xref: /dragonfly/sys/bus/cam/cam_xpt.c (revision 38b5d46c)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD: src/sys/cam/cam_xpt.c,v 1.80.2.18 2002/12/09 17:31:55 gibbs Exp $
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 #include <sys/bus.h>
46 #include <sys/thread.h>
47 #include <sys/lock.h>
48 #include <sys/spinlock.h>
49 
50 #include <sys/thread2.h>
51 #include <sys/spinlock2.h>
52 #include <sys/mplock2.h>
53 
54 #include <machine/clock.h>
55 #include <machine/stdarg.h>
56 
57 #include "cam.h"
58 #include "cam_ccb.h"
59 #include "cam_periph.h"
60 #include "cam_sim.h"
61 #include "cam_xpt.h"
62 #include "cam_xpt_sim.h"
63 #include "cam_xpt_periph.h"
64 #include "cam_debug.h"
65 
66 #include "scsi/scsi_all.h"
67 #include "scsi/scsi_message.h"
68 #include "scsi/scsi_pass.h"
69 #include <sys/kthread.h>
70 #include "opt_cam.h"
71 
72 /* Datastructures internal to the xpt layer */
73 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
74 
75 /* Object for defering XPT actions to a taskqueue */
76 struct xpt_task {
77 	struct task	task;
78 	void		*data1;
79 	uintptr_t	data2;
80 };
81 
82 /*
83  * Definition of an async handler callback block.  These are used to add
84  * SIMs and peripherals to the async callback lists.
85  */
86 struct async_node {
87 	SLIST_ENTRY(async_node)	links;
88 	u_int32_t	event_enable;	/* Async Event enables */
89 	void		(*callback)(void *arg, u_int32_t code,
90 				    struct cam_path *path, void *args);
91 	void		*callback_arg;
92 };
93 
94 SLIST_HEAD(async_list, async_node);
95 SLIST_HEAD(periph_list, cam_periph);
96 
97 /*
98  * This is the maximum number of high powered commands (e.g. start unit)
99  * that can be outstanding at a particular time.
100  */
101 #ifndef CAM_MAX_HIGHPOWER
102 #define CAM_MAX_HIGHPOWER  4
103 #endif
104 
105 /*
106  * Structure for queueing a device in a run queue.
107  * There is one run queue for allocating new ccbs,
108  * and another for sending ccbs to the controller.
109  */
110 struct cam_ed_qinfo {
111 	cam_pinfo pinfo;
112 	struct	  cam_ed *device;
113 };
114 
115 /*
116  * The CAM EDT (Existing Device Table) contains the device information for
117  * all devices for all busses in the system.  The table contains a
118  * cam_ed structure for each device on the bus.
119  */
120 struct cam_ed {
121 	TAILQ_ENTRY(cam_ed) links;
122 	struct	cam_ed_qinfo alloc_ccb_entry;
123 	struct	cam_ed_qinfo send_ccb_entry;
124 	struct	cam_et	 *target;
125 	struct	cam_sim  *sim;
126 	lun_id_t	 lun_id;
127 	struct	camq drvq;		/*
128 					 * Queue of type drivers wanting to do
129 					 * work on this device.
130 					 */
131 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
132 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
133 	struct	periph_list periphs;	/* All attached devices */
134 	u_int	generation;		/* Generation number */
135 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
136 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
137 					/* Storage for the inquiry data */
138 	cam_proto	 protocol;
139 	u_int		 protocol_version;
140 	cam_xport	 transport;
141 	u_int		 transport_version;
142 	struct		 scsi_inquiry_data inq_data;
143 	u_int8_t	 inq_flags;	/*
144 					 * Current settings for inquiry flags.
145 					 * This allows us to override settings
146 					 * like disconnection and tagged
147 					 * queuing for a device.
148 					 */
149 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
150 	u_int8_t	 serial_num_len;
151 	u_int8_t	*serial_num;
152 	u_int32_t	 qfrozen_cnt;
153 	u_int32_t	 flags;
154 #define CAM_DEV_UNCONFIGURED	 	0x01
155 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
156 #define CAM_DEV_REL_ON_COMPLETE		0x04
157 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
158 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
159 #define CAM_DEV_TAG_AFTER_COUNT		0x20
160 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
161 #define	CAM_DEV_IN_DV			0x80
162 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
163 	u_int32_t	 tag_delay_count;
164 #define	CAM_TAG_DELAY_COUNT		5
165 	u_int32_t	 tag_saved_openings;
166 	u_int32_t	 refcount;
167 	struct callout	 callout;
168 };
169 
170 /*
171  * Each target is represented by an ET (Existing Target).  These
172  * entries are created when a target is successfully probed with an
173  * identify, and removed when a device fails to respond after a number
174  * of retries, or a bus rescan finds the device missing.
175  */
176 struct cam_et {
177 	TAILQ_HEAD(, cam_ed) ed_entries;
178 	TAILQ_ENTRY(cam_et) links;
179 	struct	cam_eb	*bus;
180 	target_id_t	target_id;
181 	u_int32_t	refcount;
182 	u_int		generation;
183 	struct		timeval last_reset;	/* uptime of last reset */
184 };
185 
186 /*
187  * Each bus is represented by an EB (Existing Bus).  These entries
188  * are created by calls to xpt_bus_register and deleted by calls to
189  * xpt_bus_deregister.
190  */
191 struct cam_eb {
192 	TAILQ_HEAD(, cam_et) et_entries;
193 	TAILQ_ENTRY(cam_eb)  links;
194 	path_id_t	     path_id;
195 	struct cam_sim	     *sim;
196 	struct timeval	     last_reset;	/* uptime of last reset */
197 	u_int32_t	     flags;
198 #define	CAM_EB_RUNQ_SCHEDULED	0x01
199 	u_int32_t	     refcount;
200 	u_int		     generation;
201 	int		     counted_to_config;	/* busses_to_config */
202 };
203 
204 struct cam_path {
205 	struct cam_periph *periph;
206 	struct cam_eb	  *bus;
207 	struct cam_et	  *target;
208 	struct cam_ed	  *device;
209 };
210 
211 struct xpt_quirk_entry {
212 	struct scsi_inquiry_pattern inq_pat;
213 	u_int8_t quirks;
214 #define	CAM_QUIRK_NOLUNS	0x01
215 #define	CAM_QUIRK_NOSERIAL	0x02
216 #define	CAM_QUIRK_HILUNS	0x04
217 #define	CAM_QUIRK_NOHILUNS	0x08
218 	u_int mintags;
219 	u_int maxtags;
220 };
221 
222 static int cam_srch_hi = 0;
223 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
224 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
225 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
226     sysctl_cam_search_luns, "I",
227     "allow search above LUN 7 for SCSI3 and greater devices");
228 
229 #define	CAM_SCSI2_MAXLUN	8
230 /*
231  * If we're not quirked to search <= the first 8 luns
232  * and we are either quirked to search above lun 8,
233  * or we're > SCSI-2 and we've enabled hilun searching,
234  * or we're > SCSI-2 and the last lun was a success,
235  * we can look for luns above lun 8.
236  */
237 #define	CAN_SRCH_HI_SPARSE(dv)				\
238   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
239   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
240   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
241 
242 #define	CAN_SRCH_HI_DENSE(dv)				\
243   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
244   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
245   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
246 
247 typedef enum {
248 	XPT_FLAG_OPEN		= 0x01
249 } xpt_flags;
250 
251 struct xpt_softc {
252 	xpt_flags		flags;
253 	u_int32_t		xpt_generation;
254 
255 	/* number of high powered commands that can go through right now */
256 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
257 	int			num_highpower;
258 
259 	/* queue for handling async rescan requests. */
260 	TAILQ_HEAD(, ccb_hdr)	ccb_scanq;
261 	int			ccb_scanq_running;
262 
263 	/* Registered busses */
264 	TAILQ_HEAD(,cam_eb)	xpt_busses;
265 	u_int			bus_generation;
266 
267 	struct intr_config_hook	*xpt_config_hook;
268 
269 	struct lock		xpt_topo_lock;
270 	struct lock		xpt_lock;
271 };
272 
273 static const char quantum[] = "QUANTUM";
274 static const char sony[] = "SONY";
275 static const char west_digital[] = "WDIGTL";
276 static const char samsung[] = "SAMSUNG";
277 static const char seagate[] = "SEAGATE";
278 static const char microp[] = "MICROP";
279 
280 static struct xpt_quirk_entry xpt_quirk_table[] =
281 {
282 	{
283 		/* Reports QUEUE FULL for temporary resource shortages */
284 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
285 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
286 	},
287 	{
288 		/* Reports QUEUE FULL for temporary resource shortages */
289 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
290 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
291 	},
292 	{
293 		/* Reports QUEUE FULL for temporary resource shortages */
294 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
295 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
296 	},
297 	{
298 		/* Broken tagged queuing drive */
299 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
300 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
301 	},
302 	{
303 		/* Broken tagged queuing drive */
304 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
305 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
306 	},
307 	{
308 		/* Broken tagged queuing drive */
309 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
310 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
311 	},
312 	{
313 		/*
314 		 * Unfortunately, the Quantum Atlas III has the same
315 		 * problem as the Atlas II drives above.
316 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
317 		 *
318 		 * For future reference, the drive with the problem was:
319 		 * QUANTUM QM39100TD-SW N1B0
320 		 *
321 		 * It's possible that Quantum will fix the problem in later
322 		 * firmware revisions.  If that happens, the quirk entry
323 		 * will need to be made specific to the firmware revisions
324 		 * with the problem.
325 		 *
326 		 */
327 		/* Reports QUEUE FULL for temporary resource shortages */
328 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
329 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
330 	},
331 	{
332 		/*
333 		 * 18 Gig Atlas III, same problem as the 9G version.
334 		 * Reported by: Andre Albsmeier
335 		 *		<andre.albsmeier@mchp.siemens.de>
336 		 *
337 		 * For future reference, the drive with the problem was:
338 		 * QUANTUM QM318000TD-S N491
339 		 */
340 		/* Reports QUEUE FULL for temporary resource shortages */
341 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
342 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
343 	},
344 	{
345 		/*
346 		 * Broken tagged queuing drive
347 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
348 		 *         and: Martin Renters <martin@tdc.on.ca>
349 		 */
350 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
351 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
352 	},
353 		/*
354 		 * The Seagate Medalist Pro drives have very poor write
355 		 * performance with anything more than 2 tags.
356 		 *
357 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
358 		 * Drive:  <SEAGATE ST36530N 1444>
359 		 *
360 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
361 		 * Drive:  <SEAGATE ST34520W 1281>
362 		 *
363 		 * No one has actually reported that the 9G version
364 		 * (ST39140*) of the Medalist Pro has the same problem, but
365 		 * we're assuming that it does because the 4G and 6.5G
366 		 * versions of the drive are broken.
367 		 */
368 	{
369 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
370 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
371 	},
372 	{
373 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
374 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
375 	},
376 	{
377 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
378 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
379 	},
380 	{
381 		/*
382 		 * Slow when tagged queueing is enabled.  Write performance
383 		 * steadily drops off with more and more concurrent
384 		 * transactions.  Best sequential write performance with
385 		 * tagged queueing turned off and write caching turned on.
386 		 *
387 		 * PR:  kern/10398
388 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
389 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
390 		 *
391 		 * The drive with the problem had the "S65A" firmware
392 		 * revision, and has also been reported (by Stephen J.
393 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
394 		 * firmware revision.
395 		 *
396 		 * Although no one has reported problems with the 2 gig
397 		 * version of the DCAS drive, the assumption is that it
398 		 * has the same problems as the 4 gig version.  Therefore
399 		 * this quirk entries disables tagged queueing for all
400 		 * DCAS drives.
401 		 */
402 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
403 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
404 	},
405 	{
406 		/* Broken tagged queuing drive */
407 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
408 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
409 	},
410 	{
411 		/* Broken tagged queuing drive */
412 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
413 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
414 	},
415 	{
416 		/* This does not support other than LUN 0 */
417 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
418 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
419 	},
420 	{
421 		/*
422 		 * Broken tagged queuing drive.
423 		 * Submitted by:
424 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
425 		 * in PR kern/9535
426 		 */
427 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
428 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
429 	},
430         {
431 		/*
432 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
433 		 * 8MB/sec.)
434 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
435 		 * Best performance with these drives is achieved with
436 		 * tagged queueing turned off, and write caching turned on.
437 		 */
438 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
439 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
440         },
441         {
442 		/*
443 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
444 		 * 8MB/sec.)
445 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
446 		 * Best performance with these drives is achieved with
447 		 * tagged queueing turned off, and write caching turned on.
448 		 */
449 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
450 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
451         },
452 	{
453 		/*
454 		 * Doesn't handle queue full condition correctly,
455 		 * so we need to limit maxtags to what the device
456 		 * can handle instead of determining this automatically.
457 		 */
458 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
459 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
460 	},
461 	{
462 		/* Really only one LUN */
463 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
464 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
465 	},
466 	{
467 		/* I can't believe we need a quirk for DPT volumes. */
468 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
469 		CAM_QUIRK_NOLUNS,
470 		/*mintags*/0, /*maxtags*/255
471 	},
472 	{
473 		/*
474 		 * Many Sony CDROM drives don't like multi-LUN probing.
475 		 */
476 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
477 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
478 	},
479 	{
480 		/*
481 		 * This drive doesn't like multiple LUN probing.
482 		 * Submitted by:  Parag Patel <parag@cgt.com>
483 		 */
484 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
485 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
486 	},
487 	{
488 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
489 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
490 	},
491 	{
492 		/*
493 		 * The 8200 doesn't like multi-lun probing, and probably
494 		 * don't like serial number requests either.
495 		 */
496 		{
497 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
498 			"EXB-8200*", "*"
499 		},
500 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
501 	},
502 	{
503 		/*
504 		 * Let's try the same as above, but for a drive that says
505 		 * it's an IPL-6860 but is actually an EXB 8200.
506 		 */
507 		{
508 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
509 			"IPL-6860*", "*"
510 		},
511 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
512 	},
513 	{
514 		/*
515 		 * These Hitachi drives don't like multi-lun probing.
516 		 * The PR submitter has a DK319H, but says that the Linux
517 		 * kernel has a similar work-around for the DK312 and DK314,
518 		 * so all DK31* drives are quirked here.
519 		 * PR:            misc/18793
520 		 * Submitted by:  Paul Haddad <paul@pth.com>
521 		 */
522 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
523 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
524 	},
525 	{
526 		/*
527 		 * The Hitachi CJ series with J8A8 firmware apparantly has
528 		 * problems with tagged commands.
529 		 * PR: 23536
530 		 * Reported by: amagai@nue.org
531 		 */
532 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
533 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
534 	},
535 	{
536 		/*
537 		 * These are the large storage arrays.
538 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
539 		 */
540 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
541 		CAM_QUIRK_HILUNS, 2, 1024
542 	},
543 	{
544 		/*
545 		 * This old revision of the TDC3600 is also SCSI-1, and
546 		 * hangs upon serial number probing.
547 		 */
548 		{
549 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
550 			" TDC 3600", "U07:"
551 		},
552 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
553 	},
554 	{
555 		/*
556 		 * Would repond to all LUNs if asked for.
557 		 */
558 		{
559 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
560 			"CP150", "*"
561 		},
562 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
563 	},
564 	{
565 		/*
566 		 * Would repond to all LUNs if asked for.
567 		 */
568 		{
569 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
570 			"96X2*", "*"
571 		},
572 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
573 	},
574 	{
575 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
576 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
577 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
578 	},
579 	{
580 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
581 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
582 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
583 	},
584 	{
585 		/* TeraSolutions special settings for TRC-22 RAID */
586 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
587 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
588 	},
589 	{
590 		/* Veritas Storage Appliance */
591 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
592 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
593 	},
594 	{
595 		/*
596 		 * Would respond to all LUNs.  Device type and removable
597 		 * flag are jumper-selectable.
598 		 */
599 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
600 		  "Tahiti 1", "*"
601 		},
602 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
603 	},
604 	{
605 		/* EasyRAID E5A aka. areca ARC-6010 */
606 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
607 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
608 	},
609 	{
610 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
611 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
612 	},
613 	{
614 		/* Default tagged queuing parameters for all devices */
615 		{
616 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
617 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
618 		},
619 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
620 	},
621 };
622 
623 static const int xpt_quirk_table_size = NELEM(xpt_quirk_table);
624 
625 typedef enum {
626 	DM_RET_COPY		= 0x01,
627 	DM_RET_FLAG_MASK	= 0x0f,
628 	DM_RET_NONE		= 0x00,
629 	DM_RET_STOP		= 0x10,
630 	DM_RET_DESCEND		= 0x20,
631 	DM_RET_ERROR		= 0x30,
632 	DM_RET_ACTION_MASK	= 0xf0
633 } dev_match_ret;
634 
635 typedef enum {
636 	XPT_DEPTH_BUS,
637 	XPT_DEPTH_TARGET,
638 	XPT_DEPTH_DEVICE,
639 	XPT_DEPTH_PERIPH
640 } xpt_traverse_depth;
641 
642 struct xpt_traverse_config {
643 	xpt_traverse_depth	depth;
644 	void			*tr_func;
645 	void			*tr_arg;
646 };
647 
648 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
649 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
650 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
651 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
652 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
653 
654 /* Transport layer configuration information */
655 static struct xpt_softc xsoftc;
656 
657 /* Queues for our software interrupt handler */
658 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
659 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
660 static cam_simq_t cam_simq;
661 static struct spinlock cam_simq_spin;
662 
663 struct cam_periph *xpt_periph;
664 
665 static periph_init_t xpt_periph_init;
666 
667 static periph_init_t probe_periph_init;
668 
669 static struct periph_driver xpt_driver =
670 {
671 	xpt_periph_init, "xpt",
672 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
673 };
674 
675 static struct periph_driver probe_driver =
676 {
677 	probe_periph_init, "probe",
678 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
679 };
680 
681 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
682 PERIPHDRIVER_DECLARE(probe, probe_driver);
683 
684 static d_open_t xptopen;
685 static d_close_t xptclose;
686 static d_ioctl_t xptioctl;
687 
688 static struct dev_ops xpt_ops = {
689 	{ "xpt", 0, 0 },
690 	.d_open = xptopen,
691 	.d_close = xptclose,
692 	.d_ioctl = xptioctl
693 };
694 
695 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
696 static void dead_sim_poll(struct cam_sim *sim);
697 
698 /* Dummy SIM that is used when the real one has gone. */
699 static struct cam_sim cam_dead_sim;
700 static struct lock    cam_dead_lock;
701 
702 /* Storage for debugging datastructures */
703 #ifdef	CAMDEBUG
704 struct cam_path *cam_dpath;
705 u_int32_t cam_dflags;
706 u_int32_t cam_debug_delay;
707 #endif
708 
709 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
710 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
711 #endif
712 
713 /*
714  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
715  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
716  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
717  */
718 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
719     || defined(CAM_DEBUG_LUN)
720 #ifdef CAMDEBUG
721 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
722     || !defined(CAM_DEBUG_LUN)
723 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
724         and CAM_DEBUG_LUN"
725 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
726 #else /* !CAMDEBUG */
727 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
728 #endif /* CAMDEBUG */
729 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
730 
731 /* Our boot-time initialization hook */
732 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
733 
734 static moduledata_t cam_moduledata = {
735 	"cam",
736 	cam_module_event_handler,
737 	NULL
738 };
739 
740 static int	xpt_init(void *);
741 
742 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
743 MODULE_VERSION(cam, 1);
744 
745 
746 static cam_status	xpt_compile_path(struct cam_path *new_path,
747 					 struct cam_periph *perph,
748 					 path_id_t path_id,
749 					 target_id_t target_id,
750 					 lun_id_t lun_id);
751 
752 static void		xpt_release_path(struct cam_path *path);
753 
754 static void		xpt_async_bcast(struct async_list *async_head,
755 					u_int32_t async_code,
756 					struct cam_path *path,
757 					void *async_arg);
758 static void		xpt_dev_async(u_int32_t async_code,
759 				      struct cam_eb *bus,
760 				      struct cam_et *target,
761 				      struct cam_ed *device,
762 				      void *async_arg);
763 static path_id_t xptnextfreepathid(void);
764 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
765 static union ccb *xpt_get_ccb(struct cam_ed *device);
766 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
767 				  u_int32_t new_priority);
768 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
769 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
770 static timeout_t xpt_release_devq_timeout;
771 static void	 xpt_release_bus(struct cam_eb *bus);
772 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
773 					 int run_queue);
774 static struct cam_et*
775 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
776 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
777 static struct cam_ed*
778 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
779 				  lun_id_t lun_id);
780 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
781 				    struct cam_ed *device);
782 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
783 static struct cam_eb*
784 		 xpt_find_bus(path_id_t path_id);
785 static struct cam_et*
786 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
787 static struct cam_ed*
788 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
789 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
790 static void	 xpt_scan_lun(struct cam_periph *periph,
791 			      struct cam_path *path, cam_flags flags,
792 			      union ccb *ccb);
793 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
794 static xpt_busfunc_t	xptconfigbuscountfunc;
795 static xpt_busfunc_t	xptconfigfunc;
796 static void	 xpt_config(void *arg);
797 static xpt_devicefunc_t xptpassannouncefunc;
798 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
799 static void	 xpt_uncount_bus (struct cam_eb *bus);
800 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
801 static void	 xptpoll(struct cam_sim *sim);
802 static inthand2_t swi_cambio;
803 static void	 camisr(void *);
804 static void	 camisr_runqueue(struct cam_sim *);
805 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
806 				    u_int num_patterns, struct cam_eb *bus);
807 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
808 				       u_int num_patterns,
809 				       struct cam_ed *device);
810 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
811 				       u_int num_patterns,
812 				       struct cam_periph *periph);
813 static xpt_busfunc_t	xptedtbusfunc;
814 static xpt_targetfunc_t	xptedttargetfunc;
815 static xpt_devicefunc_t	xptedtdevicefunc;
816 static xpt_periphfunc_t	xptedtperiphfunc;
817 static xpt_pdrvfunc_t	xptplistpdrvfunc;
818 static xpt_periphfunc_t	xptplistperiphfunc;
819 static int		xptedtmatch(struct ccb_dev_match *cdm);
820 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
821 static int		xptbustraverse(struct cam_eb *start_bus,
822 				       xpt_busfunc_t *tr_func, void *arg);
823 static int		xpttargettraverse(struct cam_eb *bus,
824 					  struct cam_et *start_target,
825 					  xpt_targetfunc_t *tr_func, void *arg);
826 static int		xptdevicetraverse(struct cam_et *target,
827 					  struct cam_ed *start_device,
828 					  xpt_devicefunc_t *tr_func, void *arg);
829 static int		xptperiphtraverse(struct cam_ed *device,
830 					  struct cam_periph *start_periph,
831 					  xpt_periphfunc_t *tr_func, void *arg);
832 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
833 					xpt_pdrvfunc_t *tr_func, void *arg);
834 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
835 					    struct cam_periph *start_periph,
836 					    xpt_periphfunc_t *tr_func,
837 					    void *arg);
838 static xpt_busfunc_t	xptdefbusfunc;
839 static xpt_targetfunc_t	xptdeftargetfunc;
840 static xpt_devicefunc_t	xptdefdevicefunc;
841 static xpt_periphfunc_t	xptdefperiphfunc;
842 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
843 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
844 					    void *arg);
845 static xpt_devicefunc_t	xptsetasyncfunc;
846 static xpt_busfunc_t	xptsetasyncbusfunc;
847 static cam_status	xptregister(struct cam_periph *periph,
848 				    void *arg);
849 static cam_status	proberegister(struct cam_periph *periph,
850 				      void *arg);
851 static void	 probeschedule(struct cam_periph *probe_periph);
852 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
853 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
854 static int       proberequestbackoff(struct cam_periph *periph,
855 				     struct cam_ed *device);
856 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
857 static void	 probecleanup(struct cam_periph *periph);
858 static void	 xpt_find_quirk(struct cam_ed *device);
859 static void	 xpt_devise_transport(struct cam_path *path);
860 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
861 					   struct cam_ed *device,
862 					   int async_update);
863 static void	 xpt_toggle_tags(struct cam_path *path);
864 static void	 xpt_start_tags(struct cam_path *path);
865 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
866 					    struct cam_ed *dev);
867 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
868 					   struct cam_ed *dev);
869 static __inline int periph_is_queued(struct cam_periph *periph);
870 static __inline int device_is_alloc_queued(struct cam_ed *device);
871 static __inline int device_is_send_queued(struct cam_ed *device);
872 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
873 
874 static __inline int
875 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
876 {
877 	int retval;
878 
879 	if (bus->sim->devq && dev->ccbq.devq_openings > 0) {
880 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
881 			cam_ccbq_resize(&dev->ccbq,
882 					dev->ccbq.dev_openings
883 					+ dev->ccbq.dev_active);
884 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
885 		}
886 		/*
887 		 * The priority of a device waiting for CCB resources
888 		 * is that of the the highest priority peripheral driver
889 		 * enqueued.
890 		 */
891 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
892 					  &dev->alloc_ccb_entry.pinfo,
893 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
894 	} else {
895 		retval = 0;
896 	}
897 
898 	return (retval);
899 }
900 
901 static __inline int
902 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
903 {
904 	int	retval;
905 
906 	if (bus->sim->devq && dev->ccbq.dev_openings > 0) {
907 		/*
908 		 * The priority of a device waiting for controller
909 		 * resources is that of the the highest priority CCB
910 		 * enqueued.
911 		 */
912 		retval =
913 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
914 				     &dev->send_ccb_entry.pinfo,
915 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
916 	} else {
917 		retval = 0;
918 	}
919 	return (retval);
920 }
921 
922 static __inline int
923 periph_is_queued(struct cam_periph *periph)
924 {
925 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
926 }
927 
928 static __inline int
929 device_is_alloc_queued(struct cam_ed *device)
930 {
931 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
932 }
933 
934 static __inline int
935 device_is_send_queued(struct cam_ed *device)
936 {
937 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
938 }
939 
940 static __inline int
941 dev_allocq_is_runnable(struct cam_devq *devq)
942 {
943 	/*
944 	 * Have work to do.
945 	 * Have space to do more work.
946 	 * Allowed to do work.
947 	 */
948 	return ((devq->alloc_queue.qfrozen_cnt == 0)
949 	     && (devq->alloc_queue.entries > 0)
950 	     && (devq->alloc_openings > 0));
951 }
952 
953 static void
954 xpt_periph_init(void)
955 {
956 	make_dev(&xpt_ops, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
957 }
958 
959 static void
960 probe_periph_init(void)
961 {
962 }
963 
964 
965 static void
966 xptdone(struct cam_periph *periph, union ccb *done_ccb)
967 {
968 	/* Caller will release the CCB */
969 	wakeup(&done_ccb->ccb_h.cbfcnp);
970 }
971 
972 static int
973 xptopen(struct dev_open_args *ap)
974 {
975 	cdev_t dev = ap->a_head.a_dev;
976 
977 	/*
978 	 * Only allow read-write access.
979 	 */
980 	if (((ap->a_oflags & FWRITE) == 0) || ((ap->a_oflags & FREAD) == 0))
981 		return(EPERM);
982 
983 	/*
984 	 * We don't allow nonblocking access.
985 	 */
986 	if ((ap->a_oflags & O_NONBLOCK) != 0) {
987 		kprintf("%s: can't do nonblocking access\n", devtoname(dev));
988 		return(ENODEV);
989 	}
990 
991 	/* Mark ourselves open */
992 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
993 	xsoftc.flags |= XPT_FLAG_OPEN;
994 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
995 
996 	return(0);
997 }
998 
999 static int
1000 xptclose(struct dev_close_args *ap)
1001 {
1002 
1003 	/* Mark ourselves closed */
1004 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1005 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1006 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1007 
1008 	return(0);
1009 }
1010 
1011 /*
1012  * Don't automatically grab the xpt softc lock here even though this is going
1013  * through the xpt device.  The xpt device is really just a back door for
1014  * accessing other devices and SIMs, so the right thing to do is to grab
1015  * the appropriate SIM lock once the bus/SIM is located.
1016  */
1017 static int
1018 xptioctl(struct dev_ioctl_args *ap)
1019 {
1020 	int error;
1021 
1022 	error = 0;
1023 
1024 	switch(ap->a_cmd) {
1025 	/*
1026 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1027 	 * to accept CCB types that don't quite make sense to send through a
1028 	 * passthrough driver.
1029 	 */
1030 	case CAMIOCOMMAND: {
1031 		union ccb *ccb;
1032 		union ccb *inccb;
1033 		struct cam_eb *bus;
1034 
1035 		inccb = (union ccb *)ap->a_data;
1036 
1037 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1038 		if (bus == NULL) {
1039 			error = EINVAL;
1040 			break;
1041 		}
1042 
1043 		switch(inccb->ccb_h.func_code) {
1044 		case XPT_SCAN_BUS:
1045 		case XPT_RESET_BUS:
1046 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1047 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1048 				error = EINVAL;
1049 				break;
1050 			}
1051 			/* FALLTHROUGH */
1052 		case XPT_PATH_INQ:
1053 		case XPT_ENG_INQ:
1054 		case XPT_SCAN_LUN:
1055 
1056 			ccb = xpt_alloc_ccb();
1057 
1058 			CAM_SIM_LOCK(bus->sim);
1059 
1060 			/*
1061 			 * Create a path using the bus, target, and lun the
1062 			 * user passed in.
1063 			 */
1064 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1065 					    inccb->ccb_h.path_id,
1066 					    inccb->ccb_h.target_id,
1067 					    inccb->ccb_h.target_lun) !=
1068 					    CAM_REQ_CMP){
1069 				error = EINVAL;
1070 				CAM_SIM_UNLOCK(bus->sim);
1071 				xpt_free_ccb(ccb);
1072 				break;
1073 			}
1074 			/* Ensure all of our fields are correct */
1075 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1076 				      inccb->ccb_h.pinfo.priority);
1077 			xpt_merge_ccb(ccb, inccb);
1078 			ccb->ccb_h.cbfcnp = xptdone;
1079 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1080 			bcopy(ccb, inccb, sizeof(union ccb));
1081 			xpt_free_path(ccb->ccb_h.path);
1082 			xpt_free_ccb(ccb);
1083 			CAM_SIM_UNLOCK(bus->sim);
1084 			break;
1085 
1086 		case XPT_DEBUG: {
1087 			union ccb ccb;
1088 
1089 			/*
1090 			 * This is an immediate CCB, so it's okay to
1091 			 * allocate it on the stack.
1092 			 */
1093 
1094 			CAM_SIM_LOCK(bus->sim);
1095 
1096 			/*
1097 			 * Create a path using the bus, target, and lun the
1098 			 * user passed in.
1099 			 */
1100 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1101 					    inccb->ccb_h.path_id,
1102 					    inccb->ccb_h.target_id,
1103 					    inccb->ccb_h.target_lun) !=
1104 					    CAM_REQ_CMP){
1105 				error = EINVAL;
1106 				CAM_SIM_UNLOCK(bus->sim);
1107 				break;
1108 			}
1109 			/* Ensure all of our fields are correct */
1110 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1111 				      inccb->ccb_h.pinfo.priority);
1112 			xpt_merge_ccb(&ccb, inccb);
1113 			ccb.ccb_h.cbfcnp = xptdone;
1114 			xpt_action(&ccb);
1115 			CAM_SIM_UNLOCK(bus->sim);
1116 			bcopy(&ccb, inccb, sizeof(union ccb));
1117 			xpt_free_path(ccb.ccb_h.path);
1118 			break;
1119 
1120 		}
1121 		case XPT_DEV_MATCH: {
1122 			struct cam_periph_map_info mapinfo;
1123 			struct cam_path *old_path;
1124 
1125 			/*
1126 			 * We can't deal with physical addresses for this
1127 			 * type of transaction.
1128 			 */
1129 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1130 				error = EINVAL;
1131 				break;
1132 			}
1133 
1134 			/*
1135 			 * Save this in case the caller had it set to
1136 			 * something in particular.
1137 			 */
1138 			old_path = inccb->ccb_h.path;
1139 
1140 			/*
1141 			 * We really don't need a path for the matching
1142 			 * code.  The path is needed because of the
1143 			 * debugging statements in xpt_action().  They
1144 			 * assume that the CCB has a valid path.
1145 			 */
1146 			inccb->ccb_h.path = xpt_periph->path;
1147 
1148 			bzero(&mapinfo, sizeof(mapinfo));
1149 
1150 			/*
1151 			 * Map the pattern and match buffers into kernel
1152 			 * virtual address space.
1153 			 */
1154 			error = cam_periph_mapmem(inccb, &mapinfo);
1155 
1156 			if (error) {
1157 				inccb->ccb_h.path = old_path;
1158 				break;
1159 			}
1160 
1161 			/*
1162 			 * This is an immediate CCB, we can send it on directly.
1163 			 */
1164 			xpt_action(inccb);
1165 
1166 			/*
1167 			 * Map the buffers back into user space.
1168 			 */
1169 			cam_periph_unmapmem(inccb, &mapinfo);
1170 
1171 			inccb->ccb_h.path = old_path;
1172 
1173 			error = 0;
1174 			break;
1175 		}
1176 		default:
1177 			error = ENOTSUP;
1178 			break;
1179 		}
1180 		xpt_release_bus(bus);
1181 		break;
1182 	}
1183 	/*
1184 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1185 	 * with the periphal driver name and unit name filled in.  The other
1186 	 * fields don't really matter as input.  The passthrough driver name
1187 	 * ("pass"), and unit number are passed back in the ccb.  The current
1188 	 * device generation number, and the index into the device peripheral
1189 	 * driver list, and the status are also passed back.  Note that
1190 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1191 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1192 	 * (or rather should be) impossible for the device peripheral driver
1193 	 * list to change since we look at the whole thing in one pass, and
1194 	 * we do it with lock protection.
1195 	 *
1196 	 */
1197 	case CAMGETPASSTHRU: {
1198 		union ccb *ccb;
1199 		struct cam_periph *periph;
1200 		struct periph_driver **p_drv;
1201 		char   *name;
1202 		u_int unit;
1203 		u_int cur_generation;
1204 		int base_periph_found;
1205 		int splbreaknum;
1206 
1207 		ccb = (union ccb *)ap->a_data;
1208 		unit = ccb->cgdl.unit_number;
1209 		name = ccb->cgdl.periph_name;
1210 		/*
1211 		 * Every 100 devices, we want to drop our lock protection to
1212 		 * give the software interrupt handler a chance to run.
1213 		 * Most systems won't run into this check, but this should
1214 		 * avoid starvation in the software interrupt handler in
1215 		 * large systems.
1216 		 */
1217 		splbreaknum = 100;
1218 
1219 		ccb = (union ccb *)ap->a_data;
1220 
1221 		base_periph_found = 0;
1222 
1223 		/*
1224 		 * Sanity check -- make sure we don't get a null peripheral
1225 		 * driver name.
1226 		 */
1227 		if (*ccb->cgdl.periph_name == '\0') {
1228 			error = EINVAL;
1229 			break;
1230 		}
1231 
1232 		/* Keep the list from changing while we traverse it */
1233 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1234 ptstartover:
1235 		cur_generation = xsoftc.xpt_generation;
1236 
1237 		/* first find our driver in the list of drivers */
1238 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) {
1239 			if (strcmp((*p_drv)->driver_name, name) == 0)
1240 				break;
1241 		}
1242 
1243 		if (*p_drv == NULL) {
1244 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1245 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1246 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1247 			*ccb->cgdl.periph_name = '\0';
1248 			ccb->cgdl.unit_number = 0;
1249 			error = ENOENT;
1250 			break;
1251 		}
1252 
1253 		/*
1254 		 * Run through every peripheral instance of this driver
1255 		 * and check to see whether it matches the unit passed
1256 		 * in by the user.  If it does, get out of the loops and
1257 		 * find the passthrough driver associated with that
1258 		 * peripheral driver.
1259 		 */
1260 		TAILQ_FOREACH(periph, &(*p_drv)->units, unit_links) {
1261 
1262 			if (periph->unit_number == unit) {
1263 				break;
1264 			} else if (--splbreaknum == 0) {
1265 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1266 				lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1267 				splbreaknum = 100;
1268 				if (cur_generation != xsoftc.xpt_generation)
1269 				       goto ptstartover;
1270 			}
1271 		}
1272 		/*
1273 		 * If we found the peripheral driver that the user passed
1274 		 * in, go through all of the peripheral drivers for that
1275 		 * particular device and look for a passthrough driver.
1276 		 */
1277 		if (periph != NULL) {
1278 			struct cam_ed *device;
1279 			int i;
1280 
1281 			base_periph_found = 1;
1282 			device = periph->path->device;
1283 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1284 			     periph != NULL;
1285 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1286 				/*
1287 				 * Check to see whether we have a
1288 				 * passthrough device or not.
1289 				 */
1290 				if (strcmp(periph->periph_name, "pass") == 0) {
1291 					/*
1292 					 * Fill in the getdevlist fields.
1293 					 */
1294 					strcpy(ccb->cgdl.periph_name,
1295 					       periph->periph_name);
1296 					ccb->cgdl.unit_number =
1297 						periph->unit_number;
1298 					if (SLIST_NEXT(periph, periph_links))
1299 						ccb->cgdl.status =
1300 							CAM_GDEVLIST_MORE_DEVS;
1301 					else
1302 						ccb->cgdl.status =
1303 						       CAM_GDEVLIST_LAST_DEVICE;
1304 					ccb->cgdl.generation =
1305 						device->generation;
1306 					ccb->cgdl.index = i;
1307 					/*
1308 					 * Fill in some CCB header fields
1309 					 * that the user may want.
1310 					 */
1311 					ccb->ccb_h.path_id =
1312 						periph->path->bus->path_id;
1313 					ccb->ccb_h.target_id =
1314 						periph->path->target->target_id;
1315 					ccb->ccb_h.target_lun =
1316 						periph->path->device->lun_id;
1317 					ccb->ccb_h.status = CAM_REQ_CMP;
1318 					break;
1319 				}
1320 			}
1321 		}
1322 
1323 		/*
1324 		 * If the periph is null here, one of two things has
1325 		 * happened.  The first possibility is that we couldn't
1326 		 * find the unit number of the particular peripheral driver
1327 		 * that the user is asking about.  e.g. the user asks for
1328 		 * the passthrough driver for "da11".  We find the list of
1329 		 * "da" peripherals all right, but there is no unit 11.
1330 		 * The other possibility is that we went through the list
1331 		 * of peripheral drivers attached to the device structure,
1332 		 * but didn't find one with the name "pass".  Either way,
1333 		 * we return ENOENT, since we couldn't find something.
1334 		 */
1335 		if (periph == NULL) {
1336 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1337 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1338 			*ccb->cgdl.periph_name = '\0';
1339 			ccb->cgdl.unit_number = 0;
1340 			error = ENOENT;
1341 			/*
1342 			 * It is unfortunate that this is even necessary,
1343 			 * but there are many, many clueless users out there.
1344 			 * If this is true, the user is looking for the
1345 			 * passthrough driver, but doesn't have one in his
1346 			 * kernel.
1347 			 */
1348 			if (base_periph_found == 1) {
1349 				kprintf("xptioctl: pass driver is not in the "
1350 				       "kernel\n");
1351 				kprintf("xptioctl: put \"device pass\" in "
1352 				       "your kernel config file\n");
1353 			}
1354 		}
1355 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1356 		break;
1357 		}
1358 	default:
1359 		error = ENOTTY;
1360 		break;
1361 	}
1362 
1363 	return(error);
1364 }
1365 
1366 static int
1367 cam_module_event_handler(module_t mod, int what, void *arg)
1368 {
1369 	int error;
1370 
1371 	switch (what) {
1372 	case MOD_LOAD:
1373 		if ((error = xpt_init(NULL)) != 0)
1374 			return (error);
1375 		break;
1376 	case MOD_UNLOAD:
1377 		return EBUSY;
1378 	default:
1379 		return EOPNOTSUPP;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 /*
1386  * Thread to handle asynchronous main-context requests.
1387  *
1388  * This function is typically used by drivers to perform complex actions
1389  * such as bus scans and engineering requests in a main context instead
1390  * of an interrupt context.
1391  */
1392 static void
1393 xpt_scanner_thread(void *dummy)
1394 {
1395 	union ccb	*ccb;
1396 	struct cam_sim	*sim;
1397 
1398 	get_mplock();
1399 
1400 	for (;;) {
1401 		xpt_lock_buses();
1402 		xsoftc.ccb_scanq_running = 1;
1403 		while ((ccb = (void *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
1404 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h,
1405 				     sim_links.tqe);
1406 			xpt_unlock_buses();
1407 
1408 			sim = ccb->ccb_h.path->bus->sim;
1409 			CAM_SIM_LOCK(sim);
1410 			xpt_action(ccb);
1411 			CAM_SIM_UNLOCK(sim);
1412 
1413 			xpt_lock_buses();
1414 		}
1415 		xsoftc.ccb_scanq_running = 0;
1416 		tsleep_interlock(&xsoftc.ccb_scanq, 0);
1417 		xpt_unlock_buses();
1418 		tsleep(&xsoftc.ccb_scanq, PINTERLOCKED, "ccb_scanq", 0);
1419 	}
1420 
1421 	rel_mplock();	/* not reached */
1422 }
1423 
1424 /*
1425  * Issue an asynchronous asction
1426  */
1427 void
1428 xpt_action_async(union ccb *ccb)
1429 {
1430 	xpt_lock_buses();
1431 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1432 	if (xsoftc.ccb_scanq_running == 0) {
1433 		xsoftc.ccb_scanq_running = 1;
1434 		wakeup(&xsoftc.ccb_scanq);
1435 	}
1436 	xpt_unlock_buses();
1437 }
1438 
1439 
1440 /* Functions accessed by the peripheral drivers */
1441 static int
1442 xpt_init(void *dummy)
1443 {
1444 	struct cam_sim *xpt_sim;
1445 	struct cam_path *path;
1446 	struct cam_devq *devq;
1447 	cam_status status;
1448 
1449 	TAILQ_INIT(&xsoftc.xpt_busses);
1450 	TAILQ_INIT(&cam_simq);
1451 	TAILQ_INIT(&xsoftc.ccb_scanq);
1452 	STAILQ_INIT(&xsoftc.highpowerq);
1453 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1454 
1455 	spin_init(&cam_simq_spin, "cam_simq_spin");
1456 	lockinit(&xsoftc.xpt_lock, "XPT lock", 0, LK_CANRECURSE);
1457 	lockinit(&xsoftc.xpt_topo_lock, "XPT topology lock", 0, LK_CANRECURSE);
1458 
1459 	SLIST_INIT(&cam_dead_sim.ccb_freeq);
1460 	TAILQ_INIT(&cam_dead_sim.sim_doneq);
1461 	spin_init(&cam_dead_sim.sim_spin, "cam_dead_sim");
1462 	cam_dead_sim.sim_action = dead_sim_action;
1463 	cam_dead_sim.sim_poll = dead_sim_poll;
1464 	cam_dead_sim.sim_name = "dead_sim";
1465 	cam_dead_sim.lock = &cam_dead_lock;
1466 	lockinit(&cam_dead_lock, "XPT dead_sim lock", 0, LK_CANRECURSE);
1467 	cam_dead_sim.flags |= CAM_SIM_DEREGISTERED;
1468 
1469 	/*
1470 	 * The xpt layer is, itself, the equivelent of a SIM.
1471 	 * Allow 16 ccbs in the ccb pool for it.  This should
1472 	 * give decent parallelism when we probe busses and
1473 	 * perform other XPT functions.
1474 	 */
1475 	devq = cam_simq_alloc(16);
1476 	xpt_sim = cam_sim_alloc(xptaction,
1477 				xptpoll,
1478 				"xpt",
1479 				/*softc*/NULL,
1480 				/*unit*/0,
1481 				/*lock*/&xsoftc.xpt_lock,
1482 				/*max_dev_transactions*/0,
1483 				/*max_tagged_dev_transactions*/0,
1484 				devq);
1485 	cam_simq_release(devq);
1486 	if (xpt_sim == NULL)
1487 		return (ENOMEM);
1488 
1489 	xpt_sim->max_ccbs = 16;
1490 
1491 	lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
1492 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1493 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1494 		kprintf("xpt_init: xpt_bus_register failed with status %#x,"
1495 		       " failing attach\n", status);
1496 		return (EINVAL);
1497 	}
1498 
1499 	/*
1500 	 * Looking at the XPT from the SIM layer, the XPT is
1501 	 * the equivelent of a peripheral driver.  Allocate
1502 	 * a peripheral driver entry for us.
1503 	 */
1504 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1505 				      CAM_TARGET_WILDCARD,
1506 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1507 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1508 		kprintf("xpt_init: xpt_create_path failed with status %#x,"
1509 		       " failing attach\n", status);
1510 		return (EINVAL);
1511 	}
1512 
1513 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1514 			 path, NULL, 0, xpt_sim);
1515 	xpt_free_path(path);
1516 
1517 	lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
1518 
1519 	/*
1520 	 * Register a callback for when interrupts are enabled.
1521 	 */
1522 	xsoftc.xpt_config_hook = kmalloc(sizeof(struct intr_config_hook),
1523 				  M_CAMXPT, M_INTWAIT | M_ZERO);
1524 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1525 	xsoftc.xpt_config_hook->ich_desc = "xpt";
1526 	xsoftc.xpt_config_hook->ich_order = 1000;
1527 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1528 		kfree (xsoftc.xpt_config_hook, M_CAMXPT);
1529 		kprintf("xpt_init: config_intrhook_establish failed "
1530 		       "- failing attach\n");
1531 	}
1532 
1533 	/* fire up rescan thread */
1534 	if (kthread_create(xpt_scanner_thread, NULL, NULL, "xpt_thrd")) {
1535 		kprintf("xpt_init: failed to create rescan thread\n");
1536 	}
1537 	/* Install our software interrupt handlers */
1538 	register_swi_mp(SWI_CAMBIO, swi_cambio, NULL, "swi_cambio", NULL, -1);
1539 
1540 	return (0);
1541 }
1542 
1543 static cam_status
1544 xptregister(struct cam_periph *periph, void *arg)
1545 {
1546 	struct cam_sim *xpt_sim;
1547 
1548 	if (periph == NULL) {
1549 		kprintf("xptregister: periph was NULL!!\n");
1550 		return(CAM_REQ_CMP_ERR);
1551 	}
1552 
1553 	xpt_sim = (struct cam_sim *)arg;
1554 	xpt_sim->softc = periph;
1555 	xpt_periph = periph;
1556 	periph->softc = NULL;
1557 
1558 	return(CAM_REQ_CMP);
1559 }
1560 
1561 int32_t
1562 xpt_add_periph(struct cam_periph *periph)
1563 {
1564 	struct cam_ed *device;
1565 	int32_t	 status;
1566 	struct periph_list *periph_head;
1567 
1568 	sim_lock_assert_owned(periph->sim->lock);
1569 
1570 	device = periph->path->device;
1571 
1572 	periph_head = &device->periphs;
1573 
1574 	status = CAM_REQ_CMP;
1575 
1576 	if (device != NULL) {
1577 		/*
1578 		 * Make room for this peripheral
1579 		 * so it will fit in the queue
1580 		 * when it's scheduled to run
1581 		 */
1582 		status = camq_resize(&device->drvq,
1583 				     device->drvq.array_size + 1);
1584 
1585 		device->generation++;
1586 
1587 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1588 	}
1589 
1590 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1591 	xsoftc.xpt_generation++;
1592 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1593 
1594 	return (status);
1595 }
1596 
1597 void
1598 xpt_remove_periph(struct cam_periph *periph)
1599 {
1600 	struct cam_ed *device;
1601 
1602 	sim_lock_assert_owned(periph->sim->lock);
1603 
1604 	device = periph->path->device;
1605 
1606 	if (device != NULL) {
1607 		struct periph_list *periph_head;
1608 
1609 		periph_head = &device->periphs;
1610 
1611 		/* Release the slot for this peripheral */
1612 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1613 
1614 		device->generation++;
1615 
1616 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1617 	}
1618 
1619 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
1620 	xsoftc.xpt_generation++;
1621 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
1622 }
1623 
1624 void
1625 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1626 {
1627 	struct	ccb_pathinq cpi;
1628 	struct	ccb_trans_settings cts;
1629 	struct	cam_path *path;
1630 	u_int	speed;
1631 	u_int	freq;
1632 	u_int	mb;
1633 
1634 	sim_lock_assert_owned(periph->sim->lock);
1635 
1636 	path = periph->path;
1637 
1638 	/* Report basic attachment and inquiry data */
1639 	kprintf("%s%d at %s%d bus %d target %d lun %d\n",
1640 	       periph->periph_name, periph->unit_number,
1641 	       path->bus->sim->sim_name,
1642 	       path->bus->sim->unit_number,
1643 	       path->bus->sim->bus_id,
1644 	       path->target->target_id,
1645 	       path->device->lun_id);
1646 	kprintf("%s%d: ", periph->periph_name, periph->unit_number);
1647 	scsi_print_inquiry(&path->device->inq_data);
1648 
1649 	/* Report serial number */
1650 	if (path->device->serial_num_len > 0) {
1651 		/* Don't wrap the screen  - print only the first 60 chars */
1652 		kprintf("%s%d: Serial Number %.60s\n", periph->periph_name,
1653 		       periph->unit_number, path->device->serial_num);
1654 	}
1655 
1656 	/* Acquire and report transfer speed */
1657 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1658 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1659 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1660 	xpt_action((union ccb*)&cts);
1661 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1662 		return;
1663 	}
1664 
1665 	/* Ask the SIM for its base transfer speed */
1666 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1667 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1668 	xpt_action((union ccb *)&cpi);
1669 
1670 	speed = cpi.base_transfer_speed;
1671 	freq = 0;
1672 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1673 		struct	ccb_trans_settings_spi *spi;
1674 
1675 		spi = &cts.xport_specific.spi;
1676 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1677 		  && spi->sync_offset != 0) {
1678 			freq = scsi_calc_syncsrate(spi->sync_period);
1679 			speed = freq;
1680 		}
1681 
1682 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1683 			speed *= (0x01 << spi->bus_width);
1684 	}
1685 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1686 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1687 		if (fc->valid & CTS_FC_VALID_SPEED) {
1688 			speed = fc->bitrate;
1689 		}
1690 	}
1691 
1692 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1693 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1694 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1695 			speed = sas->bitrate;
1696 		}
1697 	}
1698 
1699 	mb = speed / 1000;
1700 	if (mb > 0)
1701 		kprintf("%s%d: %d.%03dMB/s transfers",
1702 		       periph->periph_name, periph->unit_number,
1703 		       mb, speed % 1000);
1704 	else
1705 		kprintf("%s%d: %dKB/s transfers", periph->periph_name,
1706 		       periph->unit_number, speed);
1707 
1708 	/* Report additional information about SPI connections */
1709 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1710 		struct	ccb_trans_settings_spi *spi;
1711 
1712 		spi = &cts.xport_specific.spi;
1713 		if (freq != 0) {
1714 			kprintf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1715 			       freq % 1000,
1716 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1717 			     ? " DT" : "",
1718 			       spi->sync_offset);
1719 		}
1720 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1721 		 && spi->bus_width > 0) {
1722 			if (freq != 0) {
1723 				kprintf(", ");
1724 			} else {
1725 				kprintf(" (");
1726 			}
1727 			kprintf("%dbit)", 8 * (0x01 << spi->bus_width));
1728 		} else if (freq != 0) {
1729 			kprintf(")");
1730 		}
1731 	}
1732 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1733 		struct	ccb_trans_settings_fc *fc;
1734 
1735 		fc = &cts.xport_specific.fc;
1736 		if (fc->valid & CTS_FC_VALID_WWNN)
1737 			kprintf(" WWNN 0x%llx", (long long) fc->wwnn);
1738 		if (fc->valid & CTS_FC_VALID_WWPN)
1739 			kprintf(" WWPN 0x%llx", (long long) fc->wwpn);
1740 		if (fc->valid & CTS_FC_VALID_PORT)
1741 			kprintf(" PortID 0x%x", fc->port);
1742 	}
1743 
1744 	if (path->device->inq_flags & SID_CmdQue
1745 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1746 		kprintf("\n%s%d: Command Queueing Enabled",
1747 		       periph->periph_name, periph->unit_number);
1748 	}
1749 	kprintf("\n");
1750 
1751 	/*
1752 	 * We only want to print the caller's announce string if they've
1753 	 * passed one in..
1754 	 */
1755 	if (announce_string != NULL)
1756 		kprintf("%s%d: %s\n", periph->periph_name,
1757 		       periph->unit_number, announce_string);
1758 }
1759 
1760 static dev_match_ret
1761 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1762 	    struct cam_eb *bus)
1763 {
1764 	dev_match_ret retval;
1765 	int i;
1766 
1767 	retval = DM_RET_NONE;
1768 
1769 	/*
1770 	 * If we aren't given something to match against, that's an error.
1771 	 */
1772 	if (bus == NULL)
1773 		return(DM_RET_ERROR);
1774 
1775 	/*
1776 	 * If there are no match entries, then this bus matches no
1777 	 * matter what.
1778 	 */
1779 	if ((patterns == NULL) || (num_patterns == 0))
1780 		return(DM_RET_DESCEND | DM_RET_COPY);
1781 
1782 	for (i = 0; i < num_patterns; i++) {
1783 		struct bus_match_pattern *cur_pattern;
1784 
1785 		/*
1786 		 * If the pattern in question isn't for a bus node, we
1787 		 * aren't interested.  However, we do indicate to the
1788 		 * calling routine that we should continue descending the
1789 		 * tree, since the user wants to match against lower-level
1790 		 * EDT elements.
1791 		 */
1792 		if (patterns[i].type != DEV_MATCH_BUS) {
1793 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1794 				retval |= DM_RET_DESCEND;
1795 			continue;
1796 		}
1797 
1798 		cur_pattern = &patterns[i].pattern.bus_pattern;
1799 
1800 		/*
1801 		 * If they want to match any bus node, we give them any
1802 		 * device node.
1803 		 */
1804 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1805 			/* set the copy flag */
1806 			retval |= DM_RET_COPY;
1807 
1808 			/*
1809 			 * If we've already decided on an action, go ahead
1810 			 * and return.
1811 			 */
1812 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1813 				return(retval);
1814 		}
1815 
1816 		/*
1817 		 * Not sure why someone would do this...
1818 		 */
1819 		if (cur_pattern->flags == BUS_MATCH_NONE)
1820 			continue;
1821 
1822 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1823 		 && (cur_pattern->path_id != bus->path_id))
1824 			continue;
1825 
1826 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1827 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1828 			continue;
1829 
1830 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1831 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1832 			continue;
1833 
1834 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1835 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1836 			     DEV_IDLEN) != 0))
1837 			continue;
1838 
1839 		/*
1840 		 * If we get to this point, the user definitely wants
1841 		 * information on this bus.  So tell the caller to copy the
1842 		 * data out.
1843 		 */
1844 		retval |= DM_RET_COPY;
1845 
1846 		/*
1847 		 * If the return action has been set to descend, then we
1848 		 * know that we've already seen a non-bus matching
1849 		 * expression, therefore we need to further descend the tree.
1850 		 * This won't change by continuing around the loop, so we
1851 		 * go ahead and return.  If we haven't seen a non-bus
1852 		 * matching expression, we keep going around the loop until
1853 		 * we exhaust the matching expressions.  We'll set the stop
1854 		 * flag once we fall out of the loop.
1855 		 */
1856 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1857 			return(retval);
1858 	}
1859 
1860 	/*
1861 	 * If the return action hasn't been set to descend yet, that means
1862 	 * we haven't seen anything other than bus matching patterns.  So
1863 	 * tell the caller to stop descending the tree -- the user doesn't
1864 	 * want to match against lower level tree elements.
1865 	 */
1866 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1867 		retval |= DM_RET_STOP;
1868 
1869 	return(retval);
1870 }
1871 
1872 static dev_match_ret
1873 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1874 	       struct cam_ed *device)
1875 {
1876 	dev_match_ret retval;
1877 	int i;
1878 
1879 	retval = DM_RET_NONE;
1880 
1881 	/*
1882 	 * If we aren't given something to match against, that's an error.
1883 	 */
1884 	if (device == NULL)
1885 		return(DM_RET_ERROR);
1886 
1887 	/*
1888 	 * If there are no match entries, then this device matches no
1889 	 * matter what.
1890 	 */
1891 	if ((patterns == NULL) || (num_patterns == 0))
1892 		return(DM_RET_DESCEND | DM_RET_COPY);
1893 
1894 	for (i = 0; i < num_patterns; i++) {
1895 		struct device_match_pattern *cur_pattern;
1896 
1897 		/*
1898 		 * If the pattern in question isn't for a device node, we
1899 		 * aren't interested.
1900 		 */
1901 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1902 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1903 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1904 				retval |= DM_RET_DESCEND;
1905 			continue;
1906 		}
1907 
1908 		cur_pattern = &patterns[i].pattern.device_pattern;
1909 
1910 		/*
1911 		 * If they want to match any device node, we give them any
1912 		 * device node.
1913 		 */
1914 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1915 			/* set the copy flag */
1916 			retval |= DM_RET_COPY;
1917 
1918 
1919 			/*
1920 			 * If we've already decided on an action, go ahead
1921 			 * and return.
1922 			 */
1923 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1924 				return(retval);
1925 		}
1926 
1927 		/*
1928 		 * Not sure why someone would do this...
1929 		 */
1930 		if (cur_pattern->flags == DEV_MATCH_NONE)
1931 			continue;
1932 
1933 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1934 		 && (cur_pattern->path_id != device->target->bus->path_id))
1935 			continue;
1936 
1937 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1938 		 && (cur_pattern->target_id != device->target->target_id))
1939 			continue;
1940 
1941 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1942 		 && (cur_pattern->target_lun != device->lun_id))
1943 			continue;
1944 
1945 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1946 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1947 				    (caddr_t)&cur_pattern->inq_pat,
1948 				    1, sizeof(cur_pattern->inq_pat),
1949 				    scsi_static_inquiry_match) == NULL))
1950 			continue;
1951 
1952 		/*
1953 		 * If we get to this point, the user definitely wants
1954 		 * information on this device.  So tell the caller to copy
1955 		 * the data out.
1956 		 */
1957 		retval |= DM_RET_COPY;
1958 
1959 		/*
1960 		 * If the return action has been set to descend, then we
1961 		 * know that we've already seen a peripheral matching
1962 		 * expression, therefore we need to further descend the tree.
1963 		 * This won't change by continuing around the loop, so we
1964 		 * go ahead and return.  If we haven't seen a peripheral
1965 		 * matching expression, we keep going around the loop until
1966 		 * we exhaust the matching expressions.  We'll set the stop
1967 		 * flag once we fall out of the loop.
1968 		 */
1969 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1970 			return(retval);
1971 	}
1972 
1973 	/*
1974 	 * If the return action hasn't been set to descend yet, that means
1975 	 * we haven't seen any peripheral matching patterns.  So tell the
1976 	 * caller to stop descending the tree -- the user doesn't want to
1977 	 * match against lower level tree elements.
1978 	 */
1979 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1980 		retval |= DM_RET_STOP;
1981 
1982 	return(retval);
1983 }
1984 
1985 /*
1986  * Match a single peripheral against any number of match patterns.
1987  */
1988 static dev_match_ret
1989 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1990 	       struct cam_periph *periph)
1991 {
1992 	dev_match_ret retval;
1993 	int i;
1994 
1995 	/*
1996 	 * If we aren't given something to match against, that's an error.
1997 	 */
1998 	if (periph == NULL)
1999 		return(DM_RET_ERROR);
2000 
2001 	/*
2002 	 * If there are no match entries, then this peripheral matches no
2003 	 * matter what.
2004 	 */
2005 	if ((patterns == NULL) || (num_patterns == 0))
2006 		return(DM_RET_STOP | DM_RET_COPY);
2007 
2008 	/*
2009 	 * There aren't any nodes below a peripheral node, so there's no
2010 	 * reason to descend the tree any further.
2011 	 */
2012 	retval = DM_RET_STOP;
2013 
2014 	for (i = 0; i < num_patterns; i++) {
2015 		struct periph_match_pattern *cur_pattern;
2016 
2017 		/*
2018 		 * If the pattern in question isn't for a peripheral, we
2019 		 * aren't interested.
2020 		 */
2021 		if (patterns[i].type != DEV_MATCH_PERIPH)
2022 			continue;
2023 
2024 		cur_pattern = &patterns[i].pattern.periph_pattern;
2025 
2026 		/*
2027 		 * If they want to match on anything, then we will do so.
2028 		 */
2029 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2030 			/* set the copy flag */
2031 			retval |= DM_RET_COPY;
2032 
2033 			/*
2034 			 * We've already set the return action to stop,
2035 			 * since there are no nodes below peripherals in
2036 			 * the tree.
2037 			 */
2038 			return(retval);
2039 		}
2040 
2041 		/*
2042 		 * Not sure why someone would do this...
2043 		 */
2044 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2045 			continue;
2046 
2047 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2048 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2049 			continue;
2050 
2051 		/*
2052 		 * For the target and lun id's, we have to make sure the
2053 		 * target and lun pointers aren't NULL.  The xpt peripheral
2054 		 * has a wildcard target and device.
2055 		 */
2056 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2057 		 && ((periph->path->target == NULL)
2058 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2059 			continue;
2060 
2061 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2062 		 && ((periph->path->device == NULL)
2063 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2064 			continue;
2065 
2066 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2067 		 && (cur_pattern->unit_number != periph->unit_number))
2068 			continue;
2069 
2070 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2071 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2072 			     DEV_IDLEN) != 0))
2073 			continue;
2074 
2075 		/*
2076 		 * If we get to this point, the user definitely wants
2077 		 * information on this peripheral.  So tell the caller to
2078 		 * copy the data out.
2079 		 */
2080 		retval |= DM_RET_COPY;
2081 
2082 		/*
2083 		 * The return action has already been set to stop, since
2084 		 * peripherals don't have any nodes below them in the EDT.
2085 		 */
2086 		return(retval);
2087 	}
2088 
2089 	/*
2090 	 * If we get to this point, the peripheral that was passed in
2091 	 * doesn't match any of the patterns.
2092 	 */
2093 	return(retval);
2094 }
2095 
2096 static int
2097 xptedtbusfunc(struct cam_eb *bus, void *arg)
2098 {
2099 	struct ccb_dev_match *cdm;
2100 	dev_match_ret retval;
2101 
2102 	cdm = (struct ccb_dev_match *)arg;
2103 
2104 	/*
2105 	 * If our position is for something deeper in the tree, that means
2106 	 * that we've already seen this node.  So, we keep going down.
2107 	 */
2108 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2109 	 && (cdm->pos.cookie.bus == bus)
2110 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2111 	 && (cdm->pos.cookie.target != NULL))
2112 		retval = DM_RET_DESCEND;
2113 	else
2114 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2115 
2116 	/*
2117 	 * If we got an error, bail out of the search.
2118 	 */
2119 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2120 		cdm->status = CAM_DEV_MATCH_ERROR;
2121 		return(0);
2122 	}
2123 
2124 	/*
2125 	 * If the copy flag is set, copy this bus out.
2126 	 */
2127 	if (retval & DM_RET_COPY) {
2128 		int spaceleft, j;
2129 
2130 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2131 			sizeof(struct dev_match_result));
2132 
2133 		/*
2134 		 * If we don't have enough space to put in another
2135 		 * match result, save our position and tell the
2136 		 * user there are more devices to check.
2137 		 */
2138 		if (spaceleft < sizeof(struct dev_match_result)) {
2139 			bzero(&cdm->pos, sizeof(cdm->pos));
2140 			cdm->pos.position_type =
2141 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2142 
2143 			cdm->pos.cookie.bus = bus;
2144 			cdm->pos.generations[CAM_BUS_GENERATION]=
2145 				xsoftc.bus_generation;
2146 			cdm->status = CAM_DEV_MATCH_MORE;
2147 			return(0);
2148 		}
2149 		j = cdm->num_matches;
2150 		cdm->num_matches++;
2151 		cdm->matches[j].type = DEV_MATCH_BUS;
2152 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2153 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2154 		cdm->matches[j].result.bus_result.unit_number =
2155 			bus->sim->unit_number;
2156 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2157 			bus->sim->sim_name, DEV_IDLEN);
2158 	}
2159 
2160 	/*
2161 	 * If the user is only interested in busses, there's no
2162 	 * reason to descend to the next level in the tree.
2163 	 */
2164 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2165 		return(1);
2166 
2167 	/*
2168 	 * If there is a target generation recorded, check it to
2169 	 * make sure the target list hasn't changed.
2170 	 */
2171 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2172 	 && (bus == cdm->pos.cookie.bus)
2173 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2174 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2175 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2176 	     bus->generation)) {
2177 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2178 		return(0);
2179 	}
2180 
2181 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2182 	 && (cdm->pos.cookie.bus == bus)
2183 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2184 	 && (cdm->pos.cookie.target != NULL))
2185 		return(xpttargettraverse(bus,
2186 					(struct cam_et *)cdm->pos.cookie.target,
2187 					 xptedttargetfunc, arg));
2188 	else
2189 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2190 }
2191 
2192 static int
2193 xptedttargetfunc(struct cam_et *target, void *arg)
2194 {
2195 	struct ccb_dev_match *cdm;
2196 
2197 	cdm = (struct ccb_dev_match *)arg;
2198 
2199 	/*
2200 	 * If there is a device list generation recorded, check it to
2201 	 * make sure the device list hasn't changed.
2202 	 */
2203 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2204 	 && (cdm->pos.cookie.bus == target->bus)
2205 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2206 	 && (cdm->pos.cookie.target == target)
2207 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2208 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2209 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2210 	     target->generation)) {
2211 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2212 		return(0);
2213 	}
2214 
2215 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2216 	 && (cdm->pos.cookie.bus == target->bus)
2217 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2218 	 && (cdm->pos.cookie.target == target)
2219 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2220 	 && (cdm->pos.cookie.device != NULL))
2221 		return(xptdevicetraverse(target,
2222 					(struct cam_ed *)cdm->pos.cookie.device,
2223 					 xptedtdevicefunc, arg));
2224 	else
2225 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2226 }
2227 
2228 static int
2229 xptedtdevicefunc(struct cam_ed *device, void *arg)
2230 {
2231 
2232 	struct ccb_dev_match *cdm;
2233 	dev_match_ret retval;
2234 
2235 	cdm = (struct ccb_dev_match *)arg;
2236 
2237 	/*
2238 	 * If our position is for something deeper in the tree, that means
2239 	 * that we've already seen this node.  So, we keep going down.
2240 	 */
2241 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2242 	 && (cdm->pos.cookie.device == device)
2243 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2244 	 && (cdm->pos.cookie.periph != NULL))
2245 		retval = DM_RET_DESCEND;
2246 	else
2247 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2248 					device);
2249 
2250 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2251 		cdm->status = CAM_DEV_MATCH_ERROR;
2252 		return(0);
2253 	}
2254 
2255 	/*
2256 	 * If the copy flag is set, copy this device out.
2257 	 */
2258 	if (retval & DM_RET_COPY) {
2259 		int spaceleft, j;
2260 
2261 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2262 			sizeof(struct dev_match_result));
2263 
2264 		/*
2265 		 * If we don't have enough space to put in another
2266 		 * match result, save our position and tell the
2267 		 * user there are more devices to check.
2268 		 */
2269 		if (spaceleft < sizeof(struct dev_match_result)) {
2270 			bzero(&cdm->pos, sizeof(cdm->pos));
2271 			cdm->pos.position_type =
2272 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2273 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2274 
2275 			cdm->pos.cookie.bus = device->target->bus;
2276 			cdm->pos.generations[CAM_BUS_GENERATION]=
2277 				xsoftc.bus_generation;
2278 			cdm->pos.cookie.target = device->target;
2279 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2280 				device->target->bus->generation;
2281 			cdm->pos.cookie.device = device;
2282 			cdm->pos.generations[CAM_DEV_GENERATION] =
2283 				device->target->generation;
2284 			cdm->status = CAM_DEV_MATCH_MORE;
2285 			return(0);
2286 		}
2287 		j = cdm->num_matches;
2288 		cdm->num_matches++;
2289 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2290 		cdm->matches[j].result.device_result.path_id =
2291 			device->target->bus->path_id;
2292 		cdm->matches[j].result.device_result.target_id =
2293 			device->target->target_id;
2294 		cdm->matches[j].result.device_result.target_lun =
2295 			device->lun_id;
2296 		bcopy(&device->inq_data,
2297 		      &cdm->matches[j].result.device_result.inq_data,
2298 		      sizeof(struct scsi_inquiry_data));
2299 
2300 		/* Let the user know whether this device is unconfigured */
2301 		if (device->flags & CAM_DEV_UNCONFIGURED)
2302 			cdm->matches[j].result.device_result.flags =
2303 				DEV_RESULT_UNCONFIGURED;
2304 		else
2305 			cdm->matches[j].result.device_result.flags =
2306 				DEV_RESULT_NOFLAG;
2307 	}
2308 
2309 	/*
2310 	 * If the user isn't interested in peripherals, don't descend
2311 	 * the tree any further.
2312 	 */
2313 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2314 		return(1);
2315 
2316 	/*
2317 	 * If there is a peripheral list generation recorded, make sure
2318 	 * it hasn't changed.
2319 	 */
2320 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2321 	 && (device->target->bus == cdm->pos.cookie.bus)
2322 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2323 	 && (device->target == cdm->pos.cookie.target)
2324 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2325 	 && (device == cdm->pos.cookie.device)
2326 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2327 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2328 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2329 	     device->generation)){
2330 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2331 		return(0);
2332 	}
2333 
2334 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2335 	 && (cdm->pos.cookie.bus == device->target->bus)
2336 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2337 	 && (cdm->pos.cookie.target == device->target)
2338 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2339 	 && (cdm->pos.cookie.device == device)
2340 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2341 	 && (cdm->pos.cookie.periph != NULL))
2342 		return(xptperiphtraverse(device,
2343 				(struct cam_periph *)cdm->pos.cookie.periph,
2344 				xptedtperiphfunc, arg));
2345 	else
2346 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2347 }
2348 
2349 static int
2350 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2351 {
2352 	struct ccb_dev_match *cdm;
2353 	dev_match_ret retval;
2354 
2355 	cdm = (struct ccb_dev_match *)arg;
2356 
2357 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2358 
2359 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2360 		cdm->status = CAM_DEV_MATCH_ERROR;
2361 		return(0);
2362 	}
2363 
2364 	/*
2365 	 * If the copy flag is set, copy this peripheral out.
2366 	 */
2367 	if (retval & DM_RET_COPY) {
2368 		int spaceleft, j;
2369 
2370 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2371 			sizeof(struct dev_match_result));
2372 
2373 		/*
2374 		 * If we don't have enough space to put in another
2375 		 * match result, save our position and tell the
2376 		 * user there are more devices to check.
2377 		 */
2378 		if (spaceleft < sizeof(struct dev_match_result)) {
2379 			bzero(&cdm->pos, sizeof(cdm->pos));
2380 			cdm->pos.position_type =
2381 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2382 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2383 				CAM_DEV_POS_PERIPH;
2384 
2385 			cdm->pos.cookie.bus = periph->path->bus;
2386 			cdm->pos.generations[CAM_BUS_GENERATION]=
2387 				xsoftc.bus_generation;
2388 			cdm->pos.cookie.target = periph->path->target;
2389 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2390 				periph->path->bus->generation;
2391 			cdm->pos.cookie.device = periph->path->device;
2392 			cdm->pos.generations[CAM_DEV_GENERATION] =
2393 				periph->path->target->generation;
2394 			cdm->pos.cookie.periph = periph;
2395 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2396 				periph->path->device->generation;
2397 			cdm->status = CAM_DEV_MATCH_MORE;
2398 			return(0);
2399 		}
2400 
2401 		j = cdm->num_matches;
2402 		cdm->num_matches++;
2403 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2404 		cdm->matches[j].result.periph_result.path_id =
2405 			periph->path->bus->path_id;
2406 		cdm->matches[j].result.periph_result.target_id =
2407 			periph->path->target->target_id;
2408 		cdm->matches[j].result.periph_result.target_lun =
2409 			periph->path->device->lun_id;
2410 		cdm->matches[j].result.periph_result.unit_number =
2411 			periph->unit_number;
2412 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2413 			periph->periph_name, DEV_IDLEN);
2414 	}
2415 
2416 	return(1);
2417 }
2418 
2419 static int
2420 xptedtmatch(struct ccb_dev_match *cdm)
2421 {
2422 	int ret;
2423 
2424 	cdm->num_matches = 0;
2425 
2426 	/*
2427 	 * Check the bus list generation.  If it has changed, the user
2428 	 * needs to reset everything and start over.
2429 	 */
2430 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2431 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2432 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2433 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2434 		return(0);
2435 	}
2436 
2437 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2438 	 && (cdm->pos.cookie.bus != NULL))
2439 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2440 				     xptedtbusfunc, cdm);
2441 	else
2442 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2443 
2444 	/*
2445 	 * If we get back 0, that means that we had to stop before fully
2446 	 * traversing the EDT.  It also means that one of the subroutines
2447 	 * has set the status field to the proper value.  If we get back 1,
2448 	 * we've fully traversed the EDT and copied out any matching entries.
2449 	 */
2450 	if (ret == 1)
2451 		cdm->status = CAM_DEV_MATCH_LAST;
2452 
2453 	return(ret);
2454 }
2455 
2456 static int
2457 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2458 {
2459 	struct ccb_dev_match *cdm;
2460 
2461 	cdm = (struct ccb_dev_match *)arg;
2462 
2463 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2464 	 && (cdm->pos.cookie.pdrv == pdrv)
2465 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2466 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2467 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2468 	     (*pdrv)->generation)) {
2469 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2470 		return(0);
2471 	}
2472 
2473 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2474 	 && (cdm->pos.cookie.pdrv == pdrv)
2475 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2476 	 && (cdm->pos.cookie.periph != NULL))
2477 		return(xptpdperiphtraverse(pdrv,
2478 				(struct cam_periph *)cdm->pos.cookie.periph,
2479 				xptplistperiphfunc, arg));
2480 	else
2481 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2482 }
2483 
2484 static int
2485 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2486 {
2487 	struct ccb_dev_match *cdm;
2488 	dev_match_ret retval;
2489 
2490 	cdm = (struct ccb_dev_match *)arg;
2491 
2492 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2493 
2494 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2495 		cdm->status = CAM_DEV_MATCH_ERROR;
2496 		return(0);
2497 	}
2498 
2499 	/*
2500 	 * If the copy flag is set, copy this peripheral out.
2501 	 */
2502 	if (retval & DM_RET_COPY) {
2503 		int spaceleft, j;
2504 
2505 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2506 			sizeof(struct dev_match_result));
2507 
2508 		/*
2509 		 * If we don't have enough space to put in another
2510 		 * match result, save our position and tell the
2511 		 * user there are more devices to check.
2512 		 */
2513 		if (spaceleft < sizeof(struct dev_match_result)) {
2514 			struct periph_driver **pdrv;
2515 
2516 			pdrv = NULL;
2517 			bzero(&cdm->pos, sizeof(cdm->pos));
2518 			cdm->pos.position_type =
2519 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2520 				CAM_DEV_POS_PERIPH;
2521 
2522 			/*
2523 			 * This may look a bit non-sensical, but it is
2524 			 * actually quite logical.  There are very few
2525 			 * peripheral drivers, and bloating every peripheral
2526 			 * structure with a pointer back to its parent
2527 			 * peripheral driver linker set entry would cost
2528 			 * more in the long run than doing this quick lookup.
2529 			 */
2530 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2531 				if (strcmp((*pdrv)->driver_name,
2532 				    periph->periph_name) == 0)
2533 					break;
2534 			}
2535 
2536 			if (*pdrv == NULL) {
2537 				cdm->status = CAM_DEV_MATCH_ERROR;
2538 				return(0);
2539 			}
2540 
2541 			cdm->pos.cookie.pdrv = pdrv;
2542 			/*
2543 			 * The periph generation slot does double duty, as
2544 			 * does the periph pointer slot.  They are used for
2545 			 * both edt and pdrv lookups and positioning.
2546 			 */
2547 			cdm->pos.cookie.periph = periph;
2548 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2549 				(*pdrv)->generation;
2550 			cdm->status = CAM_DEV_MATCH_MORE;
2551 			return(0);
2552 		}
2553 
2554 		j = cdm->num_matches;
2555 		cdm->num_matches++;
2556 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2557 		cdm->matches[j].result.periph_result.path_id =
2558 			periph->path->bus->path_id;
2559 
2560 		/*
2561 		 * The transport layer peripheral doesn't have a target or
2562 		 * lun.
2563 		 */
2564 		if (periph->path->target)
2565 			cdm->matches[j].result.periph_result.target_id =
2566 				periph->path->target->target_id;
2567 		else
2568 			cdm->matches[j].result.periph_result.target_id = -1;
2569 
2570 		if (periph->path->device)
2571 			cdm->matches[j].result.periph_result.target_lun =
2572 				periph->path->device->lun_id;
2573 		else
2574 			cdm->matches[j].result.periph_result.target_lun = -1;
2575 
2576 		cdm->matches[j].result.periph_result.unit_number =
2577 			periph->unit_number;
2578 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2579 			periph->periph_name, DEV_IDLEN);
2580 	}
2581 
2582 	return(1);
2583 }
2584 
2585 static int
2586 xptperiphlistmatch(struct ccb_dev_match *cdm)
2587 {
2588 	int ret;
2589 
2590 	cdm->num_matches = 0;
2591 
2592 	/*
2593 	 * At this point in the edt traversal function, we check the bus
2594 	 * list generation to make sure that no busses have been added or
2595 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2596 	 * For the peripheral driver list traversal function, however, we
2597 	 * don't have to worry about new peripheral driver types coming or
2598 	 * going; they're in a linker set, and therefore can't change
2599 	 * without a recompile.
2600 	 */
2601 
2602 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2603 	 && (cdm->pos.cookie.pdrv != NULL))
2604 		ret = xptpdrvtraverse(
2605 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2606 				xptplistpdrvfunc, cdm);
2607 	else
2608 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2609 
2610 	/*
2611 	 * If we get back 0, that means that we had to stop before fully
2612 	 * traversing the peripheral driver tree.  It also means that one of
2613 	 * the subroutines has set the status field to the proper value.  If
2614 	 * we get back 1, we've fully traversed the EDT and copied out any
2615 	 * matching entries.
2616 	 */
2617 	if (ret == 1)
2618 		cdm->status = CAM_DEV_MATCH_LAST;
2619 
2620 	return(ret);
2621 }
2622 
2623 static int
2624 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2625 {
2626 	struct cam_eb *bus, *next_bus;
2627 	int retval;
2628 
2629 	retval = 1;
2630 
2631 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2632 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2633 	     bus != NULL;
2634 	     bus = next_bus) {
2635 		next_bus = TAILQ_NEXT(bus, links);
2636 
2637 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2638 		CAM_SIM_LOCK(bus->sim);
2639 		retval = tr_func(bus, arg);
2640 		CAM_SIM_UNLOCK(bus->sim);
2641 		if (retval == 0)
2642 			return(retval);
2643 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
2644 	}
2645 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
2646 
2647 	return(retval);
2648 }
2649 
2650 static int
2651 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2652 		  xpt_targetfunc_t *tr_func, void *arg)
2653 {
2654 	struct cam_et *target, *next_target;
2655 	int retval;
2656 
2657 	retval = 1;
2658 	for (target = (start_target ? start_target :
2659 		       TAILQ_FIRST(&bus->et_entries));
2660 	     target != NULL; target = next_target) {
2661 
2662 		next_target = TAILQ_NEXT(target, links);
2663 
2664 		retval = tr_func(target, arg);
2665 
2666 		if (retval == 0)
2667 			return(retval);
2668 	}
2669 
2670 	return(retval);
2671 }
2672 
2673 static int
2674 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2675 		  xpt_devicefunc_t *tr_func, void *arg)
2676 {
2677 	struct cam_ed *device, *next_device;
2678 	int retval;
2679 
2680 	retval = 1;
2681 	for (device = (start_device ? start_device :
2682 		       TAILQ_FIRST(&target->ed_entries));
2683 	     device != NULL;
2684 	     device = next_device) {
2685 
2686 		next_device = TAILQ_NEXT(device, links);
2687 
2688 		retval = tr_func(device, arg);
2689 
2690 		if (retval == 0)
2691 			return(retval);
2692 	}
2693 
2694 	return(retval);
2695 }
2696 
2697 static int
2698 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2699 		  xpt_periphfunc_t *tr_func, void *arg)
2700 {
2701 	struct cam_periph *periph, *next_periph;
2702 	int retval;
2703 
2704 	retval = 1;
2705 
2706 	for (periph = (start_periph ? start_periph :
2707 		       SLIST_FIRST(&device->periphs));
2708 	     periph != NULL;
2709 	     periph = next_periph) {
2710 
2711 		next_periph = SLIST_NEXT(periph, periph_links);
2712 
2713 		retval = tr_func(periph, arg);
2714 		if (retval == 0)
2715 			return(retval);
2716 	}
2717 
2718 	return(retval);
2719 }
2720 
2721 static int
2722 xptpdrvtraverse(struct periph_driver **start_pdrv,
2723 		xpt_pdrvfunc_t *tr_func, void *arg)
2724 {
2725 	struct periph_driver **pdrv;
2726 	int retval;
2727 
2728 	retval = 1;
2729 
2730 	/*
2731 	 * We don't traverse the peripheral driver list like we do the
2732 	 * other lists, because it is a linker set, and therefore cannot be
2733 	 * changed during runtime.  If the peripheral driver list is ever
2734 	 * re-done to be something other than a linker set (i.e. it can
2735 	 * change while the system is running), the list traversal should
2736 	 * be modified to work like the other traversal functions.
2737 	 */
2738 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2739 	     *pdrv != NULL; pdrv++) {
2740 		retval = tr_func(pdrv, arg);
2741 
2742 		if (retval == 0)
2743 			return(retval);
2744 	}
2745 
2746 	return(retval);
2747 }
2748 
2749 static int
2750 xptpdperiphtraverse(struct periph_driver **pdrv,
2751 		    struct cam_periph *start_periph,
2752 		    xpt_periphfunc_t *tr_func, void *arg)
2753 {
2754 	struct cam_periph *periph, *next_periph;
2755 	int retval;
2756 
2757 	retval = 1;
2758 
2759 	for (periph = (start_periph ? start_periph :
2760 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2761 	     periph = next_periph) {
2762 
2763 		next_periph = TAILQ_NEXT(periph, unit_links);
2764 
2765 		retval = tr_func(periph, arg);
2766 		if (retval == 0)
2767 			return(retval);
2768 	}
2769 	return(retval);
2770 }
2771 
2772 static int
2773 xptdefbusfunc(struct cam_eb *bus, void *arg)
2774 {
2775 	struct xpt_traverse_config *tr_config;
2776 
2777 	tr_config = (struct xpt_traverse_config *)arg;
2778 
2779 	if (tr_config->depth == XPT_DEPTH_BUS) {
2780 		xpt_busfunc_t *tr_func;
2781 
2782 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2783 
2784 		return(tr_func(bus, tr_config->tr_arg));
2785 	} else
2786 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2787 }
2788 
2789 static int
2790 xptdeftargetfunc(struct cam_et *target, void *arg)
2791 {
2792 	struct xpt_traverse_config *tr_config;
2793 
2794 	tr_config = (struct xpt_traverse_config *)arg;
2795 
2796 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2797 		xpt_targetfunc_t *tr_func;
2798 
2799 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2800 
2801 		return(tr_func(target, tr_config->tr_arg));
2802 	} else
2803 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2804 }
2805 
2806 static int
2807 xptdefdevicefunc(struct cam_ed *device, void *arg)
2808 {
2809 	struct xpt_traverse_config *tr_config;
2810 
2811 	tr_config = (struct xpt_traverse_config *)arg;
2812 
2813 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2814 		xpt_devicefunc_t *tr_func;
2815 
2816 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2817 
2818 		return(tr_func(device, tr_config->tr_arg));
2819 	} else
2820 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2821 }
2822 
2823 static int
2824 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2825 {
2826 	struct xpt_traverse_config *tr_config;
2827 	xpt_periphfunc_t *tr_func;
2828 
2829 	tr_config = (struct xpt_traverse_config *)arg;
2830 
2831 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2832 
2833 	/*
2834 	 * Unlike the other default functions, we don't check for depth
2835 	 * here.  The peripheral driver level is the last level in the EDT,
2836 	 * so if we're here, we should execute the function in question.
2837 	 */
2838 	return(tr_func(periph, tr_config->tr_arg));
2839 }
2840 
2841 /*
2842  * Execute the given function for every bus in the EDT.
2843  */
2844 static int
2845 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2846 {
2847 	struct xpt_traverse_config tr_config;
2848 
2849 	tr_config.depth = XPT_DEPTH_BUS;
2850 	tr_config.tr_func = tr_func;
2851 	tr_config.tr_arg = arg;
2852 
2853 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2854 }
2855 
2856 /*
2857  * Execute the given function for every device in the EDT.
2858  */
2859 static int
2860 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2861 {
2862 	struct xpt_traverse_config tr_config;
2863 
2864 	tr_config.depth = XPT_DEPTH_DEVICE;
2865 	tr_config.tr_func = tr_func;
2866 	tr_config.tr_arg = arg;
2867 
2868 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2869 }
2870 
2871 static int
2872 xptsetasyncfunc(struct cam_ed *device, void *arg)
2873 {
2874 	struct cam_path path;
2875 	struct ccb_getdev cgd;
2876 	struct async_node *cur_entry;
2877 
2878 	cur_entry = (struct async_node *)arg;
2879 
2880 	/*
2881 	 * Don't report unconfigured devices (Wildcard devs,
2882 	 * devices only for target mode, device instances
2883 	 * that have been invalidated but are waiting for
2884 	 * their last reference count to be released).
2885 	 */
2886 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2887 		return (1);
2888 
2889 	xpt_compile_path(&path,
2890 			 NULL,
2891 			 device->target->bus->path_id,
2892 			 device->target->target_id,
2893 			 device->lun_id);
2894 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2895 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2896 	xpt_action((union ccb *)&cgd);
2897 	cur_entry->callback(cur_entry->callback_arg,
2898 			    AC_FOUND_DEVICE,
2899 			    &path, &cgd);
2900 	xpt_release_path(&path);
2901 
2902 	return(1);
2903 }
2904 
2905 static int
2906 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2907 {
2908 	struct cam_path path;
2909 	struct ccb_pathinq cpi;
2910 	struct async_node *cur_entry;
2911 
2912 	cur_entry = (struct async_node *)arg;
2913 
2914 	xpt_compile_path(&path, /*periph*/NULL,
2915 			 bus->sim->path_id,
2916 			 CAM_TARGET_WILDCARD,
2917 			 CAM_LUN_WILDCARD);
2918 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2919 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2920 	xpt_action((union ccb *)&cpi);
2921 	cur_entry->callback(cur_entry->callback_arg,
2922 			    AC_PATH_REGISTERED,
2923 			    &path, &cpi);
2924 	xpt_release_path(&path);
2925 
2926 	return(1);
2927 }
2928 
2929 static void
2930 xpt_action_sasync_cb(void *context, int pending)
2931 {
2932 	struct async_node *cur_entry;
2933 	struct xpt_task *task;
2934 	uint32_t added;
2935 
2936 	task = (struct xpt_task *)context;
2937 	cur_entry = (struct async_node *)task->data1;
2938 	added = task->data2;
2939 
2940 	if ((added & AC_FOUND_DEVICE) != 0) {
2941 		/*
2942 		 * Get this peripheral up to date with all
2943 		 * the currently existing devices.
2944 		 */
2945 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2946 	}
2947 	if ((added & AC_PATH_REGISTERED) != 0) {
2948 		/*
2949 		 * Get this peripheral up to date with all
2950 		 * the currently existing busses.
2951 		 */
2952 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2953 	}
2954 	kfree(task, M_CAMXPT);
2955 }
2956 
2957 void
2958 xpt_action(union ccb *start_ccb)
2959 {
2960 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2961 
2962 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2963 
2964 	switch (start_ccb->ccb_h.func_code) {
2965 	case XPT_SCSI_IO:
2966 	case XPT_TRIM:
2967 	{
2968 		struct cam_ed *device;
2969 #ifdef CAMDEBUG
2970 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2971 		struct cam_path *path;
2972 
2973 		path = start_ccb->ccb_h.path;
2974 #endif
2975 
2976 		/*
2977 		 * For the sake of compatibility with SCSI-1
2978 		 * devices that may not understand the identify
2979 		 * message, we include lun information in the
2980 		 * second byte of all commands.  SCSI-1 specifies
2981 		 * that luns are a 3 bit value and reserves only 3
2982 		 * bits for lun information in the CDB.  Later
2983 		 * revisions of the SCSI spec allow for more than 8
2984 		 * luns, but have deprecated lun information in the
2985 		 * CDB.  So, if the lun won't fit, we must omit.
2986 		 *
2987 		 * Also be aware that during initial probing for devices,
2988 		 * the inquiry information is unknown but initialized to 0.
2989 		 * This means that this code will be exercised while probing
2990 		 * devices with an ANSI revision greater than 2.
2991 		 */
2992 		device = start_ccb->ccb_h.path->device;
2993 		if (device->protocol_version <= SCSI_REV_2
2994 		 && start_ccb->ccb_h.target_lun < 8
2995 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2996 
2997 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2998 			    start_ccb->ccb_h.target_lun << 5;
2999 		}
3000 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3001 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3002 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3003 			  	       &path->device->inq_data),
3004 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3005 					  cdb_str, sizeof(cdb_str))));
3006 		/* FALLTHROUGH */
3007 	}
3008 	case XPT_TARGET_IO:
3009 	case XPT_CONT_TARGET_IO:
3010 		start_ccb->csio.sense_resid = 0;
3011 		start_ccb->csio.resid = 0;
3012 		/* FALLTHROUGH */
3013 	case XPT_RESET_DEV:
3014 	case XPT_ENG_EXEC:
3015 	{
3016 		struct cam_path *path;
3017 		struct cam_sim *sim;
3018 		int runq;
3019 
3020 		path = start_ccb->ccb_h.path;
3021 
3022 		sim = path->bus->sim;
3023 		if (sim == &cam_dead_sim) {
3024 			/* The SIM has gone; just execute the CCB directly. */
3025 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3026 			(*(sim->sim_action))(sim, start_ccb);
3027 			break;
3028 		}
3029 
3030 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3031 		if (path->device->qfrozen_cnt == 0)
3032 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3033 		else
3034 			runq = 0;
3035 		if (runq != 0)
3036 			xpt_run_dev_sendq(path->bus);
3037 		break;
3038 	}
3039 	case XPT_SET_TRAN_SETTINGS:
3040 	{
3041 		xpt_set_transfer_settings(&start_ccb->cts,
3042 					  start_ccb->ccb_h.path->device,
3043 					  /*async_update*/FALSE);
3044 		break;
3045 	}
3046 	case XPT_CALC_GEOMETRY:
3047 	{
3048 		struct cam_sim *sim;
3049 
3050 		/* Filter out garbage */
3051 		if (start_ccb->ccg.block_size == 0
3052 		 || start_ccb->ccg.volume_size == 0) {
3053 			start_ccb->ccg.cylinders = 0;
3054 			start_ccb->ccg.heads = 0;
3055 			start_ccb->ccg.secs_per_track = 0;
3056 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3057 			break;
3058 		}
3059 		sim = start_ccb->ccb_h.path->bus->sim;
3060 		(*(sim->sim_action))(sim, start_ccb);
3061 		break;
3062 	}
3063 	case XPT_ABORT:
3064 	{
3065 		union ccb* abort_ccb;
3066 
3067 		abort_ccb = start_ccb->cab.abort_ccb;
3068 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3069 
3070 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3071 				struct cam_ccbq *ccbq;
3072 
3073 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3074 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3075 				abort_ccb->ccb_h.status =
3076 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3077 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3078 				xpt_done(abort_ccb);
3079 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3080 				break;
3081 			}
3082 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3083 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3084 				/*
3085 				 * We've caught this ccb en route to
3086 				 * the SIM.  Flag it for abort and the
3087 				 * SIM will do so just before starting
3088 				 * real work on the CCB.
3089 				 */
3090 				abort_ccb->ccb_h.status =
3091 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3092 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3093 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3094 				break;
3095 			}
3096 		}
3097 		if (XPT_FC_IS_QUEUED(abort_ccb)
3098 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3099 			/*
3100 			 * It's already completed but waiting
3101 			 * for our SWI to get to it.
3102 			 */
3103 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3104 			break;
3105 		}
3106 		/*
3107 		 * If we weren't able to take care of the abort request
3108 		 * in the XPT, pass the request down to the SIM for processing.
3109 		 */
3110 		/* FALLTHROUGH */
3111 	}
3112 	case XPT_ACCEPT_TARGET_IO:
3113 	case XPT_EN_LUN:
3114 	case XPT_IMMED_NOTIFY:
3115 	case XPT_NOTIFY_ACK:
3116 	case XPT_GET_TRAN_SETTINGS:
3117 	case XPT_RESET_BUS:
3118 	{
3119 		struct cam_sim *sim;
3120 
3121 		sim = start_ccb->ccb_h.path->bus->sim;
3122 		(*(sim->sim_action))(sim, start_ccb);
3123 		break;
3124 	}
3125 	case XPT_PATH_INQ:
3126 	{
3127 		struct cam_sim *sim;
3128 
3129 		sim = start_ccb->ccb_h.path->bus->sim;
3130 		(*(sim->sim_action))(sim, start_ccb);
3131 		break;
3132 	}
3133 	case XPT_PATH_STATS:
3134 		start_ccb->cpis.last_reset =
3135 			start_ccb->ccb_h.path->bus->last_reset;
3136 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3137 		break;
3138 	case XPT_GDEV_TYPE:
3139 	{
3140 		struct cam_ed *dev;
3141 
3142 		dev = start_ccb->ccb_h.path->device;
3143 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3144 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3145 		} else {
3146 			struct ccb_getdev *cgd;
3147 
3148 			cgd = &start_ccb->cgd;
3149 			cgd->inq_data = dev->inq_data;
3150 			cgd->ccb_h.status = CAM_REQ_CMP;
3151 			cgd->serial_num_len = dev->serial_num_len;
3152 			if ((dev->serial_num_len > 0)
3153 			 && (dev->serial_num != NULL))
3154 				bcopy(dev->serial_num, cgd->serial_num,
3155 				      dev->serial_num_len);
3156 		}
3157 		break;
3158 	}
3159 	case XPT_GDEV_STATS:
3160 	{
3161 		struct cam_ed *dev;
3162 
3163 		dev = start_ccb->ccb_h.path->device;
3164 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3165 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3166 		} else {
3167 			struct ccb_getdevstats *cgds;
3168 			struct cam_eb *bus;
3169 			struct cam_et *tar;
3170 
3171 			cgds = &start_ccb->cgds;
3172 			bus = cgds->ccb_h.path->bus;
3173 			tar = cgds->ccb_h.path->target;
3174 			cgds->dev_openings = dev->ccbq.dev_openings;
3175 			cgds->dev_active = dev->ccbq.dev_active;
3176 			cgds->devq_openings = dev->ccbq.devq_openings;
3177 			cgds->devq_queued = dev->ccbq.queue.entries;
3178 			cgds->held = dev->ccbq.held;
3179 			cgds->last_reset = tar->last_reset;
3180 			cgds->maxtags = dev->quirk->maxtags;
3181 			cgds->mintags = dev->quirk->mintags;
3182 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3183 				cgds->last_reset = bus->last_reset;
3184 			cgds->ccb_h.status = CAM_REQ_CMP;
3185 		}
3186 		break;
3187 	}
3188 	case XPT_GDEVLIST:
3189 	{
3190 		struct cam_periph	*nperiph;
3191 		struct periph_list	*periph_head;
3192 		struct ccb_getdevlist	*cgdl;
3193 		u_int			i;
3194 		struct cam_ed		*device;
3195 		int			found;
3196 
3197 
3198 		found = 0;
3199 
3200 		/*
3201 		 * Don't want anyone mucking with our data.
3202 		 */
3203 		device = start_ccb->ccb_h.path->device;
3204 		periph_head = &device->periphs;
3205 		cgdl = &start_ccb->cgdl;
3206 
3207 		/*
3208 		 * Check and see if the list has changed since the user
3209 		 * last requested a list member.  If so, tell them that the
3210 		 * list has changed, and therefore they need to start over
3211 		 * from the beginning.
3212 		 */
3213 		if ((cgdl->index != 0) &&
3214 		    (cgdl->generation != device->generation)) {
3215 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3216 			break;
3217 		}
3218 
3219 		/*
3220 		 * Traverse the list of peripherals and attempt to find
3221 		 * the requested peripheral.
3222 		 */
3223 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3224 		     (nperiph != NULL) && (i <= cgdl->index);
3225 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3226 			if (i == cgdl->index) {
3227 				strncpy(cgdl->periph_name,
3228 					nperiph->periph_name,
3229 					DEV_IDLEN);
3230 				cgdl->unit_number = nperiph->unit_number;
3231 				found = 1;
3232 			}
3233 		}
3234 		if (found == 0) {
3235 			cgdl->status = CAM_GDEVLIST_ERROR;
3236 			break;
3237 		}
3238 
3239 		if (nperiph == NULL)
3240 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3241 		else
3242 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3243 
3244 		cgdl->index++;
3245 		cgdl->generation = device->generation;
3246 
3247 		cgdl->ccb_h.status = CAM_REQ_CMP;
3248 		break;
3249 	}
3250 	case XPT_DEV_MATCH:
3251 	{
3252 		dev_pos_type position_type;
3253 		struct ccb_dev_match *cdm;
3254 		int ret;
3255 
3256 		cdm = &start_ccb->cdm;
3257 
3258 		/*
3259 		 * There are two ways of getting at information in the EDT.
3260 		 * The first way is via the primary EDT tree.  It starts
3261 		 * with a list of busses, then a list of targets on a bus,
3262 		 * then devices/luns on a target, and then peripherals on a
3263 		 * device/lun.  The "other" way is by the peripheral driver
3264 		 * lists.  The peripheral driver lists are organized by
3265 		 * peripheral driver.  (obviously)  So it makes sense to
3266 		 * use the peripheral driver list if the user is looking
3267 		 * for something like "da1", or all "da" devices.  If the
3268 		 * user is looking for something on a particular bus/target
3269 		 * or lun, it's generally better to go through the EDT tree.
3270 		 */
3271 
3272 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3273 			position_type = cdm->pos.position_type;
3274 		else {
3275 			u_int i;
3276 
3277 			position_type = CAM_DEV_POS_NONE;
3278 
3279 			for (i = 0; i < cdm->num_patterns; i++) {
3280 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3281 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3282 					position_type = CAM_DEV_POS_EDT;
3283 					break;
3284 				}
3285 			}
3286 
3287 			if (cdm->num_patterns == 0)
3288 				position_type = CAM_DEV_POS_EDT;
3289 			else if (position_type == CAM_DEV_POS_NONE)
3290 				position_type = CAM_DEV_POS_PDRV;
3291 		}
3292 
3293 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3294 		case CAM_DEV_POS_EDT:
3295 			ret = xptedtmatch(cdm);
3296 			break;
3297 		case CAM_DEV_POS_PDRV:
3298 			ret = xptperiphlistmatch(cdm);
3299 			break;
3300 		default:
3301 			cdm->status = CAM_DEV_MATCH_ERROR;
3302 			break;
3303 		}
3304 
3305 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3306 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3307 		else
3308 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3309 
3310 		break;
3311 	}
3312 	case XPT_SASYNC_CB:
3313 	{
3314 		struct ccb_setasync *csa;
3315 		struct async_node *cur_entry;
3316 		struct async_list *async_head;
3317 		u_int32_t added;
3318 
3319 		csa = &start_ccb->csa;
3320 		added = csa->event_enable;
3321 		async_head = &csa->ccb_h.path->device->asyncs;
3322 
3323 		/*
3324 		 * If there is already an entry for us, simply
3325 		 * update it.
3326 		 */
3327 		cur_entry = SLIST_FIRST(async_head);
3328 		while (cur_entry != NULL) {
3329 			if ((cur_entry->callback_arg == csa->callback_arg)
3330 			 && (cur_entry->callback == csa->callback))
3331 				break;
3332 			cur_entry = SLIST_NEXT(cur_entry, links);
3333 		}
3334 
3335 		if (cur_entry != NULL) {
3336 		 	/*
3337 			 * If the request has no flags set,
3338 			 * remove the entry.
3339 			 */
3340 			added &= ~cur_entry->event_enable;
3341 			if (csa->event_enable == 0) {
3342 				SLIST_REMOVE(async_head, cur_entry,
3343 					     async_node, links);
3344 				atomic_add_int(
3345 					&csa->ccb_h.path->device->refcount, -1);
3346 				kfree(cur_entry, M_CAMXPT);
3347 			} else {
3348 				cur_entry->event_enable = csa->event_enable;
3349 			}
3350 		} else {
3351 			cur_entry = kmalloc(sizeof(*cur_entry), M_CAMXPT,
3352 					   M_INTWAIT);
3353 			cur_entry->event_enable = csa->event_enable;
3354 			cur_entry->callback_arg = csa->callback_arg;
3355 			cur_entry->callback = csa->callback;
3356 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3357 			atomic_add_int(&csa->ccb_h.path->device->refcount, 1);
3358 		}
3359 
3360 		/*
3361 		 * Need to decouple this operation via a taskqueue so that
3362 		 * the locking doesn't become a mess.
3363 		 */
3364 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3365 			struct xpt_task *task;
3366 
3367 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
3368 				      M_INTWAIT);
3369 
3370 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3371 			task->data1 = cur_entry;
3372 			task->data2 = added;
3373 			taskqueue_enqueue(taskqueue_thread[mycpuid],
3374 					  &task->task);
3375 		}
3376 
3377 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3378 		break;
3379 	}
3380 	case XPT_REL_SIMQ:
3381 	{
3382 		struct ccb_relsim *crs;
3383 		struct cam_ed *dev;
3384 
3385 		crs = &start_ccb->crs;
3386 		dev = crs->ccb_h.path->device;
3387 		if (dev == NULL) {
3388 
3389 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3390 			break;
3391 		}
3392 
3393 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3394 
3395  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3396 				/* Don't ever go below one opening */
3397 				if (crs->openings > 0) {
3398 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3399 							    crs->openings);
3400 
3401 					if (bootverbose) {
3402 						xpt_print(crs->ccb_h.path,
3403 						    "tagged openings now %d\n",
3404 						    crs->openings);
3405 					}
3406 				}
3407 			}
3408 		}
3409 
3410 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3411 
3412 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3413 
3414 				/*
3415 				 * Just extend the old timeout and decrement
3416 				 * the freeze count so that a single timeout
3417 				 * is sufficient for releasing the queue.
3418 				 */
3419 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3420 				callout_stop(&dev->callout);
3421 			} else {
3422 
3423 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3424 			}
3425 
3426 			callout_reset(&dev->callout,
3427 				      (crs->release_timeout * hz) / 1000,
3428 				      xpt_release_devq_timeout, dev);
3429 
3430 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3431 
3432 		}
3433 
3434 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3435 
3436 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3437 				/*
3438 				 * Decrement the freeze count so that a single
3439 				 * completion is still sufficient to unfreeze
3440 				 * the queue.
3441 				 */
3442 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3443 			} else {
3444 
3445 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3446 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3447 			}
3448 		}
3449 
3450 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3451 
3452 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3453 			 || (dev->ccbq.dev_active == 0)) {
3454 
3455 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3456 			} else {
3457 
3458 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3459 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3460 			}
3461 		}
3462 
3463 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3464 
3465 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3466 					 /*run_queue*/TRUE);
3467 		}
3468 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3469 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3470 		break;
3471 	}
3472 	case XPT_SCAN_BUS:
3473 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3474 		break;
3475 	case XPT_SCAN_LUN:
3476 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3477 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3478 			     start_ccb);
3479 		break;
3480 	case XPT_DEBUG: {
3481 #ifdef CAMDEBUG
3482 #ifdef CAM_DEBUG_DELAY
3483 		cam_debug_delay = CAM_DEBUG_DELAY;
3484 #endif
3485 		cam_dflags = start_ccb->cdbg.flags;
3486 		if (cam_dpath != NULL) {
3487 			xpt_free_path(cam_dpath);
3488 			cam_dpath = NULL;
3489 		}
3490 
3491 		if (cam_dflags != CAM_DEBUG_NONE) {
3492 			if (xpt_create_path(&cam_dpath, xpt_periph,
3493 					    start_ccb->ccb_h.path_id,
3494 					    start_ccb->ccb_h.target_id,
3495 					    start_ccb->ccb_h.target_lun) !=
3496 					    CAM_REQ_CMP) {
3497 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3498 				cam_dflags = CAM_DEBUG_NONE;
3499 			} else {
3500 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3501 				xpt_print(cam_dpath, "debugging flags now %x\n",
3502 				    cam_dflags);
3503 			}
3504 		} else {
3505 			cam_dpath = NULL;
3506 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3507 		}
3508 #else /* !CAMDEBUG */
3509 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3510 #endif /* CAMDEBUG */
3511 		break;
3512 	}
3513 	case XPT_NOOP:
3514 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3515 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3516 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3517 		break;
3518 	default:
3519 	case XPT_SDEV_TYPE:
3520 	case XPT_TERM_IO:
3521 	case XPT_ENG_INQ:
3522 		/* XXX Implement */
3523 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3524 		break;
3525 	}
3526 }
3527 
3528 void
3529 xpt_polled_action(union ccb *start_ccb)
3530 {
3531 	u_int32_t timeout;
3532 	struct	  cam_sim *sim;
3533 	struct	  cam_devq *devq;
3534 	struct	  cam_ed *dev;
3535 
3536 	timeout = start_ccb->ccb_h.timeout;
3537 	sim = start_ccb->ccb_h.path->bus->sim;
3538 	devq = sim->devq;
3539 	dev = start_ccb->ccb_h.path->device;
3540 
3541 	sim_lock_assert_owned(sim->lock);
3542 
3543 	/*
3544 	 * Steal an opening so that no other queued requests
3545 	 * can get it before us while we simulate interrupts.
3546 	 */
3547 	dev->ccbq.devq_openings--;
3548 	dev->ccbq.dev_openings--;
3549 
3550 	while(((devq && devq->send_openings <= 0) || dev->ccbq.dev_openings < 0)
3551 	   && (--timeout > 0)) {
3552 		DELAY(1000);
3553 		(*(sim->sim_poll))(sim);
3554 		camisr_runqueue(sim);
3555 	}
3556 
3557 	dev->ccbq.devq_openings++;
3558 	dev->ccbq.dev_openings++;
3559 
3560 	if (timeout != 0) {
3561 		xpt_action(start_ccb);
3562 		while(--timeout > 0) {
3563 			(*(sim->sim_poll))(sim);
3564 			camisr_runqueue(sim);
3565 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3566 			    != CAM_REQ_INPROG)
3567 				break;
3568 			DELAY(1000);
3569 		}
3570 		if (timeout == 0) {
3571 			/*
3572 			 * XXX Is it worth adding a sim_timeout entry
3573 			 * point so we can attempt recovery?  If
3574 			 * this is only used for dumps, I don't think
3575 			 * it is.
3576 			 */
3577 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3578 		}
3579 	} else {
3580 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3581 	}
3582 }
3583 
3584 /*
3585  * Schedule a peripheral driver to receive a ccb when it's
3586  * target device has space for more transactions.
3587  */
3588 void
3589 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3590 {
3591 	struct cam_ed *device;
3592 	union ccb *work_ccb;
3593 	int runq;
3594 
3595 	sim_lock_assert_owned(perph->sim->lock);
3596 
3597 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3598 	device = perph->path->device;
3599 	if (periph_is_queued(perph)) {
3600 		/* Simply reorder based on new priority */
3601 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3602 			  ("   change priority to %d\n", new_priority));
3603 		if (new_priority < perph->pinfo.priority) {
3604 			camq_change_priority(&device->drvq,
3605 					     perph->pinfo.index,
3606 					     new_priority);
3607 		}
3608 		runq = 0;
3609 	} else if (perph->path->bus->sim == &cam_dead_sim) {
3610 		/* The SIM is gone so just call periph_start directly. */
3611 		work_ccb = xpt_get_ccb(perph->path->device);
3612 		if (work_ccb == NULL)
3613 			return; /* XXX */
3614 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3615 		perph->pinfo.priority = new_priority;
3616 		perph->periph_start(perph, work_ccb);
3617 		return;
3618 	} else {
3619 		/* New entry on the queue */
3620 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3621 			  ("   added periph to queue\n"));
3622 		perph->pinfo.priority = new_priority;
3623 		perph->pinfo.generation = ++device->drvq.generation;
3624 		camq_insert(&device->drvq, &perph->pinfo);
3625 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3626 	}
3627 	if (runq != 0) {
3628 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3629 			  ("   calling xpt_run_devq\n"));
3630 		xpt_run_dev_allocq(perph->path->bus);
3631 	}
3632 }
3633 
3634 
3635 /*
3636  * Schedule a device to run on a given queue.
3637  * If the device was inserted as a new entry on the queue,
3638  * return 1 meaning the device queue should be run. If we
3639  * were already queued, implying someone else has already
3640  * started the queue, return 0 so the caller doesn't attempt
3641  * to run the queue.
3642  */
3643 static int
3644 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3645 		 u_int32_t new_priority)
3646 {
3647 	int retval;
3648 	u_int32_t old_priority;
3649 
3650 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3651 
3652 	old_priority = pinfo->priority;
3653 
3654 	/*
3655 	 * Are we already queued?
3656 	 */
3657 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3658 		/* Simply reorder based on new priority */
3659 		if (new_priority < old_priority) {
3660 			camq_change_priority(queue, pinfo->index,
3661 					     new_priority);
3662 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3663 					("changed priority to %d\n",
3664 					 new_priority));
3665 		}
3666 		retval = 0;
3667 	} else {
3668 		/* New entry on the queue */
3669 		if (new_priority < old_priority)
3670 			pinfo->priority = new_priority;
3671 
3672 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3673 				("Inserting onto queue\n"));
3674 		pinfo->generation = ++queue->generation;
3675 		camq_insert(queue, pinfo);
3676 		retval = 1;
3677 	}
3678 	return (retval);
3679 }
3680 
3681 static void
3682 xpt_run_dev_allocq(struct cam_eb *bus)
3683 {
3684 	struct	cam_devq *devq;
3685 
3686 	if ((devq = bus->sim->devq) == NULL) {
3687 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq: NULL devq\n"));
3688 		return;
3689 	}
3690 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3691 
3692 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3693 			("   qfrozen_cnt == 0x%x, entries == %d, "
3694 			 "openings == %d, active == %d\n",
3695 			 devq->alloc_queue.qfrozen_cnt,
3696 			 devq->alloc_queue.entries,
3697 			 devq->alloc_openings,
3698 			 devq->alloc_active));
3699 
3700 	devq->alloc_queue.qfrozen_cnt++;
3701 	while ((devq->alloc_queue.entries > 0)
3702 	    && (devq->alloc_openings > 0)
3703 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3704 		struct	cam_ed_qinfo *qinfo;
3705 		struct	cam_ed *device;
3706 		union	ccb *work_ccb;
3707 		struct	cam_periph *drv;
3708 		struct	camq *drvq;
3709 
3710 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3711 							   CAMQ_HEAD);
3712 		device = qinfo->device;
3713 
3714 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3715 				("running device %p\n", device));
3716 
3717 		drvq = &device->drvq;
3718 
3719 #ifdef CAMDEBUG
3720 		if (drvq->entries <= 0) {
3721 			panic("xpt_run_dev_allocq: "
3722 			      "Device on queue without any work to do");
3723 		}
3724 #endif
3725 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3726 			devq->alloc_openings--;
3727 			devq->alloc_active++;
3728 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3729 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3730 				      drv->pinfo.priority);
3731 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3732 					("calling periph start\n"));
3733 			drv->periph_start(drv, work_ccb);
3734 		} else {
3735 			/*
3736 			 * Malloc failure in alloc_ccb
3737 			 */
3738 			/*
3739 			 * XXX add us to a list to be run from free_ccb
3740 			 * if we don't have any ccbs active on this
3741 			 * device queue otherwise we may never get run
3742 			 * again.
3743 			 */
3744 			break;
3745 		}
3746 
3747 		if (drvq->entries > 0) {
3748 			/* We have more work.  Attempt to reschedule */
3749 			xpt_schedule_dev_allocq(bus, device);
3750 		}
3751 	}
3752 	devq->alloc_queue.qfrozen_cnt--;
3753 }
3754 
3755 static void
3756 xpt_run_dev_sendq(struct cam_eb *bus)
3757 {
3758 	struct	cam_devq *devq;
3759 
3760 	if ((devq = bus->sim->devq) == NULL) {
3761 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq: NULL devq\n"));
3762 		return;
3763 	}
3764 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3765 
3766 	devq->send_queue.qfrozen_cnt++;
3767 	while ((devq->send_queue.entries > 0)
3768 	    && (devq->send_openings > 0)) {
3769 		struct	cam_ed_qinfo *qinfo;
3770 		struct	cam_ed *device;
3771 		union ccb *work_ccb;
3772 		struct	cam_sim *sim;
3773 
3774 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3775 			break;
3776 		}
3777 
3778 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3779 							   CAMQ_HEAD);
3780 		device = qinfo->device;
3781 
3782 		/*
3783 		 * If the device has been "frozen", don't attempt
3784 		 * to run it.
3785 		 */
3786 		if (device->qfrozen_cnt > 0) {
3787 			continue;
3788 		}
3789 
3790 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3791 				("running device %p\n", device));
3792 
3793 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3794 		if (work_ccb == NULL) {
3795 			kprintf("device on run queue with no ccbs???\n");
3796 			continue;
3797 		}
3798 
3799 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3800 
3801 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
3802 			if (xsoftc.num_highpower <= 0) {
3803 				/*
3804 				 * We got a high power command, but we
3805 				 * don't have any available slots.  Freeze
3806 				 * the device queue until we have a slot
3807 				 * available.
3808 				 */
3809 				device->qfrozen_cnt++;
3810 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3811 						   &work_ccb->ccb_h,
3812 						   xpt_links.stqe);
3813 
3814 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3815 				continue;
3816 			} else {
3817 				/*
3818 				 * Consume a high power slot while
3819 				 * this ccb runs.
3820 				 */
3821 				xsoftc.num_highpower--;
3822 			}
3823 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
3824 		}
3825 		devq->active_dev = device;
3826 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3827 
3828 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3829 
3830 		devq->send_openings--;
3831 		devq->send_active++;
3832 
3833 		if (device->ccbq.queue.entries > 0)
3834 			xpt_schedule_dev_sendq(bus, device);
3835 
3836 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3837 			/*
3838 			 * The client wants to freeze the queue
3839 			 * after this CCB is sent.
3840 			 */
3841 			device->qfrozen_cnt++;
3842 		}
3843 
3844 		/* In Target mode, the peripheral driver knows best... */
3845 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3846 			if ((device->inq_flags & SID_CmdQue) != 0
3847 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3848 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3849 			else
3850 				/*
3851 				 * Clear this in case of a retried CCB that
3852 				 * failed due to a rejected tag.
3853 				 */
3854 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3855 		}
3856 
3857 		/*
3858 		 * Device queues can be shared among multiple sim instances
3859 		 * that reside on different busses.  Use the SIM in the queue
3860 		 * CCB's path, rather than the one in the bus that was passed
3861 		 * into this function.
3862 		 */
3863 		sim = work_ccb->ccb_h.path->bus->sim;
3864 		(*(sim->sim_action))(sim, work_ccb);
3865 
3866 		devq->active_dev = NULL;
3867 	}
3868 	devq->send_queue.qfrozen_cnt--;
3869 }
3870 
3871 /*
3872  * This function merges stuff from the slave ccb into the master ccb, while
3873  * keeping important fields in the master ccb constant.
3874  */
3875 void
3876 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3877 {
3878 	/*
3879 	 * Pull fields that are valid for peripheral drivers to set
3880 	 * into the master CCB along with the CCB "payload".
3881 	 */
3882 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3883 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3884 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3885 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3886 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3887 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3888 }
3889 
3890 void
3891 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3892 {
3893 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3894 	callout_init(&ccb_h->timeout_ch);
3895 	ccb_h->pinfo.priority = priority;
3896 	ccb_h->path = path;
3897 	ccb_h->path_id = path->bus->path_id;
3898 	if (path->target)
3899 		ccb_h->target_id = path->target->target_id;
3900 	else
3901 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3902 	if (path->device) {
3903 		ccb_h->target_lun = path->device->lun_id;
3904 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3905 	} else {
3906 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3907 	}
3908 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3909 	ccb_h->flags = 0;
3910 }
3911 
3912 /* Path manipulation functions */
3913 cam_status
3914 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3915 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3916 {
3917 	struct	   cam_path *path;
3918 	cam_status status;
3919 
3920 	path = kmalloc(sizeof(*path), M_CAMXPT, M_INTWAIT);
3921 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3922 	if (status != CAM_REQ_CMP) {
3923 		kfree(path, M_CAMXPT);
3924 		path = NULL;
3925 	}
3926 	*new_path_ptr = path;
3927 	return (status);
3928 }
3929 
3930 cam_status
3931 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3932 			 struct cam_periph *periph, path_id_t path_id,
3933 			 target_id_t target_id, lun_id_t lun_id)
3934 {
3935 	struct	   cam_path *path;
3936 	struct	   cam_eb *bus = NULL;
3937 	cam_status status;
3938 	int	   need_unlock = 0;
3939 
3940 	path = (struct cam_path *)kmalloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3941 
3942 	if (path_id != CAM_BUS_WILDCARD) {
3943 		bus = xpt_find_bus(path_id);
3944 		if (bus != NULL) {
3945 			need_unlock = 1;
3946 			CAM_SIM_LOCK(bus->sim);
3947 		}
3948 	}
3949 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3950 	if (need_unlock)
3951 		CAM_SIM_UNLOCK(bus->sim);
3952 	if (status != CAM_REQ_CMP) {
3953 		kfree(path, M_CAMXPT);
3954 		path = NULL;
3955 	}
3956 	*new_path_ptr = path;
3957 	return (status);
3958 }
3959 
3960 static cam_status
3961 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3962 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3963 {
3964 	struct	     cam_eb *bus;
3965 	struct	     cam_et *target;
3966 	struct	     cam_ed *device;
3967 	cam_status   status;
3968 
3969 	status = CAM_REQ_CMP;	/* Completed without error */
3970 	target = NULL;		/* Wildcarded */
3971 	device = NULL;		/* Wildcarded */
3972 
3973 	/*
3974 	 * We will potentially modify the EDT, so block interrupts
3975 	 * that may attempt to create cam paths.
3976 	 */
3977 	bus = xpt_find_bus(path_id);
3978 	if (bus == NULL) {
3979 		status = CAM_PATH_INVALID;
3980 	} else {
3981 		target = xpt_find_target(bus, target_id);
3982 		if (target == NULL) {
3983 			/* Create one */
3984 			struct cam_et *new_target;
3985 
3986 			new_target = xpt_alloc_target(bus, target_id);
3987 			if (new_target == NULL) {
3988 				status = CAM_RESRC_UNAVAIL;
3989 			} else {
3990 				target = new_target;
3991 			}
3992 		}
3993 		if (target != NULL) {
3994 			device = xpt_find_device(target, lun_id);
3995 			if (device == NULL) {
3996 				/* Create one */
3997 				struct cam_ed *new_device;
3998 
3999 				new_device = xpt_alloc_device(bus,
4000 							      target,
4001 							      lun_id);
4002 				if (new_device == NULL) {
4003 					status = CAM_RESRC_UNAVAIL;
4004 				} else {
4005 					device = new_device;
4006 				}
4007 			}
4008 		}
4009 	}
4010 
4011 	/*
4012 	 * Only touch the user's data if we are successful.
4013 	 */
4014 	if (status == CAM_REQ_CMP) {
4015 		new_path->periph = perph;
4016 		new_path->bus = bus;
4017 		new_path->target = target;
4018 		new_path->device = device;
4019 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4020 	} else {
4021 		if (device != NULL)
4022 			xpt_release_device(bus, target, device);
4023 		if (target != NULL)
4024 			xpt_release_target(bus, target);
4025 		if (bus != NULL)
4026 			xpt_release_bus(bus);
4027 	}
4028 	return (status);
4029 }
4030 
4031 static void
4032 xpt_release_path(struct cam_path *path)
4033 {
4034 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4035 	if (path->device != NULL) {
4036 		xpt_release_device(path->bus, path->target, path->device);
4037 		path->device = NULL;
4038 	}
4039 	if (path->target != NULL) {
4040 		xpt_release_target(path->bus, path->target);
4041 		path->target = NULL;
4042 	}
4043 	if (path->bus != NULL) {
4044 		xpt_release_bus(path->bus);
4045 		path->bus = NULL;
4046 	}
4047 }
4048 
4049 void
4050 xpt_free_path(struct cam_path *path)
4051 {
4052 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4053 	xpt_release_path(path);
4054 	kfree(path, M_CAMXPT);
4055 }
4056 
4057 
4058 /*
4059  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4060  * in path1, 2 for match with wildcards in path2.
4061  */
4062 int
4063 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4064 {
4065 	int retval = 0;
4066 
4067 	if (path1->bus != path2->bus) {
4068 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4069 			retval = 1;
4070 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4071 			retval = 2;
4072 		else
4073 			return (-1);
4074 	}
4075 	if (path1->target != path2->target) {
4076 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4077 			if (retval == 0)
4078 				retval = 1;
4079 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4080 			retval = 2;
4081 		else
4082 			return (-1);
4083 	}
4084 	if (path1->device != path2->device) {
4085 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4086 			if (retval == 0)
4087 				retval = 1;
4088 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4089 			retval = 2;
4090 		else
4091 			return (-1);
4092 	}
4093 	return (retval);
4094 }
4095 
4096 void
4097 xpt_print_path(struct cam_path *path)
4098 {
4099 
4100 	if (path == NULL)
4101 		kprintf("(nopath): ");
4102 	else {
4103 		if (path->periph != NULL)
4104 			kprintf("(%s%d:", path->periph->periph_name,
4105 			       path->periph->unit_number);
4106 		else
4107 			kprintf("(noperiph:");
4108 
4109 		if (path->bus != NULL)
4110 			kprintf("%s%d:%d:", path->bus->sim->sim_name,
4111 			       path->bus->sim->unit_number,
4112 			       path->bus->sim->bus_id);
4113 		else
4114 			kprintf("nobus:");
4115 
4116 		if (path->target != NULL)
4117 			kprintf("%d:", path->target->target_id);
4118 		else
4119 			kprintf("X:");
4120 
4121 		if (path->device != NULL)
4122 			kprintf("%d): ", path->device->lun_id);
4123 		else
4124 			kprintf("X): ");
4125 	}
4126 }
4127 
4128 void
4129 xpt_print(struct cam_path *path, const char *fmt, ...)
4130 {
4131 	__va_list ap;
4132 	xpt_print_path(path);
4133 	__va_start(ap, fmt);
4134 	kvprintf(fmt, ap);
4135 	__va_end(ap);
4136 }
4137 
4138 int
4139 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4140 {
4141 	struct sbuf sb;
4142 
4143 	sim_lock_assert_owned(path->bus->sim->lock);
4144 
4145 	sbuf_new(&sb, str, str_len, 0);
4146 
4147 	if (path == NULL)
4148 		sbuf_printf(&sb, "(nopath): ");
4149 	else {
4150 		if (path->periph != NULL)
4151 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4152 				    path->periph->unit_number);
4153 		else
4154 			sbuf_printf(&sb, "(noperiph:");
4155 
4156 		if (path->bus != NULL)
4157 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4158 				    path->bus->sim->unit_number,
4159 				    path->bus->sim->bus_id);
4160 		else
4161 			sbuf_printf(&sb, "nobus:");
4162 
4163 		if (path->target != NULL)
4164 			sbuf_printf(&sb, "%d:", path->target->target_id);
4165 		else
4166 			sbuf_printf(&sb, "X:");
4167 
4168 		if (path->device != NULL)
4169 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4170 		else
4171 			sbuf_printf(&sb, "X): ");
4172 	}
4173 	sbuf_finish(&sb);
4174 
4175 	return(sbuf_len(&sb));
4176 }
4177 
4178 path_id_t
4179 xpt_path_path_id(struct cam_path *path)
4180 {
4181 	sim_lock_assert_owned(path->bus->sim->lock);
4182 
4183 	return(path->bus->path_id);
4184 }
4185 
4186 target_id_t
4187 xpt_path_target_id(struct cam_path *path)
4188 {
4189 	sim_lock_assert_owned(path->bus->sim->lock);
4190 
4191 	if (path->target != NULL)
4192 		return (path->target->target_id);
4193 	else
4194 		return (CAM_TARGET_WILDCARD);
4195 }
4196 
4197 lun_id_t
4198 xpt_path_lun_id(struct cam_path *path)
4199 {
4200 	sim_lock_assert_owned(path->bus->sim->lock);
4201 
4202 	if (path->device != NULL)
4203 		return (path->device->lun_id);
4204 	else
4205 		return (CAM_LUN_WILDCARD);
4206 }
4207 
4208 struct cam_sim *
4209 xpt_path_sim(struct cam_path *path)
4210 {
4211 	return (path->bus->sim);
4212 }
4213 
4214 struct cam_periph*
4215 xpt_path_periph(struct cam_path *path)
4216 {
4217 	sim_lock_assert_owned(path->bus->sim->lock);
4218 
4219 	return (path->periph);
4220 }
4221 
4222 char *
4223 xpt_path_serialno(struct cam_path *path)
4224 {
4225 	return (path->device->serial_num);
4226 }
4227 
4228 /*
4229  * Release a CAM control block for the caller.  Remit the cost of the structure
4230  * to the device referenced by the path.  If the this device had no 'credits'
4231  * and peripheral drivers have registered async callbacks for this notification
4232  * call them now.
4233  */
4234 void
4235 xpt_release_ccb(union ccb *free_ccb)
4236 {
4237 	struct	 cam_path *path;
4238 	struct	 cam_ed *device;
4239 	struct	 cam_eb *bus;
4240 	struct   cam_sim *sim;
4241 
4242 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4243 	path = free_ccb->ccb_h.path;
4244 	device = path->device;
4245 	bus = path->bus;
4246 	sim = bus->sim;
4247 
4248 	sim_lock_assert_owned(sim->lock);
4249 
4250 	cam_ccbq_release_opening(&device->ccbq);
4251 	if (sim->ccb_count > sim->max_ccbs) {
4252 		xpt_free_ccb(free_ccb);
4253 		sim->ccb_count--;
4254 	} else if (sim == &cam_dead_sim) {
4255 		xpt_free_ccb(free_ccb);
4256 	} else  {
4257 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4258 		    xpt_links.sle);
4259 	}
4260 	if (sim->devq == NULL) {
4261 		return;
4262 	}
4263 	sim->devq->alloc_openings++;
4264 	sim->devq->alloc_active--;
4265 	/* XXX Turn this into an inline function - xpt_run_device?? */
4266 	if ((device_is_alloc_queued(device) == 0)
4267 	 && (device->drvq.entries > 0)) {
4268 		xpt_schedule_dev_allocq(bus, device);
4269 	}
4270 	if (dev_allocq_is_runnable(sim->devq))
4271 		xpt_run_dev_allocq(bus);
4272 }
4273 
4274 /* Functions accessed by SIM drivers */
4275 
4276 /*
4277  * A sim structure, listing the SIM entry points and instance
4278  * identification info is passed to xpt_bus_register to hook the SIM
4279  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4280  * for this new bus and places it in the array of busses and assigns
4281  * it a path_id.  The path_id may be influenced by "hard wiring"
4282  * information specified by the user.  Once interrupt services are
4283  * availible, the bus will be probed.
4284  */
4285 int32_t
4286 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4287 {
4288 	struct cam_eb *new_bus;
4289 	struct cam_eb *old_bus;
4290 	struct ccb_pathinq cpi;
4291 
4292 	sim_lock_assert_owned(sim->lock);
4293 
4294 	sim->bus_id = bus;
4295 	new_bus = kmalloc(sizeof(*new_bus), M_CAMXPT, M_INTWAIT);
4296 
4297 	if (strcmp(sim->sim_name, "xpt") != 0) {
4298 		sim->path_id =
4299 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4300 	}
4301 
4302 	TAILQ_INIT(&new_bus->et_entries);
4303 	new_bus->path_id = sim->path_id;
4304 	new_bus->sim = sim;
4305 	atomic_add_int(&sim->refcount, 1);
4306 	timevalclear(&new_bus->last_reset);
4307 	new_bus->flags = 0;
4308 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4309 	new_bus->generation = 0;
4310 	new_bus->counted_to_config = 0;
4311 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4312 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4313 	while (old_bus != NULL
4314 	    && old_bus->path_id < new_bus->path_id)
4315 		old_bus = TAILQ_NEXT(old_bus, links);
4316 	if (old_bus != NULL)
4317 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4318 	else
4319 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4320 	xsoftc.bus_generation++;
4321 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4322 
4323 	/* Notify interested parties */
4324 	if (sim->path_id != CAM_XPT_PATH_ID) {
4325 		struct cam_path path;
4326 
4327 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4328 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4329 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4330 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4331 		xpt_action((union ccb *)&cpi);
4332 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4333 		xpt_release_path(&path);
4334 	}
4335 	return (CAM_SUCCESS);
4336 }
4337 
4338 /*
4339  * Deregister a bus.  We must clean out all transactions pending on the bus.
4340  * This routine is typically called prior to cam_sim_free() (e.g. see
4341  * dev/usbmisc/umass/umass.c)
4342  */
4343 int32_t
4344 xpt_bus_deregister(path_id_t pathid)
4345 {
4346 	struct cam_path bus_path;
4347 	struct cam_et *target;
4348 	struct cam_ed *device;
4349 	struct cam_ed_qinfo *qinfo;
4350 	struct cam_devq *devq;
4351 	struct cam_periph *periph;
4352 	struct cam_sim *ccbsim;
4353 	union ccb *work_ccb;
4354 	cam_status status;
4355 	int retries = 0;
4356 
4357 	status = xpt_compile_path(&bus_path, NULL, pathid,
4358 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4359 	if (status != CAM_REQ_CMP)
4360 		return (status);
4361 
4362 	/*
4363 	 * This should clear out all pending requests and timeouts, but
4364 	 * the ccb's may be queued to a software interrupt.
4365 	 *
4366 	 * XXX AC_LOST_DEVICE does not precisely abort the pending requests,
4367 	 * and it really ought to.
4368 	 */
4369 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4370 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4371 
4372 	/*
4373 	 * Mark the SIM as having been deregistered.  This prevents
4374 	 * certain operations from re-queueing to it, stops new devices
4375 	 * from being added, etc.
4376 	 */
4377 	devq = bus_path.bus->sim->devq;
4378 	ccbsim = bus_path.bus->sim;
4379 	ccbsim->flags |= CAM_SIM_DEREGISTERED;
4380 
4381 again:
4382 	/*
4383 	 * Execute any pending operations now.
4384 	 */
4385 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4386 	    CAMQ_HEAD)) != NULL ||
4387 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4388 	    CAMQ_HEAD)) != NULL) {
4389 		do {
4390 			device = qinfo->device;
4391 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4392 			if (work_ccb != NULL) {
4393 				devq->active_dev = device;
4394 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4395 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4396 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4397 			}
4398 
4399 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4400 			    CAMQ_HEAD);
4401 			if (periph != NULL)
4402 				xpt_schedule(periph, periph->pinfo.priority);
4403 		} while (work_ccb != NULL || periph != NULL);
4404 	}
4405 
4406 	/*
4407 	 * Make sure all completed CCBs are processed.
4408 	 */
4409 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4410 		camisr_runqueue(ccbsim);
4411 	}
4412 
4413 	/*
4414 	 * Check for requeues, reissues asyncs if necessary
4415 	 */
4416 	if (CAMQ_GET_HEAD(&devq->send_queue))
4417 		kprintf("camq: devq send_queue still in use (%d entries)\n",
4418 			devq->send_queue.entries);
4419 	if (CAMQ_GET_HEAD(&devq->alloc_queue))
4420 		kprintf("camq: devq alloc_queue still in use (%d entries)\n",
4421 			devq->alloc_queue.entries);
4422 	if (CAMQ_GET_HEAD(&devq->send_queue) ||
4423 	    CAMQ_GET_HEAD(&devq->alloc_queue)) {
4424 		if (++retries < 5) {
4425 			xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4426 			xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4427 			goto again;
4428 		}
4429 	}
4430 
4431 	/*
4432 	 * Retarget the bus and all cached sim pointers to dead_sim.
4433 	 *
4434 	 * Various CAM subsystems may be holding on to targets, devices,
4435 	 * and/or peripherals and may attempt to use the sim pointer cached
4436 	 * in some of these structures during close.
4437 	 */
4438 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4439 	bus_path.bus->sim = &cam_dead_sim;
4440 	TAILQ_FOREACH(target, &bus_path.bus->et_entries, links) {
4441 		TAILQ_FOREACH(device, &target->ed_entries, links) {
4442 			device->sim = &cam_dead_sim;
4443 			SLIST_FOREACH(periph, &device->periphs, periph_links) {
4444 				periph->sim = &cam_dead_sim;
4445 			}
4446 		}
4447 	}
4448 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4449 
4450 	/*
4451 	 * Repeat the async's for the benefit of any new devices, such as
4452 	 * might be created from completed probes.  Any new device
4453 	 * ops will run on dead_sim.
4454 	 *
4455 	 * XXX There are probably races :-(
4456 	 */
4457 	CAM_SIM_LOCK(&cam_dead_sim);
4458 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4459 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4460 	CAM_SIM_UNLOCK(&cam_dead_sim);
4461 
4462 	/* Release the reference count held while registered. */
4463 	xpt_release_bus(bus_path.bus);
4464 	xpt_release_path(&bus_path);
4465 
4466 	/* Release the ref we got when the bus was registered */
4467 	cam_sim_release(ccbsim, 0);
4468 
4469 	return (CAM_REQ_CMP);
4470 }
4471 
4472 static path_id_t
4473 xptnextfreepathid(void)
4474 {
4475 	struct cam_eb *bus;
4476 	path_id_t pathid;
4477 	const char *strval;
4478 
4479 	pathid = 0;
4480 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4481 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4482 retry:
4483 	/* Find an unoccupied pathid */
4484 	while (bus != NULL && bus->path_id <= pathid) {
4485 		if (bus->path_id == pathid)
4486 			pathid++;
4487 		bus = TAILQ_NEXT(bus, links);
4488 	}
4489 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4490 
4491 	/*
4492 	 * Ensure that this pathid is not reserved for
4493 	 * a bus that may be registered in the future.
4494 	 */
4495 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4496 		++pathid;
4497 		/* Start the search over */
4498 		lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4499 		goto retry;
4500 	}
4501 	return (pathid);
4502 }
4503 
4504 static path_id_t
4505 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4506 {
4507 	path_id_t pathid;
4508 	int i, dunit, val;
4509 	char buf[32];
4510 
4511 	pathid = CAM_XPT_PATH_ID;
4512 	ksnprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4513 	i = -1;
4514 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4515 		if (strcmp(resource_query_name(i), "scbus")) {
4516 			/* Avoid a bit of foot shooting. */
4517 			continue;
4518 		}
4519 		dunit = resource_query_unit(i);
4520 		if (dunit < 0)		/* unwired?! */
4521 			continue;
4522 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4523 			if (sim_bus == val) {
4524 				pathid = dunit;
4525 				break;
4526 			}
4527 		} else if (sim_bus == 0) {
4528 			/* Unspecified matches bus 0 */
4529 			pathid = dunit;
4530 			break;
4531 		} else {
4532 			kprintf("Ambiguous scbus configuration for %s%d "
4533 			       "bus %d, cannot wire down.  The kernel "
4534 			       "config entry for scbus%d should "
4535 			       "specify a controller bus.\n"
4536 			       "Scbus will be assigned dynamically.\n",
4537 			       sim_name, sim_unit, sim_bus, dunit);
4538 			break;
4539 		}
4540 	}
4541 
4542 	if (pathid == CAM_XPT_PATH_ID)
4543 		pathid = xptnextfreepathid();
4544 	return (pathid);
4545 }
4546 
4547 void
4548 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4549 {
4550 	struct cam_eb *bus;
4551 	struct cam_et *target, *next_target;
4552 	struct cam_ed *device, *next_device;
4553 
4554 	sim_lock_assert_owned(path->bus->sim->lock);
4555 
4556 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4557 
4558 	/*
4559 	 * Most async events come from a CAM interrupt context.  In
4560 	 * a few cases, the error recovery code at the peripheral layer,
4561 	 * which may run from our SWI or a process context, may signal
4562 	 * deferred events with a call to xpt_async.
4563 	 */
4564 
4565 	bus = path->bus;
4566 
4567 	if (async_code == AC_BUS_RESET) {
4568 		/* Update our notion of when the last reset occurred */
4569 		microuptime(&bus->last_reset);
4570 	}
4571 
4572 	for (target = TAILQ_FIRST(&bus->et_entries);
4573 	     target != NULL;
4574 	     target = next_target) {
4575 
4576 		next_target = TAILQ_NEXT(target, links);
4577 
4578 		if (path->target != target
4579 		 && path->target->target_id != CAM_TARGET_WILDCARD
4580 		 && target->target_id != CAM_TARGET_WILDCARD)
4581 			continue;
4582 
4583 		if (async_code == AC_SENT_BDR) {
4584 			/* Update our notion of when the last reset occurred */
4585 			microuptime(&path->target->last_reset);
4586 		}
4587 
4588 		for (device = TAILQ_FIRST(&target->ed_entries);
4589 		     device != NULL;
4590 		     device = next_device) {
4591 
4592 			next_device = TAILQ_NEXT(device, links);
4593 
4594 			if (path->device != device
4595 			 && path->device->lun_id != CAM_LUN_WILDCARD
4596 			 && device->lun_id != CAM_LUN_WILDCARD)
4597 				continue;
4598 
4599 			xpt_dev_async(async_code, bus, target,
4600 				      device, async_arg);
4601 
4602 			xpt_async_bcast(&device->asyncs, async_code,
4603 					path, async_arg);
4604 		}
4605 	}
4606 
4607 	/*
4608 	 * If this wasn't a fully wildcarded async, tell all
4609 	 * clients that want all async events.
4610 	 */
4611 	if (bus != xpt_periph->path->bus)
4612 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4613 				path, async_arg);
4614 }
4615 
4616 static void
4617 xpt_async_bcast(struct async_list *async_head,
4618 		u_int32_t async_code,
4619 		struct cam_path *path, void *async_arg)
4620 {
4621 	struct async_node *cur_entry;
4622 
4623 	cur_entry = SLIST_FIRST(async_head);
4624 	while (cur_entry != NULL) {
4625 		struct async_node *next_entry;
4626 		/*
4627 		 * Grab the next list entry before we call the current
4628 		 * entry's callback.  This is because the callback function
4629 		 * can delete its async callback entry.
4630 		 */
4631 		next_entry = SLIST_NEXT(cur_entry, links);
4632 		if ((cur_entry->event_enable & async_code) != 0)
4633 			cur_entry->callback(cur_entry->callback_arg,
4634 					    async_code, path,
4635 					    async_arg);
4636 		cur_entry = next_entry;
4637 	}
4638 }
4639 
4640 /*
4641  * Handle any per-device event notifications that require action by the XPT.
4642  */
4643 static void
4644 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4645 	      struct cam_ed *device, void *async_arg)
4646 {
4647 	cam_status status;
4648 	struct cam_path newpath;
4649 
4650 	/*
4651 	 * We only need to handle events for real devices.
4652 	 */
4653 	if (target->target_id == CAM_TARGET_WILDCARD
4654 	 || device->lun_id == CAM_LUN_WILDCARD)
4655 		return;
4656 
4657 	/*
4658 	 * We need our own path with wildcards expanded to
4659 	 * handle certain types of events.
4660 	 */
4661 	if ((async_code == AC_SENT_BDR)
4662 	 || (async_code == AC_BUS_RESET)
4663 	 || (async_code == AC_INQ_CHANGED))
4664 		status = xpt_compile_path(&newpath, NULL,
4665 					  bus->path_id,
4666 					  target->target_id,
4667 					  device->lun_id);
4668 	else
4669 		status = CAM_REQ_CMP_ERR;
4670 
4671 	if (status == CAM_REQ_CMP) {
4672 
4673 		/*
4674 		 * Allow transfer negotiation to occur in a
4675 		 * tag free environment.
4676 		 */
4677 		if (async_code == AC_SENT_BDR
4678 		 || async_code == AC_BUS_RESET)
4679 			xpt_toggle_tags(&newpath);
4680 
4681 		if (async_code == AC_INQ_CHANGED) {
4682 			/*
4683 			 * We've sent a start unit command, or
4684 			 * something similar to a device that
4685 			 * may have caused its inquiry data to
4686 			 * change. So we re-scan the device to
4687 			 * refresh the inquiry data for it.
4688 			 */
4689 			xpt_scan_lun(newpath.periph, &newpath,
4690 				     CAM_EXPECT_INQ_CHANGE, NULL);
4691 		}
4692 		xpt_release_path(&newpath);
4693 	} else if (async_code == AC_LOST_DEVICE) {
4694 		/*
4695 		 * When we lose a device the device may be about to detach
4696 		 * the sim, we have to clear out all pending timeouts and
4697 		 * requests before that happens.
4698 		 *
4699 		 * This typically happens most often with USB/UMASS devices.
4700 		 *
4701 		 * XXX it would be nice if we could abort the requests
4702 		 * pertaining to the device.
4703 		 */
4704 		xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4705 		if ((device->flags & CAM_DEV_UNCONFIGURED) == 0) {
4706 			device->flags |= CAM_DEV_UNCONFIGURED;
4707 			xpt_release_device(bus, target, device);
4708 		}
4709 	} else if (async_code == AC_TRANSFER_NEG) {
4710 		struct ccb_trans_settings *settings;
4711 
4712 		settings = (struct ccb_trans_settings *)async_arg;
4713 		xpt_set_transfer_settings(settings, device,
4714 					  /*async_update*/TRUE);
4715 	}
4716 }
4717 
4718 u_int32_t
4719 xpt_freeze_devq(struct cam_path *path, u_int count)
4720 {
4721 	struct ccb_hdr *ccbh;
4722 
4723 	sim_lock_assert_owned(path->bus->sim->lock);
4724 
4725 	path->device->qfrozen_cnt += count;
4726 
4727 	/*
4728 	 * Mark the last CCB in the queue as needing
4729 	 * to be requeued if the driver hasn't
4730 	 * changed it's state yet.  This fixes a race
4731 	 * where a ccb is just about to be queued to
4732 	 * a controller driver when it's interrupt routine
4733 	 * freezes the queue.  To completly close the
4734 	 * hole, controller drives must check to see
4735 	 * if a ccb's status is still CAM_REQ_INPROG
4736 	 * just before they queue
4737 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4738 	 * an example.
4739 	 */
4740 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4741 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4742 		ccbh->status = CAM_REQUEUE_REQ;
4743 	return (path->device->qfrozen_cnt);
4744 }
4745 
4746 u_int32_t
4747 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4748 {
4749 	sim_lock_assert_owned(sim->lock);
4750 
4751 	if (sim->devq == NULL)
4752 		return(count);
4753 	sim->devq->send_queue.qfrozen_cnt += count;
4754 	if (sim->devq->active_dev != NULL) {
4755 		struct ccb_hdr *ccbh;
4756 
4757 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4758 				  ccb_hdr_tailq);
4759 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4760 			ccbh->status = CAM_REQUEUE_REQ;
4761 	}
4762 	return (sim->devq->send_queue.qfrozen_cnt);
4763 }
4764 
4765 /*
4766  * Release the device queue after a timeout has expired, typically used to
4767  * introduce a delay before retrying after an I/O error or other problem.
4768  */
4769 static void
4770 xpt_release_devq_timeout(void *arg)
4771 {
4772 	struct cam_ed *device;
4773 
4774 	device = (struct cam_ed *)arg;
4775 	CAM_SIM_LOCK(device->sim);
4776 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4777 	CAM_SIM_UNLOCK(device->sim);
4778 }
4779 
4780 void
4781 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4782 {
4783 	sim_lock_assert_owned(path->bus->sim->lock);
4784 
4785 	xpt_release_devq_device(path->device, count, run_queue);
4786 }
4787 
4788 static void
4789 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4790 {
4791 	int	rundevq;
4792 
4793 	rundevq = 0;
4794 
4795 	if (dev->qfrozen_cnt > 0) {
4796 
4797 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4798 		dev->qfrozen_cnt -= count;
4799 		if (dev->qfrozen_cnt == 0) {
4800 
4801 			/*
4802 			 * No longer need to wait for a successful
4803 			 * command completion.
4804 			 */
4805 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4806 
4807 			/*
4808 			 * Remove any timeouts that might be scheduled
4809 			 * to release this queue.
4810 			 */
4811 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4812 				callout_stop(&dev->callout);
4813 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4814 			}
4815 
4816 			/*
4817 			 * Now that we are unfrozen schedule the
4818 			 * device so any pending transactions are
4819 			 * run.
4820 			 */
4821 			if ((dev->ccbq.queue.entries > 0)
4822 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4823 			 && (run_queue != 0)) {
4824 				rundevq = 1;
4825 			}
4826 		}
4827 	}
4828 	if (rundevq != 0)
4829 		xpt_run_dev_sendq(dev->target->bus);
4830 }
4831 
4832 void
4833 xpt_release_simq(struct cam_sim *sim, int run_queue)
4834 {
4835 	struct	camq *sendq;
4836 
4837 	sim_lock_assert_owned(sim->lock);
4838 
4839 	if (sim->devq == NULL)
4840 		return;
4841 
4842 	sendq = &(sim->devq->send_queue);
4843 	if (sendq->qfrozen_cnt > 0) {
4844 		sendq->qfrozen_cnt--;
4845 		if (sendq->qfrozen_cnt == 0) {
4846 			struct cam_eb *bus;
4847 
4848 			/*
4849 			 * If there is a timeout scheduled to release this
4850 			 * sim queue, remove it.  The queue frozen count is
4851 			 * already at 0.
4852 			 */
4853 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4854 				callout_stop(&sim->callout);
4855 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4856 			}
4857 			bus = xpt_find_bus(sim->path_id);
4858 
4859 			if (run_queue) {
4860 				/*
4861 				 * Now that we are unfrozen run the send queue.
4862 				 */
4863 				xpt_run_dev_sendq(bus);
4864 			}
4865 			xpt_release_bus(bus);
4866 		}
4867 	}
4868 }
4869 
4870 void
4871 xpt_done(union ccb *done_ccb)
4872 {
4873 	struct cam_sim *sim;
4874 
4875 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4876 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4877 		/*
4878 		 * Queue up the request for handling by our SWI handler
4879 		 * any of the "non-immediate" type of ccbs.
4880 		 */
4881 		sim = done_ccb->ccb_h.path->bus->sim;
4882 		switch (done_ccb->ccb_h.path->periph->type) {
4883 		case CAM_PERIPH_BIO:
4884 			spin_lock(&sim->sim_spin);
4885 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4886 					  sim_links.tqe);
4887 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4888 			spin_unlock(&sim->sim_spin);
4889 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4890 				spin_lock(&cam_simq_spin);
4891 				if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4892 					TAILQ_INSERT_TAIL(&cam_simq, sim,
4893 							  links);
4894 					sim->flags |= CAM_SIM_ON_DONEQ;
4895 				}
4896 				spin_unlock(&cam_simq_spin);
4897 			}
4898 			if ((done_ccb->ccb_h.flags & CAM_POLLED) == 0)
4899 				setsoftcambio();
4900 			break;
4901 		default:
4902 			panic("unknown periph type %d",
4903 				done_ccb->ccb_h.path->periph->type);
4904 		}
4905 	}
4906 }
4907 
4908 union ccb *
4909 xpt_alloc_ccb(void)
4910 {
4911 	union ccb *new_ccb;
4912 
4913 	new_ccb = kmalloc(sizeof(*new_ccb), M_CAMXPT, M_INTWAIT | M_ZERO);
4914 	return (new_ccb);
4915 }
4916 
4917 void
4918 xpt_free_ccb(union ccb *free_ccb)
4919 {
4920 	kfree(free_ccb, M_CAMXPT);
4921 }
4922 
4923 
4924 
4925 /* Private XPT functions */
4926 
4927 /*
4928  * Get a CAM control block for the caller. Charge the structure to the device
4929  * referenced by the path.  If the this device has no 'credits' then the
4930  * device already has the maximum number of outstanding operations under way
4931  * and we return NULL. If we don't have sufficient resources to allocate more
4932  * ccbs, we also return NULL.
4933  */
4934 static union ccb *
4935 xpt_get_ccb(struct cam_ed *device)
4936 {
4937 	union ccb *new_ccb;
4938 	struct cam_sim *sim;
4939 
4940 	sim = device->sim;
4941 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4942 		new_ccb = xpt_alloc_ccb();
4943 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4944 			callout_init(&new_ccb->ccb_h.timeout_ch);
4945 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4946 				  xpt_links.sle);
4947 		sim->ccb_count++;
4948 	}
4949 	cam_ccbq_take_opening(&device->ccbq);
4950 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4951 	return (new_ccb);
4952 }
4953 
4954 static void
4955 xpt_release_bus(struct cam_eb *bus)
4956 {
4957 	for (;;) {
4958 		int count = bus->refcount;
4959 
4960 		cpu_ccfence();
4961 		if (count == 1) {
4962 			lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
4963 			if (atomic_cmpset_int(&bus->refcount, 1, 0)) {
4964 				if (TAILQ_EMPTY(&bus->et_entries)) {
4965 					TAILQ_REMOVE(&xsoftc.xpt_busses,
4966 						     bus, links);
4967 					xsoftc.bus_generation++;
4968 					kfree(bus, M_CAMXPT);
4969 				}
4970 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4971 				return;
4972 			}
4973 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
4974 		} else {
4975 			if (atomic_cmpset_int(&bus->refcount, count, count-1)) {
4976 				return;
4977 			}
4978 		}
4979 	}
4980 }
4981 
4982 static struct cam_et *
4983 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4984 {
4985 	struct cam_et *target;
4986 	struct cam_et *cur_target;
4987 
4988 	target = kmalloc(sizeof(*target), M_CAMXPT, M_INTWAIT);
4989 
4990 	TAILQ_INIT(&target->ed_entries);
4991 	target->bus = bus;
4992 	target->target_id = target_id;
4993 	target->refcount = 1;
4994 	target->generation = 0;
4995 	timevalclear(&target->last_reset);
4996 
4997 	/*
4998 	 * Hold a reference to our parent bus so it
4999 	 * will not go away before we do.
5000 	 */
5001 	atomic_add_int(&bus->refcount, 1);
5002 
5003 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5004 	/* Insertion sort into our bus's target list */
5005 	cur_target = TAILQ_FIRST(&bus->et_entries);
5006 	while (cur_target != NULL && cur_target->target_id < target_id)
5007 		cur_target = TAILQ_NEXT(cur_target, links);
5008 
5009 	if (cur_target != NULL) {
5010 		TAILQ_INSERT_BEFORE(cur_target, target, links);
5011 	} else {
5012 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
5013 	}
5014 	bus->generation++;
5015 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5016 
5017 	return (target);
5018 }
5019 
5020 static void
5021 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
5022 {
5023 	for (;;) {
5024 		int count = target->refcount;
5025 
5026 		cpu_ccfence();
5027 		if (count == 1) {
5028 			lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5029 			if (atomic_cmpset_int(&target->refcount, 1, 0)) {
5030 				KKASSERT(TAILQ_EMPTY(&target->ed_entries));
5031 				TAILQ_REMOVE(&bus->et_entries, target, links);
5032 				bus->generation++;
5033 				kfree(target, M_CAMXPT);
5034 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5035 				xpt_release_bus(bus);
5036 				return;
5037 			}
5038 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5039 		} else {
5040 			if (atomic_cmpset_int(&target->refcount,
5041 					      count, count - 1)) {
5042 				return;
5043 			}
5044 		}
5045 	}
5046 }
5047 
5048 static struct cam_ed *
5049 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
5050 {
5051 	struct	   cam_path path;
5052 	struct	   cam_ed *device;
5053 	struct	   cam_devq *devq;
5054 	cam_status status;
5055 
5056 	/*
5057 	 * Disallow new devices while trying to deregister a sim
5058 	 */
5059 	if (bus->sim->flags & CAM_SIM_DEREGISTERED)
5060 		return (NULL);
5061 
5062 	/*
5063 	 * Make space for us in the device queue on our bus
5064 	 */
5065 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5066 	devq = bus->sim->devq;
5067 	if (devq == NULL) {
5068 		lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5069 		return(NULL);
5070 	}
5071 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
5072 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5073 
5074 	if (status != CAM_REQ_CMP) {
5075 		device = NULL;
5076 	} else {
5077 		device = kmalloc(sizeof(*device), M_CAMXPT, M_INTWAIT);
5078 	}
5079 
5080 	if (device != NULL) {
5081 		struct cam_ed *cur_device;
5082 
5083 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5084 		device->alloc_ccb_entry.device = device;
5085 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5086 		device->send_ccb_entry.device = device;
5087 		device->target = target;
5088 		device->lun_id = lun_id;
5089 		device->sim = bus->sim;
5090 		/* Initialize our queues */
5091 		if (camq_init(&device->drvq, 0) != 0) {
5092 			kfree(device, M_CAMXPT);
5093 			return (NULL);
5094 		}
5095 		if (cam_ccbq_init(&device->ccbq,
5096 				  bus->sim->max_dev_openings) != 0) {
5097 			camq_fini(&device->drvq);
5098 			kfree(device, M_CAMXPT);
5099 			return (NULL);
5100 		}
5101 		SLIST_INIT(&device->asyncs);
5102 		SLIST_INIT(&device->periphs);
5103 		device->generation = 0;
5104 		device->owner = NULL;
5105 		/*
5106 		 * Take the default quirk entry until we have inquiry
5107 		 * data and can determine a better quirk to use.
5108 		 */
5109 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5110 		bzero(&device->inq_data, sizeof(device->inq_data));
5111 		device->inq_flags = 0;
5112 		device->queue_flags = 0;
5113 		device->serial_num = NULL;
5114 		device->serial_num_len = 0;
5115 		device->qfrozen_cnt = 0;
5116 		device->flags = CAM_DEV_UNCONFIGURED;
5117 		device->tag_delay_count = 0;
5118 		device->tag_saved_openings = 0;
5119 		device->refcount = 1;
5120 		callout_init(&device->callout);
5121 
5122 		/*
5123 		 * Hold a reference to our parent target so it
5124 		 * will not go away before we do.
5125 		 */
5126 		atomic_add_int(&target->refcount, 1);
5127 
5128 		/*
5129 		 * XXX should be limited by number of CCBs this bus can
5130 		 * do.
5131 		 */
5132 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5133 		/* Insertion sort into our target's device list */
5134 		cur_device = TAILQ_FIRST(&target->ed_entries);
5135 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5136 			cur_device = TAILQ_NEXT(cur_device, links);
5137 		if (cur_device != NULL) {
5138 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5139 		} else {
5140 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5141 		}
5142 		target->generation++;
5143 		if (lun_id != CAM_LUN_WILDCARD) {
5144 			xpt_compile_path(&path,
5145 					 NULL,
5146 					 bus->path_id,
5147 					 target->target_id,
5148 					 lun_id);
5149 			xpt_devise_transport(&path);
5150 			xpt_release_path(&path);
5151 		}
5152 	}
5153 	return (device);
5154 }
5155 
5156 static void
5157 xpt_reference_device(struct cam_ed *device)
5158 {
5159 	atomic_add_int(&device->refcount, 1);
5160 }
5161 
5162 static void
5163 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5164 		   struct cam_ed *device)
5165 {
5166 	struct cam_devq *devq;
5167 
5168 	for (;;) {
5169 		int count = device->refcount;
5170 
5171 		if (count == 1) {
5172 			lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5173 			if (atomic_cmpset_int(&device->refcount, 1, 0)) {
5174 				KKASSERT(device->flags & CAM_DEV_UNCONFIGURED);
5175 				if (device->alloc_ccb_entry.pinfo.index !=
5176 				     CAM_UNQUEUED_INDEX ||
5177 				    device->send_ccb_entry.pinfo.index !=
5178 				     CAM_UNQUEUED_INDEX) {
5179 					panic("Removing device while "
5180 					      "still queued for ccbs");
5181 				}
5182 				if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
5183 					device->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
5184 					callout_stop(&device->callout);
5185 				}
5186 				TAILQ_REMOVE(&target->ed_entries, device, links);
5187 				target->generation++;
5188 				bus->sim->max_ccbs -= device->ccbq.devq_openings;
5189 				if ((devq = bus->sim->devq) != NULL) {
5190 					/* Release our slot in the devq */
5191 					cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5192 				}
5193 				lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5194 
5195 				camq_fini(&device->drvq);
5196 				camq_fini(&device->ccbq.queue);
5197 				xpt_release_target(bus, target);
5198 				kfree(device, M_CAMXPT);
5199 				return;
5200 			}
5201 			lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5202 		} else {
5203 			if (atomic_cmpset_int(&device->refcount,
5204 					      count, count - 1)) {
5205 				return;
5206 			}
5207 		}
5208 	}
5209 }
5210 
5211 static u_int32_t
5212 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5213 {
5214 	int	diff;
5215 	int	result;
5216 	struct	cam_ed *dev;
5217 
5218 	dev = path->device;
5219 
5220 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5221 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5222 	if (result == CAM_REQ_CMP && (diff < 0)) {
5223 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5224 	}
5225 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5226 	 || (dev->inq_flags & SID_CmdQue) != 0)
5227 		dev->tag_saved_openings = newopenings;
5228 	/* Adjust the global limit */
5229 	dev->sim->max_ccbs += diff;
5230 	return (result);
5231 }
5232 
5233 static struct cam_eb *
5234 xpt_find_bus(path_id_t path_id)
5235 {
5236 	struct cam_eb *bus;
5237 
5238 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5239 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
5240 		if (bus->path_id == path_id) {
5241 			atomic_add_int(&bus->refcount, 1);
5242 			break;
5243 		}
5244 	}
5245 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5246 
5247 	return (bus);
5248 }
5249 
5250 static struct cam_et *
5251 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5252 {
5253 	struct cam_et *target;
5254 
5255 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5256 	TAILQ_FOREACH(target, &bus->et_entries, links) {
5257 		if (target->target_id == target_id) {
5258 			atomic_add_int(&target->refcount, 1);
5259 			break;
5260 		}
5261 	}
5262 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5263 
5264 	return (target);
5265 }
5266 
5267 static struct cam_ed *
5268 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5269 {
5270 	struct cam_ed *device;
5271 
5272 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
5273 	TAILQ_FOREACH(device, &target->ed_entries, links) {
5274 		if (device->lun_id == lun_id) {
5275 			atomic_add_int(&device->refcount, 1);
5276 			break;
5277 		}
5278 	}
5279 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
5280 
5281 	return (device);
5282 }
5283 
5284 typedef struct {
5285 	union	ccb *request_ccb;
5286 	struct 	ccb_pathinq *cpi;
5287 	int	counter;
5288 } xpt_scan_bus_info;
5289 
5290 /*
5291  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5292  * As the scan progresses, xpt_scan_bus is used as the
5293  * callback on completion function.
5294  */
5295 static void
5296 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5297 {
5298 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5299 		  ("xpt_scan_bus\n"));
5300 	switch (request_ccb->ccb_h.func_code) {
5301 	case XPT_SCAN_BUS:
5302 	{
5303 		xpt_scan_bus_info *scan_info;
5304 		union	ccb *work_ccb;
5305 		struct	cam_path *path;
5306 		u_int	i;
5307 		u_int	max_target;
5308 		u_int	initiator_id;
5309 
5310 		/* Find out the characteristics of the bus */
5311 		work_ccb = xpt_alloc_ccb();
5312 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5313 			      request_ccb->ccb_h.pinfo.priority);
5314 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5315 		xpt_action(work_ccb);
5316 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5317 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5318 			xpt_free_ccb(work_ccb);
5319 			xpt_done(request_ccb);
5320 			return;
5321 		}
5322 
5323 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5324 			/*
5325 			 * Can't scan the bus on an adapter that
5326 			 * cannot perform the initiator role.
5327 			 */
5328 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5329 			xpt_free_ccb(work_ccb);
5330 			xpt_done(request_ccb);
5331 			return;
5332 		}
5333 
5334 		/* Save some state for use while we probe for devices */
5335 		scan_info = (xpt_scan_bus_info *)
5336 		    kmalloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_INTWAIT);
5337 		scan_info->request_ccb = request_ccb;
5338 		scan_info->cpi = &work_ccb->cpi;
5339 
5340 		/* Cache on our stack so we can work asynchronously */
5341 		max_target = scan_info->cpi->max_target;
5342 		initiator_id = scan_info->cpi->initiator_id;
5343 
5344 
5345 		/*
5346 		 * We can scan all targets in parallel, or do it sequentially.
5347 		 */
5348 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5349 			max_target = 0;
5350 			scan_info->counter = 0;
5351 		} else {
5352 			scan_info->counter = scan_info->cpi->max_target + 1;
5353 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5354 				scan_info->counter--;
5355 			}
5356 		}
5357 
5358 		for (i = 0; i <= max_target; i++) {
5359 			cam_status status;
5360 			if (i == initiator_id)
5361 				continue;
5362 
5363 			status = xpt_create_path(&path, xpt_periph,
5364 						 request_ccb->ccb_h.path_id,
5365 						 i, 0);
5366 			if (status != CAM_REQ_CMP) {
5367 				kprintf("xpt_scan_bus: xpt_create_path failed"
5368 				       " with status %#x, bus scan halted\n",
5369 				       status);
5370 				kfree(scan_info, M_CAMXPT);
5371 				request_ccb->ccb_h.status = status;
5372 				xpt_free_ccb(work_ccb);
5373 				xpt_done(request_ccb);
5374 				break;
5375 			}
5376 			work_ccb = xpt_alloc_ccb();
5377 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5378 				      request_ccb->ccb_h.pinfo.priority);
5379 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5380 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5381 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5382 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5383 			xpt_action(work_ccb);
5384 		}
5385 		break;
5386 	}
5387 	case XPT_SCAN_LUN:
5388 	{
5389 		cam_status status;
5390 		struct cam_path *path;
5391 		xpt_scan_bus_info *scan_info;
5392 		path_id_t path_id;
5393 		target_id_t target_id;
5394 		lun_id_t lun_id;
5395 
5396 		/* Reuse the same CCB to query if a device was really found */
5397 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5398 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5399 			      request_ccb->ccb_h.pinfo.priority);
5400 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5401 
5402 		path_id = request_ccb->ccb_h.path_id;
5403 		target_id = request_ccb->ccb_h.target_id;
5404 		lun_id = request_ccb->ccb_h.target_lun;
5405 		xpt_action(request_ccb);
5406 
5407 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5408 			struct cam_ed *device;
5409 			struct cam_et *target;
5410 			int phl;
5411 
5412 			/*
5413 			 * If we already probed lun 0 successfully, or
5414 			 * we have additional configured luns on this
5415 			 * target that might have "gone away", go onto
5416 			 * the next lun.
5417 			 */
5418 			target = request_ccb->ccb_h.path->target;
5419 			/*
5420 			 * We may touch devices that we don't
5421 			 * hold references too, so ensure they
5422 			 * don't disappear out from under us.
5423 			 * The target above is referenced by the
5424 			 * path in the request ccb.
5425 			 */
5426 			phl = 0;
5427 			device = TAILQ_FIRST(&target->ed_entries);
5428 			if (device != NULL) {
5429 				phl = CAN_SRCH_HI_SPARSE(device);
5430 				if (device->lun_id == 0)
5431 					device = TAILQ_NEXT(device, links);
5432 			}
5433 			if ((lun_id != 0) || (device != NULL)) {
5434 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5435 					lun_id++;
5436 			}
5437 		} else {
5438 			struct cam_ed *device;
5439 
5440 			device = request_ccb->ccb_h.path->device;
5441 
5442 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5443 				/* Try the next lun */
5444 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5445 				  || CAN_SRCH_HI_DENSE(device))
5446 					lun_id++;
5447 			}
5448 		}
5449 
5450 		/*
5451 		 * Free the current request path- we're done with it.
5452 		 */
5453 		xpt_free_path(request_ccb->ccb_h.path);
5454 
5455 		/*
5456 		 * Check to see if we scan any further luns.
5457 		 */
5458 		if (lun_id == request_ccb->ccb_h.target_lun
5459                  || lun_id > scan_info->cpi->max_lun) {
5460 			int done;
5461 
5462  hop_again:
5463 			done = 0;
5464 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5465 				scan_info->counter++;
5466 				if (scan_info->counter ==
5467 				    scan_info->cpi->initiator_id) {
5468 					scan_info->counter++;
5469 				}
5470 				if (scan_info->counter >=
5471 				    scan_info->cpi->max_target+1) {
5472 					done = 1;
5473 				}
5474 			} else {
5475 				scan_info->counter--;
5476 				if (scan_info->counter == 0) {
5477 					done = 1;
5478 				}
5479 			}
5480 			if (done) {
5481 				xpt_free_ccb(request_ccb);
5482 				xpt_free_ccb((union ccb *)scan_info->cpi);
5483 				request_ccb = scan_info->request_ccb;
5484 				kfree(scan_info, M_CAMXPT);
5485 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5486 				xpt_done(request_ccb);
5487 				break;
5488 			}
5489 
5490 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5491 				break;
5492 			}
5493 			status = xpt_create_path(&path, xpt_periph,
5494 			    scan_info->request_ccb->ccb_h.path_id,
5495 			    scan_info->counter, 0);
5496 			if (status != CAM_REQ_CMP) {
5497 				kprintf("xpt_scan_bus: xpt_create_path failed"
5498 				    " with status %#x, bus scan halted\n",
5499 			       	    status);
5500 				xpt_free_ccb(request_ccb);
5501 				xpt_free_ccb((union ccb *)scan_info->cpi);
5502 				request_ccb = scan_info->request_ccb;
5503 				kfree(scan_info, M_CAMXPT);
5504 				request_ccb->ccb_h.status = status;
5505 				xpt_done(request_ccb);
5506 				break;
5507 			}
5508 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5509 			    request_ccb->ccb_h.pinfo.priority);
5510 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5511 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5512 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5513 			request_ccb->crcn.flags =
5514 			    scan_info->request_ccb->crcn.flags;
5515 		} else {
5516 			status = xpt_create_path(&path, xpt_periph,
5517 						 path_id, target_id, lun_id);
5518 			if (status != CAM_REQ_CMP) {
5519 				kprintf("xpt_scan_bus: xpt_create_path failed "
5520 				       "with status %#x, halting LUN scan\n",
5521 			 	       status);
5522 				goto hop_again;
5523 			}
5524 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5525 				      request_ccb->ccb_h.pinfo.priority);
5526 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5527 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5528 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5529 			request_ccb->crcn.flags =
5530 				scan_info->request_ccb->crcn.flags;
5531 		}
5532 		xpt_action(request_ccb);
5533 		break;
5534 	}
5535 	default:
5536 		break;
5537 	}
5538 }
5539 
5540 typedef enum {
5541 	PROBE_TUR,
5542 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5543 	PROBE_FULL_INQUIRY,
5544 	PROBE_MODE_SENSE,
5545 	PROBE_SERIAL_NUM_0,
5546 	PROBE_SERIAL_NUM_1,
5547 	PROBE_TUR_FOR_NEGOTIATION,
5548 	PROBE_INQUIRY_BASIC_DV1,
5549 	PROBE_INQUIRY_BASIC_DV2,
5550 	PROBE_DV_EXIT,
5551 	PROBE_INVALID
5552 } probe_action;
5553 
5554 static char *probe_action_text[] = {
5555 	"PROBE_TUR",
5556 	"PROBE_INQUIRY",
5557 	"PROBE_FULL_INQUIRY",
5558 	"PROBE_MODE_SENSE",
5559 	"PROBE_SERIAL_NUM_0",
5560 	"PROBE_SERIAL_NUM_1",
5561 	"PROBE_TUR_FOR_NEGOTIATION",
5562 	"PROBE_INQUIRY_BASIC_DV1",
5563 	"PROBE_INQUIRY_BASIC_DV2",
5564 	"PROBE_DV_EXIT",
5565 	"PROBE_INVALID"
5566 };
5567 
5568 #define PROBE_SET_ACTION(softc, newaction)	\
5569 do {									\
5570 	char **text;							\
5571 	text = probe_action_text;					\
5572 	CAM_DEBUG((softc)->periph->path, CAM_DEBUG_INFO,		\
5573 	    ("Probe %s to %s\n", text[(softc)->action],			\
5574 	    text[(newaction)]));					\
5575 	(softc)->action = (newaction);					\
5576 } while(0)
5577 
5578 typedef enum {
5579 	PROBE_INQUIRY_CKSUM	= 0x01,
5580 	PROBE_SERIAL_CKSUM	= 0x02,
5581 	PROBE_NO_ANNOUNCE	= 0x04
5582 } probe_flags;
5583 
5584 typedef struct {
5585 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5586 	probe_action	action;
5587 	union ccb	saved_ccb;
5588 	probe_flags	flags;
5589 	MD5_CTX		context;
5590 	u_int8_t	digest[16];
5591 	struct cam_periph *periph;
5592 } probe_softc;
5593 
5594 static void
5595 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5596 	     cam_flags flags, union ccb *request_ccb)
5597 {
5598 	struct ccb_pathinq cpi;
5599 	cam_status status;
5600 	struct cam_path *new_path;
5601 	struct cam_periph *old_periph;
5602 
5603 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5604 		  ("xpt_scan_lun\n"));
5605 
5606 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5607 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5608 	xpt_action((union ccb *)&cpi);
5609 
5610 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5611 		if (request_ccb != NULL) {
5612 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5613 			xpt_done(request_ccb);
5614 		}
5615 		return;
5616 	}
5617 
5618 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5619 		/*
5620 		 * Can't scan the bus on an adapter that
5621 		 * cannot perform the initiator role.
5622 		 */
5623 		if (request_ccb != NULL) {
5624 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5625 			xpt_done(request_ccb);
5626 		}
5627 		return;
5628 	}
5629 
5630 	if (request_ccb == NULL) {
5631 		request_ccb = kmalloc(sizeof(union ccb), M_CAMXPT, M_INTWAIT);
5632 		new_path = kmalloc(sizeof(*new_path), M_CAMXPT, M_INTWAIT);
5633 		status = xpt_compile_path(new_path, xpt_periph,
5634 					  path->bus->path_id,
5635 					  path->target->target_id,
5636 					  path->device->lun_id);
5637 
5638 		if (status != CAM_REQ_CMP) {
5639 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5640 			    "can't continue\n");
5641 			kfree(request_ccb, M_CAMXPT);
5642 			kfree(new_path, M_CAMXPT);
5643 			return;
5644 		}
5645 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5646 		request_ccb->ccb_h.cbfcnp = xptscandone;
5647 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5648 		request_ccb->crcn.flags = flags;
5649 	}
5650 
5651 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5652 		probe_softc *softc;
5653 
5654 		softc = (probe_softc *)old_periph->softc;
5655 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5656 				  periph_links.tqe);
5657 	} else {
5658 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5659 					  probestart, "probe",
5660 					  CAM_PERIPH_BIO,
5661 					  request_ccb->ccb_h.path, NULL, 0,
5662 					  request_ccb);
5663 
5664 		if (status != CAM_REQ_CMP) {
5665 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5666 			    "returned an error, can't continue probe\n");
5667 			request_ccb->ccb_h.status = status;
5668 			xpt_done(request_ccb);
5669 		}
5670 	}
5671 }
5672 
5673 static void
5674 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5675 {
5676 	xpt_release_path(done_ccb->ccb_h.path);
5677 	kfree(done_ccb->ccb_h.path, M_CAMXPT);
5678 	kfree(done_ccb, M_CAMXPT);
5679 }
5680 
5681 static cam_status
5682 proberegister(struct cam_periph *periph, void *arg)
5683 {
5684 	union ccb *request_ccb;	/* CCB representing the probe request */
5685 	cam_status status;
5686 	probe_softc *softc;
5687 
5688 	request_ccb = (union ccb *)arg;
5689 	if (periph == NULL) {
5690 		kprintf("proberegister: periph was NULL!!\n");
5691 		return(CAM_REQ_CMP_ERR);
5692 	}
5693 
5694 	if (request_ccb == NULL) {
5695 		kprintf("proberegister: no probe CCB, "
5696 		       "can't register device\n");
5697 		return(CAM_REQ_CMP_ERR);
5698 	}
5699 
5700 	softc = kmalloc(sizeof(*softc), M_CAMXPT, M_INTWAIT | M_ZERO);
5701 	TAILQ_INIT(&softc->request_ccbs);
5702 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5703 			  periph_links.tqe);
5704 	softc->flags = 0;
5705 	periph->softc = softc;
5706 	softc->periph = periph;
5707 	softc->action = PROBE_INVALID;
5708 	status = cam_periph_acquire(periph);
5709 	if (status != CAM_REQ_CMP) {
5710 		return (status);
5711 	}
5712 
5713 
5714 	/*
5715 	 * Ensure we've waited at least a bus settle
5716 	 * delay before attempting to probe the device.
5717 	 * For HBAs that don't do bus resets, this won't make a difference.
5718 	 */
5719 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5720 				      scsi_delay);
5721 	probeschedule(periph);
5722 	return(CAM_REQ_CMP);
5723 }
5724 
5725 static void
5726 probeschedule(struct cam_periph *periph)
5727 {
5728 	struct ccb_pathinq cpi;
5729 	union ccb *ccb;
5730 	probe_softc *softc;
5731 
5732 	softc = (probe_softc *)periph->softc;
5733 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5734 
5735 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5736 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5737 	xpt_action((union ccb *)&cpi);
5738 
5739 	/*
5740 	 * If a device has gone away and another device, or the same one,
5741 	 * is back in the same place, it should have a unit attention
5742 	 * condition pending.  It will not report the unit attention in
5743 	 * response to an inquiry, which may leave invalid transfer
5744 	 * negotiations in effect.  The TUR will reveal the unit attention
5745 	 * condition.  Only send the TUR for lun 0, since some devices
5746 	 * will get confused by commands other than inquiry to non-existent
5747 	 * luns.  If you think a device has gone away start your scan from
5748 	 * lun 0.  This will insure that any bogus transfer settings are
5749 	 * invalidated.
5750 	 *
5751 	 * If we haven't seen the device before and the controller supports
5752 	 * some kind of transfer negotiation, negotiate with the first
5753 	 * sent command if no bus reset was performed at startup.  This
5754 	 * ensures that the device is not confused by transfer negotiation
5755 	 * settings left over by loader or BIOS action.
5756 	 */
5757 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5758 	 && (ccb->ccb_h.target_lun == 0)) {
5759 		PROBE_SET_ACTION(softc, PROBE_TUR);
5760 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5761 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5762 		proberequestdefaultnegotiation(periph);
5763 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5764 	} else {
5765 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
5766 	}
5767 
5768 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5769 		softc->flags |= PROBE_NO_ANNOUNCE;
5770 	else
5771 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5772 
5773 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5774 }
5775 
5776 static void
5777 probestart(struct cam_periph *periph, union ccb *start_ccb)
5778 {
5779 	/* Probe the device that our peripheral driver points to */
5780 	struct ccb_scsiio *csio;
5781 	probe_softc *softc;
5782 
5783 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5784 
5785 	softc = (probe_softc *)periph->softc;
5786 	csio = &start_ccb->csio;
5787 
5788 	switch (softc->action) {
5789 	case PROBE_TUR:
5790 	case PROBE_TUR_FOR_NEGOTIATION:
5791 	case PROBE_DV_EXIT:
5792 	{
5793 		scsi_test_unit_ready(csio,
5794 				     /*retries*/4,
5795 				     probedone,
5796 				     MSG_SIMPLE_Q_TAG,
5797 				     SSD_FULL_SIZE,
5798 				     /*timeout*/60000);
5799 		break;
5800 	}
5801 	case PROBE_INQUIRY:
5802 	case PROBE_FULL_INQUIRY:
5803 	case PROBE_INQUIRY_BASIC_DV1:
5804 	case PROBE_INQUIRY_BASIC_DV2:
5805 	{
5806 		u_int inquiry_len;
5807 		struct scsi_inquiry_data *inq_buf;
5808 
5809 		inq_buf = &periph->path->device->inq_data;
5810 
5811 		/*
5812 		 * If the device is currently configured, we calculate an
5813 		 * MD5 checksum of the inquiry data, and if the serial number
5814 		 * length is greater than 0, add the serial number data
5815 		 * into the checksum as well.  Once the inquiry and the
5816 		 * serial number check finish, we attempt to figure out
5817 		 * whether we still have the same device.
5818 		 */
5819 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5820 
5821 			MD5Init(&softc->context);
5822 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5823 				  sizeof(struct scsi_inquiry_data));
5824 			softc->flags |= PROBE_INQUIRY_CKSUM;
5825 			if (periph->path->device->serial_num_len > 0) {
5826 				MD5Update(&softc->context,
5827 					  periph->path->device->serial_num,
5828 					  periph->path->device->serial_num_len);
5829 				softc->flags |= PROBE_SERIAL_CKSUM;
5830 			}
5831 			MD5Final(softc->digest, &softc->context);
5832 		}
5833 
5834 		if (softc->action == PROBE_INQUIRY)
5835 			inquiry_len = SHORT_INQUIRY_LENGTH;
5836 		else
5837 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5838 
5839 		/*
5840 		 * Some parallel SCSI devices fail to send an
5841 		 * ignore wide residue message when dealing with
5842 		 * odd length inquiry requests.  Round up to be
5843 		 * safe.
5844 		 */
5845 		inquiry_len = roundup2(inquiry_len, 2);
5846 
5847 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5848 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5849 			inq_buf = kmalloc(inquiry_len, M_CAMXPT, M_INTWAIT);
5850 		}
5851 		scsi_inquiry(csio,
5852 			     /*retries*/4,
5853 			     probedone,
5854 			     MSG_SIMPLE_Q_TAG,
5855 			     (u_int8_t *)inq_buf,
5856 			     inquiry_len,
5857 			     /*evpd*/FALSE,
5858 			     /*page_code*/0,
5859 			     SSD_MIN_SIZE,
5860 			     /*timeout*/60 * 1000);
5861 		break;
5862 	}
5863 	case PROBE_MODE_SENSE:
5864 	{
5865 		void  *mode_buf;
5866 		int    mode_buf_len;
5867 
5868 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5869 			     + sizeof(struct scsi_mode_blk_desc)
5870 			     + sizeof(struct scsi_control_page);
5871 		mode_buf = kmalloc(mode_buf_len, M_CAMXPT, M_INTWAIT);
5872 		scsi_mode_sense(csio,
5873 				/*retries*/4,
5874 				probedone,
5875 				MSG_SIMPLE_Q_TAG,
5876 				/*dbd*/FALSE,
5877 				SMS_PAGE_CTRL_CURRENT,
5878 				SMS_CONTROL_MODE_PAGE,
5879 				mode_buf,
5880 				mode_buf_len,
5881 				SSD_FULL_SIZE,
5882 				/*timeout*/60000);
5883 		break;
5884 	}
5885 	case PROBE_SERIAL_NUM_0:
5886 	{
5887 		struct scsi_vpd_supported_page_list *vpd_list = NULL;
5888 		struct cam_ed *device;
5889 
5890 		device = periph->path->device;
5891 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) {
5892 			vpd_list = kmalloc(sizeof(*vpd_list), M_CAMXPT,
5893 			    M_INTWAIT | M_ZERO);
5894 		}
5895 
5896 		if (vpd_list != NULL) {
5897 			scsi_inquiry(csio,
5898 				     /*retries*/4,
5899 				     probedone,
5900 				     MSG_SIMPLE_Q_TAG,
5901 				     (u_int8_t *)vpd_list,
5902 				     sizeof(*vpd_list),
5903 				     /*evpd*/TRUE,
5904 				     SVPD_SUPPORTED_PAGE_LIST,
5905 				     SSD_MIN_SIZE,
5906 				     /*timeout*/60 * 1000);
5907 			break;
5908 		}
5909 		/*
5910 		 * We'll have to do without, let our probedone
5911 		 * routine finish up for us.
5912 		 */
5913 		start_ccb->csio.data_ptr = NULL;
5914 		probedone(periph, start_ccb);
5915 		return;
5916 	}
5917 	case PROBE_SERIAL_NUM_1:
5918 	{
5919 		struct scsi_vpd_unit_serial_number *serial_buf;
5920 		struct cam_ed* device;
5921 
5922 		serial_buf = NULL;
5923 		device = periph->path->device;
5924 		device->serial_num = NULL;
5925 		device->serial_num_len = 0;
5926 
5927 		serial_buf = (struct scsi_vpd_unit_serial_number *)
5928 			kmalloc(sizeof(*serial_buf), M_CAMXPT,
5929 				M_INTWAIT | M_ZERO);
5930 		scsi_inquiry(csio,
5931 			     /*retries*/4,
5932 			     probedone,
5933 			     MSG_SIMPLE_Q_TAG,
5934 			     (u_int8_t *)serial_buf,
5935 			     sizeof(*serial_buf),
5936 			     /*evpd*/TRUE,
5937 			     SVPD_UNIT_SERIAL_NUMBER,
5938 			     SSD_MIN_SIZE,
5939 			     /*timeout*/60 * 1000);
5940 		break;
5941 	}
5942 	case PROBE_INVALID:
5943 		CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_INFO,
5944 		    ("probestart: invalid action state\n"));
5945 	default:
5946 		break;
5947 	}
5948 	xpt_action(start_ccb);
5949 }
5950 
5951 static void
5952 proberequestdefaultnegotiation(struct cam_periph *periph)
5953 {
5954 	struct ccb_trans_settings cts;
5955 
5956 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5957 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5958 	cts.type = CTS_TYPE_USER_SETTINGS;
5959 	xpt_action((union ccb *)&cts);
5960 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5961 		return;
5962 	}
5963 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5964 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5965 	xpt_action((union ccb *)&cts);
5966 }
5967 
5968 /*
5969  * Backoff Negotiation Code- only pertinent for SPI devices.
5970  */
5971 static int
5972 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5973 {
5974 	struct ccb_trans_settings cts;
5975 	struct ccb_trans_settings_spi *spi;
5976 
5977 	memset(&cts, 0, sizeof (cts));
5978 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5979 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5980 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5981 	xpt_action((union ccb *)&cts);
5982 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5983 		if (bootverbose) {
5984 			xpt_print(periph->path,
5985 			    "failed to get current device settings\n");
5986 		}
5987 		return (0);
5988 	}
5989 	if (cts.transport != XPORT_SPI) {
5990 		if (bootverbose) {
5991 			xpt_print(periph->path, "not SPI transport\n");
5992 		}
5993 		return (0);
5994 	}
5995 	spi = &cts.xport_specific.spi;
5996 
5997 	/*
5998 	 * We cannot renegotiate sync rate if we don't have one.
5999 	 */
6000 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
6001 		if (bootverbose) {
6002 			xpt_print(periph->path, "no sync rate known\n");
6003 		}
6004 		return (0);
6005 	}
6006 
6007 	/*
6008 	 * We'll assert that we don't have to touch PPR options- the
6009 	 * SIM will see what we do with period and offset and adjust
6010 	 * the PPR options as appropriate.
6011 	 */
6012 
6013 	/*
6014 	 * A sync rate with unknown or zero offset is nonsensical.
6015 	 * A sync period of zero means Async.
6016 	 */
6017 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
6018 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
6019 		if (bootverbose) {
6020 			xpt_print(periph->path, "no sync rate available\n");
6021 		}
6022 		return (0);
6023 	}
6024 
6025 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
6026 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6027 		    ("hit async: giving up on DV\n"));
6028 		return (0);
6029 	}
6030 
6031 
6032 	/*
6033 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
6034 	 * We don't try to remember 'last' settings to see if the SIM actually
6035 	 * gets into the speed we want to set. We check on the SIM telling
6036 	 * us that a requested speed is bad, but otherwise don't try and
6037 	 * check the speed due to the asynchronous and handshake nature
6038 	 * of speed setting.
6039 	 */
6040 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
6041 	for (;;) {
6042 		spi->sync_period++;
6043 		if (spi->sync_period >= 0xf) {
6044 			spi->sync_period = 0;
6045 			spi->sync_offset = 0;
6046 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6047 			    ("setting to async for DV\n"));
6048 			/*
6049 			 * Once we hit async, we don't want to try
6050 			 * any more settings.
6051 			 */
6052 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
6053 		} else if (bootverbose) {
6054 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6055 			    ("DV: period 0x%x\n", spi->sync_period));
6056 			kprintf("setting period to 0x%x\n", spi->sync_period);
6057 		}
6058 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6059 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
6060 		xpt_action((union ccb *)&cts);
6061 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6062 			break;
6063 		}
6064 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6065 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
6066 		if (spi->sync_period == 0) {
6067 			return (0);
6068 		}
6069 	}
6070 	return (1);
6071 }
6072 
6073 static void
6074 probedone(struct cam_periph *periph, union ccb *done_ccb)
6075 {
6076 	probe_softc *softc;
6077 	struct cam_path *path;
6078 	u_int32_t  priority;
6079 
6080 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
6081 
6082 	softc = (probe_softc *)periph->softc;
6083 	path = done_ccb->ccb_h.path;
6084 	priority = done_ccb->ccb_h.pinfo.priority;
6085 
6086 	switch (softc->action) {
6087 	case PROBE_TUR:
6088 	{
6089 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6090 
6091 			if (cam_periph_error(done_ccb, 0,
6092 					     SF_NO_PRINT, NULL) == ERESTART)
6093 				return;
6094 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
6095 				/* Don't wedge the queue */
6096 				xpt_release_devq(done_ccb->ccb_h.path,
6097 						 /*count*/1,
6098 						 /*run_queue*/TRUE);
6099 		}
6100 		PROBE_SET_ACTION(softc, PROBE_INQUIRY);
6101 		xpt_release_ccb(done_ccb);
6102 		xpt_schedule(periph, priority);
6103 		return;
6104 	}
6105 	case PROBE_INQUIRY:
6106 	case PROBE_FULL_INQUIRY:
6107 	{
6108 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6109 			struct scsi_inquiry_data *inq_buf;
6110 			u_int8_t periph_qual;
6111 
6112 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6113 			inq_buf = &path->device->inq_data;
6114 
6115 			periph_qual = SID_QUAL(inq_buf);
6116 
6117 			switch(periph_qual) {
6118 			case SID_QUAL_LU_CONNECTED:
6119 			{
6120 				u_int8_t len;
6121 
6122 				/*
6123 				 * We conservatively request only
6124 				 * SHORT_INQUIRY_LEN bytes of inquiry
6125 				 * information during our first try
6126 				 * at sending an INQUIRY. If the device
6127 				 * has more information to give,
6128 				 * perform a second request specifying
6129 				 * the amount of information the device
6130 				 * is willing to give.
6131 				 */
6132 				len = inq_buf->additional_length
6133 				    + offsetof(struct scsi_inquiry_data,
6134 						additional_length) + 1;
6135 				if (softc->action == PROBE_INQUIRY
6136 				    && len > SHORT_INQUIRY_LENGTH) {
6137 					PROBE_SET_ACTION(softc,
6138 					    PROBE_FULL_INQUIRY);
6139 					xpt_release_ccb(done_ccb);
6140 					xpt_schedule(periph, priority);
6141 					return;
6142 				}
6143 
6144 				xpt_find_quirk(path->device);
6145 
6146 				xpt_devise_transport(path);
6147 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6148 					PROBE_SET_ACTION(softc, PROBE_MODE_SENSE);
6149 				else
6150 					PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6151 
6152 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6153 				xpt_reference_device(path->device);
6154 
6155 				xpt_release_ccb(done_ccb);
6156 				xpt_schedule(periph, priority);
6157 				return;
6158 			}
6159 			default:
6160 				break;
6161 			}
6162 		} else if (cam_periph_error(done_ccb, 0,
6163 					    done_ccb->ccb_h.target_lun > 0
6164 					    ? SF_RETRY_UA|SF_QUIET_IR|SF_NO_PRINT
6165 					    : SF_RETRY_UA|SF_NO_PRINT,
6166 					    &softc->saved_ccb) == ERESTART) {
6167 			return;
6168 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6169 			/* Don't wedge the queue */
6170 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6171 					 /*run_queue*/TRUE);
6172 		}
6173 		/*
6174 		 * If we get to this point, we got an error status back
6175 		 * from the inquiry and the error status doesn't require
6176 		 * automatically retrying the command.  Therefore, the
6177 		 * inquiry failed.  If we had inquiry information before
6178 		 * for this device, but this latest inquiry command failed,
6179 		 * the device has probably gone away.  If this device isn't
6180 		 * already marked unconfigured, notify the peripheral
6181 		 * drivers that this device is no more.
6182 		 */
6183 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
6184 			/* Send the async notification. */
6185 			xpt_async(AC_LOST_DEVICE, path, NULL);
6186 		}
6187 
6188 		xpt_release_ccb(done_ccb);
6189 		break;
6190 	}
6191 	case PROBE_MODE_SENSE:
6192 	{
6193 		struct ccb_scsiio *csio;
6194 		struct scsi_mode_header_6 *mode_hdr;
6195 
6196 		csio = &done_ccb->csio;
6197 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6198 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6199 			struct scsi_control_page *page;
6200 			u_int8_t *offset;
6201 
6202 			offset = ((u_int8_t *)&mode_hdr[1])
6203 			    + mode_hdr->blk_desc_len;
6204 			page = (struct scsi_control_page *)offset;
6205 			path->device->queue_flags = page->queue_flags;
6206 		} else if (cam_periph_error(done_ccb, 0,
6207 					    SF_RETRY_UA|SF_NO_PRINT,
6208 					    &softc->saved_ccb) == ERESTART) {
6209 			return;
6210 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6211 			/* Don't wedge the queue */
6212 			xpt_release_devq(done_ccb->ccb_h.path,
6213 					 /*count*/1, /*run_queue*/TRUE);
6214 		}
6215 		xpt_release_ccb(done_ccb);
6216 		kfree(mode_hdr, M_CAMXPT);
6217 		PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_0);
6218 		xpt_schedule(periph, priority);
6219 		return;
6220 	}
6221 	case PROBE_SERIAL_NUM_0:
6222 	{
6223 		struct ccb_scsiio *csio;
6224 		struct scsi_vpd_supported_page_list *page_list;
6225 		int length, serialnum_supported, i;
6226 
6227 		serialnum_supported = 0;
6228 		csio = &done_ccb->csio;
6229 		page_list =
6230 		    (struct scsi_vpd_supported_page_list *)csio->data_ptr;
6231 
6232 		if (page_list == NULL) {
6233 			/*
6234 			 * Don't process the command as it was never sent
6235 			 */
6236 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6237 		    && (page_list->length > 0)) {
6238 			length = min(page_list->length,
6239 			    SVPD_SUPPORTED_PAGES_SIZE);
6240 			for (i = 0; i < length; i++) {
6241 				if (page_list->list[i] ==
6242 				    SVPD_UNIT_SERIAL_NUMBER) {
6243 					serialnum_supported = 1;
6244 					break;
6245 				}
6246 			}
6247 		} else if (cam_periph_error(done_ccb, 0,
6248 					    SF_RETRY_UA|SF_NO_PRINT,
6249 					    &softc->saved_ccb) == ERESTART) {
6250 			return;
6251 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6252 			/* Don't wedge the queue */
6253 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6254 					 /*run_queue*/TRUE);
6255 		}
6256 
6257 		if (page_list != NULL)
6258 			kfree(page_list, M_DEVBUF);
6259 
6260 		if (serialnum_supported) {
6261 			xpt_release_ccb(done_ccb);
6262 			PROBE_SET_ACTION(softc, PROBE_SERIAL_NUM_1);
6263 			xpt_schedule(periph, priority);
6264 			return;
6265 		}
6266 
6267 		csio->data_ptr = NULL;
6268 		/* FALLTHROUGH */
6269 	}
6270 
6271 	case PROBE_SERIAL_NUM_1:
6272 	{
6273 		struct ccb_scsiio *csio;
6274 		struct scsi_vpd_unit_serial_number *serial_buf;
6275 		u_int32_t  priority;
6276 		int changed;
6277 		int have_serialnum;
6278 
6279 		changed = 1;
6280 		have_serialnum = 0;
6281 		csio = &done_ccb->csio;
6282 		priority = done_ccb->ccb_h.pinfo.priority;
6283 		serial_buf =
6284 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6285 
6286 		/* Clean up from previous instance of this device */
6287 		if (path->device->serial_num != NULL) {
6288 			kfree(path->device->serial_num, M_CAMXPT);
6289 			path->device->serial_num = NULL;
6290 			path->device->serial_num_len = 0;
6291 		}
6292 
6293 		if (serial_buf == NULL) {
6294 			/*
6295 			 * Don't process the command as it was never sent
6296 			 */
6297 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6298 			&& (serial_buf->length > 0)) {
6299 
6300 			have_serialnum = 1;
6301 			path->device->serial_num =
6302 				kmalloc((serial_buf->length + 1),
6303 				       M_CAMXPT, M_INTWAIT);
6304 			bcopy(serial_buf->serial_num,
6305 			      path->device->serial_num,
6306 			      serial_buf->length);
6307 			path->device->serial_num_len = serial_buf->length;
6308 			path->device->serial_num[serial_buf->length] = '\0';
6309 		} else if (cam_periph_error(done_ccb, 0,
6310 					    SF_RETRY_UA|SF_NO_PRINT,
6311 					    &softc->saved_ccb) == ERESTART) {
6312 			return;
6313 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6314 			/* Don't wedge the queue */
6315 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6316 					 /*run_queue*/TRUE);
6317 		}
6318 
6319 		/*
6320 		 * Let's see if we have seen this device before.
6321 		 */
6322 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6323 			MD5_CTX context;
6324 			u_int8_t digest[16];
6325 
6326 			MD5Init(&context);
6327 
6328 			MD5Update(&context,
6329 				  (unsigned char *)&path->device->inq_data,
6330 				  sizeof(struct scsi_inquiry_data));
6331 
6332 			if (have_serialnum)
6333 				MD5Update(&context, serial_buf->serial_num,
6334 					  serial_buf->length);
6335 
6336 			MD5Final(digest, &context);
6337 			if (bcmp(softc->digest, digest, 16) == 0)
6338 				changed = 0;
6339 
6340 			/*
6341 			 * XXX Do we need to do a TUR in order to ensure
6342 			 *     that the device really hasn't changed???
6343 			 */
6344 			if ((changed != 0)
6345 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6346 				xpt_async(AC_LOST_DEVICE, path, NULL);
6347 		}
6348 		if (serial_buf != NULL)
6349 			kfree(serial_buf, M_CAMXPT);
6350 
6351 		if (changed != 0) {
6352 			/*
6353 			 * Now that we have all the necessary
6354 			 * information to safely perform transfer
6355 			 * negotiations... Controllers don't perform
6356 			 * any negotiation or tagged queuing until
6357 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6358 			 * received.  So, on a new device, just retrieve
6359 			 * the user settings, and set them as the current
6360 			 * settings to set the device up.
6361 			 */
6362 			proberequestdefaultnegotiation(periph);
6363 			xpt_release_ccb(done_ccb);
6364 
6365 			/*
6366 			 * Perform a TUR to allow the controller to
6367 			 * perform any necessary transfer negotiation.
6368 			 */
6369 			PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6370 			xpt_schedule(periph, priority);
6371 			return;
6372 		}
6373 		xpt_release_ccb(done_ccb);
6374 		break;
6375 	}
6376 	case PROBE_TUR_FOR_NEGOTIATION:
6377 	case PROBE_DV_EXIT:
6378 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6379 			/* Don't wedge the queue */
6380 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6381 					 /*run_queue*/TRUE);
6382 		}
6383 
6384 		xpt_reference_device(path->device);
6385 		/*
6386 		 * Do Domain Validation for lun 0 on devices that claim
6387 		 * to support Synchronous Transfer modes.
6388 		 */
6389 		if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6390 		 && done_ccb->ccb_h.target_lun == 0
6391 		 && (path->device->inq_data.flags & SID_Sync) != 0
6392                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6393 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6394 			    ("Begin Domain Validation\n"));
6395 			path->device->flags |= CAM_DEV_IN_DV;
6396 			xpt_release_ccb(done_ccb);
6397 			PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV1);
6398 			xpt_schedule(periph, priority);
6399 			return;
6400 		}
6401 		if (softc->action == PROBE_DV_EXIT) {
6402 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6403 			    ("Leave Domain Validation\n"));
6404 		}
6405 		path->device->flags &=
6406 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6407 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6408 			/* Inform the XPT that a new device has been found */
6409 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6410 			xpt_action(done_ccb);
6411 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6412 				  done_ccb);
6413 		}
6414 		xpt_release_ccb(done_ccb);
6415 		break;
6416 	case PROBE_INQUIRY_BASIC_DV1:
6417 	case PROBE_INQUIRY_BASIC_DV2:
6418 	{
6419 		struct scsi_inquiry_data *nbuf;
6420 		struct ccb_scsiio *csio;
6421 
6422 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6423 			/* Don't wedge the queue */
6424 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6425 					 /*run_queue*/TRUE);
6426 		}
6427 		csio = &done_ccb->csio;
6428 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6429 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6430 			xpt_print(path,
6431 			    "inquiry data fails comparison at DV%d step\n",
6432 			    softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2);
6433 			if (proberequestbackoff(periph, path->device)) {
6434 				path->device->flags &= ~CAM_DEV_IN_DV;
6435 				PROBE_SET_ACTION(softc, PROBE_TUR_FOR_NEGOTIATION);
6436 			} else {
6437 				/* give up */
6438 				PROBE_SET_ACTION(softc, PROBE_DV_EXIT);
6439 			}
6440 			kfree(nbuf, M_CAMXPT);
6441 			xpt_release_ccb(done_ccb);
6442 			xpt_schedule(periph, priority);
6443 			return;
6444 		}
6445 		kfree(nbuf, M_CAMXPT);
6446 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6447 			PROBE_SET_ACTION(softc, PROBE_INQUIRY_BASIC_DV2);
6448 			xpt_release_ccb(done_ccb);
6449 			xpt_schedule(periph, priority);
6450 			return;
6451 		}
6452 		if (softc->action == PROBE_DV_EXIT) {
6453 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6454 			    ("Leave Domain Validation Successfully\n"));
6455 		}
6456 		path->device->flags &=
6457 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6458 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6459 			/* Inform the XPT that a new device has been found */
6460 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6461 			xpt_action(done_ccb);
6462 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6463 				  done_ccb);
6464 		}
6465 		xpt_release_ccb(done_ccb);
6466 		break;
6467 	}
6468 	case PROBE_INVALID:
6469 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_INFO,
6470 		    ("probedone: invalid action state\n"));
6471 	default:
6472 		break;
6473 	}
6474 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6475 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6476 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6477 	xpt_done(done_ccb);
6478 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6479 		cam_periph_invalidate(periph);
6480 		cam_periph_release(periph);
6481 	} else {
6482 		probeschedule(periph);
6483 	}
6484 }
6485 
6486 static void
6487 probecleanup(struct cam_periph *periph)
6488 {
6489 	kfree(periph->softc, M_CAMXPT);
6490 }
6491 
6492 static void
6493 xpt_find_quirk(struct cam_ed *device)
6494 {
6495 	caddr_t	match;
6496 
6497 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6498 			       (caddr_t)xpt_quirk_table,
6499 			       NELEM(xpt_quirk_table),
6500 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6501 
6502 	if (match == NULL)
6503 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6504 
6505 	device->quirk = (struct xpt_quirk_entry *)match;
6506 }
6507 
6508 static int
6509 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6510 {
6511 	int error, lbool;
6512 
6513 	lbool = cam_srch_hi;
6514 	error = sysctl_handle_int(oidp, &lbool, 0, req);
6515 	if (error != 0 || req->newptr == NULL)
6516 		return (error);
6517 	if (lbool == 0 || lbool == 1) {
6518 		cam_srch_hi = lbool;
6519 		return (0);
6520 	} else {
6521 		return (EINVAL);
6522 	}
6523 }
6524 
6525 static void
6526 xpt_devise_transport(struct cam_path *path)
6527 {
6528 	struct ccb_pathinq cpi;
6529 	struct ccb_trans_settings cts;
6530 	struct scsi_inquiry_data *inq_buf;
6531 
6532 	/* Get transport information from the SIM */
6533 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6534 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6535 	xpt_action((union ccb *)&cpi);
6536 
6537 	inq_buf = NULL;
6538 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6539 		inq_buf = &path->device->inq_data;
6540 	path->device->protocol = PROTO_SCSI;
6541 	path->device->protocol_version =
6542 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6543 	path->device->transport = cpi.transport;
6544 	path->device->transport_version = cpi.transport_version;
6545 
6546 	/*
6547 	 * Any device not using SPI3 features should
6548 	 * be considered SPI2 or lower.
6549 	 */
6550 	if (inq_buf != NULL) {
6551 		if (path->device->transport == XPORT_SPI
6552 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6553 		 && path->device->transport_version > 2)
6554 			path->device->transport_version = 2;
6555 	} else {
6556 		struct cam_ed* otherdev;
6557 
6558 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6559 		     otherdev != NULL;
6560 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6561 			if (otherdev != path->device)
6562 				break;
6563 		}
6564 
6565 		if (otherdev != NULL) {
6566 			/*
6567 			 * Initially assume the same versioning as
6568 			 * prior luns for this target.
6569 			 */
6570 			path->device->protocol_version =
6571 			    otherdev->protocol_version;
6572 			path->device->transport_version =
6573 			    otherdev->transport_version;
6574 		} else {
6575 			/* Until we know better, opt for safty */
6576 			path->device->protocol_version = 2;
6577 			if (path->device->transport == XPORT_SPI)
6578 				path->device->transport_version = 2;
6579 			else
6580 				path->device->transport_version = 0;
6581 		}
6582 	}
6583 
6584 	/*
6585 	 * XXX
6586 	 * For a device compliant with SPC-2 we should be able
6587 	 * to determine the transport version supported by
6588 	 * scrutinizing the version descriptors in the
6589 	 * inquiry buffer.
6590 	 */
6591 
6592 	/* Tell the controller what we think */
6593 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6594 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6595 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6596 	cts.transport = path->device->transport;
6597 	cts.transport_version = path->device->transport_version;
6598 	cts.protocol = path->device->protocol;
6599 	cts.protocol_version = path->device->protocol_version;
6600 	cts.proto_specific.valid = 0;
6601 	cts.xport_specific.valid = 0;
6602 	xpt_action((union ccb *)&cts);
6603 }
6604 
6605 static void
6606 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6607 			  int async_update)
6608 {
6609 	struct	ccb_pathinq cpi;
6610 	struct	ccb_trans_settings cur_cts;
6611 	struct	ccb_trans_settings_scsi *scsi;
6612 	struct	ccb_trans_settings_scsi *cur_scsi;
6613 	struct	cam_sim *sim;
6614 	struct	scsi_inquiry_data *inq_data;
6615 
6616 	if (device == NULL) {
6617 		cts->ccb_h.status = CAM_PATH_INVALID;
6618 		xpt_done((union ccb *)cts);
6619 		return;
6620 	}
6621 
6622 	if (cts->protocol == PROTO_UNKNOWN
6623 	 || cts->protocol == PROTO_UNSPECIFIED) {
6624 		cts->protocol = device->protocol;
6625 		cts->protocol_version = device->protocol_version;
6626 	}
6627 
6628 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6629 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6630 		cts->protocol_version = device->protocol_version;
6631 
6632 	if (cts->protocol != device->protocol) {
6633 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6634 		       cts->protocol, device->protocol);
6635 		cts->protocol = device->protocol;
6636 	}
6637 
6638 	if (cts->protocol_version > device->protocol_version) {
6639 		if (bootverbose) {
6640 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6641 			    "Version from %d to %d?\n", cts->protocol_version,
6642 			    device->protocol_version);
6643 		}
6644 		cts->protocol_version = device->protocol_version;
6645 	}
6646 
6647 	if (cts->transport == XPORT_UNKNOWN
6648 	 || cts->transport == XPORT_UNSPECIFIED) {
6649 		cts->transport = device->transport;
6650 		cts->transport_version = device->transport_version;
6651 	}
6652 
6653 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6654 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6655 		cts->transport_version = device->transport_version;
6656 
6657 	if (cts->transport != device->transport) {
6658 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6659 		    cts->transport, device->transport);
6660 		cts->transport = device->transport;
6661 	}
6662 
6663 	if (cts->transport_version > device->transport_version) {
6664 		if (bootverbose) {
6665 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6666 			    "Version from %d to %d?\n", cts->transport_version,
6667 			    device->transport_version);
6668 		}
6669 		cts->transport_version = device->transport_version;
6670 	}
6671 
6672 	sim = cts->ccb_h.path->bus->sim;
6673 
6674 	/*
6675 	 * Nothing more of interest to do unless
6676 	 * this is a device connected via the
6677 	 * SCSI protocol.
6678 	 */
6679 	if (cts->protocol != PROTO_SCSI) {
6680 		if (async_update == FALSE)
6681 			(*(sim->sim_action))(sim, (union ccb *)cts);
6682 		return;
6683 	}
6684 
6685 	inq_data = &device->inq_data;
6686 	scsi = &cts->proto_specific.scsi;
6687 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6688 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6689 	xpt_action((union ccb *)&cpi);
6690 
6691 	/* SCSI specific sanity checking */
6692 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6693 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6694 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6695 	 || (device->quirk->mintags == 0)) {
6696 		/*
6697 		 * Can't tag on hardware that doesn't support tags,
6698 		 * doesn't have it enabled, or has broken tag support.
6699 		 */
6700 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6701 	}
6702 
6703 	if (async_update == FALSE) {
6704 		/*
6705 		 * Perform sanity checking against what the
6706 		 * controller and device can do.
6707 		 */
6708 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6709 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6710 		cur_cts.type = cts->type;
6711 		xpt_action((union ccb *)&cur_cts);
6712 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6713 			return;
6714 		}
6715 		cur_scsi = &cur_cts.proto_specific.scsi;
6716 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6717 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6718 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6719 		}
6720 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6721 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6722 	}
6723 
6724 	/* SPI specific sanity checking */
6725 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6726 		u_int spi3caps;
6727 		struct ccb_trans_settings_spi *spi;
6728 		struct ccb_trans_settings_spi *cur_spi;
6729 
6730 		spi = &cts->xport_specific.spi;
6731 
6732 		cur_spi = &cur_cts.xport_specific.spi;
6733 
6734 		/* Fill in any gaps in what the user gave us */
6735 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6736 			spi->sync_period = cur_spi->sync_period;
6737 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6738 			spi->sync_period = 0;
6739 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6740 			spi->sync_offset = cur_spi->sync_offset;
6741 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6742 			spi->sync_offset = 0;
6743 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6744 			spi->ppr_options = cur_spi->ppr_options;
6745 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6746 			spi->ppr_options = 0;
6747 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6748 			spi->bus_width = cur_spi->bus_width;
6749 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6750 			spi->bus_width = 0;
6751 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6752 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6753 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6754 		}
6755 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6756 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6757 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6758 		  && (inq_data->flags & SID_Sync) == 0
6759 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6760 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)) {
6761 			/* Force async */
6762 			spi->sync_period = 0;
6763 			spi->sync_offset = 0;
6764 		}
6765 
6766 		switch (spi->bus_width) {
6767 		case MSG_EXT_WDTR_BUS_32_BIT:
6768 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6769 			  || (inq_data->flags & SID_WBus32) != 0
6770 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6771 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6772 				break;
6773 			/* Fall Through to 16-bit */
6774 		case MSG_EXT_WDTR_BUS_16_BIT:
6775 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6776 			  || (inq_data->flags & SID_WBus16) != 0
6777 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6778 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6779 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6780 				break;
6781 			}
6782 			/* Fall Through to 8-bit */
6783 		default: /* New bus width?? */
6784 		case MSG_EXT_WDTR_BUS_8_BIT:
6785 			/* All targets can do this */
6786 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6787 			break;
6788 		}
6789 
6790 		spi3caps = cpi.xport_specific.spi.ppr_options;
6791 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6792 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6793 			spi3caps &= inq_data->spi3data;
6794 
6795 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6796 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6797 
6798 		if ((spi3caps & SID_SPI_IUS) == 0)
6799 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6800 
6801 		if ((spi3caps & SID_SPI_QAS) == 0)
6802 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6803 
6804 		/* No SPI Transfer settings are allowed unless we are wide */
6805 		if (spi->bus_width == 0)
6806 			spi->ppr_options = 0;
6807 
6808 		if ((spi->valid & CTS_SPI_VALID_DISC)
6809 		 && ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0)) {
6810 			/*
6811 			 * Can't tag queue without disconnection.
6812 			 */
6813 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6814 			scsi->valid |= CTS_SCSI_VALID_TQ;
6815 		}
6816 
6817 		/*
6818 		 * If we are currently performing tagged transactions to
6819 		 * this device and want to change its negotiation parameters,
6820 		 * go non-tagged for a bit to give the controller a chance to
6821 		 * negotiate unhampered by tag messages.
6822 		 */
6823 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6824 		 && (device->inq_flags & SID_CmdQue) != 0
6825 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6826 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6827 				   CTS_SPI_VALID_SYNC_OFFSET|
6828 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6829 			xpt_toggle_tags(cts->ccb_h.path);
6830 	}
6831 
6832 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6833 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6834 		int device_tagenb;
6835 
6836 		/*
6837 		 * If we are transitioning from tags to no-tags or
6838 		 * vice-versa, we need to carefully freeze and restart
6839 		 * the queue so that we don't overlap tagged and non-tagged
6840 		 * commands.  We also temporarily stop tags if there is
6841 		 * a change in transfer negotiation settings to allow
6842 		 * "tag-less" negotiation.
6843 		 */
6844 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6845 		 || (device->inq_flags & SID_CmdQue) != 0)
6846 			device_tagenb = TRUE;
6847 		else
6848 			device_tagenb = FALSE;
6849 
6850 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6851 		  && device_tagenb == FALSE)
6852 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6853 		  && device_tagenb == TRUE)) {
6854 
6855 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6856 				/*
6857 				 * Delay change to use tags until after a
6858 				 * few commands have gone to this device so
6859 				 * the controller has time to perform transfer
6860 				 * negotiations without tagged messages getting
6861 				 * in the way.
6862 				 */
6863 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6864 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6865 			} else {
6866 				struct ccb_relsim crs;
6867 
6868 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6869 				device->inq_flags &= ~SID_CmdQue;
6870 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6871 						    sim->max_dev_openings);
6872 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6873 				device->tag_delay_count = 0;
6874 
6875 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6876 					      /*priority*/1);
6877 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6878 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6879 				crs.openings
6880 				    = crs.release_timeout
6881 				    = crs.qfrozen_cnt
6882 				    = 0;
6883 				xpt_action((union ccb *)&crs);
6884 			}
6885 		}
6886 	}
6887 	if (async_update == FALSE)
6888 		(*(sim->sim_action))(sim, (union ccb *)cts);
6889 }
6890 
6891 static void
6892 xpt_toggle_tags(struct cam_path *path)
6893 {
6894 	struct cam_ed *dev;
6895 
6896 	/*
6897 	 * Give controllers a chance to renegotiate
6898 	 * before starting tag operations.  We
6899 	 * "toggle" tagged queuing off then on
6900 	 * which causes the tag enable command delay
6901 	 * counter to come into effect.
6902 	 */
6903 	dev = path->device;
6904 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6905 	 || ((dev->inq_flags & SID_CmdQue) != 0
6906  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6907 		struct ccb_trans_settings cts;
6908 
6909 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6910 		cts.protocol = PROTO_SCSI;
6911 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6912 		cts.transport = XPORT_UNSPECIFIED;
6913 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6914 		cts.proto_specific.scsi.flags = 0;
6915 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6916 		xpt_set_transfer_settings(&cts, path->device,
6917 					  /*async_update*/TRUE);
6918 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6919 		xpt_set_transfer_settings(&cts, path->device,
6920 					  /*async_update*/TRUE);
6921 	}
6922 }
6923 
6924 static void
6925 xpt_start_tags(struct cam_path *path)
6926 {
6927 	struct ccb_relsim crs;
6928 	struct cam_ed *device;
6929 	struct cam_sim *sim;
6930 	int    newopenings;
6931 
6932 	device = path->device;
6933 	sim = path->bus->sim;
6934 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6935 	xpt_freeze_devq(path, /*count*/1);
6936 	device->inq_flags |= SID_CmdQue;
6937 	if (device->tag_saved_openings != 0)
6938 		newopenings = device->tag_saved_openings;
6939 	else
6940 		newopenings = min(device->quirk->maxtags,
6941 				  sim->max_tagged_dev_openings);
6942 	xpt_dev_ccbq_resize(path, newopenings);
6943 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6944 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6945 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6946 	crs.openings
6947 	    = crs.release_timeout
6948 	    = crs.qfrozen_cnt
6949 	    = 0;
6950 	xpt_action((union ccb *)&crs);
6951 }
6952 
6953 static int busses_to_config;
6954 static int busses_to_reset;
6955 
6956 static int
6957 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6958 {
6959 	sim_lock_assert_owned(bus->sim->lock);
6960 
6961 	if (bus->counted_to_config == 0 && bus->path_id != CAM_XPT_PATH_ID) {
6962 		struct cam_path path;
6963 		struct ccb_pathinq cpi;
6964 		int can_negotiate;
6965 
6966 		if (bootverbose) {
6967 			kprintf("CAM: Configuring bus:");
6968 			if (bus->sim) {
6969 				kprintf(" %s%d\n",
6970 					bus->sim->sim_name,
6971 					bus->sim->unit_number);
6972 			} else {
6973 				kprintf(" (unknown)\n");
6974 			}
6975 		}
6976 		atomic_add_int(&busses_to_config, 1);
6977 		bus->counted_to_config = 1;
6978 		xpt_compile_path(&path, NULL, bus->path_id,
6979 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6980 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6981 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6982 		xpt_action((union ccb *)&cpi);
6983 		can_negotiate = cpi.hba_inquiry;
6984 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6985 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 && can_negotiate)
6986 			busses_to_reset++;
6987 		xpt_release_path(&path);
6988 	} else
6989 	if (bus->counted_to_config == 0 && bus->path_id == CAM_XPT_PATH_ID) {
6990 		/* this is our dummy periph/bus */
6991 		atomic_add_int(&busses_to_config, 1);
6992 		bus->counted_to_config = 1;
6993 	}
6994 
6995 	return(1);
6996 }
6997 
6998 static int
6999 xptconfigfunc(struct cam_eb *bus, void *arg)
7000 {
7001 	struct	cam_path *path;
7002 	union	ccb *work_ccb;
7003 
7004 	sim_lock_assert_owned(bus->sim->lock);
7005 
7006 	if (bus->path_id != CAM_XPT_PATH_ID) {
7007 		cam_status status;
7008 		int can_negotiate;
7009 
7010 		work_ccb = xpt_alloc_ccb();
7011 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
7012 					      CAM_TARGET_WILDCARD,
7013 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
7014 			kprintf("xptconfigfunc: xpt_create_path failed with "
7015 			       "status %#x for bus %d\n", status, bus->path_id);
7016 			kprintf("xptconfigfunc: halting bus configuration\n");
7017 			xpt_free_ccb(work_ccb);
7018 			xpt_uncount_bus(bus);
7019 			return(0);
7020 		}
7021 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
7022 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
7023 		xpt_action(work_ccb);
7024 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
7025 			kprintf("xptconfigfunc: CPI failed on bus %d "
7026 			       "with status %d\n", bus->path_id,
7027 			       work_ccb->ccb_h.status);
7028 			xpt_finishconfig(xpt_periph, work_ccb);
7029 			return(1);
7030 		}
7031 
7032 		can_negotiate = work_ccb->cpi.hba_inquiry;
7033 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
7034 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
7035 		 && (can_negotiate != 0)) {
7036 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
7037 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
7038 			work_ccb->ccb_h.cbfcnp = NULL;
7039 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
7040 				  ("Resetting Bus\n"));
7041 			xpt_action(work_ccb);
7042 			xpt_finishconfig(xpt_periph, work_ccb);
7043 		} else {
7044 			/* Act as though we performed a successful BUS RESET */
7045 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
7046 			xpt_finishconfig(xpt_periph, work_ccb);
7047 		}
7048 	} else {
7049 		xpt_uncount_bus(bus);
7050 	}
7051 
7052 	return(1);
7053 }
7054 
7055 /*
7056  * Now that interrupts are enabled, go find our devices.
7057  *
7058  * This hook function is called once by run_interrupt_driven_config_hooks().
7059  * XPT is expected to disestablish its hook when done.
7060  */
7061 static void
7062 xpt_config(void *arg)
7063 {
7064 
7065 #ifdef CAMDEBUG
7066 	/* Setup debugging flags and path */
7067 #ifdef CAM_DEBUG_FLAGS
7068 	cam_dflags = CAM_DEBUG_FLAGS;
7069 #else /* !CAM_DEBUG_FLAGS */
7070 	cam_dflags = CAM_DEBUG_NONE;
7071 #endif /* CAM_DEBUG_FLAGS */
7072 #ifdef CAM_DEBUG_BUS
7073 	if (cam_dflags != CAM_DEBUG_NONE) {
7074 		/*
7075 		 * Locking is specifically omitted here.  No SIMs have
7076 		 * registered yet, so xpt_create_path will only be searching
7077 		 * empty lists of targets and devices.
7078 		 */
7079 		if (xpt_create_path(&cam_dpath, xpt_periph,
7080 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
7081 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
7082 			kprintf("xpt_config: xpt_create_path() failed for debug"
7083 			       " target %d:%d:%d, debugging disabled\n",
7084 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
7085 			cam_dflags = CAM_DEBUG_NONE;
7086 		}
7087 	} else {
7088 		cam_dpath = NULL;
7089 	}
7090 #else /* !CAM_DEBUG_BUS */
7091 	cam_dpath = NULL;
7092 #endif /* CAM_DEBUG_BUS */
7093 #endif /* CAMDEBUG */
7094 
7095 	/*
7096 	 * Scan all installed busses.  This will also add a count
7097 	 * for our dummy placeholder (xpt_periph).
7098 	 */
7099 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
7100 
7101 	kprintf("CAM: Configuring %d busses\n", busses_to_config - 1);
7102 	if (busses_to_reset > 0 && scsi_delay >= 2000) {
7103 		kprintf("Waiting %d seconds for SCSI "
7104 			"devices to settle\n",
7105 			scsi_delay/1000);
7106 	}
7107 	xpt_for_all_busses(xptconfigfunc, NULL);
7108 }
7109 
7110 /*
7111  * If the given device only has one peripheral attached to it, and if that
7112  * peripheral is the passthrough driver, announce it.  This insures that the
7113  * user sees some sort of announcement for every peripheral in their system.
7114  */
7115 static int
7116 xptpassannouncefunc(struct cam_ed *device, void *arg)
7117 {
7118 	struct cam_periph *periph;
7119 	int i;
7120 
7121 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
7122 	     periph = SLIST_NEXT(periph, periph_links), i++);
7123 
7124 	periph = SLIST_FIRST(&device->periphs);
7125 	if ((i == 1)
7126 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
7127 		xpt_announce_periph(periph, NULL);
7128 
7129 	return(1);
7130 }
7131 
7132 static void
7133 xpt_finishconfig_task(void *context, int pending)
7134 {
7135 	struct	periph_driver **p_drv;
7136 	int	i;
7137 
7138 	kprintf("CAM: finished configuring all busses\n");
7139 
7140 	if (busses_to_config == 0) {
7141 		/* Register all the peripheral drivers */
7142 		/* XXX This will have to change when we have loadable modules */
7143 		p_drv = periph_drivers;
7144 		for (i = 0; p_drv[i] != NULL; i++) {
7145 			(*p_drv[i]->init)();
7146 		}
7147 
7148 		/*
7149 		 * Check for devices with no "standard" peripheral driver
7150 		 * attached.  For any devices like that, announce the
7151 		 * passthrough driver so the user will see something.
7152 		 */
7153 		xpt_for_all_devices(xptpassannouncefunc, NULL);
7154 
7155 		/* Release our hook so that the boot can continue. */
7156 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
7157 		kfree(xsoftc.xpt_config_hook, M_CAMXPT);
7158 		xsoftc.xpt_config_hook = NULL;
7159 	}
7160 	kfree(context, M_CAMXPT);
7161 }
7162 
7163 static void
7164 xpt_uncount_bus (struct cam_eb *bus)
7165 {
7166 	struct xpt_task *task;
7167 
7168 	if (bus->counted_to_config) {
7169 		bus->counted_to_config = 0;
7170 		if (atomic_fetchadd_int(&busses_to_config, -1) == 1) {
7171 			task = kmalloc(sizeof(struct xpt_task), M_CAMXPT,
7172 				       M_INTWAIT | M_ZERO);
7173 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7174 			taskqueue_enqueue(taskqueue_thread[mycpuid],
7175 					  &task->task);
7176 		}
7177 	}
7178 }
7179 
7180 static void
7181 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
7182 {
7183 	struct cam_path *path;
7184 
7185 	path = done_ccb->ccb_h.path;
7186 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_finishconfig\n"));
7187 
7188 	switch(done_ccb->ccb_h.func_code) {
7189 	case XPT_RESET_BUS:
7190 		if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7191 			done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7192 			done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7193 			done_ccb->crcn.flags = 0;
7194 			xpt_action(done_ccb);
7195 			return;
7196 		}
7197 		/* FALLTHROUGH */
7198 	case XPT_SCAN_BUS:
7199 	default:
7200 		if (bootverbose) {
7201 			kprintf("CAM: Finished configuring bus:");
7202 			if (path->bus->sim) {
7203 				kprintf(" %s%d\n",
7204 					path->bus->sim->sim_name,
7205 					path->bus->sim->unit_number);
7206 			} else {
7207 				kprintf(" (unknown)\n");
7208 			}
7209 		}
7210 		xpt_uncount_bus(path->bus);
7211 		xpt_free_path(path);
7212 		xpt_free_ccb(done_ccb);
7213 		break;
7214 	}
7215 }
7216 
7217 cam_status
7218 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
7219 		   struct cam_path *path)
7220 {
7221 	struct ccb_setasync csa;
7222 	cam_status status;
7223 	int xptpath = 0;
7224 
7225 	if (path == NULL) {
7226 		lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7227 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
7228 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
7229 		if (status != CAM_REQ_CMP) {
7230 			lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7231 			return (status);
7232 		}
7233 		xptpath = 1;
7234 	}
7235 
7236 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
7237 	csa.ccb_h.func_code = XPT_SASYNC_CB;
7238 	csa.event_enable = event;
7239 	csa.callback = cbfunc;
7240 	csa.callback_arg = cbarg;
7241 	xpt_action((union ccb *)&csa);
7242 	status = csa.ccb_h.status;
7243 	if (xptpath) {
7244 		xpt_free_path(path);
7245 		lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7246 	}
7247 	return (status);
7248 }
7249 
7250 static void
7251 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7252 {
7253 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7254 
7255 	switch (work_ccb->ccb_h.func_code) {
7256 	/* Common cases first */
7257 	case XPT_PATH_INQ:		/* Path routing inquiry */
7258 	{
7259 		struct ccb_pathinq *cpi;
7260 
7261 		cpi = &work_ccb->cpi;
7262 		cpi->version_num = 1; /* XXX??? */
7263 		cpi->hba_inquiry = 0;
7264 		cpi->target_sprt = 0;
7265 		cpi->hba_misc = 0;
7266 		cpi->hba_eng_cnt = 0;
7267 		cpi->max_target = 0;
7268 		cpi->max_lun = 0;
7269 		cpi->initiator_id = 0;
7270 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7271 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7272 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7273 		cpi->unit_number = sim->unit_number;
7274 		cpi->bus_id = sim->bus_id;
7275 		cpi->base_transfer_speed = 0;
7276 		cpi->protocol = PROTO_UNSPECIFIED;
7277 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7278 		cpi->transport = XPORT_UNSPECIFIED;
7279 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7280 		cpi->ccb_h.status = CAM_REQ_CMP;
7281 		xpt_done(work_ccb);
7282 		break;
7283 	}
7284 	default:
7285 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7286 		xpt_done(work_ccb);
7287 		break;
7288 	}
7289 }
7290 
7291 /*
7292  * The xpt as a "controller" has no interrupt sources, so polling
7293  * is a no-op.
7294  */
7295 static void
7296 xptpoll(struct cam_sim *sim)
7297 {
7298 }
7299 
7300 void
7301 xpt_lock_buses(void)
7302 {
7303 	lockmgr(&xsoftc.xpt_topo_lock, LK_EXCLUSIVE);
7304 }
7305 
7306 void
7307 xpt_unlock_buses(void)
7308 {
7309 	lockmgr(&xsoftc.xpt_topo_lock, LK_RELEASE);
7310 }
7311 
7312 
7313 /*
7314  * Should only be called by the machine interrupt dispatch routines,
7315  * so put these prototypes here instead of in the header.
7316  */
7317 
7318 static void
7319 swi_cambio(void *arg, void *frame)
7320 {
7321 	camisr(NULL);
7322 }
7323 
7324 static void
7325 camisr(void *dummy)
7326 {
7327 	cam_simq_t queue;
7328 	struct cam_sim *sim;
7329 
7330 	spin_lock(&cam_simq_spin);
7331 	TAILQ_INIT(&queue);
7332 	TAILQ_CONCAT(&queue, &cam_simq, links);
7333 	spin_unlock(&cam_simq_spin);
7334 
7335 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7336 		TAILQ_REMOVE(&queue, sim, links);
7337 		CAM_SIM_LOCK(sim);
7338 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7339 		camisr_runqueue(sim);
7340 		CAM_SIM_UNLOCK(sim);
7341 	}
7342 }
7343 
7344 static void
7345 camisr_runqueue(struct cam_sim *sim)
7346 {
7347 	struct	ccb_hdr *ccb_h;
7348 	int	runq;
7349 
7350 	spin_lock(&sim->sim_spin);
7351 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
7352 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
7353 		spin_unlock(&sim->sim_spin);
7354 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7355 
7356 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7357 			  ("camisr\n"));
7358 
7359 		runq = FALSE;
7360 
7361 		if (ccb_h->flags & CAM_HIGH_POWER) {
7362 			struct highpowerlist	*hphead;
7363 			union ccb		*send_ccb;
7364 
7365 			lockmgr(&xsoftc.xpt_lock, LK_EXCLUSIVE);
7366 			hphead = &xsoftc.highpowerq;
7367 
7368 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7369 
7370 			/*
7371 			 * Increment the count since this command is done.
7372 			 */
7373 			xsoftc.num_highpower++;
7374 
7375 			/*
7376 			 * Any high powered commands queued up?
7377 			 */
7378 			if (send_ccb != NULL) {
7379 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7380 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7381 
7382 				xpt_release_devq(send_ccb->ccb_h.path,
7383 						 /*count*/1, /*runqueue*/TRUE);
7384 			} else
7385 				lockmgr(&xsoftc.xpt_lock, LK_RELEASE);
7386 		}
7387 
7388 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7389 			struct cam_ed *dev;
7390 
7391 			dev = ccb_h->path->device;
7392 
7393 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7394 
7395 			/*
7396 			 * devq may be NULL if this is cam_dead_sim
7397 			 */
7398 			if (ccb_h->path->bus->sim->devq) {
7399 				ccb_h->path->bus->sim->devq->send_active--;
7400 				ccb_h->path->bus->sim->devq->send_openings++;
7401 			}
7402 
7403 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7404 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7405 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7406 			  && (dev->ccbq.dev_active == 0))) {
7407 
7408 				xpt_release_devq(ccb_h->path, /*count*/1,
7409 						 /*run_queue*/TRUE);
7410 			}
7411 
7412 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7413 			 && (--dev->tag_delay_count == 0))
7414 				xpt_start_tags(ccb_h->path);
7415 
7416 			if ((dev->ccbq.queue.entries > 0)
7417 			 && (dev->qfrozen_cnt == 0)
7418 			 && (device_is_send_queued(dev) == 0)) {
7419 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7420 							      dev);
7421 			}
7422 		}
7423 
7424 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7425 			xpt_release_simq(ccb_h->path->bus->sim,
7426 					 /*run_queue*/TRUE);
7427 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7428 			runq = FALSE;
7429 		}
7430 
7431 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7432 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7433 			xpt_release_devq(ccb_h->path, /*count*/1,
7434 					 /*run_queue*/TRUE);
7435 			ccb_h->status &= ~CAM_DEV_QFRZN;
7436 		} else if (runq) {
7437 			xpt_run_dev_sendq(ccb_h->path->bus);
7438 		}
7439 
7440 		/* Call the peripheral driver's callback */
7441 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7442 		spin_lock(&sim->sim_spin);
7443 	}
7444 	spin_unlock(&sim->sim_spin);
7445 }
7446 
7447 /*
7448  * The dead_sim isn't completely hooked into CAM, we have to make sure
7449  * the doneq is cleared after calling xpt_done() so cam_periph_ccbwait()
7450  * doesn't block.
7451  */
7452 static void
7453 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7454 {
7455 
7456 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7457 	xpt_done(ccb);
7458 	camisr_runqueue(sim);
7459 }
7460 
7461 static void
7462 dead_sim_poll(struct cam_sim *sim)
7463 {
7464 }
7465