_priority)
3490 {
3491 	int retval;
3492 	u_int32_t old_priority;
3493 
3494 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3495 
3496 	old_priority = pinfo->priority;
3497 
3498 	/*
3499 	 * Are we already queued?
3500 	 */
3501 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3502 		/* Simply reorder based on new priority */
3503 		if (new_priority < old_priority) {
3504 			camq_change_priority(queue, pinfo->index,
3505 					     new_priority);
3506 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3507 					("changed priority to %d\n",
3508 					 new_priority));
3509 		}
3510 		retval = 0;
3511 	} else {
3512 		/* New entry on the queue */
3513 		if (new_priority < old_priority)
3514 			pinfo->priority = new_priority;
3515 
3516 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3517 				("Inserting onto queue\n"));
3518 		pinfo->generation = ++queue->generation;
3519 		camq_insert(queue, pinfo);
3520 		retval = 1;
3521 	}
3522 	return (retval);
3523 }
3524 
3525 static void
3526 xpt_run_dev_allocq(struct cam_eb *bus)
3527 {
3528 	struct	cam_devq *devq;
3529 	int	s;
3530 
3531 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3532 	devq = bus->sim->devq;
3533 
3534 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3535 			("   qfrozen_cnt == 0x%x, entries == %d, "
3536 			 "openings == %d, active == %d\n",
3537 			 devq->alloc_queue.qfrozen_cnt,
3538 			 devq->alloc_queue.entries,
3539 			 devq->alloc_openings,
3540 			 devq->alloc_active));
3541 
3542 	s = splsoftcam();
3543 	devq->alloc_queue.qfrozen_cnt++;
3544 	while ((devq->alloc_queue.entries > 0)
3545 	    && (devq->alloc_openings > 0)
3546 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3547 		struct	cam_ed_qinfo *qinfo;
3548 		struct	cam_ed *device;
3549 		union	ccb *work_ccb;
3550 		struct	cam_periph *drv;
3551 		struct	camq *drvq;
3552 
3553 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3554 							   CAMQ_HEAD);
3555 		device = qinfo->device;
3556 
3557 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3558 				("running device %p\n", device));
3559 
3560 		drvq = &device->drvq;
3561 
3562 #ifdef CAMDEBUG
3563 		if (drvq->entries <= 0) {
3564 			panic("xpt_run_dev_allocq: "
3565 			      "Device on queue without any work to do");
3566 		}
3567 #endif
3568 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3569 			devq->alloc_openings--;
3570 			devq->alloc_active++;
3571 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3572 			splx(s);
3573 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3574 				      drv->pinfo.priority);
3575 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3576 					("calling periph start\n"));
3577 			drv->periph_start(drv, work_ccb);
3578 		} else {
3579 			/*
3580 			 * Malloc failure in alloc_ccb
3581 			 */
3582 			/*
3583 			 * XXX add us to a list to be run from free_ccb
3584 			 * if we don't have any ccbs active on this
3585 			 * device queue otherwise we may never get run
3586 			 * again.
3587 			 */
3588 			break;
3589 		}
3590 
3591 		/* Raise IPL for possible insertion and test at top of loop */
3592 		s = splsoftcam();
3593 
3594 		if (drvq->entries > 0) {
3595 			/* We have more work.  Attempt to reschedule */
3596 			xpt_schedule_dev_allocq(bus, device);
3597 		}
3598 	}
3599 	devq->alloc_queue.qfrozen_cnt--;
3600 	splx(s);
3601 }
3602 
3603 static void
3604 xpt_run_dev_sendq(struct cam_eb *bus)
3605 {
3606 	struct	cam_devq *devq;
3607 	int	s;
3608 
3609 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3610 
3611 	devq = bus->sim->devq;
3612 
3613 	s = splcam();
3614 	devq->send_queue.qfrozen_cnt++;
3615 	splx(s);
3616 	s = splsoftcam();
3617 	while ((devq->send_queue.entries > 0)
3618 	    && (devq->send_openings > 0)) {
3619 		struct	cam_ed_qinfo *qinfo;
3620 		struct	cam_ed *device;
3621 		union ccb *work_ccb;
3622 		struct	cam_sim *sim;
3623 		int	ospl;
3624 
3625 		ospl = splcam();
3626 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3627 			splx(ospl);
3628 			break;
3629 		}
3630 
3631 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3632 							   CAMQ_HEAD);
3633 		device = qinfo->device;
3634 
3635 		/*
3636 		 * If the device has been "frozen", don't attempt
3637 		 * to run it.
3638 		 */
3639 		if (device->qfrozen_cnt > 0) {
3640 			splx(ospl);
3641 			continue;
3642 		}
3643 
3644 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3645 				("running device %p\n", device));
3646 
3647 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3648 		if (work_ccb == NULL) {
3649 			printf("device on run queue with no ccbs???\n");
3650 			splx(ospl);
3651 			continue;
3652 		}
3653 
3654 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3655 
3656 		 	if (num_highpower <= 0) {
3657 				/*
3658 				 * We got a high power command, but we
3659 				 * don't have any available slots.  Freeze
3660 				 * the device queue until we have a slot
3661 				 * available.
3662 				 */
3663 				device->qfrozen_cnt++;
3664 				STAILQ_INSERT_TAIL(&highpowerq,
3665 						   &work_ccb->ccb_h,
3666 						   xpt_links.stqe);
3667 
3668 				splx(ospl);
3669 				continue;
3670 			} else {
3671 				/*
3672 				 * Consume a high power slot while
3673 				 * this ccb runs.
3674 				 */
3675 				num_highpower--;
3676 			}
3677 		}
3678 		devq->active_dev = device;
3679 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3680 
3681 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3682 		splx(ospl);
3683 
3684 		devq->send_openings--;
3685 		devq->send_active++;
3686 
3687 		if (device->ccbq.queue.entries > 0)
3688 			xpt_schedule_dev_sendq(bus, device);
3689 
3690 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3691 			/*
3692 			 * The client wants to freeze the queue
3693 			 * after this CCB is sent.
3694 			 */
3695 			ospl = splcam();
3696 			device->qfrozen_cnt++;
3697 			splx(ospl);
3698 		}
3699 
3700 		splx(s);
3701 
3702 		/* In Target mode, the peripheral driver knows best... */
3703 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3704 			if ((device->inq_flags & SID_CmdQue) != 0
3705 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3706 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3707 			else
3708 				/*
3709 				 * Clear this in case of a retried CCB that
3710 				 * failed due to a rejected tag.
3711 				 */
3712 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3713 		}
3714 
3715 		/*
3716 		 * Device queues can be shared among multiple sim instances
3717 		 * that reside on different busses.  Use the SIM in the queue
3718 		 * CCB's path, rather than the one in the bus that was passed
3719 		 * into this function.
3720 		 */
3721 		sim = work_ccb->ccb_h.path->bus->sim;
3722 		(*(sim->sim_action))(sim, work_ccb);
3723 
3724 		ospl = splcam();
3725 		devq->active_dev = NULL;
3726 		splx(ospl);
3727 		/* Raise IPL for possible insertion and test at top of loop */
3728 		s = splsoftcam();
3729 	}
3730 	splx(s);
3731 	s = splcam();
3732 	devq->send_queue.qfrozen_cnt--;
3733 	splx(s);
3734 }
3735 
3736 /*
3737  * This function merges stuff from the slave ccb into the master ccb, while
3738  * keeping important fields in the master ccb constant.
3739  */
3740 void
3741 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3742 {
3743 	/*
3744 	 * Pull fields that are valid for peripheral drivers to set
3745 	 * into the master CCB along with the CCB "payload".
3746 	 */
3747 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3748 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3749 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3750 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3751 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3752 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3753 }
3754 
3755 void
3756 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3757 {
3758 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3759 	callout_init(&ccb_h->timeout_ch);
3760 	ccb_h->pinfo.priority = priority;
3761 	ccb_h->path = path;
3762 	ccb_h->path_id = path->bus->path_id;
3763 	if (path->target)
3764 		ccb_h->target_id = path->target->target_id;
3765 	else
3766 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3767 	if (path->device) {
3768 		ccb_h->target_lun = path->device->lun_id;
3769 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3770 	} else {
3771 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3772 	}
3773 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3774 	ccb_h->flags = 0;
3775 }
3776 
3777 /* Path manipulation functions */
3778 cam_status
3779 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3780 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3781 {
3782 	struct	   cam_path *path;
3783 	cam_status status;
3784 
3785 	path = malloc(sizeof(*path), M_DEVBUF, M_INTWAIT);
3786 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3787 	if (status != CAM_REQ_CMP) {
3788 		free(path, M_DEVBUF);
3789 		path = NULL;
3790 	}
3791 	*new_path_ptr = path;
3792 	return (status);
3793 }
3794 
3795 static cam_status
3796 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3797 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3798 {
3799 	struct	     cam_eb *bus;
3800 	struct	     cam_et *target;
3801 	struct	     cam_ed *device;
3802 	cam_status   status;
3803 	int	     s;
3804 
3805 	status = CAM_REQ_CMP;	/* Completed without error */
3806 	target = NULL;		/* Wildcarded */
3807 	device = NULL;		/* Wildcarded */
3808 
3809 	/*
3810 	 * We will potentially modify the EDT, so block interrupts
3811 	 * that may attempt to create cam paths.
3812 	 */
3813 	s = splcam();
3814 	bus = xpt_find_bus(path_id);
3815 	if (bus == NULL) {
3816 		status = CAM_PATH_INVALID;
3817 	} else {
3818 		target = xpt_find_target(bus, target_id);
3819 		if (target == NULL) {
3820 			/* Create one */
3821 			struct cam_et *new_target;
3822 
3823 			new_target = xpt_alloc_target(bus, target_id);
3824 			if (new_target == NULL) {
3825 				status = CAM_RESRC_UNAVAIL;
3826 			} else {
3827 				target = new_target;
3828 			}
3829 		}
3830 		if (target != NULL) {
3831 			device = xpt_find_device(target, lun_id);
3832 			if (device == NULL) {
3833 				/* Create one */
3834 				struct cam_ed *new_device;
3835 
3836 				new_device = xpt_alloc_device(bus,
3837 							      target,
3838 							      lun_id);
3839 				if (new_device == NULL) {
3840 					status = CAM_RESRC_UNAVAIL;
3841 				} else {
3842 					device = new_device;
3843 				}
3844 			}
3845 		}
3846 	}
3847 	splx(s);
3848 
3849 	/*
3850 	 * Only touch the user's data if we are successful.
3851 	 */
3852 	if (status == CAM_REQ_CMP) {
3853 		new_path->periph = perph;
3854 		new_path->bus = bus;
3855 		new_path->target = target;
3856 		new_path->device = device;
3857 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3858 	} else {
3859 		if (device != NULL)
3860 			xpt_release_device(bus, target, device);
3861 		if (target != NULL)
3862 			xpt_release_target(bus, target);
3863 		if (bus != NULL)
3864 			xpt_release_bus(bus);
3865 	}
3866 	return (status);
3867 }
3868 
3869 static void
3870 xpt_release_path(struct cam_path *path)
3871 {
3872 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3873 	if (path->device != NULL) {
3874 		xpt_release_device(path->bus, path->target, path->device);
3875 		path->device = NULL;
3876 	}
3877 	if (path->target != NULL) {
3878 		xpt_release_target(path->bus, path->target);
3879 		path->target = NULL;
3880 	}
3881 	if (path->bus != NULL) {
3882 		xpt_release_bus(path->bus);
3883 		path->bus = NULL;
3884 	}
3885 }
3886 
3887 void
3888 xpt_free_path(struct cam_path *path)
3889 {
3890 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3891 	xpt_release_path(path);
3892 	free(path, M_DEVBUF);
3893 }
3894 
3895 
3896 /*
3897  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3898  * in path1, 2 for match with wildcards in path2.
3899  */
3900 int
3901 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3902 {
3903 	int retval = 0;
3904 
3905 	if (path1->bus != path2->bus) {
3906 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3907 			retval = 1;
3908 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3909 			retval = 2;
3910 		else
3911 			return (-1);
3912 	}
3913 	if (path1->target != path2->target) {
3914 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3915 			if (retval == 0)
3916 				retval = 1;
3917 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3918 			retval = 2;
3919 		else
3920 			return (-1);
3921 	}
3922 	if (path1->device != path2->device) {
3923 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3924 			if (retval == 0)
3925 				retval = 1;
3926 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3927 			retval = 2;
3928 		else
3929 			return (-1);
3930 	}
3931 	return (retval);
3932 }
3933 
3934 void
3935 xpt_print_path(struct cam_path *path)
3936 {
3937 	if (path == NULL)
3938 		printf("(nopath): ");
3939 	else {
3940 		if (path->periph != NULL)
3941 			printf("(%s%d:", path->periph->periph_name,
3942 			       path->periph->unit_number);
3943 		else
3944 			printf("(noperiph:");
3945 
3946 		if (path->bus != NULL)
3947 			printf("%s%d:%d:", path->bus->sim->sim_name,
3948 			       path->bus->sim->unit_number,
3949 			       path->bus->sim->bus_id);
3950 		else
3951 			printf("nobus:");
3952 
3953 		if (path->target != NULL)
3954 			printf("%d:", path->target->target_id);
3955 		else
3956 			printf("X:");
3957 
3958 		if (path->device != NULL)
3959 			printf("%d): ", path->device->lun_id);
3960 		else
3961 			printf("X): ");
3962 	}
3963 }
3964 
3965 path_id_t
3966 xpt_path_path_id(struct cam_path *path)
3967 {
3968 	return(path->bus->path_id);
3969 }
3970 
3971 target_id_t
3972 xpt_path_target_id(struct cam_path *path)
3973 {
3974 	if (path->target != NULL)
3975 		return (path->target->target_id);
3976 	else
3977 		return (CAM_TARGET_WILDCARD);
3978 }
3979 
3980 lun_id_t
3981 xpt_path_lun_id(struct cam_path *path)
3982 {
3983 	if (path->device != NULL)
3984 		return (path->device->lun_id);
3985 	else
3986 		return (CAM_LUN_WILDCARD);
3987 }
3988 
3989 struct cam_sim *
3990 xpt_path_sim(struct cam_path *path)
3991 {
3992 	return (path->bus->sim);
3993 }
3994 
3995 struct cam_periph*
3996 xpt_path_periph(struct cam_path *path)
3997 {
3998 	return (path->periph);
3999 }
4000 
4001 /*
4002  * Release a CAM control block for the caller.  Remit the cost of the structure
4003  * to the device referenced by the path.  If the this device had no 'credits'
4004  * and peripheral drivers have registered async callbacks for this notification
4005  * call them now.
4006  */
4007 void
4008 xpt_release_ccb(union ccb *free_ccb)
4009 {
4010 	int	 s;
4011 	struct	 cam_path *path;
4012 	struct	 cam_ed *device;
4013 	struct	 cam_eb *bus;
4014 
4015 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4016 	path = free_ccb->ccb_h.path;
4017 	device = path->device;
4018 	bus = path->bus;
4019 	s = splsoftcam();
4020 	cam_ccbq_release_opening(&device->ccbq);
4021 	if (xpt_ccb_count > xpt_max_ccbs) {
4022 		xpt_free_ccb(free_ccb);
4023 		xpt_ccb_count--;
4024 	} else {
4025 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
4026 	}
4027 	bus->sim->devq->alloc_openings++;
4028 	bus->sim->devq->alloc_active--;
4029 	/* XXX Turn this into an inline function - xpt_run_device?? */
4030 	if ((device_is_alloc_queued(device) == 0)
4031 	 && (device->drvq.entries > 0)) {
4032 		xpt_schedule_dev_allocq(bus, device);
4033 	}
4034 	splx(s);
4035 	if (dev_allocq_is_runnable(bus->sim->devq))
4036 		xpt_run_dev_allocq(bus);
4037 }
4038 
4039 /* Functions accessed by SIM drivers */
4040 
4041 /*
4042  * A sim structure, listing the SIM entry points and instance
4043  * identification info is passed to xpt_bus_register to hook the SIM
4044  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4045  * for this new bus and places it in the array of busses and assigns
4046  * it a path_id.  The path_id may be influenced by "hard wiring"
4047  * information specified by the user.  Once interrupt services are
4048  * availible, the bus will be probed.
4049  */
4050 int32_t
4051 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4052 {
4053 	struct cam_eb *new_bus;
4054 	struct cam_eb *old_bus;
4055 	struct ccb_pathinq cpi;
4056 	int s;
4057 
4058 	sim->bus_id = bus;
4059 	new_bus = malloc(sizeof(*new_bus), M_DEVBUF, M_INTWAIT);
4060 
4061 	if (strcmp(sim->sim_name, "xpt") != 0) {
4062 		sim->path_id =
4063 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4064 	}
4065 
4066 	TAILQ_INIT(&new_bus->et_entries);
4067 	new_bus->path_id = sim->path_id;
4068 	new_bus->sim = sim;
4069 	++sim->refcount;
4070 	timevalclear(&new_bus->last_reset);
4071 	new_bus->flags = 0;
4072 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4073 	new_bus->generation = 0;
4074 	s = splcam();
4075 	old_bus = TAILQ_FIRST(&xpt_busses);
4076 	while (old_bus != NULL
4077 	    && old_bus->path_id < new_bus->path_id)
4078 		old_bus = TAILQ_NEXT(old_bus, links);
4079 	if (old_bus != NULL)
4080 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4081 	else
4082 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4083 	bus_generation++;
4084 	splx(s);
4085 
4086 	/* Notify interested parties */
4087 	if (sim->path_id != CAM_XPT_PATH_ID) {
4088 		struct cam_path path;
4089 
4090 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4091 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4092 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4093 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4094 		xpt_action((union ccb *)&cpi);
4095 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4096 		xpt_release_path(&path);
4097 	}
4098 	return (CAM_SUCCESS);
4099 }
4100 
4101 /*
4102  * Deregister a bus.  We must clean out all transactions pending on the bus.
4103  * This routine is typically called prior to cam_sim_free() (e.g. see
4104  * dev/usbmisc/umass/umass.c)
4105  */
4106 int32_t
4107 xpt_bus_deregister(path_id_t pathid)
4108 {
4109 	struct cam_path bus_path;
4110 	cam_status status;
4111 
4112 	status = xpt_compile_path(&bus_path, NULL, pathid,
4113 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4114 	if (status != CAM_REQ_CMP)
4115 		return (status);
4116 
4117 	/*
4118 	 * This should clear out all pending requests and timeouts, but
4119 	 * the ccb's may be queued to a software interrupt.
4120 	 *
4121 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4122 	 * and it really ought to.
4123 	 */
4124 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4125 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4126 
4127 	/* make sure all responses have been processed */
4128 	camisr(&cam_netq);
4129 	camisr(&cam_bioq);
4130 
4131 	/* Release the reference count held while registered. */
4132 	xpt_release_bus(bus_path.bus);
4133 	xpt_release_path(&bus_path);
4134 
4135 	return (CAM_REQ_CMP);
4136 }
4137 
4138 static path_id_t
4139 xptnextfreepathid(void)
4140 {
4141 	struct cam_eb *bus;
4142 	path_id_t pathid;
4143 	char *strval;
4144 
4145 	pathid = 0;
4146 	bus = TAILQ_FIRST(&xpt_busses);
4147 retry:
4148 	/* Find an unoccupied pathid */
4149 	while (bus != NULL
4150 	    && bus->path_id <= pathid) {
4151 		if (bus->path_id == pathid)
4152 			pathid++;
4153 		bus = TAILQ_NEXT(bus, links);
4154 	}
4155 
4156 	/*
4157 	 * Ensure that this pathid is not reserved for
4158 	 * a bus that may be registered in the future.
4159 	 */
4160 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4161 		++pathid;
4162 		/* Start the search over */
4163 		goto retry;
4164 	}
4165 	return (pathid);
4166 }
4167 
4168 static path_id_t
4169 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4170 {
4171 	path_id_t pathid;
4172 	int i, dunit, val;
4173 	char buf[32], *strval;
4174 
4175 	pathid = CAM_XPT_PATH_ID;
4176 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4177 	i = -1;
4178 	while ((i = resource_locate(i, "scbus")) != -1) {
4179 		dunit = resource_query_unit(i);
4180 		if (dunit < 0)		/* unwired?! */
4181 			continue;
4182 		if (resource_string_value("scbus", dunit, "at", &strval) != 0)
4183 			continue;
4184 		if (strcmp(buf, strval) != 0)
4185 			continue;
4186 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4187 			if (sim_bus == val) {
4188 				pathid = dunit;
4189 				break;
4190 			}
4191 		} else if (sim_bus == 0) {
4192 			/* Unspecified matches bus 0 */
4193 			pathid = dunit;
4194 			break;
4195 		} else {
4196 			printf("Ambiguous scbus configuration for %s%d "
4197 			       "bus %d, cannot wire down.  The kernel "
4198 			       "config entry for scbus%d should "
4199 			       "specify a controller bus.\n"
4200 			       "Scbus will be assigned dynamically.\n",
4201 			       sim_name, sim_unit, sim_bus, dunit);
4202 			break;
4203 		}
4204 	}
4205 
4206 	if (pathid == CAM_XPT_PATH_ID)
4207 		pathid = xptnextfreepathid();
4208 	return (pathid);
4209 }
4210 
4211 void
4212 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4213 {
4214 	struct cam_eb *bus;
4215 	struct cam_et *target, *next_target;
4216 	struct cam_ed *device, *next_device;
4217 	int s;
4218 
4219 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4220 
4221 	/*
4222 	 * Most async events come from a CAM interrupt context.  In
4223 	 * a few cases, the error recovery code at the peripheral layer,
4224 	 * which may run from our SWI or a process context, may signal
4225 	 * deferred events with a call to xpt_async. Ensure async
4226 	 * notifications are serialized by blocking cam interrupts.
4227 	 */
4228 	s = splcam();
4229 
4230 	bus = path->bus;
4231 
4232 	if (async_code == AC_BUS_RESET) {
4233 		/* Update our notion of when the last reset occurred */
4234 		microuptime(&bus->last_reset);
4235 	}
4236 
4237 	for (target = TAILQ_FIRST(&bus->et_entries);
4238 	     target != NULL;
4239 	     target = next_target) {
4240 
4241 		next_target = TAILQ_NEXT(target, links);
4242 
4243 		if (path->target != target
4244 		 && path->target->target_id != CAM_TARGET_WILDCARD
4245 		 && target->target_id != CAM_TARGET_WILDCARD)
4246 			continue;
4247 
4248 		if (async_code == AC_SENT_BDR) {
4249 			/* Update our notion of when the last reset occurred */
4250 			microuptime(&path->target->last_reset);
4251 		}
4252 
4253 		for (device = TAILQ_FIRST(&target->ed_entries);
4254 		     device != NULL;
4255 		     device = next_device) {
4256 
4257 			next_device = TAILQ_NEXT(device, links);
4258 
4259 			if (path->device != device
4260 			 && path->device->lun_id != CAM_LUN_WILDCARD
4261 			 && device->lun_id != CAM_LUN_WILDCARD)
4262 				continue;
4263 
4264 			xpt_dev_async(async_code, bus, target,
4265 				      device, async_arg);
4266 
4267 			xpt_async_bcast(&device->asyncs, async_code,
4268 					path, async_arg);
4269 		}
4270 	}
4271 
4272 	/*
4273 	 * If this wasn't a fully wildcarded async, tell all
4274 	 * clients that want all async events.
4275 	 */
4276 	if (bus != xpt_periph->path->bus)
4277 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4278 				path, async_arg);
4279 	splx(s);
4280 }
4281 
4282 static void
4283 xpt_async_bcast(struct async_list *async_head,
4284 		u_int32_t async_code,
4285 		struct cam_path *path, void *async_arg)
4286 {
4287 	struct async_node *cur_entry;
4288 
4289 	cur_entry = SLIST_FIRST(async_head);
4290 	while (cur_entry != NULL) {
4291 		struct async_node *next_entry;
4292 		/*
4293 		 * Grab the next list entry before we call the current
4294 		 * entry's callback.  This is because the callback function
4295 		 * can delete its async callback entry.
4296 		 */
4297 		next_entry = SLIST_NEXT(cur_entry, links);
4298 		if ((cur_entry->event_enable & async_code) != 0)
4299 			cur_entry->callback(cur_entry->callback_arg,
4300 					    async_code, path,
4301 					    async_arg);
4302 		cur_entry = next_entry;
4303 	}
4304 }
4305 
4306 /*
4307  * Handle any per-device event notifications that require action by the XPT.
4308  */
4309 static void
4310 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4311 	      struct cam_ed *device, void *async_arg)
4312 {
4313 	cam_status status;
4314 	struct cam_path newpath;
4315 
4316 	/*
4317 	 * We only need to handle events for real devices.
4318 	 */
4319 	if (target->target_id == CAM_TARGET_WILDCARD
4320 	 || device->lun_id == CAM_LUN_WILDCARD)
4321 		return;
4322 
4323 	/*
4324 	 * We need our own path with wildcards expanded to
4325 	 * handle certain types of events.
4326 	 */
4327 	if ((async_code == AC_SENT_BDR)
4328 	 || (async_code == AC_BUS_RESET)
4329 	 || (async_code == AC_INQ_CHANGED))
4330 		status = xpt_compile_path(&newpath, NULL,
4331 					  bus->path_id,
4332 					  target->target_id,
4333 					  device->lun_id);
4334 	else
4335 		status = CAM_REQ_CMP_ERR;
4336 
4337 	if (status == CAM_REQ_CMP) {
4338 
4339 		/*
4340 		 * Allow transfer negotiation to occur in a
4341 		 * tag free environment.
4342 		 */
4343 		if (async_code == AC_SENT_BDR
4344 		 || async_code == AC_BUS_RESET)
4345 			xpt_toggle_tags(&newpath);
4346 
4347 		if (async_code == AC_INQ_CHANGED) {
4348 			/*
4349 			 * We've sent a start unit command, or
4350 			 * something similar to a device that
4351 			 * may have caused its inquiry data to
4352 			 * change. So we re-scan the device to
4353 			 * refresh the inquiry data for it.
4354 			 */
4355 			xpt_scan_lun(newpath.periph, &newpath,
4356 				     CAM_EXPECT_INQ_CHANGE, NULL);
4357 		}
4358 		xpt_release_path(&newpath);
4359 	} else if (async_code == AC_LOST_DEVICE) {
4360 		/*
4361 		 * When we lose a device the device may be about to detach
4362 		 * the sim, we have to clear out all pending timeouts and
4363 		 * requests before that happens.  XXX it would be nice if
4364 		 * we could abort the requests pertaining to the device.
4365 		 */
4366 		xpt_release_devq_timeout(device);
4367 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4368 			device->flags |= CAM_DEV_UNCONFIGURED;
4369 			xpt_release_device(bus, target, device);
4370 		}
4371 	} else if (async_code == AC_TRANSFER_NEG) {
4372 		struct ccb_trans_settings *settings;
4373 
4374 		settings = (struct ccb_trans_settings *)async_arg;
4375 		xpt_set_transfer_settings(settings, device,
4376 					  /*async_update*/TRUE);
4377 	}
4378 }
4379 
4380 u_int32_t
4381 xpt_freeze_devq(struct cam_path *path, u_int count)
4382 {
4383 	int s;
4384 	struct ccb_hdr *ccbh;
4385 
4386 	s = splcam();
4387 	path->device->qfrozen_cnt += count;
4388 
4389 	/*
4390 	 * Mark the last CCB in the queue as needing
4391 	 * to be requeued if the driver hasn't
4392 	 * changed it's state yet.  This fixes a race
4393 	 * where a ccb is just about to be queued to
4394 	 * a controller driver when it's interrupt routine
4395 	 * freezes the queue.  To completly close the
4396 	 * hole, controller drives must check to see
4397 	 * if a ccb's status is still CAM_REQ_INPROG
4398 	 * under spl protection just before they queue
4399 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4400 	 * an example.
4401 	 */
4402 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4403 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4404 		ccbh->status = CAM_REQUEUE_REQ;
4405 	splx(s);
4406 	return (path->device->qfrozen_cnt);
4407 }
4408 
4409 u_int32_t
4410 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4411 {
4412 	sim->devq->send_queue.qfrozen_cnt += count;
4413 	if (sim->devq->active_dev != NULL) {
4414 		struct ccb_hdr *ccbh;
4415 
4416 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4417 				  ccb_hdr_tailq);
4418 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4419 			ccbh->status = CAM_REQUEUE_REQ;
4420 	}
4421 	return (sim->devq->send_queue.qfrozen_cnt);
4422 }
4423 
4424 /*
4425  * WARNING: most devices, especially USB/UMASS, may detach their sim early.
4426  * We ref-count the sim (and the bus only NULLs it out when the bus has been
4427  * freed, which is not the case here), but the device queue is also freed XXX
4428  * and we have to check that here.
4429  *
4430  * XXX fixme: could we simply not null-out the device queue via
4431  * cam_sim_free()?
4432  */
4433 static void
4434 xpt_release_devq_timeout(void *arg)
4435 {
4436 	struct cam_ed *device;
4437 
4438 	device = (struct cam_ed *)arg;
4439 
4440 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4441 }
4442 
4443 void
4444 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4445 {
4446 	xpt_release_devq_device(path->device, count, run_queue);
4447 }
4448 
4449 static void
4450 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4451 {
4452 	int	rundevq;
4453 	int	s0, s1;
4454 
4455 	rundevq = 0;
4456 	s0 = splsoftcam();
4457 	s1 = splcam();
4458 
4459 	if (dev->qfrozen_cnt > 0) {
4460 
4461 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4462 		dev->qfrozen_cnt -= count;
4463 		if (dev->qfrozen_cnt == 0) {
4464 
4465 			/*
4466 			 * No longer need to wait for a successful
4467 			 * command completion.
4468 			 */
4469 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4470 
4471 			/*
4472 			 * Remove any timeouts that might be scheduled
4473 			 * to release this queue.
4474 			 */
4475 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4476 				callout_stop(&dev->c_handle);
4477 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4478 			}
4479 
4480 			/*
4481 			 * Now that we are unfrozen schedule the
4482 			 * device so any pending transactions are
4483 			 * run.
4484 			 */
4485 			if ((dev->ccbq.queue.entries > 0)
4486 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4487 			 && (run_queue != 0)) {
4488 				rundevq = 1;
4489 			}
4490 		}
4491 	}
4492 	splx(s1);
4493 	if (rundevq != 0)
4494 		xpt_run_dev_sendq(dev->target->bus);
4495 	splx(s0);
4496 }
4497 
4498 void
4499 xpt_release_simq(struct cam_sim *sim, int run_queue)
4500 {
4501 	int	s;
4502 	struct	camq *sendq;
4503 
4504 	sendq = &(sim->devq->send_queue);
4505 	s = splcam();
4506 	if (sendq->qfrozen_cnt > 0) {
4507 
4508 		sendq->qfrozen_cnt--;
4509 		if (sendq->qfrozen_cnt == 0) {
4510 			struct cam_eb *bus;
4511 
4512 			/*
4513 			 * If there is a timeout scheduled to release this
4514 			 * sim queue, remove it.  The queue frozen count is
4515 			 * already at 0.
4516 			 */
4517 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4518 				callout_stop(&sim->c_handle);
4519 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4520 			}
4521 			bus = xpt_find_bus(sim->path_id);
4522 			splx(s);
4523 
4524 			if (run_queue) {
4525 				/*
4526 				 * Now that we are unfrozen run the send queue.
4527 				 */
4528 				xpt_run_dev_sendq(bus);
4529 			}
4530 			xpt_release_bus(bus);
4531 		} else
4532 			splx(s);
4533 	} else
4534 		splx(s);
4535 }
4536 
4537 static void
4538 xpt_release_simq_timeout(void *arg)
4539 {
4540 	struct cam_sim *sim;
4541 
4542 	sim = (struct cam_sim *)arg;
4543 	xpt_release_simq(sim, /* run_queue */ TRUE);
4544 }
4545 
4546 void
4547 xpt_done(union ccb *done_ccb)
4548 {
4549 	int s;
4550 
4551 	s = splcam();
4552 
4553 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4554 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4555 		/*
4556 		 * Queue up the request for handling by our SWI handler
4557 		 * any of the "non-immediate" type of ccbs.
4558 		 */
4559 		switch (done_ccb->ccb_h.path->periph->type) {
4560 		case CAM_PERIPH_BIO:
4561 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4562 					  sim_links.tqe);
4563 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4564 			setsoftcambio();
4565 			break;
4566 		case CAM_PERIPH_NET:
4567 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4568 					  sim_links.tqe);
4569 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4570 			setsoftcamnet();
4571 			break;
4572 		}
4573 	}
4574 	splx(s);
4575 }
4576 
4577 union ccb *
4578 xpt_alloc_ccb()
4579 {
4580 	union ccb *new_ccb;
4581 
4582 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_INTWAIT);
4583 	return (new_ccb);
4584 }
4585 
4586 void
4587 xpt_free_ccb(union ccb *free_ccb)
4588 {
4589 	free(free_ccb, M_DEVBUF);
4590 }
4591 
4592 
4593 
4594 /* Private XPT functions */
4595 
4596 /*
4597  * Get a CAM control block for the caller. Charge the structure to the device
4598  * referenced by the path.  If the this device has no 'credits' then the
4599  * device already has the maximum number of outstanding operations under way
4600  * and we return NULL. If we don't have sufficient resources to allocate more
4601  * ccbs, we also return NULL.
4602  */
4603 static union ccb *
4604 xpt_get_ccb(struct cam_ed *device)
4605 {
4606 	union ccb *new_ccb;
4607 	int s;
4608 
4609 	s = splsoftcam();
4610 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4611 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_INTWAIT);
4612 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4613 				  xpt_links.sle);
4614 		xpt_ccb_count++;
4615 	}
4616 	cam_ccbq_take_opening(&device->ccbq);
4617 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4618 	splx(s);
4619 	return (new_ccb);
4620 }
4621 
4622 static void
4623 xpt_release_bus(struct cam_eb *bus)
4624 {
4625 
4626 	crit_enter();
4627 	if (bus->refcount == 1) {
4628 		KKASSERT(TAILQ_FIRST(&bus->et_entries) == NULL);
4629 		TAILQ_REMOVE(&xpt_busses, bus, links);
4630 		if (bus->sim) {
4631 			cam_sim_release(bus->sim, 0);
4632 			bus->sim = NULL;
4633 		}
4634 		bus_generation++;
4635 		KKASSERT(bus->refcount == 1);
4636 		free(bus, M_DEVBUF);
4637 	} else {
4638 		--bus->refcount;
4639 	}
4640 	crit_exit();
4641 }
4642 
4643 static struct cam_et *
4644 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4645 {
4646 	struct cam_et *target;
4647 	struct cam_et *cur_target;
4648 
4649 	target = malloc(sizeof(*target), M_DEVBUF, M_INTWAIT);
4650 
4651 	TAILQ_INIT(&target->ed_entries);
4652 	target->bus = bus;
4653 	target->target_id = target_id;
4654 	target->refcount = 1;
4655 	target->generation = 0;
4656 	timevalclear(&target->last_reset);
4657 	/*
4658 	 * Hold a reference to our parent bus so it
4659 	 * will not go away before we do.
4660 	 */
4661 	bus->refcount++;
4662 
4663 	/* Insertion sort into our bus's target list */
4664 	cur_target = TAILQ_FIRST(&bus->et_entries);
4665 	while (cur_target != NULL && cur_target->target_id < target_id)
4666 		cur_target = TAILQ_NEXT(cur_target, links);
4667 
4668 	if (cur_target != NULL) {
4669 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4670 	} else {
4671 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4672 	}
4673 	bus->generation++;
4674 	return (target);
4675 }
4676 
4677 static void
4678 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4679 {
4680 	crit_enter();
4681 	if (target->refcount == 1) {
4682 		KKASSERT(TAILQ_FIRST(&target->ed_entries) == NULL);
4683 		TAILQ_REMOVE(&bus->et_entries, target, links);
4684 		bus->generation++;
4685 		xpt_release_bus(bus);
4686 		KKASSERT(target->refcount == 1);
4687 		free(target, M_DEVBUF);
4688 	} else {
4689 		--target->refcount;
4690 	}
4691 	crit_exit();
4692 }
4693 
4694 static struct cam_ed *
4695 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4696 {
4697 	struct	   cam_ed *device;
4698 	struct	   cam_devq *devq;
4699 	cam_status status;
4700 
4701 	/* Make space for us in the device queue on our bus */
4702 	devq = bus->sim->devq;
4703 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4704 
4705 	if (status != CAM_REQ_CMP) {
4706 		device = NULL;
4707 	} else {
4708 		device = malloc(sizeof(*device), M_DEVBUF, M_INTWAIT);
4709 	}
4710 
4711 	if (device != NULL) {
4712 		struct cam_ed *cur_device;
4713 
4714 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4715 		device->alloc_ccb_entry.device = device;
4716 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4717 		device->send_ccb_entry.device = device;
4718 		device->target = target;
4719 		device->lun_id = lun_id;
4720 		/* Initialize our queues */
4721 		if (camq_init(&device->drvq, 0) != 0) {
4722 			free(device, M_DEVBUF);
4723 			return (NULL);
4724 		}
4725 		if (cam_ccbq_init(&device->ccbq,
4726 				  bus->sim->max_dev_openings) != 0) {
4727 			camq_fini(&device->drvq);
4728 			free(device, M_DEVBUF);
4729 			return (NULL);
4730 		}
4731 		SLIST_INIT(&device->asyncs);
4732 		SLIST_INIT(&device->periphs);
4733 		device->generation = 0;
4734 		device->owner = NULL;
4735 		/*
4736 		 * Take the default quirk entry until we have inquiry
4737 		 * data and can determine a better quirk to use.
4738 		 */
4739 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4740 		bzero(&device->inq_data, sizeof(device->inq_data));
4741 		device->inq_flags = 0;
4742 		device->queue_flags = 0;
4743 		device->serial_num = NULL;
4744 		device->serial_num_len = 0;
4745 		device->qfrozen_cnt = 0;
4746 		device->flags = CAM_DEV_UNCONFIGURED;
4747 		device->tag_delay_count = 0;
4748 		device->refcount = 1;
4749 		callout_init(&device->c_handle);
4750 
4751 		/*
4752 		 * Hold a reference to our parent target so it
4753 		 * will not go away before we do.
4754 		 */
4755 		target->refcount++;
4756 
4757 		/*
4758 		 * XXX should be limited by number of CCBs this bus can
4759 		 * do.
4760 		 */
4761 		xpt_max_ccbs += device->ccbq.devq_openings;
4762 		/* Insertion sort into our target's device list */
4763 		cur_device = TAILQ_FIRST(&target->ed_entries);
4764 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4765 			cur_device = TAILQ_NEXT(cur_device, links);
4766 		if (cur_device != NULL) {
4767 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4768 		} else {
4769 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4770 		}
4771 		target->generation++;
4772 	}
4773 	return (device);
4774 }
4775 
4776 static void
4777 xpt_reference_device(struct cam_ed *device)
4778 {
4779 	++device->refcount;
4780 }
4781 
4782 static void
4783 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4784 		   struct cam_ed *device)
4785 {
4786 	struct cam_devq *devq;
4787 
4788 	crit_enter();
4789 	if (device->refcount == 1) {
4790 		KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
4791 
4792 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4793 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4794 			panic("Removing device while still queued for ccbs");
4795 
4796 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4797 			device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4798 			callout_stop(&device->c_handle);
4799 		}
4800 
4801 		TAILQ_REMOVE(&target->ed_entries, device,links);
4802 		target->generation++;
4803 		xpt_max_ccbs -= device->ccbq.devq_openings;
4804 		/* Release our slot in the devq */
4805 		devq = bus->sim->devq;
4806 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4807 		xpt_release_target(bus, target);
4808 		KKASSERT(device->refcount == 1);
4809 		free(device, M_DEVBUF);
4810 	} else {
4811 		--device->refcount;
4812 	}
4813 	crit_exit();
4814 }
4815 
4816 static u_int32_t
4817 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4818 {
4819 	int	s;
4820 	int	diff;
4821 	int	result;
4822 	struct	cam_ed *dev;
4823 
4824 	dev = path->device;
4825 	s = splsoftcam();
4826 
4827 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4828 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4829 	if (result == CAM_REQ_CMP && (diff < 0)) {
4830 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4831 	}
4832 	/* Adjust the global limit */
4833 	xpt_max_ccbs += diff;
4834 	splx(s);
4835 	return (result);
4836 }
4837 
4838 static struct cam_eb *
4839 xpt_find_bus(path_id_t path_id)
4840 {
4841 	struct cam_eb *bus;
4842 
4843 	for (bus = TAILQ_FIRST(&xpt_busses);
4844 	     bus != NULL;
4845 	     bus = TAILQ_NEXT(bus, links)) {
4846 		if (bus->path_id == path_id) {
4847 			bus->refcount++;
4848 			break;
4849 		}
4850 	}
4851 	return (bus);
4852 }
4853 
4854 static struct cam_et *
4855 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4856 {
4857 	struct cam_et *target;
4858 
4859 	for (target = TAILQ_FIRST(&bus->et_entries);
4860 	     target != NULL;
4861 	     target = TAILQ_NEXT(target, links)) {
4862 		if (target->target_id == target_id) {
4863 			target->refcount++;
4864 			break;
4865 		}
4866 	}
4867 	return (target);
4868 }
4869 
4870 static struct cam_ed *
4871 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4872 {
4873 	struct cam_ed *device;
4874 
4875 	for (device = TAILQ_FIRST(&target->ed_entries);
4876 	     device != NULL;
4877 	     device = TAILQ_NEXT(device, links)) {
4878 		if (device->lun_id == lun_id) {
4879 			device->refcount++;
4880 			break;
4881 		}
4882 	}
4883 	return (device);
4884 }
4885 
4886 typedef struct {
4887 	union	ccb *request_ccb;
4888 	struct 	ccb_pathinq *cpi;
4889 	int	pending_count;
4890 } xpt_scan_bus_info;
4891 
4892 /*
4893  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4894  * As the scan progresses, xpt_scan_bus is used as the
4895  * callback on completion function.
4896  */
4897 static void
4898 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4899 {
4900 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4901 		  ("xpt_scan_bus\n"));
4902 	switch (request_ccb->ccb_h.func_code) {
4903 	case XPT_SCAN_BUS:
4904 	{
4905 		xpt_scan_bus_info *scan_info;
4906 		union	ccb *work_ccb;
4907 		struct	cam_path *path;
4908 		u_int	i;
4909 		u_int	max_target;
4910 		u_int	initiator_id;
4911 
4912 		/* Find out the characteristics of the bus */
4913 		work_ccb = xpt_alloc_ccb();
4914 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4915 			      request_ccb->ccb_h.pinfo.priority);
4916 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4917 		xpt_action(work_ccb);
4918 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4919 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4920 			xpt_free_ccb(work_ccb);
4921 			xpt_done(request_ccb);
4922 			return;
4923 		}
4924 
4925 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4926 			/*
4927 			 * Can't scan the bus on an adapter that
4928 			 * cannot perform the initiator role.
4929 			 */
4930 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4931 			xpt_free_ccb(work_ccb);
4932 			xpt_done(request_ccb);
4933 			return;
4934 		}
4935 
4936 		/* Save some state for use while we probe for devices */
4937 		scan_info = (xpt_scan_bus_info *)
4938 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_INTWAIT);
4939 		scan_info->request_ccb = request_ccb;
4940 		scan_info->cpi = &work_ccb->cpi;
4941 
4942 		/* Cache on our stack so we can work asynchronously */
4943 		max_target = scan_info->cpi->max_target;
4944 		initiator_id = scan_info->cpi->initiator_id;
4945 
4946 		/*
4947 		 * Don't count the initiator if the
4948 		 * initiator is addressable.
4949 		 */
4950 		scan_info->pending_count = max_target + 1;
4951 		if (initiator_id <= max_target)
4952 			scan_info->pending_count--;
4953 
4954 		for (i = 0; i <= max_target; i++) {
4955 			cam_status status;
4956 		 	if (i == initiator_id)
4957 				continue;
4958 
4959 			status = xpt_create_path(&path, xpt_periph,
4960 						 request_ccb->ccb_h.path_id,
4961 						 i, 0);
4962 			if (status != CAM_REQ_CMP) {
4963 				printf("xpt_scan_bus: xpt_create_path failed"
4964 				       " with status %#x, bus scan halted\n",
4965 				       status);
4966 				break;
4967 			}
4968 			work_ccb = xpt_alloc_ccb();
4969 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4970 				      request_ccb->ccb_h.pinfo.priority);
4971 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4972 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4973 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4974 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4975 #if 0
4976 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4977 				request_ccb->ccb_h.path_id, i, 0);
4978 #endif
4979 			xpt_action(work_ccb);
4980 		}
4981 		break;
4982 	}
4983 	case XPT_SCAN_LUN:
4984 	{
4985 		xpt_scan_bus_info *scan_info;
4986 		path_id_t path_id;
4987 		target_id_t target_id;
4988 		lun_id_t lun_id;
4989 
4990 		/* Reuse the same CCB to query if a device was really found */
4991 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4992 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4993 			      request_ccb->ccb_h.pinfo.priority);
4994 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4995 
4996 		path_id = request_ccb->ccb_h.path_id;
4997 		target_id = request_ccb->ccb_h.target_id;
4998 		lun_id = request_ccb->ccb_h.target_lun;
4999 		xpt_action(request_ccb);
5000 
5001 #if 0
5002 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
5003 			path_id, target_id, lun_id);
5004 #endif
5005 
5006 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5007 			struct cam_ed *device;
5008 			struct cam_et *target;
5009 			int s, phl;
5010 
5011 			/*
5012 			 * If we already probed lun 0 successfully, or
5013 			 * we have additional configured luns on this
5014 			 * target that might have "gone away", go onto
5015 			 * the next lun.
5016 			 */
5017 			target = request_ccb->ccb_h.path->target;
5018 			/*
5019 			 * We may touch devices that we don't
5020 			 * hold references too, so ensure they
5021 			 * don't disappear out from under us.
5022 			 * The target above is referenced by the
5023 			 * path in the request ccb.
5024 			 */
5025 			phl = 0;
5026 			s = splcam();
5027 			device = TAILQ_FIRST(&target->ed_entries);
5028 			if (device != NULL) {
5029 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
5030 				if (device->lun_id == 0)
5031 					device = TAILQ_NEXT(device, links);
5032 			}
5033 			splx(s);
5034 			if ((lun_id != 0) || (device != NULL)) {
5035 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5036 					lun_id++;
5037 			}
5038 		} else {
5039 			struct cam_ed *device;
5040 
5041 			device = request_ccb->ccb_h.path->device;
5042 
5043 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5044 				/* Try the next lun */
5045 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
5046 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
5047 					lun_id++;
5048 			}
5049 		}
5050 
5051 		xpt_free_path(request_ccb->ccb_h.path);
5052 
5053 		/* Check Bounds */
5054 		if ((lun_id == request_ccb->ccb_h.target_lun)
5055 		 || lun_id > scan_info->cpi->max_lun) {
5056 			/* We're done */
5057 
5058 			xpt_free_ccb(request_ccb);
5059 			scan_info->pending_count--;
5060 			if (scan_info->pending_count == 0) {
5061 				xpt_free_ccb((union ccb *)scan_info->cpi);
5062 				request_ccb = scan_info->request_ccb;
5063 				free(scan_info, M_TEMP);
5064 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5065 				xpt_done(request_ccb);
5066 			}
5067 		} else {
5068 			/* Try the next device */
5069 			struct cam_path *path;
5070 			cam_status status;
5071 
5072 			path = request_ccb->ccb_h.path;
5073 			status = xpt_create_path(&path, xpt_periph,
5074 						 path_id, target_id, lun_id);
5075 			if (status != CAM_REQ_CMP) {
5076 				printf("xpt_scan_bus: xpt_create_path failed "
5077 				       "with status %#x, halting LUN scan\n",
5078 			 	       status);
5079 				xpt_free_ccb(request_ccb);
5080 				scan_info->pending_count--;
5081 				if (scan_info->pending_count == 0) {
5082 					xpt_free_ccb(
5083 						(union ccb *)scan_info->cpi);
5084 					request_ccb = scan_info->request_ccb;
5085 					free(scan_info, M_TEMP);
5086 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5087 					xpt_done(request_ccb);
5088 					break;
5089 				}
5090 			}
5091 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5092 				      request_ccb->ccb_h.pinfo.priority);
5093 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5094 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5095 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5096 			request_ccb->crcn.flags =
5097 				scan_info->request_ccb->crcn.flags;
5098 #if 0
5099 			xpt_print_path(path);
5100 			printf("xpt_scan bus probing\n");
5101 #endif
5102 			xpt_action(request_ccb);
5103 		}
5104 		break;
5105 	}
5106 	default:
5107 		break;
5108 	}
5109 }
5110 
5111 typedef enum {
5112 	PROBE_TUR,
5113 	PROBE_INQUIRY,
5114 	PROBE_FULL_INQUIRY,
5115 	PROBE_MODE_SENSE,
5116 	PROBE_SERIAL_NUM,
5117 	PROBE_TUR_FOR_NEGOTIATION
5118 } probe_action;
5119 
5120 typedef enum {
5121 	PROBE_INQUIRY_CKSUM	= 0x01,
5122 	PROBE_SERIAL_CKSUM	= 0x02,
5123 	PROBE_NO_ANNOUNCE	= 0x04
5124 } probe_flags;
5125 
5126 typedef struct {
5127 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5128 	probe_action	action;
5129 	union ccb	saved_ccb;
5130 	probe_flags	flags;
5131 	MD5_CTX		context;
5132 	u_int8_t	digest[16];
5133 } probe_softc;
5134 
5135 static void
5136 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5137 	     cam_flags flags, union ccb *request_ccb)
5138 {
5139 	struct ccb_pathinq cpi;
5140 	cam_status status;
5141 	struct cam_path *new_path;
5142 	struct cam_periph *old_periph;
5143 	int s;
5144 
5145 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5146 		  ("xpt_scan_lun\n"));
5147 
5148 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5149 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5150 	xpt_action((union ccb *)&cpi);
5151 
5152 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5153 		if (request_ccb != NULL) {
5154 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5155 			xpt_done(request_ccb);
5156 		}
5157 		return;
5158 	}
5159 
5160 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5161 		/*
5162 		 * Can't scan the bus on an adapter that
5163 		 * cannot perform the initiator role.
5164 		 */
5165 		if (request_ccb != NULL) {
5166 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5167 			xpt_done(request_ccb);
5168 		}
5169 		return;
5170 	}
5171 
5172 	if (request_ccb == NULL) {
5173 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_INTWAIT);
5174 		new_path = malloc(sizeof(*new_path), M_TEMP, M_INTWAIT);
5175 		status = xpt_compile_path(new_path, xpt_periph,
5176 					  path->bus->path_id,
5177 					  path->target->target_id,
5178 					  path->device->lun_id);
5179 
5180 		if (status != CAM_REQ_CMP) {
5181 			xpt_print_path(path);
5182 			printf("xpt_scan_lun: can't compile path, can't "
5183 			       "continue\n");
5184 			free(request_ccb, M_TEMP);
5185 			free(new_path, M_TEMP);
5186 			return;
5187 		}
5188 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5189 		request_ccb->ccb_h.cbfcnp = xptscandone;
5190 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5191 		request_ccb->crcn.flags = flags;
5192 	}
5193 
5194 	s = splsoftcam();
5195 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5196 		probe_softc *softc;
5197 
5198 		softc = (probe_softc *)old_periph->softc;
5199 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5200 				  periph_links.tqe);
5201 	} else {
5202 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5203 					  probestart, "probe",
5204 					  CAM_PERIPH_BIO,
5205 					  request_ccb->ccb_h.path, NULL, 0,
5206 					  request_ccb);
5207 
5208 		if (status != CAM_REQ_CMP) {
5209 			xpt_print_path(path);
5210 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5211 			       "error, can't continue probe\n");
5212 			request_ccb->ccb_h.status = status;
5213 			xpt_done(request_ccb);
5214 		}
5215 	}
5216 	splx(s);
5217 }
5218 
5219 static void
5220 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5221 {
5222 	xpt_release_path(done_ccb->ccb_h.path);
5223 	free(done_ccb->ccb_h.path, M_TEMP);
5224 	free(done_ccb, M_TEMP);
5225 }
5226 
5227 static cam_status
5228 proberegister(struct cam_periph *periph, void *arg)
5229 {
5230 	union ccb *request_ccb;	/* CCB representing the probe request */
5231 	probe_softc *softc;
5232 
5233 	request_ccb = (union ccb *)arg;
5234 	if (periph == NULL) {
5235 		printf("proberegister: periph was NULL!!\n");
5236 		return(CAM_REQ_CMP_ERR);
5237 	}
5238 
5239 	if (request_ccb == NULL) {
5240 		printf("proberegister: no probe CCB, "
5241 		       "can't register device\n");
5242 		return(CAM_REQ_CMP_ERR);
5243 	}
5244 
5245 	softc = malloc(sizeof(*softc), M_TEMP, M_INTWAIT | M_ZERO);
5246 	TAILQ_INIT(&softc->request_ccbs);
5247 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5248 			  periph_links.tqe);
5249 	softc->flags = 0;
5250 	periph->softc = softc;
5251 	cam_periph_acquire(periph);
5252 	/*
5253 	 * Ensure we've waited at least a bus settle
5254 	 * delay before attempting to probe the device.
5255 	 * For HBAs that don't do bus resets, this won't make a difference.
5256 	 */
5257 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5258 				      SCSI_DELAY);
5259 	probeschedule(periph);
5260 	return(CAM_REQ_CMP);
5261 }
5262 
5263 static void
5264 probeschedule(struct cam_periph *periph)
5265 {
5266 	struct ccb_pathinq cpi;
5267 	union ccb *ccb;
5268 	probe_softc *softc;
5269 
5270 	softc = (probe_softc *)periph->softc;
5271 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5272 
5273 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5274 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5275 	xpt_action((union ccb *)&cpi);
5276 
5277 	/*
5278 	 * If a device has gone away and another device, or the same one,
5279 	 * is back in the same place, it should have a unit attention
5280 	 * condition pending.  It will not report the unit attention in
5281 	 * response to an inquiry, which may leave invalid transfer
5282 	 * negotiations in effect.  The TUR will reveal the unit attention
5283 	 * condition.  Only send the TUR for lun 0, since some devices
5284 	 * will get confused by commands other than inquiry to non-existent
5285 	 * luns.  If you think a device has gone away start your scan from
5286 	 * lun 0.  This will insure that any bogus transfer settings are
5287 	 * invalidated.
5288 	 *
5289 	 * If we haven't seen the device before and the controller supports
5290 	 * some kind of transfer negotiation, negotiate with the first
5291 	 * sent command if no bus reset was performed at startup.  This
5292 	 * ensures that the device is not confused by transfer negotiation
5293 	 * settings left over by loader or BIOS action.
5294 	 */
5295 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5296 	 && (ccb->ccb_h.target_lun == 0)) {
5297 		softc->action = PROBE_TUR;
5298 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5299 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5300 		proberequestdefaultnegotiation(periph);
5301 		softc->action = PROBE_INQUIRY;
5302 	} else {
5303 		softc->action = PROBE_INQUIRY;
5304 	}
5305 
5306 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5307 		softc->flags |= PROBE_NO_ANNOUNCE;
5308 	else
5309 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5310 
5311 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5312 }
5313 
5314 static void
5315 probestart(struct cam_periph *periph, union ccb *start_ccb)
5316 {
5317 	/* Probe the device that our peripheral driver points to */
5318 	struct ccb_scsiio *csio;
5319 	probe_softc *softc;
5320 
5321 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5322 
5323 	softc = (probe_softc *)periph->softc;
5324 	csio = &start_ccb->csio;
5325 
5326 	switch (softc->action) {
5327 	case PROBE_TUR:
5328 	case PROBE_TUR_FOR_NEGOTIATION:
5329 	{
5330 		scsi_test_unit_ready(csio,
5331 				     /*retries*/4,
5332 				     probedone,
5333 				     MSG_SIMPLE_Q_TAG,
5334 				     SSD_FULL_SIZE,
5335 				     /*timeout*/60000);
5336 		break;
5337 	}
5338 	case PROBE_INQUIRY:
5339 	case PROBE_FULL_INQUIRY:
5340 	{
5341 		u_int inquiry_len;
5342 		struct scsi_inquiry_data *inq_buf;
5343 
5344 		inq_buf = &periph->path->device->inq_data;
5345 		/*
5346 		 * If the device is currently configured, we calculate an
5347 		 * MD5 checksum of the inquiry data, and if the serial number
5348 		 * length is greater than 0, add the serial number data
5349 		 * into the checksum as well.  Once the inquiry and the
5350 		 * serial number check finish, we attempt to figure out
5351 		 * whether we still have the same device.
5352 		 */
5353 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5354 
5355 			MD5Init(&softc->context);
5356 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5357 				  sizeof(struct scsi_inquiry_data));
5358 			softc->flags |= PROBE_INQUIRY_CKSUM;
5359 			if (periph->path->device->serial_num_len > 0) {
5360 				MD5Update(&softc->context,
5361 					  periph->path->device->serial_num,
5362 					  periph->path->device->serial_num_len);
5363 				softc->flags |= PROBE_SERIAL_CKSUM;
5364 			}
5365 			MD5Final(softc->digest, &softc->context);
5366 		}
5367 
5368 		if (softc->action == PROBE_INQUIRY)
5369 			inquiry_len = SHORT_INQUIRY_LENGTH;
5370 		else
5371 			inquiry_len = inq_buf->additional_length + 5;
5372 
5373 		scsi_inquiry(csio,
5374 			     /*retries*/4,
5375 			     probedone,
5376 			     MSG_SIMPLE_Q_TAG,
5377 			     (u_int8_t *)inq_buf,
5378 			     inquiry_len,
5379 			     /*evpd*/FALSE,
5380 			     /*page_code*/0,
5381 			     SSD_MIN_SIZE,
5382 			     /*timeout*/60 * 1000);
5383 		break;
5384 	}
5385 	case PROBE_MODE_SENSE:
5386 	{
5387 		void  *mode_buf;
5388 		int    mode_buf_len;
5389 
5390 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5391 			     + sizeof(struct scsi_mode_blk_desc)
5392 			     + sizeof(struct scsi_control_page);
5393 		mode_buf = malloc(mode_buf_len, M_TEMP, M_INTWAIT);
5394 		scsi_mode_sense(csio,
5395 				/*retries*/4,
5396 				probedone,
5397 				MSG_SIMPLE_Q_TAG,
5398 				/*dbd*/FALSE,
5399 				SMS_PAGE_CTRL_CURRENT,
5400 				SMS_CONTROL_MODE_PAGE,
5401 				mode_buf,
5402 				mode_buf_len,
5403 				SSD_FULL_SIZE,
5404 				/*timeout*/60000);
5405 		break;
5406 	}
5407 	case PROBE_SERIAL_NUM:
5408 	{
5409 		struct scsi_vpd_unit_serial_number *serial_buf;
5410 		struct cam_ed* device;
5411 
5412 		serial_buf = NULL;
5413 		device = periph->path->device;
5414 		device->serial_num = NULL;
5415 		device->serial_num_len = 0;
5416 
5417 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5418 			serial_buf = malloc(sizeof(*serial_buf), M_TEMP,
5419 					    M_INTWAIT | M_ZERO);
5420 			scsi_inquiry(csio,
5421 				     /*retries*/4,
5422 				     probedone,
5423 				     MSG_SIMPLE_Q_TAG,
5424 				     (u_int8_t *)serial_buf,
5425 				     sizeof(*serial_buf),
5426 				     /*evpd*/TRUE,
5427 				     SVPD_UNIT_SERIAL_NUMBER,
5428 				     SSD_MIN_SIZE,
5429 				     /*timeout*/60 * 1000);
5430 			break;
5431 		}
5432 		/*
5433 		 * We'll have to do without, let our probedone
5434 		 * routine finish up for us.
5435 		 */
5436 		start_ccb->csio.data_ptr = NULL;
5437 		probedone(periph, start_ccb);
5438 		return;
5439 	}
5440 	}
5441 	xpt_action(start_ccb);
5442 }
5443 
5444 static void
5445 proberequestdefaultnegotiation(struct cam_periph *periph)
5446 {
5447 	struct ccb_trans_settings cts;
5448 
5449 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5450 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5451 	cts.flags = CCB_TRANS_USER_SETTINGS;
5452 	xpt_action((union ccb *)&cts);
5453 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5454 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5455 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5456 	xpt_action((union ccb *)&cts);
5457 }
5458 
5459 static void
5460 probedone(struct cam_periph *periph, union ccb *done_ccb)
5461 {
5462 	probe_softc *softc;
5463 	struct cam_path *path;
5464 	u_int32_t  priority;
5465 
5466 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5467 
5468 	softc = (probe_softc *)periph->softc;
5469 	path = done_ccb->ccb_h.path;
5470 	priority = done_ccb->ccb_h.pinfo.priority;
5471 
5472 	switch (softc->action) {
5473 	case PROBE_TUR:
5474 	{
5475 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5476 
5477 			if (cam_periph_error(done_ccb, 0,
5478 					     SF_NO_PRINT, NULL) == ERESTART)
5479 				return;
5480 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5481 				/* Don't wedge the queue */
5482 				xpt_release_devq(done_ccb->ccb_h.path,
5483 						 /*count*/1,
5484 						 /*run_queue*/TRUE);
5485 		}
5486 		softc->action = PROBE_INQUIRY;
5487 		xpt_release_ccb(done_ccb);
5488 		xpt_schedule(periph, priority);
5489 		return;
5490 	}
5491 	case PROBE_INQUIRY:
5492 	case PROBE_FULL_INQUIRY:
5493 	{
5494 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5495 			struct scsi_inquiry_data *inq_buf;
5496 			u_int8_t periph_qual;
5497 
5498 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5499 			inq_buf = &path->device->inq_data;
5500 
5501 			periph_qual = SID_QUAL(inq_buf);
5502 
5503 			switch(periph_qual) {
5504 			case SID_QUAL_LU_CONNECTED:
5505 			{
5506 				u_int8_t alen;
5507 
5508 				/*
5509 				 * We conservatively request only
5510 				 * SHORT_INQUIRY_LEN bytes of inquiry
5511 				 * information during our first try
5512 				 * at sending an INQUIRY. If the device
5513 				 * has more information to give,
5514 				 * perform a second request specifying
5515 				 * the amount of information the device
5516 				 * is willing to give.
5517 				 */
5518 				alen = inq_buf->additional_length;
5519 				if (softc->action == PROBE_INQUIRY
5520 				 && alen > (SHORT_INQUIRY_LENGTH - 5)) {
5521 					softc->action = PROBE_FULL_INQUIRY;
5522 					xpt_release_ccb(done_ccb);
5523 					xpt_schedule(periph, priority);
5524 					return;
5525 				}
5526 
5527 				xpt_find_quirk(path->device);
5528 
5529 				if ((inq_buf->flags & SID_CmdQue) != 0)
5530 					softc->action = PROBE_MODE_SENSE;
5531 				else
5532 					softc->action = PROBE_SERIAL_NUM;
5533 
5534 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5535 				xpt_reference_device(path->device);
5536 
5537 				xpt_release_ccb(done_ccb);
5538 				xpt_schedule(periph, priority);
5539 				return;
5540 			}
5541 			default:
5542 				break;
5543 			}
5544 		} else if (cam_periph_error(done_ccb, 0,
5545 					    done_ccb->ccb_h.target_lun > 0
5546 					    ? SF_RETRY_UA|SF_QUIET_IR
5547 					    : SF_RETRY_UA,
5548 					    &softc->saved_ccb) == ERESTART) {
5549 			return;
5550 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5551 			/* Don't wedge the queue */
5552 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5553 					 /*run_queue*/TRUE);
5554 		}
5555 		/*
5556 		 * If we get to this point, we got an error status back
5557 		 * from the inquiry and the error status doesn't require
5558 		 * automatically retrying the command.  Therefore, the
5559 		 * inquiry failed.  If we had inquiry information before
5560 		 * for this device, but this latest inquiry command failed,
5561 		 * the device has probably gone away.  If this device isn't
5562 		 * already marked unconfigured, notify the peripheral
5563 		 * drivers that this device is no more.
5564 		 */
5565 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5566 			/* Send the async notification. */
5567 			xpt_async(AC_LOST_DEVICE, path, NULL);
5568 		}
5569 
5570 		xpt_release_ccb(done_ccb);
5571 		break;
5572 	}
5573 	case PROBE_MODE_SENSE:
5574 	{
5575 		struct ccb_scsiio *csio;
5576 		struct scsi_mode_header_6 *mode_hdr;
5577 
5578 		csio = &done_ccb->csio;
5579 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5580 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5581 			struct scsi_control_page *page;
5582 			u_int8_t *offset;
5583 
5584 			offset = ((u_int8_t *)&mode_hdr[1])
5585 			    + mode_hdr->blk_desc_len;
5586 			page = (struct scsi_control_page *)offset;
5587 			path->device->queue_flags = page->queue_flags;
5588 		} else if (cam_periph_error(done_ccb, 0,
5589 					    SF_RETRY_UA|SF_NO_PRINT,
5590 					    &softc->saved_ccb) == ERESTART) {
5591 			return;
5592 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5593 			/* Don't wedge the queue */
5594 			xpt_release_devq(done_ccb->ccb_h.path,
5595 					 /*count*/1, /*run_queue*/TRUE);
5596 		}
5597 		xpt_release_ccb(done_ccb);
5598 		free(mode_hdr, M_TEMP);
5599 		softc->action = PROBE_SERIAL_NUM;
5600 		xpt_schedule(periph, priority);
5601 		return;
5602 	}
5603 	case PROBE_SERIAL_NUM:
5604 	{
5605 		struct ccb_scsiio *csio;
5606 		struct scsi_vpd_unit_serial_number *serial_buf;
5607 		u_int32_t  priority;
5608 		int changed;
5609 		int have_serialnum;
5610 
5611 		changed = 1;
5612 		have_serialnum = 0;
5613 		csio = &done_ccb->csio;
5614 		priority = done_ccb->ccb_h.pinfo.priority;
5615 		serial_buf =
5616 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5617 
5618 		/* Clean up from previous instance of this device */
5619 		if (path->device->serial_num != NULL) {
5620 			free(path->device->serial_num, M_DEVBUF);
5621 			path->device->serial_num = NULL;
5622 			path->device->serial_num_len = 0;
5623 		}
5624 
5625 		if (serial_buf == NULL) {
5626 			/*
5627 			 * Don't process the command as it was never sent
5628 			 */
5629 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5630 			&& (serial_buf->length > 0)) {
5631 
5632 			have_serialnum = 1;
5633 			path->device->serial_num =
5634 				malloc((serial_buf->length + 1),
5635 				       M_DEVBUF, M_INTWAIT);
5636 			bcopy(serial_buf->serial_num,
5637 			      path->device->serial_num,
5638 			      serial_buf->length);
5639 			path->device->serial_num_len = serial_buf->length;
5640 			path->device->serial_num[serial_buf->length] = '\0';
5641 		} else if (cam_periph_error(done_ccb, 0,
5642 					    SF_RETRY_UA|SF_NO_PRINT,
5643 					    &softc->saved_ccb) == ERESTART) {
5644 			return;
5645 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5646 			/* Don't wedge the queue */
5647 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5648 					 /*run_queue*/TRUE);
5649 		}
5650 
5651 		/*
5652 		 * Let's see if we have seen this device before.
5653 		 */
5654 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5655 			MD5_CTX context;
5656 			u_int8_t digest[16];
5657 
5658 			MD5Init(&context);
5659 
5660 			MD5Update(&context,
5661 				  (unsigned char *)&path->device->inq_data,
5662 				  sizeof(struct scsi_inquiry_data));
5663 
5664 			if (have_serialnum)
5665 				MD5Update(&context, serial_buf->serial_num,
5666 					  serial_buf->length);
5667 
5668 			MD5Final(digest, &context);
5669 			if (bcmp(softc->digest, digest, 16) == 0)
5670 				changed = 0;
5671 
5672 			/*
5673 			 * XXX Do we need to do a TUR in order to ensure
5674 			 *     that the device really hasn't changed???
5675 			 */
5676 			if ((changed != 0)
5677 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5678 				xpt_async(AC_LOST_DEVICE, path, NULL);
5679 		}
5680 		if (serial_buf != NULL)
5681 			free(serial_buf, M_TEMP);
5682 
5683 		if (changed != 0) {
5684 			/*
5685 			 * Now that we have all the necessary
5686 			 * information to safely perform transfer
5687 			 * negotiations... Controllers don't perform
5688 			 * any negotiation or tagged queuing until
5689 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5690 			 * received.  So, on a new device, just retreive
5691 			 * the user settings, and set them as the current
5692 			 * settings to set the device up.
5693 			 */
5694 			proberequestdefaultnegotiation(periph);
5695 			xpt_release_ccb(done_ccb);
5696 
5697 			/*
5698 			 * Perform a TUR to allow the controller to
5699 			 * perform any necessary transfer negotiation.
5700 			 */
5701 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5702 			xpt_schedule(periph, priority);
5703 			return;
5704 		}
5705 		xpt_release_ccb(done_ccb);
5706 		break;
5707 	}
5708 	case PROBE_TUR_FOR_NEGOTIATION:
5709 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5710 			/* Don't wedge the queue */
5711 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5712 					 /*run_queue*/TRUE);
5713 		}
5714 
5715 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5716 		xpt_reference_device(path->device);
5717 
5718 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5719 			/* Inform the XPT that a new device has been found */
5720 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5721 			xpt_action(done_ccb);
5722 
5723 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5724 		}
5725 		xpt_release_ccb(done_ccb);
5726 		break;
5727 	}
5728 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5729 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5730 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5731 	xpt_done(done_ccb);
5732 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5733 		cam_periph_invalidate(periph);
5734 		cam_periph_release(periph);
5735 	} else {
5736 		probeschedule(periph);
5737 	}
5738 }
5739 
5740 static void
5741 probecleanup(struct cam_periph *periph)
5742 {
5743 	free(periph->softc, M_TEMP);
5744 }
5745 
5746 static void
5747 xpt_find_quirk(struct cam_ed *device)
5748 {
5749 	caddr_t	match;
5750 
5751 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5752 			       (caddr_t)xpt_quirk_table,
5753 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5754 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5755 
5756 	if (match == NULL)
5757 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5758 
5759 	device->quirk = (struct xpt_quirk_entry *)match;
5760 }
5761 
5762 static void
5763 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5764 			  int async_update)
5765 {
5766 	struct	cam_sim *sim;
5767 	int	qfrozen;
5768 
5769 	sim = cts->ccb_h.path->bus->sim;
5770 	if (async_update == FALSE) {
5771 		struct	scsi_inquiry_data *inq_data;
5772 		struct	ccb_pathinq cpi;
5773 		struct	ccb_trans_settings cur_cts;
5774 
5775 		if (device == NULL) {
5776 			cts->ccb_h.status = CAM_PATH_INVALID;
5777 			xpt_done((union ccb *)cts);
5778 			return;
5779 		}
5780 
5781 		/*
5782 		 * Perform sanity checking against what the
5783 		 * controller and device can do.
5784 		 */
5785 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5786 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5787 		xpt_action((union ccb *)&cpi);
5788 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5789 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5790 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5791 		xpt_action((union ccb *)&cur_cts);
5792 		inq_data = &device->inq_data;
5793 
5794 		/* Fill in any gaps in what the user gave us */
5795 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5796 			cts->sync_period = cur_cts.sync_period;
5797 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5798 			cts->sync_offset = cur_cts.sync_offset;
5799 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5800 			cts->bus_width = cur_cts.bus_width;
5801 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5802 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5803 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5804 		}
5805 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5806 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5807 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5808 		}
5809 
5810 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5811 		  && (inq_data->flags & SID_Sync) == 0)
5812 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
5813 		 || (cts->sync_offset == 0)
5814 		 || (cts->sync_period == 0)) {
5815 			/* Force async */
5816 			cts->sync_period = 0;
5817 			cts->sync_offset = 0;
5818 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) {
5819 
5820 			if ((inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
5821 			 && cts->sync_period <= 0x9) {
5822 				/*
5823 				 * Don't allow DT transmission rates if the
5824 				 * device does not support it.
5825 				 */
5826 				cts->sync_period = 0xa;
5827 			}
5828 			if ((inq_data->spi3data & SID_SPI_IUS) == 0
5829 			 && cts->sync_period <= 0x8) {
5830 				/*
5831 				 * Don't allow PACE transmission rates
5832 				 * if the device does support packetized
5833 				 * transfers.
5834 				 */
5835 				cts->sync_period = 0x9;
5836 			}
5837 		}
5838 
5839 		switch (cts->bus_width) {
5840 		case MSG_EXT_WDTR_BUS_32_BIT:
5841 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5842 			  || (inq_data->flags & SID_WBus32) != 0)
5843 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5844 				break;
5845 			/* Fall Through to 16-bit */
5846 		case MSG_EXT_WDTR_BUS_16_BIT:
5847 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5848 			  || (inq_data->flags & SID_WBus16) != 0)
5849 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5850 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5851 				break;
5852 			}
5853 			/* Fall Through to 8-bit */
5854 		default: /* New bus width?? */
5855 		case MSG_EXT_WDTR_BUS_8_BIT:
5856 			/* All targets can do this */
5857 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5858 			break;
5859 		}
5860 
5861 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5862 			/*
5863 			 * Can't tag queue without disconnection.
5864 			 */
5865 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5866 			cts->valid |= CCB_TRANS_TQ_VALID;
5867 		}
5868 
5869 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5870 		 || (inq_data->flags & SID_CmdQue) == 0
5871 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5872 		 || (device->quirk->mintags == 0)) {
5873 			/*
5874 			 * Can't tag on hardware that doesn't support,
5875 			 * doesn't have it enabled, or has broken tag support.
5876 			 */
5877 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5878 		}
5879 	}
5880 
5881 	qfrozen = FALSE;
5882 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
5883 		int device_tagenb;
5884 
5885 		/*
5886 		 * If we are transitioning from tags to no-tags or
5887 		 * vice-versa, we need to carefully freeze and restart
5888 		 * the queue so that we don't overlap tagged and non-tagged
5889 		 * commands.  We also temporarily stop tags if there is
5890 		 * a change in transfer negotiation settings to allow
5891 		 * "tag-less" negotiation.
5892 		 */
5893 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5894 		 || (device->inq_flags & SID_CmdQue) != 0)
5895 			device_tagenb = TRUE;
5896 		else
5897 			device_tagenb = FALSE;
5898 
5899 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5900 		  && device_tagenb == FALSE)
5901 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5902 		  && device_tagenb == TRUE)) {
5903 
5904 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5905 				/*
5906 				 * Delay change to use tags until after a
5907 				 * few commands have gone to this device so
5908 				 * the controller has time to perform transfer
5909 				 * negotiations without tagged messages getting
5910 				 * in the way.
5911 				 */
5912 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5913 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5914 			} else {
5915 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5916 				qfrozen = TRUE;
5917 		  		device->inq_flags &= ~SID_CmdQue;
5918 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5919 						    sim->max_dev_openings);
5920 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5921 				device->tag_delay_count = 0;
5922 			}
5923 		}
5924 	}
5925 
5926 	if (async_update == FALSE) {
5927 		/*
5928 		 * If we are currently performing tagged transactions to
5929 		 * this device and want to change its negotiation parameters,
5930 		 * go non-tagged for a bit to give the controller a chance to
5931 		 * negotiate unhampered by tag messages.
5932 		 */
5933 		if ((device->inq_flags & SID_CmdQue) != 0
5934 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5935 				   CCB_TRANS_SYNC_OFFSET_VALID|
5936 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5937 			xpt_toggle_tags(cts->ccb_h.path);
5938 
5939 		(*(sim->sim_action))(sim, (union ccb *)cts);
5940 	}
5941 
5942 	if (qfrozen) {
5943 		struct ccb_relsim crs;
5944 
5945 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5946 			      /*priority*/1);
5947 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5948 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5949 		crs.openings
5950 		    = crs.release_timeout
5951 		    = crs.qfrozen_cnt
5952 		    = 0;
5953 		xpt_action((union ccb *)&crs);
5954 	}
5955 }
5956 
5957 static void
5958 xpt_toggle_tags(struct cam_path *path)
5959 {
5960 	struct cam_ed *dev;
5961 
5962 	/*
5963 	 * Give controllers a chance to renegotiate
5964 	 * before starting tag operations.  We
5965 	 * "toggle" tagged queuing off then on
5966 	 * which causes the tag enable command delay
5967 	 * counter to come into effect.
5968 	 */
5969 	dev = path->device;
5970 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5971 	 || ((dev->inq_flags & SID_CmdQue) != 0
5972  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5973 		struct ccb_trans_settings cts;
5974 
5975 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5976 		cts.flags = 0;
5977 		cts.valid = CCB_TRANS_TQ_VALID;
5978 		xpt_set_transfer_settings(&cts, path->device,
5979 					  /*async_update*/TRUE);
5980 		cts.flags = CCB_TRANS_TAG_ENB;
5981 		xpt_set_transfer_settings(&cts, path->device,
5982 					  /*async_update*/TRUE);
5983 	}
5984 }
5985 
5986 static void
5987 xpt_start_tags(struct cam_path *path)
5988 {
5989 	struct ccb_relsim crs;
5990 	struct cam_ed *device;
5991 	struct cam_sim *sim;
5992 	int    newopenings;
5993 
5994 	device = path->device;
5995 	sim = path->bus->sim;
5996 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5997 	xpt_freeze_devq(path, /*count*/1);
5998 	device->inq_flags |= SID_CmdQue;
5999 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
6000 	xpt_dev_ccbq_resize(path, newopenings);
6001 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6002 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6003 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6004 	crs.openings
6005 	    = crs.release_timeout
6006 	    = crs.qfrozen_cnt
6007 	    = 0;
6008 	xpt_action((union ccb *)&crs);
6009 }
6010 
6011 static int busses_to_config;
6012 static int busses_to_reset;
6013 
6014 static int
6015 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6016 {
6017 	if (bus->path_id != CAM_XPT_PATH_ID) {
6018 		struct cam_path path;
6019 		struct ccb_pathinq cpi;
6020 		int can_negotiate;
6021 
6022 		busses_to_config++;
6023 		xpt_compile_path(&path, NULL, bus->path_id,
6024 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6025 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6026 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6027 		xpt_action((union ccb *)&cpi);
6028 		can_negotiate = cpi.hba_inquiry;
6029 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6030 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6031 		 && can_negotiate)
6032 			busses_to_reset++;
6033 		xpt_release_path(&path);
6034 	}
6035 
6036 	return(1);
6037 }
6038 
6039 static int
6040 xptconfigfunc(struct cam_eb *bus, void *arg)
6041 {
6042 	struct	cam_path *path;
6043 	union	ccb *work_ccb;
6044 
6045 	if (bus->path_id != CAM_XPT_PATH_ID) {
6046 		cam_status status;
6047 		int can_negotiate;
6048 
6049 		work_ccb = xpt_alloc_ccb();
6050 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6051 					      CAM_TARGET_WILDCARD,
6052 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6053 			printf("xptconfigfunc: xpt_create_path failed with "
6054 			       "status %#x for bus %d\n", status, bus->path_id);
6055 			printf("xptconfigfunc: halting bus configuration\n");
6056 			xpt_free_ccb(work_ccb);
6057 			busses_to_config--;
6058 			xpt_finishconfig(xpt_periph, NULL);
6059 			return(0);
6060 		}
6061 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6062 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6063 		xpt_action(work_ccb);
6064 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6065 			printf("xptconfigfunc: CPI failed on bus %d "
6066 			       "with status %d\n", bus->path_id,
6067 			       work_ccb->ccb_h.status);
6068 			xpt_finishconfig(xpt_periph, work_ccb);
6069 			return(1);
6070 		}
6071 
6072 		can_negotiate = work_ccb->cpi.hba_inquiry;
6073 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6074 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6075 		 && (can_negotiate != 0)) {
6076 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6077 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6078 			work_ccb->ccb_h.cbfcnp = NULL;
6079 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6080 				  ("Resetting Bus\n"));
6081 			xpt_action(work_ccb);
6082 			xpt_finishconfig(xpt_periph, work_ccb);
6083 		} else {
6084 			/* Act as though we performed a successful BUS RESET */
6085 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6086 			xpt_finishconfig(xpt_periph, work_ccb);
6087 		}
6088 	}
6089 
6090 	return(1);
6091 }
6092 
6093 static void
6094 xpt_config(void *arg)
6095 {
6096 	/* Now that interrupts are enabled, go find our devices */
6097 
6098 #ifdef CAMDEBUG
6099 	/* Setup debugging flags and path */
6100 #ifdef CAM_DEBUG_FLAGS
6101 	cam_dflags = CAM_DEBUG_FLAGS;
6102 #else /* !CAM_DEBUG_FLAGS */
6103 	cam_dflags = CAM_DEBUG_NONE;
6104 #endif /* CAM_DEBUG_FLAGS */
6105 #ifdef CAM_DEBUG_BUS
6106 	if (cam_dflags != CAM_DEBUG_NONE) {
6107 		if (xpt_create_path(&cam_dpath, xpt_periph,
6108 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6109 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6110 			printf("xpt_config: xpt_create_path() failed for debug"
6111 			       " target %d:%d:%d, debugging disabled\n",
6112 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6113 			cam_dflags = CAM_DEBUG_NONE;
6114 		}
6115 	} else
6116 		cam_dpath = NULL;
6117 #else /* !CAM_DEBUG_BUS */
6118 	cam_dpath = NULL;
6119 #endif /* CAM_DEBUG_BUS */
6120 #endif /* CAMDEBUG */
6121 
6122 	/*
6123 	 * Scan all installed busses.
6124 	 */
6125 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6126 
6127 	if (busses_to_config == 0) {
6128 		/* Call manually because we don't have any busses */
6129 		xpt_finishconfig(xpt_periph, NULL);
6130 	} else  {
6131 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6132 			printf("Waiting %d seconds for SCSI "
6133 			       "devices to settle\n", SCSI_DELAY/1000);
6134 		}
6135 		xpt_for_all_busses(xptconfigfunc, NULL);
6136 	}
6137 }
6138 
6139 /*
6140  * If the given device only has one peripheral attached to it, and if that
6141  * peripheral is the passthrough driver, announce it.  This insures that the
6142  * user sees some sort of announcement for every peripheral in their system.
6143  */
6144 static int
6145 xptpassannouncefunc(struct cam_ed *device, void *arg)
6146 {
6147 	struct cam_periph *periph;
6148 	int i;
6149 
6150 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6151 	     periph = SLIST_NEXT(periph, periph_links), i++);
6152 
6153 	periph = SLIST_FIRST(&device->periphs);
6154 	if ((i == 1)
6155 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6156 		xpt_announce_periph(periph, NULL);
6157 
6158 	return(1);
6159 }
6160 
6161 static void
6162 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6163 {
6164 	struct	periph_driver **p_drv;
6165 
6166 	if (done_ccb != NULL) {
6167 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6168 			  ("xpt_finishconfig\n"));
6169 		switch(done_ccb->ccb_h.func_code) {
6170 		case XPT_RESET_BUS:
6171 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6172 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6173 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6174 				xpt_action(done_ccb);
6175 				return;
6176 			}
6177 			/* FALLTHROUGH */
6178 		case XPT_SCAN_BUS:
6179 		default:
6180 			xpt_free_path(done_ccb->ccb_h.path);
6181 			busses_to_config--;
6182 			break;
6183 		}
6184 	}
6185 
6186 	if (busses_to_config == 0) {
6187 		/* Register all the peripheral drivers */
6188 		/* XXX This will have to change when we have loadable modules */
6189 		SET_FOREACH(p_drv, periphdriver_set) {
6190 			(*p_drv)->init();
6191 		}
6192 
6193 		/*
6194 		 * Check for devices with no "standard" peripheral driver
6195 		 * attached.  For any devices like that, announce the
6196 		 * passthrough driver so the user will see something.
6197 		 */
6198 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6199 
6200 		/* Release our hook so that the boot can continue. */
6201 		config_intrhook_disestablish(xpt_config_hook);
6202 		free(xpt_config_hook, M_TEMP);
6203 		xpt_config_hook = NULL;
6204 	}
6205 	if (done_ccb != NULL)
6206 		xpt_free_ccb(done_ccb);
6207 }
6208 
6209 static void
6210 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6211 {
6212 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6213 
6214 	switch (work_ccb->ccb_h.func_code) {
6215 	/* Common cases first */
6216 	case XPT_PATH_INQ:		/* Path routing inquiry */
6217 	{
6218 		struct ccb_pathinq *cpi;
6219 
6220 		cpi = &work_ccb->cpi;
6221 		cpi->version_num = 1; /* XXX??? */
6222 		cpi->hba_inquiry = 0;
6223 		cpi->target_sprt = 0;
6224 		cpi->hba_misc = 0;
6225 		cpi->hba_eng_cnt = 0;
6226 		cpi->max_target = 0;
6227 		cpi->max_lun = 0;
6228 		cpi->initiator_id = 0;
6229 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6230 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6231 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6232 		cpi->unit_number = sim->unit_number;
6233 		cpi->bus_id = sim->bus_id;
6234 		cpi->base_transfer_speed = 0;
6235 		cpi->ccb_h.status = CAM_REQ_CMP;
6236 		xpt_done(work_ccb);
6237 		break;
6238 	}
6239 	default:
6240 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6241 		xpt_done(work_ccb);
6242 		break;
6243 	}
6244 }
6245 
6246 /*
6247  * The xpt as a "controller" has no interrupt sources, so polling
6248  * is a no-op.
6249  */
6250 static void
6251 xptpoll(struct cam_sim *sim)
6252 {
6253 }
6254 
6255 /*
6256  * Should only be called by the machine interrupt dispatch routines,
6257  * so put these prototypes here instead of in the header.
6258  */
6259 
6260 static void
6261 swi_camnet(void *arg)
6262 {
6263 	camisr(&cam_netq);
6264 }
6265 
6266 static void
6267 swi_cambio(void *arg)
6268 {
6269 	camisr(&cam_bioq);
6270 }
6271 
6272 static void
6273 camisr(cam_isrq_t *queue)
6274 {
6275 	int	s;
6276 	struct	ccb_hdr *ccb_h;
6277 
6278 	s = splcam();
6279 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6280 		int	runq;
6281 
6282 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6283 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6284 		splx(s);
6285 
6286 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6287 			  ("camisr\n"));
6288 
6289 		runq = FALSE;
6290 
6291 		if (ccb_h->flags & CAM_HIGH_POWER) {
6292 			struct highpowerlist	*hphead;
6293 			struct cam_ed		*device;
6294 			union ccb		*send_ccb;
6295 
6296 			hphead = &highpowerq;
6297 
6298 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6299 
6300 			/*
6301 			 * Increment the count since this command is done.
6302 			 */
6303 			num_highpower++;
6304 
6305 			/*
6306 			 * Any high powered commands queued up?
6307 			 */
6308 			if (send_ccb != NULL) {
6309 				device = send_ccb->ccb_h.path->device;
6310 
6311 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6312 
6313 				xpt_release_devq(send_ccb->ccb_h.path,
6314 						 /*count*/1, /*runqueue*/TRUE);
6315 			}
6316 		}
6317 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6318 			struct cam_ed *dev;
6319 
6320 			dev = ccb_h->path->device;
6321 
6322 			s = splcam();
6323 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6324 
6325 			ccb_h->path->bus->sim->devq->send_active--;
6326 			ccb_h->path->bus->sim->devq->send_openings++;
6327 			splx(s);
6328 
6329 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6330 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6331 			  && (dev->ccbq.dev_active == 0))) {
6332 
6333 				xpt_release_devq(ccb_h->path, /*count*/1,
6334 						 /*run_queue*/TRUE);
6335 			}
6336 
6337 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6338 			 && (--dev->tag_delay_count == 0))
6339 				xpt_start_tags(ccb_h->path);
6340 
6341 			if ((dev->ccbq.queue.entries > 0)
6342 			 && (dev->qfrozen_cnt == 0)
6343 			 && (device_is_send_queued(dev) == 0)) {
6344 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6345 							      dev);
6346 			}
6347 		}
6348 
6349 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6350 			xpt_release_simq(ccb_h->path->bus->sim,
6351 					 /*run_queue*/TRUE);
6352 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6353 			runq = FALSE;
6354 		}
6355 
6356 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6357 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6358 			xpt_release_devq(ccb_h->path, /*count*/1,
6359 					 /*run_queue*/TRUE);
6360 			ccb_h->status &= ~CAM_DEV_QFRZN;
6361 		} else if (runq) {
6362 			xpt_run_dev_sendq(ccb_h->path->bus);
6363 		}
6364 
6365 		/* Call the peripheral driver's callback */
6366 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6367 
6368 		/* Raise IPL for while test */
6369 		s = splcam();
6370 	}
6371 	splx(s);
6372 }
6373